
Handel-C Language Examples

Matthew Aubury

Ian Page

Geo� Randall

Jonathan Saul

Robin Watts

Oxford University Computing Laboratory

August 28, 1996

Contents

1 Short Examples 2

1.1 Accumulator (accu.c) : 2

1.2 Integer Division (divide.c) : 4

1.3 Square Root (root.c) : 5

1.4 Queue (queue.c) : 5

1.5 Microprocessor (proc.c) : 6

1.6 Edge Detector (edge.c) : 7

1.7 Merge Sort (merge.c) : 9

1.8 Heap Sort (heapsort.c) : 10

2 Developmental Example { Histogram Equalisation 11

2.1 First Attempt : 11

2.2 Making it Parallel : 14

2.3 Making it smaller : 14

1

const dw = 8; /* Width of incoming data */

const nw = 4; /* 2 ^ nw = Number of inputs */

const rw = dw + nw; /* Width of the result */

void main(chan (in) STDIN : dw,

chan (out) STDOUT : rw)

{

int data : dw;

int accumulator : rw;

int counter : nw;

accumulator, counter = 0, 0;

do {

STDIN ? data;

accumulator = accumulator + (0 @ data);

counter = counter + 1;

} while (counter != 0);

STDOUT ! accumulator;

}

Figure 1: Program accu.c

In this document we detail some of the example Handel-C programs provided

with the compiler. The �rst examples are demonstrations of various constructs,

whilst the later ones are more realistic examples of possible programs, including

a program showing the evolution from a slow, large design to a faster, smaller

�nished design.

1 Short Examples

This section contains descriptions of some of the more simple example programs

provided with the Handel-C compiler. This are intended to demonstrate the use

of most of the Handel-C constructs, and to be a guide to the style of programming

required to build e�cient hardware implementations.

1.1 Accumulator (accu.c)

The accu.c program, shown in �gure 1 is extremely simple, but demonstrates

several important points. The compiler is called with the line:

% hcc EXAMPLES/accu.c

(Note that the slash goes the other way for DOS). The compiler should report

back something like:

-- Handel-C Hardware Compiler, Beta release: H163.11

-- (c) Ian Page et al, OUCL, 1991-96

2

After compilation : 35 FFs, 210 gates, 5 inverters; size 296

After netlist optimisations : 34 FFs, 97 gates, 5 inverters; size 148

And will then immediately enter the simulator, and ask for input. After enter-

ing sixteen numbers the compiler should report back the sum of those numbers.

This is the default behaviour of the Handel-C compiler: compile the program,

perform some simple optimizations, and then enter the simulator.

Looking at the program, there are some important di�erences to the way we

would probably write this program in conventional C. The �rst is the external

parameterisation of the program by use of const declarations | in this case to

specify the width of the input data and the number of data elements (in log
2

format for reasons we shall see shortly). The size of the result can be derived as

being the sum of these two values.

Next we have the declaration of the body of main, including de�nitions of

the input and output channels (which, for our purposes, are \connected" to the

simulator). The names of the channels are unimportant, we have used STDIN

and STDOUT consistently. They must be given widths (these cannot be inferred),

and directions.

Next come the program variable declarations. We have three integers, all of

which are given their relevant widths. This is, in fact, unnecessary since the

widths of data and accumulator could be inferred from the external channels.

The width of counter, however, could not and so this width must be speci�ed

to avoid an \Incomplete Inference" error message.

The �rst line of the program initialises the accumulator and counter to zero,

using the new construct of parallel assignment. In this circumstance the initial-

isation is unnecessary since all registers are reset to zero at the beginning of

execution, however this is an hand optimisation which should be deferred to the

later stages of development to avoid confusion.

In a traditional C program, the loop body would probably have been a for

loop, but these map relatively poorly into hardware. Instead, we have used a do

: : : while construct, rarely seen in most C programs. There are two good reas-

ons for this. Firstly, in Handel-C loops, it is normally possible to increment the

counter variable in parallel with some other update in the cycle, whereas by de-

fault the for construct of Handel-C places the increment statement sequentially

after the body of the loop. Secondly, in traditional C we would have written our

test something like counter < 16 (or whatever 2nw is in a particular instance).

But we can see that the constant 16 is in fact a 5-bit unsigned constant (a 6-bit

signed constant). Because the comparison operators expect equal widths on each

side, this would imply that we had to make the counter wider than we actually

require. In fact, the method shown is the only way of looping over all 2n cases

using an n-bit counter.

In the body of the loop we read data from the input channel using communic-

ations of the form (channel ? variable), then add this data into the accumulator.

Note that because the accumulator is wider than the data variable we \pad" the

data variable with zeroes (data @ 0). This will only work for unsigned input

{ signed input must be \sign extended" by repeatedly copying the most signi-

�cant bit as many times as required. Finally in the loop, the counter variable

3

/* Integer division by long-division method */

const dw = 16;

void main(chan (in) STDIN : dw,

chan (out) STDOUT : dw)

{

int a, b, c : dw;

int bits : 5;

while (1) {

STDIN ? a;

STDIN ? b;

c, bits = 0, 1;

while (b .<=. a)

b, bits = b << 1, bits + 1;

do par {

if (a .>=. b)

a, c = a - b, (c << 1) ^ 1;

else

c = c << 1;

b, bits = b >> 1, bits - 1;

} while (bits != 0);

STDOUT ! c;

}

}

Figure 2: Program divide.c

is incremented { not with the traditional ++ operator, which is not provided in

Handel-C, but with a straight incrementing assignment. This increment could

be done in parallel with the accumulation, but that has not been done for clarity.

The last statement in the program simply outputs the result.

Although this explanation may seem excessive for such a simple and obvi-

ous program, it covers most of the important points required for writing good

Handel-C programs, namely parameterisation, attention to bit widths, e�cient

use of resources, and parallelism. The following examples will include descrip-

tion only of the basic algorithm and any more interesting design choices made

in writing the Handel-C program.

1.2 Integer Division (divide.c)

This program (shown in �gure 2) does simple integer division using the long

division method. The program is an in�nite loop, so multiple runs can be per-

formed without recompiling. It inputs two values, a and b, and returns ba=bc.

It works with sixteen-bit (parameterisble), unsigned values. Although not very

useful by itself, the body of the program could be run in parallel with some other

4

/* Square root without multiplication or division */

const half_dw = 8 : 4;

const dw = half_dw << 1;

const sq = (1 << (dw - 2)) : dw;

void main(chan (in) STDIN : dw,

chan (out) STDOUT : dw)

{

int a, p, q, r;

int i;

while (1) {

STDIN ? a;

p, q, r = 0, 0, sq;

i = half_dw;

do {

if (p + q + r .<=. a)

i, r, q, p = i - 1, r >> 2, (q >> 1) + r, p + q + r;

else

i, r, q = i - 1, r >> 2, (q >> 1);

} while (i != 0);

STDOUT ! q;

}

}

Figure 3: Program root.c

task, giving Handel-C programs access to division. In this case the channel

communications would be internal to the body of main.

1.3 Square Root (root.c)

This program is very similar to the divide example, and can be used as a module

in a similar way. How it manages square root without division or multiplication

is left as an exercise for the reader!

1.4 Queue (queue.c)

The program queue.c, shown in �gure 4, implements a small (four place) queue

using internal communications. This is a good example of parallel programming

in Handel-C. There are four processes (e0 to e3), each of which engages in an

in�nite loop of reading data from the channel to their right, and outputting that

data to the channel on their left. There are three internal channels, c1 to c3,

and two external channels c0 and c4 connected to either end of the pipeline. The

program can be seen to be correct (that is, to not lose or duplicate any data)

5

/* Four place queue using internal communications */

const dw = 8;

void main(chan (in) c4 : dw,

chan (out) c0 : dw)

{

int d0, d1, d2, d3;

chan c1, c2, c3;

void e0() { while (1) { c1 ? d0; c0 ! d0; } }

void e1() { while (1) { c2 ? d1; c1 ! d1; } }

void e2() { while (1) { c3 ? d2; c2 ! d2; } }

void e3() { while (1) { c4 ? d3; c3 ! d3; } }

par {

e0(); e1(); e2(); e3();

}

}

Figure 4: Program queue.c

because each process can hold at most one piece of data, will never accept more

data until it is empty, and can never output more times than it inputs.

To observe the program's behaviour, during simulation answer `n' to stop the

program from outputing, and press return to refuse input. If no data is in the

queue it will only attempt to input, else if the queue is full it will only attempt

to output. Otherwise it will attempt both.

1.5 Microprocessor (proc.c)

When compiled this program builds a small microprocessor in hardware. This

is an 8-bit microprocessor, featuring internal 16 location RAM and 16 location

ROM. The program as presented �lls the ROM with a �bonacci number generat-

ing program. When run, it requests a number, n, and then outputs 2n �bonacci

numbers (this slightly odd behaviour is due to the way the assembly language

program is written to �t into 16 basic instructions!).

This program introduces several features we have not used in previous ex-

amples. The �rst is the use of the C pre-processor to expand the asm macro, for

assembling instructions. We also use internal RAM's and ROM's (parameterised

by external constants), and explicit sub-expressions to separate the opcode and

operand from an instruction. There are 10 instructions de�ned by default { this

is a good program to experiment with since there are many possible variations

on this simple set. There are two internal registers, the program counter and the

instruction register, and one general purpose data register. The operation of the

program should be clear { an instruction is read and the program counter incre-

mented simultaneously, and then the instruction is decoded and the appropriate

action taken. This is done using a case statement.

6

Original Image Edge Dected Image

Figure 5: Result of program edge.c

1.6 Edge Detector (edge.c)

The program shown in �gure 6 is a simple grey-scale image edge detector. This

program is the �rst we have examined that uses external RAMs. The RAMs

used are nominally those of the HARP board, and their de�nitions (harp1lram

and harp1hram) are taken from the included �le harp1.h. These two 32k �
16-bit RAMs are parametrised by the de�nitions to become one 16k � 16-bit

and one 16k � 1-bit RAMs(img1 and img2 respectively).

The program works as follows. The data is read in line-by-line format, and

put into a pipeline of registers, p[0] to p[2]. The di�erential of this data

is calculated and stored alongside the unprocessed image in the 16-bit RAMs.

Next, the data is processed in column by column format by incrementing the

address counters in the opposite order (note how the full address is generated

by concatenating the x and y coordinate bit strings). This data is put through

the pipeline and di�erentiated in the vertical direction. The absolutes of these

two di�erentials are added, and compared against a threshold value. If the sum

of the absolutes (which is an approximation to the absolute edge intensity at a

point) is higher than the threshold a single bit one is placed in the second RAM.

Finally, the data is read back from the second RAM and the ones and zeroes are

replaced with black (0) and white (255) and output. An example of the result

of the edge detector is shown in �gure 5.

On a UNIX system, running X with the PBM toolkit installed, creating and

processing and viewing images is quite easy. In order to generate the intial data

it is necessary to build a 128�128 8-bit grey-scale image, and output it in 8-bit

RAW PBM/PGM format (the xv program is most suitable for this job). An

example of such an image is given in DATA/bottle.pgm. Having obtained this

image, in needs to be converted to \dat" format, suitable for direct input to

the Handel-C simulator. This format is simply a list of carriage return separ-

ated numbers. A utility for doing this is supplied in the UTILS/ directory as

raw8todat. Thus,

7

#include "harp1.h"

const dw = 8; /* Data width */

const iw = dw << 1; /* Internal data width */

const xw = 7; /* Log horizontal size */

const yw = 7; /* Log vertical size */

const aw = xw + yw; /* Address width */

const ae = 1 << aw; /* Number of elements in ram */

const null = 0 : dw; /* Null element */

const threshold = 48;

const white = (1 << dw) - 1;

const black = 0;

#define LO(x) ((x) <- dw) /* Lo word */

#define HI(x) ((x) \\ dw) /* Hi word */

void main (chan (in) STDIN : dw,

chan (out) STDOUT : dw,

eram img1[ae] = harp1lram : iw,

eram img2[ae] = harp1lram : 1)

{

int x : xw;

int y : yw;

int p_0, p_1, p_2 : iw;

int abs_diff() = abs(LO(p_2) - LO(p_0));

int sum_abs() = (false @ abs_diff()) + (false @ HI(p_1));

/* Differentiate in x direction */

do {

do par {

STDIN ? any;

p_0, p_1, p_2 = p_1, p_2, null @ STDIN;

img1[y @ x] = abs_diff() @ LO(p_1);

x = x + 1;

} while (x != 0);

y = y + 1;

} while (y != 0);

/* Differentiate and threshold in y direction */

do {

do par {

p_0, p_1, p_2 = p_1, p_2, img1[y @ x];

img2[y @ x] = (sum_abs() >= threshold ? 1 : 0);

y = y + 1;

} while (y != 0);

x = x + 1;

} while (x != 0);

/* Output */

y = 2;

do {

x = 2;

do par {

STDOUT ! (img2[y @ x] ? white : black);

x = x + 1;

} while (x != 2);

y = y + 1;

} while (y != 2);

}

Figure 6: Program edge.c

8

tail -c 16384 DATA/bottle.pgm >DATA/bottle.raw

UTILS/raw8todat DATA/bottle.raw DATA/bottle.dat

cuts the image data from the PGM �le, and converts this raw data to \dat"

format. The compiler can then be invoked to input this data and output the

edge detected to another �le:

cpp EXAMPLES/edge.c >EXAMPLES/edge.cpp

hcc EXAMPLES/edge.cpp -ss 1000 -if DATA/bottle.dat -of DATA/bottle_p.dat

The -if �le speci�es the input data, -of �le speci�es the output data, and

the -ss ag speci�es \simulation steps" { i.e. how many cycles go by before

the simulator reports the status of the variables in the program. This is useful

because this program takes many cycles to run (around 50,000), and it would

be tedious to read through all of these results! The compilation will generate a

considerable number of warnings. This is because we are violating a number of

laws about using variables in parallel, i.e. we are both using updating and using

a variable in separate, parallel statements. However, because we know that each

assignment takes exactly one cycle to complete, we can see that the program will

produces the result we require. This issue is an important one, and one we will

address more thoroughly in the developmental example.

On completion, the program will terminate having generated the new �le

DATA/bottle p.dat. A suitable way of viewing this image is:

UTILS/dattoraw8 DATA/bottle_p.dat | rawtopgm 128 128 | xv -

This line avoids the need for intermediate �les by use of UNIX pipes. DOS

equivalents for these programs are under development.

1.7 Merge Sort (merge.c)

The program merge.c is a Handel-C version of the familiar merge sort algorithm.

The program is too long to list here, but a copy exists in the EXAMPLES directory.

By default, it sorts 256 9-bit signed values. To run the program on some random

data:

cpp EXAMPLES/merge.c >EXAMPLES/merge.cpp

hcc EXAMPLES/merge.cpp -if DATA/random.dat -of DATA/sorted.dat -ss 100

(the preprocessed version is also supplied in case you don't have \cpp" to

hand). The sorted data is written to a �le sorted.dat { the UNIX command

sort -n can be used to sort the random data for comparison.

The program uses a lot of features we have seen so far, and in addition makes

use of procedures. The procedure inc addr() is used to increment the address

counter { this is an example of using a procedure to save hardware rather than to

organise the program more e�ciently. The other procedures are merge(), which

does the real work of merging sorted lists, input data and output data which

have the obvious uses. The program starts o� by treating the data as 256 lists

of length one. Adjacent lists are merged together to produce 128 lists of length

9

two, and so on, until we have one list of length 256. Two RAMs are used, with

the second one acting as a temporary area for the �rst. This could be arrange

more e�ciently to save the coping process, but we have left this program in the

clearer form.

As a matter of comparison to the heap sort shown next, the 256 element 9-bit

merge sorted compiles to:

After compilation : 140 LATCHES, 1152 GATES, 59 INVERTERS; SIZE 1703

After netlist optimisations : 98 LATCHES, 703 GATES, 41 INVERTERS; SIZE 1028

After fan-in adjustment : 98 LATCHES, 728 GATES, 41 INVERTERS; SIZE 1028

And takes around 5600 cycles to complete.

1.8 Heap Sort (heapsort.c)

The program heapsort.c is a Handel-C version of the heap sort algorithm. The

program is too long to list here, but a copy exists in the EXAMPLES directory. By

default, it sorts 255 9-bit signed values. To run the program on some random

data:

cpp EXAMPLES/heapsort.c >EXAMPLES/heapsort.cpp

hcc EXAMPLES/heapsort.cpp -if DATA/random.dat -of DATA/sorted.dat -ss 100

The program is similar in structure to the merge sorter. The data is read

into RAM by the procedure input data, from memory locations 1 to 255 (this

explains why 255 not 256 elements are sorted { it makes navigating through

a heap much easier). This forms a binary tree with a number at every node,

the root node being element 1. This binary tree is then \heap-ordered" by the

procedure build heap which swaps elements to make the parent node smaller

than both of its children. The two procedures for doing this are bubble down and

swap with smaller child. The second of these procedures takes parameters

swsc i and n by means of global variables. These indicate the position of a

parent and the number of elements in the heap respectively. Once the heap

ordering is complete, the �rst element of the heap is the minimum. This is

output, and replaced with an element taken (arbitrarily) from the end of the

heap. This shortens the heap by one, and upsets the ordering. Thus the ordering

is restore by another call to bubble down. Now we have the second smallest

element in the original list, and we repeat the process. This cycle is implemented

by the procedure output sorted. Since the heap is of logn depth, and we do

O(n) walks over the heap, the algorithm has the same asymptotic complexity,

O(n logn), as merge sort.

The trade-o�s between the two algorithms are apparent. Here are the results

from compiling the default version:

After compilation : 134 LATCHES, 950 GATES, 109 INVERTERS; SIZE 1487

After netlist optimisations : 93 LATCHES, 567 GATES, 81 INVERTERS; SIZE 866

After fan-in adjustment : 93 LATCHES, 596 GATES, 81 INVERTERS; SIZE 866

With completion in around 12300 cycles. Thus heap sort uses (perhaps

suprisingly) less hardware than merge sort, and also requires the use of only

10

one RAM (being an \in-place" sorter), but takes around twice as many cycles

to complete (although in both examples cycles could be saved by use of more

parallelism and pipelining).

2 Developmental Example { Histogram Equalisation

In this section, we show how a simple example program (namely histogram

equalisation) can be taken from a \�rst-attempt" version (slow, big, but working)

to a version \hand optimisied" for speed and size. This process is important in

developing Handel-C programs to actual hardware, since inevitably your program

will compile to something just a bit too large to �t on the chip (trust me).

Histogram equalisation is a well known technique in image processing for

correcting contrast and intensity variations in images. It attempts to make the

cumulative histogram of intensity a triangular shape { the upshot of this is that

there will be roughly the same number of any given shade of grey as any other,

meaning the image had a wide spread of intensity levels. It doesn't work well

when large parts of the image are intentionally dominated by a single shade.

The major processes are: generating a histogram of the image; generating a

cumulative histogram from this; using the normalised, cumulative histogram as

a \look up table" to transform the intensities in the image. Our �rst attempt

follows this course strictly.

2.1 First Attempt

The �rst attempt is program equal v1.c, shown in �gure 7. It contains three

procedures, called in sequence. The �rst, input and histogram, reads the

data from the input channel, stores it in the data RAM, and builds the his-

togram in the hist RAM. Note that a statement such as hist[x] = hist[x]

+ 1 isn't allowed because it implies two memory accesses in one cycle. Next,

accumulate histogram builds the cumulative histogram, and �nally equalise-

and output uses this as a look-up-table to transform the stored image data and

output.

The results of compiling this are:

% cpp EXAMPLES/equal_v1.c >EXAMPLES/equal_v1.cpp

% hcc EXAMPLES/equal_v1.cpp -if DATA/rose.dat -of DATA/rose_p.dat -ss 1000

After compilation : 102 LATCHES, 897 GATES, 26 INVERTERS; SIZE 1342

After netlist optimisations : 75 LATCHES, 536 GATES, 19 INVERTERS; SIZE 769

After fan-in adjustment : 75 LATCHES, 555 GATES, 19 INVERTERS; SIZE 769

And the simulation runs for 148484 cycles. This is not suprising, since we

have not used any parallel operators yet. However, the important point is that

it produces the correct result. Now we can set about transforming the program

to make it go faster (or at least, run in fewer cycles).

11

/* Histogram equalisation - version 1 */

#include "harp1.h"

const dw = 8, aw = 14;

const de = (1 << dw), ae = (1 << aw);

void main(chan(in) STDIN : dw,

chan(out) STDOUT : dw,

eram data[ae] = harp1lram : dw,

eram hist[de] = harp1hram : aw)

{

int addr, accu, x, temp;

void input_and_histogram() {

addr = 0;

do {

STDIN ? x;

data[addr] = x;

temp = hist[x];

hist[x] = temp + 1;

addr = addr + 1;

} while (addr != 0);

}

void accumulate_histogram() {

x = 0;

accu = 0;

do {

temp = hist[x];

hist[x] = accu;

accu = accu + temp;

x = x + 1;

} while (x != 0);

}

void equalise_and_output() {

addr = 0;

do {

x = data[addr];

temp = hist[x];

STDOUT ! temp \\ (aw - dw);

addr = addr + 1;

} while (addr != 0);

}

/* Main program */

input_and_histogram();

accumulate_histogram();

equalise_and_output();

}

Figure 7: Program equal v1.c

12

/* Histogram equalisation - version 2 */

#include "harp1.h"

const dw = 8, aw = 14;

const de = (1 << dw), ae = (1 << aw);

void main(chan(in) STDIN : dw,

chan(out) STDOUT : dw,

eram data[ae] = harp1lram : dw,

eram hist[de] = harp1hram : aw)

{

int addr, accu, x, temp;

void input_and_histogram() {

addr = 0;

do par {

{

STDIN ? x;

data[addr] = x;

addr = addr + 1;

}

{

delay;

temp = hist[x];

hist[x] = temp + 1;

}

} while (addr != 0);

}

void accumulate_histogram() {

x = 0;

accu = 0;

do {

temp = hist[x];

hist[x], accu, x = accu, accu + temp, x + 1;

} while (x != 0);

}

void equalise_and_output() {

addr = 0;

do par {

STDOUT ! hist[data[addr]] \\ (aw - dw);

addr = addr + 1;

} while (addr != 0);

}

/* Main program */

input_and_histogram();

accumulate_histogram();

equalise_and_output();

}

Figure 8: Program equal v2.c

13

2.2 Making it Parallel

The next attempt is program equal v2.c, which is shown in �gure 8. The �rst

procedure, input and histogram, has been rearranged into two parallel sections.

On the �rst cycle, data is read in from the input. On the second cycle, this data

is simultaneously stored in the data RAM, whilst recalling the histogram count

for the relevant level. On the third cycle, the updated histogram count is written

back and the address counter is incremented.

In the procedure accumulate histogram three of the assignments have been

rolled into one, saving two cycles. Finally, in the equalise and output proced-

ure, we have used indirect addressing and a par loop to compress the four cycles

into one. Note that this indirect addressing is probably not such a good idea in

practice { it will indoubtedly lead to an extremely long critical path, and so it

would be more advisable to pipeline these statements.

So, using parallelism but without pipelining, the new results are:

% cpp EXAMPLES/equal_v2.c >EXAMPLES/equal_v2.cpp

% hcc EXAMPLES/equal_v2.cpp -if DATA/rose.dat -of DATA/rose_p.dat -ss 1000

(several warnings)

After compilation : 103 LATCHES, 881 GATES, 27 INVERTERS; SIZE 1305

After netlist optimisations : 75 LATCHES, 525 GATES, 20 INVERTERS; SIZE 737

After fan-in adjustment : 75 LATCHES, 545 GATES, 20 INVERTERS; SIZE 737

And the simulation runs for 66052 cycles. It is clear, though, that the �rst

procedure takes one more cycle than necessary. Pipelining this gives us pro-

gram equal v3.c, which takes 49668 cycles to complete. We won't look at this

program in any more detail since it di�ers only slightly. This program has one

problem, however, because it reads one more value than it should (and discards

it). This is a problem which does not a�ect simulation, but is vitally important

in practice.

2.3 Making it smaller

There are several ways in which we can make the program smaller, and many

of these have been done to give the program equal v4.c, shown in �gure 10.

The �rst is to denote common subexpressions (in particular addr != 0), and

common substatements (such as addr = addr + 1) into ints and procedures

respectively. Secondly, we can remove initialisation statements which have no

e�ect { any \reset to zero" initialisations at the beginning of the program or

following a do : : : while (: : : != 0) loop. Having done all this we get the new

result:

After compilation : 102 LATCHES, 735 GATES, 32 INVERTERS; SIZE 1033

After netlist optimisations : 79 LATCHES, 438 GATES, 22 INVERTERS; SIZE 619

After fan-in adjustment : 79 LATCHES, 445 GATES, 22 INVERTERS; SIZE 619

This saves 100 gates (with normal optimisations) { the saving would probably

be less with full optimisation. This may seem to be just about as much as we can

14

Original Image Histogram Equalised Image

Figure 9: Result of Histogram Equalisation

do with this program, but there will always (with any program) be many more

areas in which savings can be made. It is important, when trying to reduce the

size as much as possible, to consider just about every statement and expression.

We can actually make more savings here, by noting that the test addr != 0 is

actually quite expensive. If instead, we replace addr with a register that is one

bit wider, we can use the single additional bit to test for loop termination. We

have to rewrite the increment address statement also:

int extended addr : aw + 1;

int addr = extended addr <- aw;

int addr nz = (extended addr

aw) != 1;

void increment address() f
extended addr = (addr @ 0) + 1;

g

This ensures that the single bit is only set for one cycle. This change is made

for program equal v5.c (not shown here), and a corresponding change to the x

variable gives a result of:

After compilation : 105 LATCHES, 731 GATES, 32 INVERTERS; SIZE 1018

After netlist optimisations : 81 LATCHES, 417 GATES, 22 INVERTERS; SIZE 591

After fan-in adjustment : 81 LATCHES, 418 GATES, 22 INVERTERS; SIZE 591

Though only a little smaller, this change may still be worthwhile. It is im-

possible to give all of the possible source level optimisations here, but, with

thought and practice, writing e�cient Handel-C programs becomes second nature.

To conclude, and in case anyone is not aware of the e�ect, the before and after

images for histogram equalisation are shown in �gure 9.

15

#include "harp1.h"

const dw = 8, aw = 12;

const de = (1 << dw), ae = (1 << aw);

void main(chan(in) STDIN : dw,

chan(out) STDOUT : dw,

eram data[ae] = harp1lram : dw,

eram hist[de] = harp1hram : aw)

{

int addr, accu, x, temp;

int addr_nz() = (addr != 0) : 1;

void increment_address() { addr = addr + 1; }

void input_to_x() { STDIN ? x; }

void hist_x_to_temp() { temp = hist[x]; }

void input_and_histogram() {

input_to_x();

do par {

{ delay; input_to_x(); }

{ data[addr] = x; increment_address(); }

{ hist_x_to_temp(); hist[x] = temp + 1; }

} while (addr_nz());

}

void accumulate_histogram() {

x = 0;

do {

hist_x_to_temp();

hist[x], accu, x = accu, accu + temp, x + 1;

} while (x != 0);

}

void equalise_and_output() {

do par {

STDOUT ! hist[data[addr]] \\ (aw - dw);

increment_address();

} while (addr_nz());

}

/* Main program */

input_and_histogram();

accumulate_histogram();

equalise_and_output();

}

Figure 10: Program equal v4.c

16

References

[1] Michael Spivey and Ian Page. \How to design hardware with Handel", Tech-

nical Report, Oxford University Computing Lab, 1993.

[2] Ian Page and Wayne Luk, \Compiling OCCAM into FPGAs" in FPGAs,

Eds Will Moore and Wayne Luk, 271-283, Abingdon EE & CS books, 1991.

[3] Geraint Jones, \Programming in OCCAM", Prentice-Hall International,

1987.

[4] INMOS Ltd, \The OCCAM2 Programming Manual", Prentice-Hall Inter-

national, 1988.

[5] A E Lawrence, \HARP (TRAMple) Manual, Volume 1, User Manual for

HARP 1 and HARP 2".

[6] A E Lawrence, \Macro support for the Xilinx Architecture", 1995.

[7] A E Lawrence, \The HARP software library and utility package", 1996.

[8] M Aubury, I Page, G Randall, J Saul, R Watts, \Handel-C Language Ref-

erence Guide", 1996.

[9] M Aubury, I Page, G Randall, J Saul, R Watts, \hcc: A Handel-C Com-

piler", 1996.

17

