
 1

M6800

Assembly Language Programming

 2

3. MC6802 MICROPROCESSOR

MC6802 microprocessor runs in 1MHz clock cycle. It has 64 Kbyte memory address capacity

using 16-bit addressing path (A0-A15). The 8-bit data path (D0-D7) is bidirectional and has three

states. It has 72 instructions which are 1, 2 or 3 byte instructions.

MC6802 microprocessor has 3 interrupt inputs. One of them is maskable (IRQ), the other one

is unmaskable (NMI) and the last one is the reset (RESET). It also has 2 special instructions: SWI

(software interrupt) and WAI (wait for interrupt). MC6802’s pin numbers and their connections are

shown in Figure 3.1.

Figure 3.1 - MC6082 Microprocessor

3.1 REGISTERS

MC6802 Microprocessor has three 16-bit registers and three 8-bit registers available for use

by the programmer (Figure 3.2).

 2 Accumulators (Accumulator A, Accumulator B)

 Program Counter (PC)

 Stack Pointer (SP)

 Index Register (X)

 Condition Code Register (CCR).

Figure 3.2 - Registers of the MC6802 Microrprocessor

 3

Accumulators: The Microprocessor unit (MPU) contains two 8-bit accumulators (Accumulator A and

Accumulator B) that are used to hold operands and/or result produced by the arithmetic logic unit

(ALU).

Program Counter: It is a 2-byte (16-bit) register that points to the current program address.

Stack Pointer: It is a 2-byte register that contains the address of the next available location in an

external push-down/pop–up stack. The contents of the stack pointer defines the top of the stack in

RAM.

Index Register: It is a 2-byte register that is used to store data or a 2-byte memory address for indexed

memory addressing.

Condition Code Register: It shows the conditions occurs as a result of an Arithmetic Logic Unit

operation (Figure 3.2):

Bit 0: carry from bit 7 of an arithmetic operation (C)

Bit 1: Overflow flag (V)

Bit 2: Zero flag (Z)

Bit 3: Negative flag (N)

Bit 4: Interrupt Mask (I)

Bit 5: Half carry from bit 3 of an arithmetic operation (H)

Bit 6: Unused

Bit 7: Unused

These bits of the Condition Code Register are used as testable conditions for the conditional

branch instructions. Bit 4 of the CCR is the interrupt mask bit (I). The unused bits of the Condition

Code Register (bit 6 and bit 7) are 1.

Figure 3.3 shows the internal connections of the registers and the other units of the MC6802.

Figure 3.3 - Functional block diagram of 6802 MPU

 4

3.2 ADDRESSING MODES

MC6802 Microprocessor has 7 addressing modes that can be used by the programmer:

1. Accumulator

2. Immediate

3. Direct

4. Extended

5. Indexed

6. Implied (Inherent)

7. Relative

MC6802 instructions may be used with one or more of these addressing modes. The

instruction set and their addressing modes are given in Appendix A.

Accumulator Addressing

In accumulator addressing, either accumulator A or accumulator B is specified. These are 1-

byte instructions.

Ex: ABA adds the contetns of accumulators and stores the result in accumulator A

Immediate Addressing

In immediate addressing, operand is located immediately after the opcode in the second byte

of the instruction in program memory (except LDS and LDX where the operand is in the second and

third bytes of the instruction). These are 2-byte or 3-byte instructions.

Ex: LDAA #25H loads the number (25)H into accumulator A

Direct Addressing

In direct addressing, the address of the operand is contained in the second byte of the

instruction. Direct addressing allows the user to directly address the lowest 256 bytes of the memory,

i.e, locations 0 through 255. Enhanced execution times are achieved by storing data in these locations.

These are 2-byte instructions.

Ex: LDAA 25H loads the contents of the memory address (25)H into accumulator A

Extended Addressing

In extended addressing, the address contained in the second byte of the instruction is used as

the higher eight bits of the address of the operand. The third byte of the instruction is used as the lower

eight bits of the address for the operand. This is an absolute address in the memory. These are 3-byte

instructions.

Ex: LDAA 1000H loads the contents of the memory address (1000)H into accumulator A

 5

Indexed Addressing

In indexed addressing, the address contained in the second byte of the instruction is added to

the index register’s lowest eight bits. The carry is then added to the higher order eight bits of the index

register. This result is then used to address memory. The modified address is held in a temporary

address register so there is no change to the index register. These are 2-byte instructions.

Ex: LDX #1000H

LDAA 10H,X

Initially, LDX #1000H instruction loads 1000H to the index register (X) using immediate addressing.

Then LDAA 10H,X instruction, using indexed addressing, loads the contents of memory address

HH X 1010)10(into accumulator A.

Implied (Inherent) Addressing

In the implied addressing mode, the instruction gives the address inherently (i.e, stack pointer,

index register, etc.). Inherent instructions are used when no operands need to be fetched. These are 1-

byte instructions.

Ex: INX increases the contents of the Index register by one. The address information is "inherent"

in the instruction itself.

 INCA increases the contents of the accumulator A by one.

 DECB decreases the contents of the accumulator B by one.

Relative Addressing

The relative addressing mode is used with most of the branching instructions on the 6802

microprocessor. The first byte of the instruction is the opcode. The second byte of the instruction is

called the offset. The offset is interpreted as a signed 7-bit number. If the MSB (most significant bit)

of the offset is 0, the number is positive, which indicates a forward branch. If the MSB of the offset is

1, the number is negative, which indicates a backward branch. This allows the user to address data in a

range of -126 to +129 bytes of the present instruction. These are 2-byte instructions.

Ex: PC Hex Label Instruction

 0009 2004 BRA 0FH

Figure 3.4 shows the address calculation in the execution of the unconditional branch

instruction (BRA). Program counter (PC) before the operation is 0009H. The opcode of the “branch

always” instruction (20H) is fetched from location 0009H in program memory with the offset 04H

(000001002). Then the program counter is incremented to the address of the next instruction (000BH)

just before the actual operand fetch. The 6802 processor internally adds the offset (04H) to the current

contents of program counter (000BH). The new address in the program counter after the “branch

always” operation is 000B+04=000FH (0000 0000 0000 11112). The processor then jumps to this new

address and fetches an instruction from location 000FH. Note that the offset’s most significant bit

(MSB) is 0. This indicates a positive offset, which causes a forward branch.

Figure 3.4 - Relative Addressing (branching forward)

 6

All branch operations use relative addressing mode. Branches can be forward or backward.

The program in Figure 3.5 is an example for the use of branch instructions. In the first branch

instruction (BRA NEXT), the address to be branched is 109H. As relative addressing is used, the offset

is calculated as

109H - 105H = 04H

where 105H is the contents of PC which points to the next instruction. The offset is written in the

machine code program as the operand of the branch instruction (20 04H). The second branch instruction

(BRA LAST) is a backward branch. The displacement (offset) is calculated as

105H - 10EH = - 09H

where 10EH is the contents of PC. As the offset is a negative number, its 2's complement (F7H) is used

as the offset (20 F7H).

Memory

Address

Machine Code

Program
Assembly Language Program PC after instruction execution

 ORG 100H

0100 B6 0110 BEGIN: LDAA 110H 0103

0103 20 04 BRA NEXT 0109

0105 B7 0130 LAST: STAA 130H 0108

0108 3F SWI -

0109 BB 0120 NEXT: ADDA 120H 010C

010C 20 F7 BRA LAST 0105

Figure 3.5 - A program using branch instruction

 7

4. 6802 ASSEMBLY LANGUAGE PROGRAMMING I

4.1 Flags

The 6802 MPU uses six condition code bits or flags (Figure 4.1). These flags are grouped into

an 8-bit register called the Condition Code Register (CCR). The branch instructions test these flags to

determine whether a branch will be taken or not.

As on the generic, the carry flag (C) is set to 1 whenever a carry (or ‘borrow’) is generated out

by the most significant bit (MSB) of the accumulator. A sum larger than the capacity of the 8-bit

accumulator sets the C flag to 1.

The overflow flag (V) in the condition code register of the MPU indicates a 2’s complement

overflow. When dealing with signed numbers, the MSB (B7) of accumulator(s) is the sign bit. The

remaining 7 bits are written in 2’s complement form. These 7 bits can hold numbers between decimal

+127 to –128. This is the range of signed numbers. If the result of an arithmetic operation exceeds this

range, an overflow occurs and the overflow flag (V) is set to 1.

Figure 4.1 - Condition Code Register

Consider adding the positive numbers 7910 and 6410. Decimal +79 is 01001111 in 2’s

complement and decimal +64 is 01000000 in 2’s complement. These 2’s complement numbers are

added in Figure 4.2(a). Due to the carry from B6 to B7, the sign bit of the result changes to 1, (which

indicates a negative number). This is an error. Figure 4.2(b) shows how the overflow flag is set in the

microprocessor if two such numbers (in accumulator A and B) are added. The sum (10001111 in this

example) is deposited in accumulator A after add operation. The overflow flag (V) is set to 1,

indicating that the sum is larger than +12710 (sum=7910+6410=14310).

Figure 4.2 (a)

Figure 4.2 (b)

Figure 4.2 - Addition of positive numbers using 2’s complement and CCR

(a) 2's complement addition showing effect on sign bit

(b) Effect on overflow flag

 8

 Consider adding two negative numbers –7910 and –6410. Decimal –79 is 10110001 in 2’s

complement and decimal –64 is 11000000 in 2's complement. Since the most significant bits of both

2’s complement numbers are 1 they represent negative numbers between –1 and –128. These 2’s

complement numbers are added in Figure 4.3(a). The result is 1 01110001. Although the sign bit must

be 1 (negative), the addition results with a 0. This is an error because the sum exceeds the limit –12810.

Addition of the negative numbers –7910 (10110001 in 2’s complement) and –6410 (11000000

in 2’s complement) using the 6802 MPU is shown in Figure 4.3(b). The 2’s complement numbers are

held in the accumulators A and B, and the sum is stored in accumulator A after the add operation. As

the addition causes an overflow, the overflow flag (V) is set to 1, warning the user that the range of the

6802 microprocessor register is exceeded. The carry flag (C) is also set to 1, indicating the carry out

from the B7 position.

Figure 4.3 (a)

Figure 4.3(b)

Figure 4.3 - Addition of negative numbers using 2’s complement and CCR

(a) 2's complement addition showing the effect on sign bit

(b) Effect on overflow flag

The zero flag (Z) in the condition code register of the 6802 MPU is set to 1 whenever the

accumulator becomes zero as a result of an operation or data transfer. The zero flag resets to 0,

indicating the accumulator does not contain a zero.

The negative flag (N) in the condition code register of the 6802 MPU indicates a negative

result. Assume B7 is the sign bit of the accumulator. If the result of the last arithmetic, logical or data

transfer operation is negative, the N flag is set to 1. If the result is positive, the N flag is resets to 0. The

N flag reflects the MSB of the accumulator.

Ex: The following program adds two 1-byte signed numbers in memory locations (0120)H and

(0121)H. After the addition, if the overflow flag is set, then 1010 is stored into location (0040)H.

Otherwise 2010 is stored into the same location.

 ORG 0H

 LDAA 120H ; load the first number

 ADDA 121H ; add them

 BVS OVOCC ; branch if overflow is set

 LDAA #20 ; load (10)10 to accumulator A

 STAA 40H ; store it in memory location (0040)H

 BRA STOP ; jump to the end of the program

OVOCC: LDAA #10

 STAA 40H

STOP: SWI ; end program

 9

Ex: The following program adds two 1-byte unsigned numbers in memory locations (0120)H and

(0121)H and stores the result, represented as a 2-byte number, into two consecutive memory locations

(0122)H and (0123)H. After the addition operation accumulator A is stored at into address (0123)H. If

there is no carry, 0 is stored into the location (0122)H . Otherwise carry flag is stored into (0122)H

(using ADC 122H and STAA 122H instructions).

 ORG 100H

 LDAA #0H ; Clear the most significant bit

 STAA 122H

 LDAA 120H ; load the first number

 ADDA 121H ; add them

 STAA 123H ; store result

BCS CROCC ; branch if carry occurs

LDAA #0H ; clear the most significant bit

STAA 122H

BRA STOP ; jump to the end of the program

CROCC: LDAA #0H ; set accumulator to 0

 ADCA 122H ; save carry bit in accumulator A

 STAA 122H

STOP: SWI ; end program

4.2 Looping

Loops help to repeat a section of a program for a number of times. There are three main types

of loops :

1. Repeating a program section indefinitely

Figure 4.1 - Infinite Loop. Above code outputs a “1” on bit 2 of a data port indefinitely.

 10

2. Repeating a program section until some predetermined condition becomes true (Figure 4.2)

Figure 4.2 - Conditional loop. The loop is repeated until a “1” appears at input bit 4 of the data port

3. Repeating a program section for a predetermined number of passes.

Figure 4.3 - Loop with a loop count. Above code outputs a “0” on bit 6 of a data port 5000 times

For looping in assembly language programs, branch instructions are needed. Jump and branch

instructions of the 6802 microprocessor are shown in Table A.2. These instructions transfer the control

from one point to another in the program.

 11

Ex: In the following program, accumulator A is incremented by 2 during each iteration of the

loop. Accumulator B is used as a counter and decremented by 1 at each iteration, until it reduces to 0.

 ORG 100H

 LDAA #00H ; load (00)H to accumulator A

 LDAB #10H ; load (10)H to accumulator B

COMPARISON: BEQ STOP ; exit from the loop if accumulator B is 0

 ADDA #2H ; increment accumulator A by 2

 DECB ; decrement counter

 BRA COMPARISON ; branch to the beginning of the loop

STOP: STAA 150H ; store the number in accumulator A

 SWI ; end program

Ex: The index register is often used when the program must deal with data in the form of a table.

The assembly language program listed in Figure 4.8(a) adds numbers from tables of the augends and

addends in Figure 4.8(b) and places the sum in the table of sums to the bottom of this memory map.

For instance, the program first adds 01H + 02H, placing the sum 03H in the “table of sums” to the

memory location 0040H. Then it repeats this process by adding 03H + 04H, placing the sum of 07H in

the “table of sums” to the memory location 0041H, etc. The program in Figure 4.6(a) also has a feature

that supports the termination of the program if the sum of the numbers exceeds FFH (using BCS

instruction).

Figure 4.8(a) - Assembly language program Figure 4.8(b) - Memory map

The first instruction in the program listed in Figure 4.8(a) initializes the index register to

0020H. LDAA 00H, X instruction loads a number from the table of augends in data memory into

accumulator A. The first number to be loaded is 01H from the memory location 0020H

(
HHH 0020000020). Note that the instruction in line 2 has a label LOOP and is the target of a

backward branch from the BNE LOOP operation towards the bottom of the program.

ADDA 10H,X instruction in line 3 adds the addend in data memory to the augend which is in

accumulator A. The addend’s memory location is 0030H (0020H + 10H = 0030H).

Program memory

Address Contents

(hex) (hex)

0000 Program

Label Mnemonic Operand Comments . .

LDX #0020H ; Initialize index register at 0020H . .

LOOP LDAA 00H,X ; Load augend from first table in 0011

memory (X + offset of 00H) into Data memory
accumulator A 0020 01

ADDA 10H,X ; Add addend from second table 0021 03 Table of

in memory (X + offset of 10H) 0022 05 augends

into accumulator A 0023 FF (data)

BCS STOP If C flag = 1, then branch forward 0024 7F

to STOP (end program if any sum

is greater than FFH) 0030 02

STAA 20H,X ; Store accumulator A (sum) in 0031 04 Table of

third table in memory (X + offset 0032 06 addends

20H) 0033 B (data)

INX ; Increment contents of index reg. 0034 80

CPX #0025 ;Compare index register with 0025H

(subtract 0025H from contents of 0040

index register) 0041 Table of

BNE LOOP ; If Z flag = 0, then branch back to 0042 sums

symbolic address called LOOP 0043 (data)

STOP SWI ; End program 0044

 12

The fourth instruction (BCS STOP) checks whether the carry flag is set to 1. If C = 1, this

indicates that the sum exceeded FFH and the control is transferred to the end of the program. While

C=0, execution continues from line 5. The STAA 20H,X instruction causes the sum in accumulator A

to be stored in the "table of sums". In the first pass of the loop, the sum is stored into the memory

location 0040H (0020H + 20H = 0040H).

The INX instruction in line 6 increments the contents of the index register. The CPX #0025H

instruction in line 7 compares the current contents of the index register with 0025H to see whether the

end of the table of augends is reached or not. The compare instruction is a subtract operation that is

used to set or reset the Z flag. The BNE LOOP instruction in line 8 checks Z flag. If Z flag = 0, the

branch test is true for the BNE instruction and the program branches back to the symbolic address

LOOP in line 2. When the index register reaches 0025H, the compare operation sets the Z flag to 1,

branch test of the BNE instruction becomes false, and the program continues with the next instruction

in sequence. This is SWI instruction, which terminates the run.

 13

5. 6802 ASSEMBLY LANGUAGE PROGRAMMING II

5.1 Increment and Decrement Instructions

Increment (INC) and decrement (DEC) instructions allow the contents of a register or memory

location to be increased or decreased by 1 respectively.

5.2 Compare Instruction

 Consider the problem of testing the accumulator contents, e.g., whether it contains 37H or not.

This can be achieved using substraction and BEQ instructions as shown in the following program.

 SUBA #37H ; Subtracts the value 37H from the AccumulatorA

 BEQ PASS ; If the Zero Flag is set, branch to the label “PASS”

FAIL: LDAB #01H ; Zero flag is not set so place 001H in AccumulatorB

 BRA STOP ; Returns to start

PASS: LDAB #FFH ; Zero flag is set so place FFH in Acc B

STOP: SWI

 Subtracting 37H from the accumulator causes the zero flag to be set if the accumulator

containes 37H. Accumulator B is loaded with either FFH or 01H, to indicate an accumulator value of 37H

or non-37H respectively. The difficulty with this technique is that it destroys the contents of the

accumulator. Since this is a very common problem in assembly language programming, 6802 provides

compare instructions (CMPA, CMPB, CBA, and CPX) which operate like subtraction but do not

destroy the register contents.

 Compare instructions subtract the contents of the accumulator or index register from the

destination and change the condition of flags in CCR according to the result. Contents of the

accumulator (or index register) and destination are unaffected by the execution of this instruction.

 The above example program can be rewritten using CMPA instruction as follows:

 CMPA #37H

 BEQ PASS

FAIL: LDAB #01H

 BRA STOP

PASS: LDAB #FFH

STOP: SWI

 The CMPA instruction subtracts the value 37H from the Accumulator but does not place the

result in the accumulator. It only changes the flags of the CCR.

If the value 37H is equal to the contents of the Accumulator: Zero Flag = 1

 Carry Flag = 0

If the value 37H is greater than the contents of the Accumulator: Zero Flag = 0

 Carry Flag = 1

If the value 37H is less than the contents of the Accumulator: Zero Flag = 0

 Carry Flag = 0

 14

5.3 Logic and bit manipulation Instructions

Logical Operators

 Logical instructions (AND, OR, Exclusive OR) can be used to test or change group of bits.

AND, OR and Exclusive OR are logical operators:

AND OR Exclusive OR

0 AND 0 = 0 0 OR 0 = 0 0 XOR 0 = 0

0 AND 1 = 0 0 OR 1 = 1 0 XOR 1 = 1

1 AND 0 = 0 1 OR 0 = 1 1 XOR 0 = 1

1 AND 1 = 1 1 OR 1 = 1 1 XOR 1 = 0

Example:

 0110

 0101

 AND

 0100

 Notice that any given bit in the result can only be 1 if both of the numbers have a 1 in that

position. This property can be used to change specific bits in a register or memory location. In the

following example the contents of a register is 99H. To change the rightmost 4 bits to 0 and keep the

other bits unchanged, the AND operation with F0H can be used.

 99H = 10011001

 F0H = 11110000

 AND

 10010000 = 90H

The 6802 AND instructions (ANDA, ANDB) can operate upon memory, register or

immediate data:

ANDA 0FFH ; ANDs accumulator A with the contents of

 address location 00FFH

 ANDA 10H,X ; ANDs accumulator A with the contents of

 address location (10H + offset of index register)

ANDA #20H ; ANDs accumulator A with the value 20H

Other logical operations also use the same addressing modes:

ANDA AND with accumulator A

ANDB AND with accumulator B

ORAA OR with accumulator B

ORAB OR with accumulator B

EORA XOR with accumulator A

EORB XOR with accumulator B

Complement Instruction

COMA, COMB and COM instructions complement the contents of the specified accumulator or a

memory location. Complement instructions offer indexed and extended addressing modes.

COMA or COMB instruction complements the contents of the specified accumulator. No other status

bit or register contents are affected. If accumulator B contains 3AH (001110102), after the COMB

instruction is executed, accumulator B contains C5H (110001012).

 15

Complement instruction can also be used to complement the contents of the specified memory location.

If the contents of the index register are 0100H and contents of the memory location 0113H is 23H

(001000112), after COM 13H,X instruction is executed, the memory location 0113H contains DCH

(110111002).

The Bit Test Instruction

 The Bit Test instruction (BIT) is similar to the logical Compare. The contents of the

accumulator or memory location are ANDed with a mask. However, neither the accumulator nor the

destination is modified by this instruction; only the Flags are affected.

BITA #07H tests the bits 1,2 and 3 of accumulator A and sets the zero flag if the condition is true

Example: Following program examines the byte at location 120H. If bit 1 of location 120H is set, 55H is

stored in location 130H, otherwise program terminates.

ORG 100H

 LDAA 120H ; load byte

BITA #01H ; is bit 1 set?

 BEQ STOP ; if not set, end program

 LDAB #55H ; store 55H in memory location 130H

 STAB 130H

STOP: SWI ; end program

5.4 Arithmetic Operations

5.4.1 Addition Instructions

Add Accumulators

ABA instruction adds the contents of accumulator B to the contents of accumulator A and

stores the result in accumulator A. If accumulator A contains B4H and accumulator B contains 2DH,

after the ABA instruction is executed accumulator A contains E1H.

Add Memory to Accumulator

ADDA, ADDB instructions add the contents of a memory location to accumulator A or B

respectively without considering the carry status. The same memory addressing options as ADC

instruction are supported.

Ex (8-bit addition): The following program adds the contents of memory locations 0040H and 0041H,

and place the result in the memory location 0042H.

ORG 0H

LDAA 40H

ADDA 41H

STAA 42H

SWI ; end program

 16

Add Memory, with carry, to Accumulator

ADCA or ADCB instructions add the contents of a memory location to accumulator A or B

respectively. 4 addressing modes are supported:

1. Immediate

2. Direct

3. Extended

4. Indexed

Addition with carry using Immediate Data

This type of instruction adds the immediate data with the carry bit to accumulator A. If accumulator A

contains 3AH, the carry bit is 1, after the instruction ADCA #7CH is executed, the accumulator A

contains B7H.

Addition with carry using Direct Memory Addressing.

This type of instruction adds the contents of a specified direct memory address and the carry bit to

accumulator B. If accumulator B contains 3AH and memory address 1FH contains 7CH and carry bit

contains 1. After the instruction ADCB 1FH is executed, accumulator B contains B7H.

Addition with carry using Extended Addressing

This type of instruction is similar to the addition with carry using direct addressing. Only difference is

that ADCA 3FF2H instruction allows extended addressing.

Addition with carry using Indexed Addressing

This type of instruction adds the carry bit and the contents of a memory location addressed by the sum

of index register and the first operand of ADCA instruction to accumulator A. If accumulator A

contains 3AH, Index register contains 50DH, memory address 523H contains 76H, and the carry bit is 1,

After the instruction ADCA 16H,X is executed, accumulator A contains B1H.

Ex (16-bit addition): Following program adds 16-bit number in memory locations 0040H and 0041H to

the 16-bit number in memory locations 0042H and 0043H. The most significant eight bits are in memory

locations 0040H and 0042H. Then the result is stored into memory locations 0044H and 0045H, where

the most significant bits are in 0044H.

ORG 0H

LDAA 41H

ADDA 43H , add least significant bits

STAA 45H

LDAA 40H

ADCA 42H ; add most significant bits with carry

STAA 44H

SWI ; end program

ADCA 42H adds the contents of accumulator A and the memory location 0042, plus the contents of

Carry (C) bit. The carry from the addition of the least significant eight bits is thus included in the

addition of the most significant eight bits.

 17

 5.4.2 Subtraction

Subtract Memory from Accumulator

SUBA, SUBB instructions subtract the contents of the selected memory byte from the

contents of accumulator A or and B respectively. The same addressing modes of ADC instruction are

supported. If the memory address 0031H contains A0H and accumulator B contains E3H, after the SUBB

31H instruction is executed accumulator B contains 43H.

5.4.3 Shift Operations

Logical Shift Operations

LSRA, LSRB, LSR instructions perform a one-bit logical right shift on accumulator A, B or

and a specified memory location respectively. The least significant bit is shifted into the carry bit in

CCR and 0 is inserted as a most significant bit. If accumulator B contains 7AH (011110102), after

LSRB instruction is executed, accumulator B contains 3DH (001111012) and the carry status bit is set to

0.

LSR instruction shifts the contents of the specified memory location towards right 1-bit.

Indexed and extended addressing modes are available for LSR instruction. If the contents of the

memory location 04FAH is 0DH (000011012), after LSR 04FAH is executed, the carry bit is 1 and the

contents of location 04FAH is 06H (000001102).

Ex: Following program separates the contents of memory location 0040H into two 4-bit numbers

and stores them in memory locations 0041H and 0042H. It places the four consequitive most significant

bits of memory location 0040H into the four least significant bit positions of memory location 0041H;

and the four least significant bit positions of memory location 0040H into the four least significant bit

positions of memory location 0042H

LDAA 40H ; load data

ANDA #0FH ; mask off four MSBs

STAA 42H ; store at address 0042H

LDAA 40H ; reload data

LSRA ; shift accumulator to right 4 bits, clearing the most significant bits.

LSRA ;

LSRA ;

LSRA ;

STAA 41H ; store at address 0041H

SWI ; end program

Arithmetic Shift Operations

ASLA or ASLB instructions perform a one-bit arithmetic left shift on the contents of

accumulator A or B. If accumulator A contains 7AH (011110102), after ASLA is executed F4H

(111101002) is stored in accumulator A, carry bit is set to 0, sign bit is set 1 (as the leftmost bit is 1)

and Zero bit is set to 0.

ASL instruction performs a 1-bit arithmetic left shift on the contents of a memory location.

The extended and indexed addressing modes are supported. If the Index register contains 3F3CH, and

the memory address 3F86H contains CBH, after the ASL 4AH,X instruction is executed, the memory

address 3F86H contains 96H and Carry flag is set to 1. The ASL instruction is often used in

multiplication routines. Note that execution of a single ASL instruction results with its operand

multiplied by a factor of 2.

 18

ASR instruction performs a one-bit arithmetic right shift on the contents of accumulator A or

B or the contents of a selected memory byte. ASR is frequently used in division routines.

Rotate Operations

ROLA or ROLB instructions rotate the specified accumulator or a selected memory byte one

bit towards left through the carry bit. ROLA or ROLB instructions rotate contents of the specified

accumulator and the carry bit as a block towards left one bit. If accumulator A contains 7AH

(011110102) and the carry bit is 1, after ROLA instruction is executed, accumulator A contains F5H

(11110101H) and the carry bit is reset to 0.

ROL instruction rotates the contents of the specified memory location one bit to the left

through the carry. Indexed and Extended addressing modes can be used with ROL instruction.

Example: If the contents of memory location 1403H is 2EH (001011102) and the Carry bit is 0, after

ROL 1403H is executed, memory location 1403H contains 5CH (010111002).

RORA, RORB or ROR instructions rotate the specified accumulator or contents of a selected

memory location and the carry bit as a block one bit towards right. These instructions operate similarly

with the ROL instruction.

Ex (8-bit binary multiplication): Following program multiplies an 8-bit unsigned number in memory

location 0041H by another 8-bit unsigned number in the memory location 0040H and places the most

significant bits of the result in memory location 0042H and eight least significant bits in memory

location 0043H.

Multiplying a number by zero results with zero, multiplying by one results with the number itself.

Therefore the multiplication can be reduced to the following operation: If the current bit is 1, add the

multiplicand to the partial product.

 CLRA ; product MSB = Zero

 CLRB ; product LSB = Zero

 LDX #8 ; load number of bits of the multiplier to index register

SHIFT: ASLB ; shift product left 1 bit

 ROLA

 ASL 40H ; shift multiplier left to examine next bit

 BCC DECR ;

 ADDB 41H ; add multiplicand to the product if carry is 1

 ADCA #0 ;

DECR: DEX

 BNE SHIFT ; repeat until index register is 0

 STAA 42H ; store result

 STAB 43H

 SWI ; end program

The following operations are performed to ensure that everything is lined up correctly every time:

1) Shift multiplier left one bit so that the bit to be examined is placed in the Carry.

2) Shift product left one bit so that the next addition is lined up correctly.

The complete process for binary multiplication is as follows:

Step 1 - Initialization

The Index register is used as a counter. CLRA and CLRB set the product and carry bit to 0.

Product=0

Counter=8

 19

Step 2 - Shift Product to left so as to line up properly.

The instructions ASLB and ROLA together act as a 16-bit arithmetic left shift of the product in

accumulators A and B (MSBs in A).

Step 3 - Shift Multiplier to left so the next bit goes to Carry to multiply.

The instruction ASL 40H shifts the contents of memory location 0040H left one bit, placing the most

significant bit in the Carry and clearing the least significant bit.

Step 4- Add Multiplicand to Product if carry is 1

The instruction ADDB 41H adds the multiplicand to the product. The instruction ADCA #0 adds the

carry flag from that 8-bit addition to the most significant eight bits of the product (in accumulator A).

 If Carry=1, Product = Product + Multiplicand

Step 5 - Decrement counter and check for zero

 Counter = Counter - 1

 If Counter 0, go to Step 2

If multiplier is 61H and the multiplicand is 6FH, the process works as follows:

Initialisation:

 Product 0000

 Multiplier 61

 Multiplicand 6F

 Counter 08

After first iteration of steps:

 Product 0000

 Multiplier C2

 Multiplicand 6F

 Counter 07

Carry from Multiplier 0

After second iteration:

 Product 006F

 Multiplier 84

 Multiplicand 6F

 Counter 06

Carry from Multiplier 1

After third iteration:

 Product 014D

 Multiplier 08

 Multiplicand 6F

 Counter 05

Carry from Multiplier 1

Goes like this until counter is equal to 0.

 20

Ex (8-bit binary division): Following program divides an 8-bit unsigned number in memory location

0040H by another 8-bit unsigned number in the memory location 0041H and stores the quotient in

memory location 0042H and the remainder in memory location 0043H. Initially accumulator A is

cleared and dividend is loaded into accumulator B. During the division, the quotient replaces the

dividend in accumulator B as the dividend is shifted left to accumulator A. At the end, remainder is

found in accumulator A and quotient in accumulator B.

 LDX #8 ; load number of bits of the divisor into index register

CLRA

LDAB 40H ; load dividend to accumulator B

DIVIDE: ASLB ; shift left dividend-quotient.

 ROLA

 CMPA 41H ; compare accumulator A and divisor

 BCS CHKCNT ; branch if accumulator A is smaller than divisor

 SUBA 41H ; subtract divisor from accumulator A

 INCB ; increment quotient

CHKCNT: DEX ; decrement counter

 BNE DIVIDE

 STAB 42H ; store quotient

 STAA 43H ; store remainder

 SWI ; end program

Figure 5.1 - Flowchart of division program

 21

6. 6802 ASSEMBLY LANGUAGE PROGRAMMING III

6.1 STACK OPERATIONS

A “stack” is simply an area of memory where a list of data items is stored consecutively. It

consists of any number of locations in RAM memory. The restriction in the list of the elements is that,

the elements can be added or removed at one end of the list only. This end is usually called “top of

stack” and the structure is sometimes referred to as a “push-down” stack. This type of storage

mechanism is Last-In-First-Out “LIFO”; the last data item placed on the stack, is the first one removed

when retrival begins.

PUSH operation places a new item on the stack.

PULL operation removes the top item from the stack.

 MC6802 microprocessor allows a porion of memory to be used as a stack. The

microprocessing unit has a 16-bit stack pointer (Figure 6.1). When a byte of information is stored in the

stack, it is stored at the address which is contained in the stack pointer. The stack pointer is

decremented (by one) immediately following the storage of each byte of information in the stack.

Conversely, the stack pointer is incremented (by one) immediately before retrieving each byte of

information from the stack, and the byte is then obtained from the address contained in the stack

pointer. The programmer must ensure that the stack pointer is initialized to the required address

before the first execution of an instruction which manipulates the stack. Stack pointer can be

initialized to use any portion of read-write memory, usually to the highest address of RAM

(Figure 6.2).

Figure 6.1 - Stack Pointer

Figure 6.2 - Memory usage

15 0

 16 - bit DATA

XX MEMORY

 STACK POINTER

MEMORY
(RAM) 0000 Program

and data
area PC

data area grows
in this
direction

stack area grows
in this direction SP

1FFF Stack area

 22

Stack operations are used:

- while executing subroutines

- while handling interrupts

- while doing arithmetic operations

6.1.1 PUSH Operation

 PSH instruction is used for storing a single byte of data in the stack. This instruction addresses

either accumulator A or accumulator B (PSHA and PSHB respectively). The contents of the specified

accumulator are stored in the stack. The address contained in the stack pointer is decremented. If

accumulator A contains 3AH and the stack pointer contains 1FFFH. After the instruction PSHA is

executed 3AH is stored into the location 1FFFH and the stack pointer is altered to 1FFEH, the PC is

0011H (Figure 6.3).

Figure 6.3 - Push (PSHA) instruction

6.1.2 PULL Operation

 PUL instruction retrives data from the stack. This instruction addresses either accumulator A

or accumulator B (PULA and PULB respectively). The address contained in the stack pointer is

incremented. A single byte of data is then obtained from the stack and is loaded into the specified

accumulator. If the stack pointer contains 1FFEH and location 1FFFH contains CEH. After the

instruction PULB is executed, accumulator B contains CEH and the stack pointer contains 1FFFH

(Figure 6.4).

Before Push Operation After Push Operation

A 3A A 3A

SP 1F FF SP 1F FE

PC 00 10 PC 00 11

 Memory Memory

PC 0010 PSHA 0010 PSHA

0011 PC 0011

.. … .. …

Stack Memory Stack Memory

1FFD 1FFD

1FFE SP 1FFE

SP 1FFF 1FFF 3A

Before Pull Operation After Pull Operation

B B CE

SP 1F FE SP 1F FF

PC 00 10 PC 00 11

 Memory Memory

PC 0010 PULB 0010 PULB

0011 PC 0011

.. … .. …

Stack Memory Stack Memory

1FFD 1FFD

SP 1FFE 1FFE

1FFF CE SP 1FFF CE

Figure 6.4 – Pull (PULB) instruction

 23

6.1.3 Other Stack Operations

 The address stored in the stack pointer is affected by the execution of the instructions PSH,

PUL, SWI, WAI, RTI, BSR, JSR, and RTS, and also by the servicing of a non-maskable interrupt or an

interrupt request from a peripheral device.

 The address in the stack pointer may also be changed without storing or retrieving information

in the stack. This is carried out by the following instructions:

 DES decrement stack pointer

 INS increment stack pointer

 LDS load the stack pointer

TXS transfer index register to stack pointer

The contents of the stack pointer is also involved in the execution of the following instructions:

STS store the stack pointer

TSX transfer stack pointer to index register

 STS instruction stores the contents of the stack pointer into two contiguous memory locations.

This instruction offers direct, indexed and extended addressing modes. The STS instruction stores the

high byte of the stack pointer into the specified memory address and the low byte into the memory

address immediately following it. In figure 6.5, the contents of the stack pointer is 1FFFH and the

memory address to store the stack pointer is given as 0080H in the STS #80H instruction. After STS

instruction is executed, memory location 0080H contains the high byte of stack pointer (1FH) and

memory location 0081H contains the low byte of stack pointer (FFH).

Figure 6.5 - Store Stack Pointer (STS) instruction

Before STS Operation After STS Operation

SP 1F FF SP 1F FF

PC 00 10 PC 00 12

 Memory Memory

PC 0010 STS # 0010 STS #

0011 80H 0011 80H

.. … PC 0012 …

0080 0080 1F

0081 0081 FF

 24

 TSX instruction moves the contents of the stack pointer plus one to the index register so that

the index register points directly to the bottom of the stack. In Figure 6.6, SP is 1FFEH. After the

execution of TSX instruction, index register contains 1FFFH. The MC6802 employs a decrement after

write, increment before read stack implementation scheme.

Figure 6.6 - TSX Instruction

 TXS instruction moves the contents of the index register minus 1 to the stack pointer. In

Figure 6.7, contents of the index register is 1FFFH. After TXS is executed, stack pointer contains

1FFEH.

Figure 6.7 - Move From Index Register to Stack Pointer (TXS) instruction

Example: In the following program, the contents of the accumulators are stored in the stack

before branching to a routine and at the end of routine, the original values of the accumulator are

restored from the stack.

 ORG 100H

 LDAA #03H

 LDAB #04H

 LDS #1FFFH

PSHA

 PSHB

 BRA LDRT

Before TSX Operation After TSX Operation

X X 1F FF

SP 1F FE SP 1F FE

PC 00 10 PC 00 11

 Data Memory Data Memory

 Program Memory Program Memory

PC 0010 TSX 0010 TSX

0011 PC 0011

 Figure 19 – Move From Stack Pointer to Index Register (TSX)

instruction

Before TXS Operation After TXS Operation

X 1F FF X 1F FF

SP SP 1F FE

PC 00 10 PC 00 11

 Data Memory Data Memory

 Program Memory Program Memory

PC 0010 TXS 0010 TXS

0011 PC 0011

 25

CONT: PULA

 PULB

 ABA

 STAA 61H

 SWI

LDRT: LDAA #01H

 LDAB #02H

 ABA

 STAA 60H

 BRA CONT

At the beginning of the program accumulator A and B is loaded with 03H and 04H and stack

pointer is initialized to point the end of memory (1FFFH). Then, before branching to the routine LDRT

these numbers are stored in the stack using PSH instructions. In LDRT routine, 01H and 02H are added

using ABA instruction and (03H) is stored in memory location 0060H and CONT is branched. Then the

original values of the accumulators are loaded from the stack using PUL instructions, and the result

(07H) is stored in 0061H and the program ends with the execution of SWI instruction.

 26

6.2 SUBROUTINES

In a given program it is often necessary to perform a particular task a number of times on the

same or on different data values (such as subroutines to obtain time delay, subroutine to sort a list of

values, etc.) including the block of instructions to perform the task at every place where it is needed in

the program causes a waste of memory. Instead, it is better to place only one copy of this block of

machine instructions in the main memory as a subroutine, and in the program branch to the beginning

of the subroutine whenever required.

In figure 6.8, the execution of a jump to subroutine instruction (JSR) and return from

subroutine instruction (RTS) are given. After JSR 0100H instruction is executed, PC is set to the

defined address and execution continues with the ABA instruction. The program returns from this

subroutine after the RTS instruction is executed. Program counter (PC) is set to 0023H and the program

execution continues with ANDA #7FH instruction.

Figure 6.8 - A subroutine execution process

6.2.1 Jump to a subroutine

JSR instruction uses extended and indexed addressing modes. After JSR instruction is executed,

program counter is decremented by 3 (if extended addressing is used) or 2 (if indexed addressing is

used), and then is pushed onto the stack. The stack pointer is adjusted to point to the next empty

location in the stack. The specified memory address is then loaded into the program counter and

execution continues with the first instruction in the subroutine.

Using Extended Addressing

Execution of JSR instruction with extended addressing mode is shown in Figure 6.9. After

JSR 0100H instruction is executed, address of the next instruction (AND #7FH instruction) is

stored on top of the stack, and SP is decremented by 2. Address of the first instruction in the subroutine

(0100H) is stored into the program counter, and the program continues from this point. ABA instruction

is the next instruction to be executed.

Memory
PC 0020 JSR

0021 01

0022 00H

0023 ANDA #

7FH

… …

…. ….

0100 ABA

RTS SUBROUTINE

 27

Figure 6.9 - Jump to subroutine (JSR) instruction, using extended addressing

Using Indexed Addressing

Execution of JSR instruction with indexed addressing mode is shown in Figure 6.10. After

JSR 30H,X instruction is executed, address of the next instruction (0019H) is stored on top of the

stack and SP is decremented by 2. Jump address is calculated as the value of the index register plus the

address part of the instruction (1100H + 30H = 1130H) and it is stored in PC. The program continues

with the ABA instruction in the subroutine.

Figure 6.10 - Jump to subroutine (JSR) instruction, using indexed addressing

Before JSR Operation After JSR Operation

SP 1F FF SP 1F FD

PC 00 17 PC 01 00

Program Memory Program Memory

PC 0017 JSR 0017 JSR

0018 01 0018 01

0019 00 0019 00

001A AND # 001A AND #

001B 7FH 001B 7FH

.. … .. …

.. … .. …

0100 ABA PC 0100 ABA

0101 RTS 0101 RTS

Stack Stack

1FFD SP 1FFD

1FFE 1FFE 00

SP 1FFF 1FFF 1A

Before JSR Operation After JSR Operation

X 11 00 X 11 00

SP 1F FF SP 1F FD

PC 00 17 PC 11 30

Program Memory Program Memory

PC 0017 JSR 0017 JSR

0018 30H,X 0018 30H,X

0019 AND # 0019 AND #

001A 7FH 001A 7FH

.. … .. …

.. … .. …

1130 ABA PC 1130 ABA

1131 RTS 1131 RTS

Stack Stack

1FFD SP 1FFD

1FFE 1FFE 00

SP 1FFF 1FFF 19

 28

6.2.2 Return from a subroutine

RTS instruction moves the contents of the top two stack bytes (which is the address of the

next instruction after JSR) to program counter. These two bytes provide the address of the next

instruction to be executed. Previous program counter contents are lost. RTS instruction also increments

the stack pointer by 2 (Fig 6.11). Every subroutine must contain at least one Return instruction; which

is the last instruction to be executed in the subroutine.

Figure 6.11 - Return from subroutine (RTS) instruction

Example:

 Determine the lengths of two strings of ASCII characters. Starting addresses of the strings are

43H and 63H. End of a string is marked by a carriage return character (0DH). Write a subroutine which

calculates the length of a string (excluding carriage return character) and places it in accumulator B.

Also write a calling program which calls this subroutine to calculate the lenghts of two strings and

stores the results (in accumulator B) in memory addresses 42H and 62H.

Calling Program:

 ORG 0H

 LDS #500H ; Start stack at location 500H

 LDX #43H ; Get starting address of the first string

 JSR STLEN ; Determine string length

 STAB 42H ; Store string length

 LDX #63H ; Get starting address of second string

JSR STLEN ; Determine string length

STAB 62H ; Store string length

 SWI

Subroutine:

 ORG 100H

STLEN: CLRB ; String length = 0

 LDAA #0DH ; Get ‘CR’ for comparison

CHKCR: CMPA X ; Is character ‘CR’?

 BEQ DONE ; Yes, end of string

 INCB ; No, add 1 to string length

 INCX

 BRA CHKCR

DONE: RTS

Before RTS Operation After RTS Operation

SP 1F FD SP 1F FF

PC 01 01 PC 00 1A

Program Memory Program Memory

0017 JSR 0017 JSR

0018 01 0018 01

0019 00 0019 00

001A AND # PC 001A AND #

001B 7FH 001B 7FH

.. … .. …

.. … .. …

0100 ABA 0100 ABA

PC 0101 RTS 0101 RTS

Stack Stack

SP 1FFD 1FFD

1FFE 00 1FFE

1FFF 1A SP 1FFF

 29

The calling program initializes the stack pointer to 500H and then performs the following steps for each

string:

1. places the starting address of the string in the Index register

2. calls the subroutine

3. stores the result in accumulator B to memory.

The stack pointer must be initialized to an appropriate area in memory (in this example 500H) so that

the stack does not use the addresses in the program area.

The subroutine determines the length of a string of ASCII characters and places the length in

accumulator B. Starting address of the string is a parameter to the subroutine. It is placed in the index

register before the subroutine is jumped. The result is returned in accumulator B.

If the first string is only a carriage return character and index register (X) contains 0043H, after the first

call of the subroutine, contents of the registers and memory are as follows:

Figure 6.12 - Memory allocated for the first string

If the second string is ‘RATHER’ and index register contains 0063H, after the second call of the

subroutine, contents of the registers and memory are as follows:

Figure 6.13 - Memory allocated for the second string

Memory

 B 00 0042 00

X 00 43 0043 0D

Memory

 B 06 0062 06

X 00 63 0063 52

0064 41

0065 54

0066 48

0067 45

0068 52

0069 0D

 30

5.2.3 Subroutine Nesting

A subroutine may jump to another subroutine as shown in Figure 6.14. This situation can be

extended to the case where the second subroutine jumps to a third subroutine and so on. This is called

subroutine nesting, and can be carried out to any depth.

Figure 6.14 - Subroutine nesting

Example : The following program uses subroutine nesting to write the number FFH into a

memory block. Starting address of the memory block is 00H and the end of the block is determined by

the number in accumulator B. Subroutine FILL, in a loop, stores 00H to the memory location pointed by

the index register (X) and calls subroutine DECR to decrement accumulator B.

ORG 100H

LDS #1FFFH ; initialize stating address of stack area

LDX #00H ; initialize index register

LDAA #0FFH ; keep FFH in accumulator A

LDAB #25H ; length of the memory block is 25H

JSR FILL ; start filling

SWI

ORG 500H ;

FILL: STAA 0H,X ; store FFH in the memory address pointed by X

 INX ; increment X to point to the next location

 JSR DECR ; jump to DECR subroutine

 CMPB #0H ; Is the end of memory block reached?

 BNE FILL ; No, continue with the filling procedure

 RTS ; Yes, end of subroutine

ORG 1000FH ;

DECR: DECB ; decrement accumulator B

 RTS ; return to FILL subroutine

 31

5.3 MACROS

 In source programs, particular sequences of instructions may occur many times. Programmer

can avoid repeatedly writing out the same instruction sequence by using a macro.

 Macros allow the programmer to assign a name to an instruction sequence. This macro name

is then used in the source program in the place of the related instruction sequence. Before assembling

macroprocessor replaces the macro name with the appropriate sequence of instructions.

 Macros are not the same as subroutines. A subroutine occurs in a program, and program

execution branches to the subroutine. A macro is expanded to an actual instruction sequence each time

the macro occurs; thus a macro does not cause any branching. Figure 6.15 shows the source program

with macro calls and the object program after the macro expansion.

Figure 6.15 - A macro call example

5.3.1 Macros in Cross-32 Cross Assembler

MACRO and ENDM directives define the sequence of instructions in the source file as macro. Format

of a macro definition is as follows:

Label: MACRO exp(1), exp(2), … exp (n) ; comment

line 1

 line 2

 .

 .

 ENDM

 32

 Upon encountering a MACRO directive, Cross-32 stores the source code between the

MACRO directive and the next ENDM directive, assigning the label on the MACRO line to it.

Although the code within the macro definition is checked for syntax errors, the resulting machine code

is not written to either the list or hexadecimal files. When the macro's label is found as a macro call

later in the assembly source code, the entire MACRO is expanded at this location. Any expressions

appearing after the macro definition are replaced by those appearing after the macro call in the

expanded code. These are character by character replacements, so ensure that the expressions in the

macro definition are truly unique. The number of expressions in the macro definition must be equal

to the number of expressions in the macro call. Nested macros are not permitted.

Ex: Following program is an example for macro definitions and macro calls.

 CPU "6801.TBL"

 HOF "MOT8"

ADDITION: MACRO Z,Y ; macro definition steps

 LDAA #Z ;

 ADDA #Y ;

 ENDM ; macro ends

 ORG 0H ; begin program

 ADDITION 10H,20 ; macro Call

 STAA 1000H ; store result in memory location (1000)H

 ADDITION 12H,15 ; macro Call

 STAA 1001H ; store result in memory location (1001)H

 SWI ; End Program

 END ;

Examine the list file of the program to see that the Macro calls are replaced by the Macro

definition.

 33

IF, ELSE, and ENDI - Conditional Assembly

Cross-32 supports conditionaly assembly using the IF, ELSE and ENDI directives. This

feature is usually used to re-configure a single assembly language program for different hardware

environments.

Conditional assembly has the following syntax:

IF expression ; comment

 line 1

 line 2

 .

 .

 line n

ELSE ; comment

 line 1

 line 2

 .

 .

 line n

ENDI ; comment

Upon encountering an IF statement Cross-32 evaluates the single expression following it. All

labels used in this expression must be defined previous to the IF. If the expression evaluates to zero, the

statements between the IF and either an ELSE or an ENDI are not assembled. If the expression results

in a non-zero value, the statements between the IF and either an ELSE or an ENDI are assembled.

ELSE is an optional directive, allowing only one of the two sections of the source file within the IF

block to be assembled. All conditional blocks must have an IF directive and an ENDI directive, the

ELSE directive being optional. If blocks may be nested 16 deep before a fatal error occurs.

An example of conditionally assembly follows, where a microprocessor type is selected.

CPU "6801.TBL"

HOF "MOT8"

OPTION: EQU 1

IF OPTION=1 ; If 6800 selected

BRAVAR: EQU 100H ;

 ENDI

IF OPTION=2 ; If 6802 selected

BRAVAR: EQU 110H ;

 ENDI

 ORG 70H

 BRA BRAVAR

CONT: STAA 85H

 SWI

ORG 100H

 LDAA #02H

 BRA CONT

 ORG 110H

 LDAA #03H

 BRA CONT

END

 In this example Option 1 is selected so BRAVAR variable is set to 100H. Accumulator A is

loaded with 02H and then this value is stored in memory location 85H. If Option 2 is selected then

BRAVAR variable is set to 110H which means that accumulator A is to be loaded with 03H and this

value is going to be stored in memory location 85H.

 34

7. MICROPROCESSOR INPUT/OUPUT TECHNIQUES

7.1 MONITOR SUBROUTINES

The DT6802 Microprocessor Training Kit Monitor Program has subroutines dealing with the

keypad and the seven segment display. These subroutines accept an input from the keypad, and convert

the output data into a suitable format that can be displayed on the seven segment display. DT6802

Monitor subroutines and their starting addresses are shown in Table 7.1.

Table 7.1 - Monitor Subroutines for I/O

Label : CLEARD

Memory Address : DFA0H

Function : Clears the contents of the seven segment displays.

Input Parameter : None

Output Parameter : None

Example : JSR 0DFA0H ; clears 7-segment display

Label : PATCON

Memory Address : 0DFA3H

Function : Converts the output into a binary number which can be displayed on the seven

segment display. This subroutine sets the bits, which light the segments of the seven-

segment display to 1.

Input Parameter : The data to be displayed must be loaded into accumulator A

Output Parameter : The converted binary number is in accumulator A

Example : LDAA #0H

 JSR 0DFA3H

In this example, accumulator A is loaded with “0” and then the program jumps to the subroutine at

addressed 0DFA3H. After the subroutine is executed, accumulator A contains 03FH which is the code

to light the segments of the display for displaying character “0”.

Label : DISPAT

Memory Address : 0DFA6H

Function : Selects a seven segment display for displaying a character

Input Parameter : The converted data must be in accumulator A, and code of the selected 7-

segment display must be in accumulator B.

Output Parameter : None

Example : LDAA #0H

 JSR 0DFA0H

 LDAB #01H

 JSR 0DFA6H

In this example, character 0 is displayed on the first seven segment display. Note that before jumping to

DISPAT subroutine, the data must have been converted using PATCON subroutine and the code of the

selected seven segment display must exist in accumulator B. Codes for selecting the seven segment

displays are given in Table 7.2 .

Memory

Address

Monitor

Subroutine

DFA0H CLEARD

DFA3H PATCON

DFA6H DISPAT

DFA9H RKEYC

 35

Seven segment display Code
1 01H

2 02H

3 04H

4 08H

5 10H

6 20H

7 40H

8 80H

Table 7.2 - Codes for the seven segment displays

Label : RKEYC

Memory Address : 0DFA9H

Function : Waits for an input from the keypad. When a key is pressed, the predetermined value

of this key is loaded to accumulator A.

Input Parameter : None

Output Parameter : Value of the key pressed is in accumulator A

Example : JSR 0DFA9H

 ANDA #3FH

When a key is pressed, its predetermined value is loaded to accumulator A (Table 7.3). Then

accumulator A is ANDed with 3FH. The keys and their predetermined values are given in Table 7.3.

Key Predetermined value Key Predetermined value
0 00H A 0AH

1 01H B 0BH

2 02H C 0CH

3 03H D 0DH

4 04H E 0EH

5 05H F 0FH

6 06H 10H

7 07H 11H

8 08H 12H

9 09H 13H

Table 7.3 - Predetermined values of keypad keys

 36

7.2 Basic Input/Output

Figure 7.1 shows the MPU bus and control structure where processor’s inputs and outputs in

four functional categories; data, adress, control and supervisory. MC6802 Microporcessor has an 8-bit

bidirectional bus to faciliate data flow throught the system(Data bus). Address Bus does not only

specify memory addresses, but also it is a tool to specify I/O devices. By means of its connections to

Data Bus, Control Bus, and selected address lines, the I/O interface is allocated as an area of memory.

User may converse with I/O using any of the memory interface reference instructions, selecting the

desired peripheral with memory address. Control Bus is provided for the memory and interface devices.

It consists of a heterogenous mix of signals to regulate system operation. MPU supervisory, is used for

timing and control of the MC6802 itself. Three signals are shared with the control bus and affect the

memory and I/O device as well.

Figure 7.1 - MC6802 Bus and Control Signals

 Every peripheral device is assigned a block of memory addresses (These blocks do not

intersect). During instruction decoding, the address decoding circuit of the microprocessor enables only

one peripheral device and other devices are set to high impedance mode.

 Inputs of the address decoding circuit are connected to the address bus and necessary control

outputs (such as R\W, E, …) and outputs of this circuit are connected to chip select lines (CS) of each

peripheral device. 74ALS27 (NOR Gate) and 74LS30 (NAND Gate) in Figure 7.2 are used for address

decoding circuit (chip select). 74LS125 (Tri-state buffer) and toggle switches are used for input.

Figure 7.2 – Input to a microprocesor unit

 37

 In Figure 7.2 CS output is reset to Logic “0” only when:

A15=A13=A12=A10=A8=R\W=E= Logic “1” and A14=A11=A9= Logic “0”

where A is the address line, R\W is the Read\Write output , E is the Enable output.

That is:

When the address output of the microprocessor is between B500H and B5FFH, and R/W is

“Read”, and E is 1, 74LS125 tri-state buffer (whose state diagram and truth table is shown in Figure

7.3) is enabled, which means that the inputs from the toggle switches are read and the data is sent to

MPU using data lines. Otherwise the buffer is in high impedance mode.

Figure 7.3 - Tri-state buffer and its state diagram

Example: The following program applies an input to the microprocessor unit:

ORG 100H

 LDAB B500 ; read toggle switches

 ANDB #0FH ; mask four MSBs

 STAB 0100H ; write data read from toggle switches into address 0100H

 SWI

Example: The following program clears the display then starts an infinite loop which reads the status

of the toggle switches and displays the result on the seven segment display.

 JSR 0DFA0H ; CLEARD

RETOG: LDAA B500H ; read toggle switches

 ANDA #0FH ; mask four MSBs

 JSR 0DFA3H ; PATCON

LDAB #01H ; select seven segment display

 JSR 0DFA6H ; DISPAT

 BRA RETOG ; infinite loop

 JSR 0DFA0H instruction clears the display. Then, program reads the input from toggle

switches (when B500H is given as input to the address decoding circuit), and jumps to the subroutine at

address 0DFA3H (PATCON). This subroutine, converts a data into a code which can be displayed on

the seven segment display. Then the program jumps to the subroutine at address 0DFA6H (DISPAT),

which displays the converted data on the seven segment display. This process is repeated in an infinite

loop. In this loop when the condition of the toggle switches changes, the data displayed on the seven

segment display also changes.

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

1 0 1 1 0 1 0 1 X X X X X X X X

 B 5 X X

CS

CS Q

D Q 1 High
z(impedance)0 D

 Tri-state
buffer

 Truth Table

 38

7.3 MC6820 PIA (Peripheral Interface Adapter)

The MC6820 Peripheral Interface Adapter (PIA), in Figure 7.4, provides a flexible method of

connecting byte-oriented peripherals to the MPU. The PIA, while relatively complex itself, permits the

MPU to handle a wide variety of equipment types with minimum additional logic and simple

programming.

Figure 7.4 - MPU/PIA Interface

Data flows between the MPU and the PIA on the System Data Bus via eight bi-directional

data lines, D0 through D7. The direction of data flow is controlled by the MPU via the Read/Write

input to the PIA.

The “MPU side” of the PIA also includes three chip select lines, CS0, CS1, 2CS , for selecting

a particular PIA. Two register select inputs, RS0 and RS1, are used in conjuction with a control bit (b2)

within the PIA for selecting specific registers in the PIA. Figure 7.6 shows the PIA control register

format. The MPU can read or write into the PIA’s internal registers by addressing PIA via the System

Address Bus using these five input lines and the R/W signal. From the MPU’s point of view, each PIA

is simply four memory locations that are treated in the same manner as any other read/write memory.

Table 7.5 shows the memory addresses that can be accessed by the MPU and the corresponding PIA

registers.

Address PIA Register
E000H Output and data direction register (Port A)

E001H Control register (Port A)

E002H Output and data direction register (Port B)

E003H Control register (Port B)

Table 7.5 - PIA Register Addresses

The MPU also provides a timing signal to the PIA via the Enable input. The Enable (E) pulse

is used to condition the PIA’s internal interrupt control circuitry and for the timing of peripheral control

signals.

The “Peripheral side” of the PIA includes two 8-bit bi-directional data buses (PA0 - PA7 and

PB0 - PB7) and four interrupt/control lines (CA1, CA2, CB1, CB2) (Figure 7.5). All of the lines on the

“Peripheral Side” of the PIA are compatible with standard TTL Logic. In addition, all lines serving as

outputs on the “B” side of each PIA (PB0-PB7, CB1, CB2) will supply up to one miliamp of drive

current at 1.5 volts, therefore resulting in a more suitable part to use with current requesting peripherals

(such as leds etc.)

 39

Figure 7.5 - PIA Registers

Internal Organization

Internally, the PIA is divided into symmetrical independent register configurations. Each half

has three main features: an Output Register, a Control Register, and a Data Direction Register (Figure

7.5). These registers are addressed by MPU as memory locations from which data can be either read or

written. The Output and Data Direction Registers on each side represents a single memory location to

the MPU. The selection between them is internal to the PIA and determined by a bit in their Control

Register (it is common convention that bit 2 of a data structure implies the third bit from the least

significant).

Data Direction Registers (DDR) are used to establish each individual peripheral bus line as

either an input or an output. This is accomplished by having the MPU write “ones” or “zeros” into the

eight bit positions of the DDR. Zeros or ones cause the corresponding peripheral data lines to function

as inputs or outputs, respectively.

Output Registers, when addressed, store the data present on the MPU Data Bus during MPU

write operation. This data will immediately appear on those peripheral lines that have been

programmed as outputs. During an MPU Read operation, the data present on peripheral lines,

programmed as inputs, is transferred directly to the system Data Bus.

Two Control Registers, allow the MPU to establish and control the operating modes of the

PIA. It is by means of these four lines that control information is passed back and forth between the

MPU and peripheral devices.

Data Direction Register access is used in conjunction with the register select lines to select

between internal registers. For a given register select combination, the status bit b2 of the Data

Direction Register determines whether the Data Direction Register (if b2=0) or the Output Register (if

b2=1) is addressed by the MPU.

 40

Figure 7.6 - PIA Control Register Format

 41

 The PIA (6821) has got three chip select inputs (CS0, CS1, 2CS), and two register select

inputs (RS0 and RS1) (Figure 7.7). CS0 and CS1 are high active, 2CS is low active. CS0 and CS1 is

connected to the Vcc (+5V). So these two inputs are always in high active position. 2CS input is

connected to the Y0 ouput of 74LS138 83 decoder. In the address decoding circuit, when memory

block between E000 and E3FF is decoded, the output Y0 is logic(0). When microprocessor addresses a

memory location in this range, PIA is selected via 2CS . The microprocessor’s A0 and A1 address

lines are connected to PIA’s RS0 and RS1 (register select) inputs and they select one of the PIA

registers in Table 7.5 depending on the value of 2CS , RS0, RS1, then the data in D7-D0 (from the

MPU) is transferred to PIA registers PB7-PB0 (or PIA7-PIA0), ot the data in PIA registers is

transferred through D7-D0 to the MPU.

Figure 7.7 – 6821 PIA’s hardware diagram

The PIA’s registers are reset when the RESET input of PIA is activated (logic ‘0’). This is

usually used when initializing the system. Therefore this input is connected to the microprocessor’s

RESET line.

PIA’s WR / input determines the data transfer direction, so it is connected to the

microprocessor WR / line. PIA’s E signal synchronises the data transfer between PIA and

microprocessor, so it is connected to microprocessor E clock line. D0-D7 data inputs are connected to

the microprocessor data lines for data transfer. PIA’s Port A (PA0-PA7) can be programmed as output

or input. Similarly PIA’s Port B (PB0-PB7) can be programmed as output or input.

 42

Example: In PIA configuration, Control Register is addressed by a unique memory location

E001 for port A and E003 for port B. But Data Direction Register (DDR) and Output Register are

addressed by the same memory location that is E000 for port A and E002 for port B. Therefore it is

necessary to choose whether DDR or Output Register is used by means of b2 of appropriate control

register. DDR selection can be achieved by clearing b2 of E000 for port A and E002 for port B.

In the following program, PIA’s Port A pins are programmed as input and PIA’s Port B pins

are programmed as output.

CLR E001H ; DDR is selected for port A

CLR E003H ; DDR is selected for port B

CLR E000H ; All of the port A pins are programmed as input

LDAA #FFH ;

STAA E002H ; All of the port B pins are programmed as output

LDAA #04H ;

STAA E001H ; Output register is selected for port A

STAA E003H ; Output register is selected for port B

LDAA E000H ; Data is read from Port A and written into accumulator A.

STAA E002H ; Data in accumulator A is stored in pins of port B.

 43

8. TIME DELAYS

While handling input/output in a microprocessor system, one important problem is the generation of

time intervals with specific lenghts. Such intervals are necessary to debounce mechanical switches, to

refresh displays, and to provide timing for devices that transfer data regularly.

Timing intervals can be produced in several ways:

1) By hardware with one-shots or monostable multivibrations. These devices produce a single

pulse of fixed duration in response to a pulse input.

2) By a combination of hardware and software with a flexible programmable timer. Motorola

MC6840 can provide timing intervals of various lengths with a variety of starting and ending

conditions.

3) By software with delay routines. These routines use the processor as a counter. This is

possible since the processor has a stable clock reference.

The software method is inexpensive but may overburden the processor. The programmable timers are

relatively expensive, but are easy to interface and may be able to handle many complex timing tasks.

8.1 Software generated time delays

A simple delay routine works as follows:

Step 1) Load a register with a specified value.

Step 2) Decrement the register.

Step 3) Repeat Step 2 until it is equal to zero,

This routine does nothing except consuming time. The amount of time consumed depends on the

execution time of the instructions used. Maximum delay time is limited by the size of the register.

Ex 1: Following program code uses a single 8-bit register to produce delay.

TLOOP: LDAA #0AH 2 clock cycles

DELAY: DECA 2 clock cycles

 BNE DELAY 4 clock cycles

 RTS

 Delay time is calculated using the time (in clock cycles) consumed by the execution of each

instruction. In this example LDAA instruction is executed once, and DELAY loop is repeated 10 times

(as the number in accumulator A is 0AH).

The delay (NC) generated by the above code in number of cycles is:

NC = 2 + (2 + 4)*10 = 62 clock cycles

If processor clock is 1MHz then the period TC = 1 s

Therefore the delay time of the above program is:

Delay Time = NC * TC = 62 s = 0,062msec.

Accumulator A is an 8-bit register. Maximum number that can be stored in this register is

FFH. Therefore the maximum delay can be obtained if 00H is stored in accumulator A initially. Note

that DELAY loop begins with a DECA instruction and if accumulator A initially contains FFH the loop

is repeated FEH times, until accumulator A becomes 00H. However storing 00H to accumulator A

initially, causes the loop to be repeated FFH times, and the maximum delay is calculated as:

[2 + 6*2
8
] s =1538 s = 1,538 msec. = 0,01538 seconds.

 44

Ex 2: To obtain longer delays with 8-bit registers, two 8-bit registers can be used.

TLOOP: LDAB #xH 2 clock cycles

DELAY2: LDAA #yH 2 clock cycles

DELAY1: DECA 2 clock cycles

 BNE DELAY1 4 clock cycles

 DECB 2 clock cycles

 BNE DELAY2 4 clock cycles

 RTS

In this example two 8-bit registers (accumulators A and B) are used. LDAB instruction loads

value xH to accumulator B and is executed once. Therefore, DELAY2 loop is repeated xH times. At

each repetition of DELAY2 loop, value yH is loaded to accumulator A, which causes DELAY1 loop to

be repeated xH*yH . Total number of cycles is:

NC = 2 + (2 + (2 + 4)*yH + 2 + 4) * xH cycles (Note: while calculating NC, convert the xH and yH into

decimal numbers)

Accumulators A and B are 8-bit registers. Maximum number that can be stored in each

register is FFH. As the delay loops begin with a DEC instruction, maximum delay time is obtained if

both accumulators contain 00H initially.

NC = 2 + (2 + (2 + 4)*2
8
 + 2 + 4) * 2

8
 cycles, and

maximum delay time = 395266 s 0,4 second.

Ex 3: Following code uses Index Register (16-bit register) to produce delay.

TLOOP: LDX # xH 3 clock cycles

DELAY: DEX 4 clock cycles

 BNE DELAY 4 clock cycles

 RTS

 LDX instruction is executed once. Then, DELAY loop is repeated xH times (as the number

loaded in index register is xH).

NC = 3 + (4 + 4)*xH (Note: while calculating NC, xH must be converted into decimal)

Maximum delay time(when X=0000H) = 3 + 8*2
16

 = 524291 s 0,52 seconds.

Ex 4: To obtain 1 ms delay using index register

1000
1

1

s

ms

T

DelayTime
N

C

C
 clock cycles are required

For the loop in Ex. 3

NC = 3 + 8*x = 1000

Then,

10124
8

31000
x = (007C)H

Therefore initially 7CH must be loaded to index register (LDX #007CH)

 45

 9. MC6802 Interrupts

 In a typical application, peripheral devices may be continuously generating asynchronous

signals (interrupts) that must be acted on by the MPU. The interrupts may be either requests for service

or acknowledgements of services performed earlier by the MPU. The MC6802 MPU provides several

methods for automatically responding to such interrupts in an orderly manner.

 During the execution of the program when an interrupt occurs; the status of MPU is stored

(i.e. accumulators, program counter, index register, and CCR) is stored in the memory addressed by the

Stack Pointer (Figures 9.1, 9.2). Then program counter is loaded with the starting address of the related

Interrupt Service Routine (ISR). After the execution of the ISR, the RTI instruction causes the contents

of the Program Counter to be restored from the stack, and program execution continues with the next

instruction.

Figure 9.1 - Basic flow diagram of an interrupt service

In the control of interrupts, three general problems must be considered:

1. It is the characteristic of most applications that interrupts must be handled without

permanently disrupting the task in process when the interrupt occurs. The MC6802 handles

this by saving the results of its current activity so that processing can be resumed after the

interrupt has been serviced.

2. There must be a method of handling multiple interrupts since several peripherals may be

requesting service simultaneously.

3. If some signals are more important to system operation or if certain peripherals require faster

servicing than others, there must be a method of prioritizing the interrupts.

The status of the microprocessing unit is stored in the stack during the following operations (Figure 9.2):

 in response to an external condition indicated by a negative edge on the “Non-maskable Interrupt”

control input signal to the MPU.

 during the execution of a machine code corresponding to either of the source language instruction

SWI or WAI.

 during servicing of an interrupt from a peripheral device, in response to a negative edge on the

“Interrupt request” control input signal to the MPU.

…..

Program I.S.R.

Flow …

Interrupt Request …

SAVE RTI

LOAD

Interrupt Service

Routine (ISR)

 46

When an interrupt occurs;

a) memory address of the next instruction to be executed is stored in the stack

b) contents of the other registers are stored in the stack

9.1 Interrupt Pointers

The MPU has three hardware interrupt inputs, Reset
1

)(RES , Non-Maskable Interrupt)(NMI ,

and Interrupt Request)(IRQ . An interrupt sequence can be initiated by applying a suitable control

signal to any of these three inputs or by using the software SWI instruction. The resulting sequence is

different for each case.

A block of memory, called interrupt vector is reserved for pointers to the interrupt service

rotines which are to be executed in the event of a reset (or power down), a non-maskable interrupt

signalled by a “low state” of the “Non-maskable Interrupt” control input, a software interrupt, or a

response to an interrupt signal from a peripheral device. Figure 9.3 shows the memory addresses

reserved as the interrupt vector and the associated interrupt types.

Interrupt Type Addresses Used

Reset (RESET) FFFE,FFFF

Non-Maskable Interrupt (NMI) FFFC,FFFD

Software Interrupt Instruction (SWI) FFFA,FFFB

Interrupt Request (IRQ) FFF8,FFF9

Figure 9.3 - Interrupt Vector, Permanent Memory Assignments

Before Interrupt Sequence After Interrupt Sequence

Memory Memory

SP 1FF8

1FFF9 CC

1FFFA ACCB

1FFB ACCA

1FFC IXH

1FFD IXL

1FFE PCH

SP 1FFF 1FFF PCL

CC : Condition Codes PCH : Prog. Counter High

IXH : Index Register, High Bytes PCL : Prog. Counter Low

IXL : Index Register , Low Bytes SP : Stack Pointer

 Fig 9.2 – Saving the Status of the Microprocessor in the Stack

 47

9.2 Interrupt Request)(IRQ

Inputs to IRQ are normally generated in PIAs and ACIAs but may also come from other user-

defined hardware. In either case, various interrupts may be wired-ORed and applied to the MPU’s IRQ

input. This input is level sensitive, a logic zero causes the MPU to initiate the interrupt sequence
2
. A

flow chart of the IRQ sequence is given in Figure 9.4.

Figure 9.4 - Hardware Interrupt Request Sequence

After finishing its current instruction and testing the Interrupt Mask in the CCR, the MPU

stores the contents of its programmable registers in the memory locations specified by the Stack

Pointer. This stacking process takes seven memory cycles; two for each of the Index register and

Program Counter, and one each for accumulator A, accumulator B, and the CCR. The Stack Pointer is

decremented seven locations and is pointing to the next empty memory location.

The MPU’s next step of setting Interrupt Mask to logic one allows the system interrupt control

program to determine the order in which multiple interrupts will be handled. If it is desirable to

recognize another interrupt (of higher priority, for example) before service of the first is complete, the

Interrupt Mask can be cleared by a CLI instruction at the beginning of the current service routine. If

each interrupt is to be completely serviced before another is recognized, the CLI instruction is omitted

and a Return from Interrupt instruction, RTI, placed at the end of the service routine restores the

Interrupt Mask status from the stack, thus enabling recognition of subsequent interrupts.

Note that if the former method is selected, the original interrupt service will still eventually be

completed. This is due to the fact that the later interrupt also causes the current status to be put on the

stack for later completion. This process is general and means that interrupts can be “nested” to any

depth required by the system limited only by memory size. The status of the interrupted routines is

returned in a LIFO basis.

After setting the Interrupt Mask, the MPU next obtains the address of the first interrupt service

routine instruction from memory locations permanently assigned to the IRQ interrupt input. This is

accomplished by loading the Program Counter’s high and low bytes from memory locations responding

to addresses, FFF8 and FFF9, respectively. The MPU then fetches the first instruction from the location

now designated by the Program Counter.

IRQ
2

 is a maskable input . If the Interrupt Mask Bit within the MPU is set, low levels on the IRQ line will

not be recognized; the MPU will continue current program execution until the mask bit is cleared by

encountering the Clear Interrupt (CLI) instruction in the control program, or an RTI is encountered.

 48

This technique of indirect addressing (also called vectoring) is also used by other interrupt

sequences. The “vectors” are placed in the memory locations corresponding to addresses FFF8 through

FFFF during program development (Figure 9.3).

9.3 Non-Maskable Interrupt)(NMI

The Non-Maskable Interrupt)(NMI must be recognized by the MPU as soon as the NMI

line goes to logic zero. This interrupt is often used as a power-failure sensor or to provide interrupt

service to a “hot” peripheral that must be allowed to interrupt.

Except for the fact that it cannot be masked, the NMI interrupt sequence is similar to IRQ

(Figure 9.5). After completing its current instruction, the MPU stacks its registers, sets the Interrupt

mask and fetches the starting address of the NMI interrupt service routine by vectoring to FFFC and

FFFD. The MPU then starts execution of the Non-Maskable Interrupt Program, which begins with the

instruction which is now addressed by the program counter.

Figure 9.5 - Non-Maskable Interrupt Sequence

9.4 Reset)(RES

The Reset interrupt sequence differs from NMI and IRQ in two respect. When RES is low,

the MPU places FFFE (the high order byte of the RES vector location) on the Address Bus in

preparation for executing the RES interrupt sequence. It is normally used following power on to reach

an initializing program that sets up system starting conditions such as initial value of the Program

Counter, Stack Pointer, PIA Modes, etc. It is also available as a restart method in the event of system

lockup or runaway. Because of its use for starting the MPU from a power down state, the)(RES

sequence is initiated by a positive going edge. Also, since it is normally used only in a start-up mode,

there is no reason to store the MPU contents on the stack. After setting the Interrupt mask, the MPU

loads the Program Counter from the memory locations responding to FFFE and FFFF and then

proceeds with the initialization program (Figure 9.6).

 49

Figure 9.6 - Reset Interrupt Sequence

9.5 Software Interrupt)(SWI

The MPU also has a program initiated interrupt mode. Execution of the software interrupt

)(SWI instruction by the MPU initiates the sequence (Figure 9.7). The sequence is similar to the

hardware interrupts except that it is initiated by “software” and the vector is obtained from memory

locations responding to FFFA and FFFB.

Figure 8.7 - Software Interrupt Sequence

The Software Interrupt is useful for inserting break-points in the program as an aid in

debugging and troubleshooting. In effect, the SWI stops the process in place and puts the MPU register

contents into memory where they can be examined or displayed.

During execution of the SWI instruction, the status of the MPU is stored in the stack, the value

stored for the PC is the address of the SWI instruction plus one. After the status has been stored in, the

interrupt mask bit “I” is set (I=1). The MPU will not respond to an interrupt request from a peripheral

device while the interrupt mask is set. The program counter is then loaded with the address stored in

software interrupt pointer, at location FFFA and FFFB. The MPU then proceeds with execution of a

SWI program, which begins with the instruction pointed by the program counter. The MPU will remain

insensitive to an interrupt request from any peripheral device until the interrupt mask bit has been reset

by execution of the programmed instruction.

 50

9.6 Wait Instruction (WAI)

During the execution of the WAI instruction, the status of the MPU is stored in the stack. The

value stored for the PC is the address of the WAI instruction plus one. Execution of the WAI

instruction does not change the interrupt mask bit.

If the interrupt mask bit is set (I=1), the MPU cannot respond to an interrupt request from any

peripheral device. Execution will stop after saving the status of the MPU. In this case execution could

be resumed only by a non-maskable interrupt or a reset interrupt. If the interrupt mask bit is in the reset

state (I=0), the MPU will service any interrupt request which may be present.

9.7 Return from Interrupt (RTI)

 This is a 1-byte machine instruction. Execution of this instruction consists of the restoration of

the MPU to a state pulled from the stack. After the execution of the RTI instruction, seven bytes of

information are pulled from the stack and stored in respective registers of the MPU. The address stored

in the stack pointer is incremented before each byte of information is pulled from the stack.

9.8 Interrupt Prioritizing

If there is only one peripheral capable of requesting service, the source of the interrupt is

known and the control program can immediately begin the service routine. More often, several devices

are allowed to originate interrupt request and the first task of the interrupt routine is to identify the

source of the interrupt.

There is also the possibility that several peripherals are simultaneously requesting service. In

this case, the control program must also decide which interrupt to service first. The)(IRQ interrupt

service routine in particular may be complex since most of the I/O interrupts are wire-ORed on this

line.

The most common method of handling the multiple and/or simultaneous)(IRQ interrupts is

to begin the service routine by “polling” the peripheral’s signals coming in through a PIA or an ACIA.

The polling procedure is very simple. In addition to causing)(IRQ to go low, the interrupting signal

also sets a flag bit in the PIA’s or ACIA’s internal registers. Since these registers represent memory

locations to the MPU, the polling consists of nothing more than stepping through the locations and

testing the flag bits.

Establishing the priority of simultaneous interrupts can be handled in either of two ways. The

simplest is to establish priority by the order in which the PIAs and ACIAs are polled. That is, the first

I/O flag encountered gets the service, so higher priority devices are polled first. The second method

first finds all the interrupt flags and then uses a special program to select the one of having the highest

priority. This method permits a more sophisticated approach in that the priority can be modified by the

control program.

Software techniques can, in theory, handle any number of devices to any sophistication level

of prioritizing. In practice, if there are many sources of interrupt requests, the time required to find the

appropriate interrupt can exceed the time available to do so. In this situation, external prioritizing

hardware can be used to speed up the operation.

 51

Example: Write a program which fills the seven segment displays with the number FH. The program

repeats itself when is entered. The program finishes when is entered. When an interrupt request

occurs, the program proceeds as follows:

If the interrupt request is IRQ interrupt, fill the displays with the number AH.

If the interrupt request is SWI interrupt, fill the displays with the number BH.

If the interrupt request is NMI interrupt, fill the displays with the number CH.

If the interrupt request is RESET interrupt, fill the displays with the number EH.

 ORG 100H

LDS #1FFFH ; initialize the stack pointer

 CLC ; clear carry

LDAA #01H ; load the first seven-segment display code

 STAA 600H ; store the code in memory location 600H

 LDX #200H ; Initialise IRQ interrupt

 STX FFF8H ; service routine address

 LDX #300H ; Initialise SWI interrupt

 STX FFFAH ; service routine address

 LDX #400H ; Initialise NMI interrupt

 STX FFFCH ; service routine address

 LDX #500H ; Initialise RESET interrupt

 STX FFFEH ; service routine address

 CLI

DISP: LDX 600H ; load the seven-segment display code

 LDAA #FH ; load number to fill the display in accumulator A

 JSR 0DFA3H ; PATCON

 LDAB 0,X ; select seven-segment display

 JSR 0DFA6H ; DISPAT

 CMPB #80H ; are all 7 segment displays FH?

BEQ REPLAY ; YES, jump to decision

ASL 600H ; Arithmetic shift left contents of the 600H

 BRA DISP ; Loop instruction

STOP: SWI

REPLAY: LDAA #01H ; load the first seven-segment display code

 STAA 600H ; store the code in memory location 600H

KLOOP: JSR 0DFA9H ; RKEYC

 ANDA #3FH

 CMPA #13H ; is it ?

 JSR 0DFA0H ; CLEARD

 BEQ DISP ; YES, replay routine

 CMPA #11H ; NO, is it ?

 BEQ STOP ; YES, finish program

 BRA KLOOP ; None of them, replay KLOOP loop

 ORG 200H ; Interrupt Service Routine for IRQ

JSR 0DFA0H ; CLEARD

 CLC ; Clear carry

LDAA #01H

 STAA 600H

DISP1: LDX #600H

 LDAA #AH ; displays AH

 JSR 0DFA3H

 LDAB 0,X

 JSR 0DFA6H

 JSR DELAY

CMPB #80H

BEQ FINISH1

 52

ASL 600H

BRA DISP1

FINISH1: RTI

ORG 300H ; Interrupt Service Routine for SWI

 JSR 0DFA0H ; CLEARD

 CLC ; Clear carry

 LDAA #01H

 STAA 600H

DISP2: LDX #600H

 LDAA #BH

 JSR 0DFA3H

 LDAB 0,X

 JSR 0DFA6H

 JSR DELAY

CMPB #80H

BEQ FINISH2

ASL 600H

BRA DISP2

FINISH2: RTI

ORG 400H ; Interrupt Service Routine for NMI

 JSR 0DFA0H ; CLEARD

 CLC ; Clear carry

 LDAA #01H

 STAA 600H

DISP3: LDX #600H

 LDAA #CH

 JSR 0DFA3H

 LDAB 0,X

 JSR 0DFA6H

 JSR DELAY

CMPB #80H

BEQ FINISH3

ASL 600H

BRA DISP3

FINISH: RTI

 ORG 500H ; Interrupt Service Routine for RESET

 JSR 0DFA0H ; CLEARD

 CLC ; Clear carry

 LDAA #01H

 STAA 600H

DISP4: LDX #600H

 LDAA #EH

 JSR 0DFA3H

 LDAB 0,X

 JSR 0DFA6H

 JSR DELAY

CMPB #80H

BEQ FINISH4

ASL 600H

BRA DISP4

FINISH4: RTI

 ORG 700H ; Delay Service Subroutine

 53

DELAY: STX 1000H

 PSHB

 LDX #0FFFH

KDELAY: LDAB #02H

KDELAY1: DECB

 BNE KDELAY1

 DEX

 BNE KDELAY

 PULB

 LDX 1000H

RTS

