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Foreword

Handel-C is a simple programming language designed to enable the compilation

of programs into synchronous, usually FPGA based, hardware implementations.

Handel is not a hardware description language though; rather it is a product of

a long term research programme at Oxford investigating `system codesign' { the

creation of systems comprised of both hardware and software components { from

a single program.

This research is underpinned by the belief that the engineering of any system

should be based on sound mathematical principles, and that this is especially

true of tomorrow's large-scale and highly parallel systems. So while the syn-

tax of Handel-C reminiscent of that of Kernigan and Ritchie's C programming

language, Handel is founded on the semantics of Hoare's CSP algebra.

It should be emphasised that Handel-C and the associated software are

very much part of developing research projects, and are subject to considerable

changes.

This document describes the fundamentals of the Handel-C language. It does

not concern the hcc compiler or the Harp recon�gurable computing platforms

which are often used with it. These are covered in [8] and [5, 6, 7] respectively.

Some examples of Handel-C programs are contained in [9].

Acknowledgements

We would like to acknowledge the work of everyone in the Oxford Hardware

Compilation Group, and all those involved in the development of Standard ML

of New Jersey, Caml light and MOSML.
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1 Structure of a Handel-C program

A Handel-C program is structured as follows:

external declarations

void main(target declaration, interface declarations)

f
internal declarations

statements

g

The section external declarations (see Section 2.3) deals with setting up global

constants (such as the widths of data buses) and of de�ning speci�cation �elds

to describe external interfaces.

The section target declaration (see Section 2.4) is optional and allows the user

to de�ne the target technology for the circuit.

The section interface declarations (see Section 2.5 declares the communication

channels between the Handel-C program and the outside world.

Inside the body of the program, there are a set of internal declarations (which

can include constants, variables, arrays, channels, on-chip RAMs and ROMs,

subexpressions and procedures), followed by a sequence of statements (see Sec-

tion 3). This is much like conventional C, except for the way procedures are

declared within the body of main. Further declarations can be made inside pro-

cedure declarations or blocks of code denoted by { and }.

2 Declarations

This section details the types of declarations that can be made, as described in

the previous section. It is important to understand how the type system di�ers

from that of conventional C, and therefore this is dealt with �rst.

2.1 Values

This section describes the kinds of values that are manipulated by Handel-C

programs.

2.1.1 Integer numbers

Integer constants in Handel-C may range over any values. Note that constants

may be formed directly by using large denotations, or they can also be formed

by the bitwise concatenation of two or more such constants together (see section

4.5).
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2.1.2 Booleans

For convenience, the synonym bool is provided for single bit integers. The com-

piler treats objects of these types identically, so they may be used interchangably.

Additionally the keywords false and true are synonyms for the constants 0 and

1, both of bit width 1.

2.2 Type expressions

As the compiler target is custom hardware, the conventional notion of types is

extended slightly in Handel-C. Where in conventional programming languages we

would have a single type, Handel-C provides a class of types each distinguished

by the number of bits used to represent values. This allows the programmer to

control the amount of hardware used to represent data.

2.2.1 Integers

Rather than just de�ning values to be of type int, Handel-C encourages pro-

grammers to de�ne values which have an explicit bit-width as well. For example:

int x, y : 16;

int z;

de�nes x and y to be integer variables, each 16 bits wide. Integer variables can

still be de�ned unwidthed (as in the case of z above), but the widths of such

variables will be inferred from the context of the rest of the program at compile

time. If the compiler fails to infer the width of any such construct, an error is

reported.

2.2.2 Expressions

An expression may also be given an explicit width in order to help the width

inference engine to correctly assign a width to every expression in the program.

The width cast binds tightly so that brackets are usually necessary, as in the

following example which says that the result of the expression should be exactly

16 bits:

(a+b-c) : 16

Note that this width cast does not allow an expression of a particular width

to be treated as if it were another width. That job is done by the bit operations

(see section 4.5). In fact, the example above has the e�ect of giving the width 16

to each one of the variables a, b and c (since they must all be equal in width)

and hence the declarations of these variables need not contain this information.

2.3 External Declarations

Only constants and speci�cation �elds may be given outside main.
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2.3.1 Constants

Constant integers or booleans may be declared with or without a width, as

follows:

const x = 1, y = 2, z = 3;

const a = 64 : 8;

Giving widths to constants is useful in padding out integers and �xing prob-

lems with uninferrable widths. For example an expression like x @ 0 < y @ 0

is uninferrable because no information about the width of the constants can be

deduced. The �x is to replace at least one of the zeroes with a constant 0 whose

width is speci�ed.

2.3.2 Speci�cations

Speci�cations are free-form constants used to describe interfaces and the target

architecture. The format is as follows:

const spec name = f
name = f name, name ... name g,
name = fg,
name = name

g

An example is the declaration of the \high" static RAM bank on the HARP

board, which is written as follows:

const spec harp1hram =

f
addr = f "P6", "P3", "P8", "P4", "P10", "P9", "P12", "P11",

"P14", "P13", "P21", "P15", "P18", "P17", "P23" g,
data = f "P31", "P27", "P30", "P24", "P25", "P26", "P29", "P28",

"P38", "P39", "P37", "P32", "P33", "P34", "P36", "P35"g,
ce = "P22",

wb = f"P5", "P7"g,
en = f"P7", "P16"g

g;

2.4 Target Declaration

The target declaration is placed in the argument to main(...). It allows the

speci�cation of technology speci�c information. Target declarations follow the

form:

target = spec
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where the spec �eld is either a a braced speci�cation or a const spec declared

externally.

This is an example of such a data structure for the Harp1 card.

const spec harp = f
fpga type = "Xilinx3000",

fpga chip = "3195PQ160-3",

clock pad = "P160",

not error pad = "P55",

finish pad = "P44",

clock divider = "1",

carry weight = "50",

critical weight = "100"

g;

void main(target=harp) f ...

g

2.5 Interface Declarations

Interface declarations are placed in the argument to main(...). Allowable de-

clarations are channels, ports and external RAMs. Channel declarations are writ-

ten as chan(in) name : width and chan(out) name : width for transputer

communications to and from the FPGA respectively. External RAM declarations

follow the convention:

eram name[number of elements] = spec : width

Once declared, an external RAM has an address width of dlog2ne, where n

is the number of elements declared. The spec �eld may be either the name of a

const spec declared externally, or may be a full spec �eld, enclosed in braces.

An example is as follows:

/* Include definition of harp1l memory bank */

#include "harp.h"

const dw = 8;

void main (chan (out) stdout : dw,

chan (in) stdin : dw,

eram image[16384] = harp1l : dw)

f
... body ...

g
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2.6 Internal Declarations

Internal declarations can be made immediately within the main block or within

any braced block within the body of main (including procedures). Normal scop-

ing rules are used. Objects that may be declared within blocks are constants,

variables, channels, on-chip RAMs and ROMs, expressions and procedures. Con-

stants are declared as before (in external declarations), and the remainder are

declared as follows.

2.6.1 Variables

Ordinary variables are declared exactly as in conventional C, except for the

optional width constraint. The following are all acceptable declarations:

int x, y;

int a, b : 8;

int p, q : dw;

bool p;

The �rst two declarations declare two integers, whose width must be inferred

from other statements in the program in order to avoid an error. The constant

dw must have already been declared for the third declaration to be valid. Initial

values may be attatched to registers, as in conventional C:

int x = 9, y = 6 : dw;

This will cause the compiler to insert initialisation statements in the relevant

place (and thus will cause the block to take an extra cycle to execute). The

exception to this rule is at the beginning of main:

void main() f
int x = 0 : 8;

: : :

The initialisation to zero will not generate an extra statement since all re-

gisters are reset to zero at the entry point by a global reset.

2.6.2 Channels

Channels are declared similarly to those in the interface declarations. The fol-

lowing are all valid channel declarations:

chan x, y;

chan p, q : 8;

chan int z : dw;

chan bool a, b;
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Unlike external channel declarations, internal channel declarations do not

have directions attached, since both output and input statements must be within

the scope of the declaration. Note that there may be multiple output and multiple

input statements for any one channel. The compiler warns if any single process

uses the same channel for both input and output, or if more than one parallel

process uses the same channel for either input or output. In typical usage,

exactly one parallel process will use an internal channel for output, and exactly

one process will use the same channel for input.

2.6.3 On-chip RAMs and ROMs

On-chip RAMs and ROMs are declared as follows:

ram x[n] : dw;

ram int z[4] : 16;

ram bool q[20];

rom a = f 3, 4, 5, 6 g : 8;

rom bool b = f 0, 1, 1, 0 g;

Rom declarations contain the information to be held within the ROM as a

comma separated list: the size of the address bus of the rom will be dlog2 ne,
where n is the number of elements declared as being in the ROM. If a larger

value is required the ROM must be padded with null elements (e.g. zero).

The cost of implementation of RAMs and ROMs is highly dependent on

the target architecture: the Xilinx 3000 series requires latches to implement

memories, whereas the Xilinx 4000 has dedicated on-chip RAMs available. The

most important aspect of ROMs and RAMs is that only one element may be

accessed in any clock cycle.

2.6.4 Expressions

Expression declarations allow the construction of explicit subexpressions. Since

hardware is generated for every expression, if an expression (or any subexpres-

sion) is to be used more than once it is advisable to declare it separately in order

to save hardware. The optimiser does a certain amount of common subexpression

elimination, but this may not always be e�ective.

The following are valid subexpression declarations:

int p() = q + r : 8;

int bob() = ((x <- 3) + (y >> 1)) @ multiplier;

In an expression declaration every term must already have been declared.

The name given to the expression can be used in any further expression declar-

ation or expression in the body of the program, and will have the value of the

expression declared on the right hand side. Widths may be given to expression

declarations as shown in the �rst example. Parameters may not be passed to

expressions, but the syntax (the brackets are not optional) leaves room for this

feature to be added to the language in future.
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2.6.5 Procedures

Procedures are quite unlike those in conventional C, but in many circumstances

they may be used in a similar fashion. At present, procedures are parameterless,

and have no return value, so values may only be communicated by use of global

variables or channels. Only one invocation of a particular procedure can be in

execution at any one time, thus prohibiting recursion, mutual recursion, and

multiple calls from parts of the program operating in parallel. They are declared

within the body of main (indeed, they may even be declared within procedures

themselves), as follows:

void name() f
...body of the procedure...

g

Neither the void nor the brackets are optional. Procedures are called with

a statements like foo();, as in conventional C, but, since procedures return no

values, they can not be used in expressions.

3 Statements

As Handel-C is targetted onto custom hardware, the programmer will be highly

aware of both the time and space requirements of the program. Consequently, it

makes sense to discuss the timings of statements in the language. Each statement

takes a number of clock cycles to execute. Exactly how many clock cycles each

instruction requires to execute can depend on the values of variables, or, in

the case of channel communication, on when another process is prepared to

cooperate.

In addition, it is extremely important to make as much use as possible of

parallelism, since it is essentially free in hardware. There are two statement

constructors available to this end: parallel assignment and parallel composition.

Parallel assignment allows values to be assigned to a number of variables in one

clock cycle. Parallel composition allows statements in a block to be executed

in parallel. The semicolon, sometimes regarded as a sequential composition

operator, instead has the meaning of statement terminator in Handel-C.

3.1 Parallel Composition

The par statement composes a series of statments in parallel. All the state-

ments will commence execution at the same instant, and the par statement will

terminate execution when all branches have terminated. The format is as follows:

par f
statement;
...

statement;

g
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To understand exactly what gets done in parallel, an example is helpful:

int x, y;

par f
x = 1;

f y = 1; x = x + 1; g
g

In this program, on the �rst cycle the statments x = 1; and y = 1; will be

executed in parallel. The �rst branch will then terminate. On the second cycle,

the statement x = x + 1; will be executed, and this branch will then terminate,

and as a result the par will terminate. On the next cycle, any statements following

the par will then be executed.

This program will generate a warning, since the variable x is used in both

branches. However, its usage is safe since it is never assigned to by both branches

simulatanously.

Timings A par statement takes exactly as many cycles to execute as its longest

branch. There is no overhead in its execution.

3.2 Assignment

Assignments in Handel-C take the form:

variable f, variableg = expr f, exprg

When this statement is executed, all the expressions on the right hand side

are evaluated, and then all the assignments are performed. Thus the �nal value

of x in the following code fragment is 4, not 5.

y = 2;

y, x = y + 1, y + 2;

Assigments involving the same variable more than once on the left hand side are

in error, as are assignments from/to objects of di�ering widths.

Timings Every assignment statement takes one clock cycle to execute.

3.3 Channel Communication

Channel communication is identical for internal channels and communication

across the FPGA interface. Reading from a channel is as follows:

channel ? variable
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Where the variable may also be an array element or memory element. Writing

is as follows:

channel ! expression

where there are no restrictions on the expression. In both cases the width of the

channel must be the same as the width of the variable or expression.

No two statements may simultaneously write to a channel. Simultaneous

reads may be possible but are not supported; they should only be used where

the timing of the communication is precisely known so that both readers can

use exactly the same clock cycle to do their simultaneous read, otherwise it is

possible that two reads may be scheduled when only one was intended.

There are variants of the input and output commands with which the pro-

grammer can specify that a partner to a communication de�nitely will be ready

to communicate whenever the command is scheduled. The compiler can use

this guarantee to save some synchronisation hardware. This may be useful when

communicating with external channels where the environment is always receptive.

Examples might be reading or writing an external device register, or sampling a

data line. The single-tick input and output commands are:

channel ?' variable channel !' expression

Timings Both reads and writes enter a waiting state until the converse opera-

tion is performed elsewhere on the channel. This will continue for as many cycles

as necessary. If both reader and writer are ready, the communication occurs in

precisely one cycle (the time taken to update the variable).

3.4 Conditional

Handel-C provides the standard C conditional execution constructor, if, as be-

low:

if (bool)

statement

else

statement

As usual in C the else clause can be omitted if not required. For example:

if (x == 1) f
x = x + 1;

x = x * 2;

g

Timings The if statement takes as long to execute as whichever of its com-

ponent statements does (i.e. there is no overhead for the if itself).
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3.5 While loops

While loops are provided exactly as in C.

while (expr)

statement

The contents of a while loop may be executed zero or more times.

Timings A while takes no time over and above the time taken to execute the

loop body as many times as required.

3.6 Do : : :While loops

Do : : :While loops are provided exactly as in C.

do

statement

while (expr);

Unlike while and for loops, the bodies of do : : : while loops are always

executed at least once.

Timings do : : : while loops incur no overhead, and so the execution time is a

product of the time taken to execute the statement and the number of interations

(which is a minimum of 1).

3.7 For loops

The for statement is supplied similar to conventional C.

for (initialisation ; test ; iteration)

loop body

where initialisation is a simultaneous assignment or other statement which sets

up the variables before the �rst execution of the loop, test is a boolean expression

which must evaluate to true for execution of the loop to continue, and iteration

is a simultaneous assignment or other statement which adjusts these variables

for the next iteration of the loop. The only di�erence to conventional C is that

multiple comma separated statements are not allowed in the initialisation and

iteration positions and the test can only be a boolean expression.

A typical code fragment might look like this:

for (x = 0 ; x < y ; x = x + 1) f
out ! x;

in ? z;

g
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A for loop may be executed zero or more times according to the results of

the test. Each of the initialisation, test and iteration statements are optional,

and can be omitted if not required. There is a direct correspondence between

for and while loops.

for (init; test; inc)

body;

is equivalent to:

f
init;

while (test) f
body; inc;

g
g

Timings The exact number of cycles a for command executes in is determined

by the behaviour of its component statements. Initialisation takes as long as the

statement itself does, and there is no overhead in clock cycles for the test. The

body of the loop takes as many clock cycles as the statements in the body plus

the increment statement.

Thus, a for statement with initialisation, iteration, and increment statements

all taking constant time, will take i+ n � (m+ c) cycles to complete, where i is

the number of cycles required for initialisation, n is the number of times the loop

body is executed, m is the number of cycles to execute the loop body, and c is

the number of cycles needed to perform the increment. Any omitted statements

default to skip, and hence take zero cycles to execute.

3.8 Case

The case constructor can be used as in C to choose actions according to the value

of a variable. The syntax, however, di�ers signi�cantly from that of conventional

C.

case (expr) f
int f, int ...g:

statement;

int f, int ...g:
statement;

: : :

default:

statement;

g
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The case expression is evaluated and checked against each of the integer

constants used to label the guarded statements. The integer constants should

be non-overlapping. The statement guarded by a matching constant is selected

for execution. If no matches are found, the default statement is executed. If no

default option is provided, stop is assumed.

Timings A switch takes no clock cycles to determine which branch to choose,

and thus terminates in as many clock cycles as the statement in the selected

branch takes to terminate.

3.9 Prioritised Alternations

A prioritised alternation, is a program construct that allows the direction of

control 
ow to be chosen between a set of alternatives, based upon a combination

of boolean guards, and input statements.

prialt f
expr $ channel input :

statement

expr :

statement

channel input :

statement

: : :

g

When executed, each branch of the prialt is examined in turn. The �rst

branch that has both a true boolean guard, and a channel input that can complete

immediately (i.e. another process is already trying to output down the channel),

will be executed. Only one branch of the prialt will be executed each time the

prialt is run. If no branch has both a true boolean guard and a channel input

request which can be immediately satis�ed, then the prialt statement will wait

until one does.

Either the boolean guard or the channel input (but not both) may be omitted.

In the case of an omitted boolean guard, true is assumed, and in the case of an

omitted channel input, no synchronisation with a parallel process is performed.

For example:
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prialt f
reading $ read ? x :

write ! x;

stalled :

write ! 0;

read ? x :

stop;

true :

delay;

g

Here, whenever data is being o�ered on the channel read, and reading eval-

uates to true, the input will take place, the �rst branch will be executed and

the prialt will terminate. Otherwise, the construct continues to consider later

branches.

Timings A prialt command takes just as long as the branch it executes to

complete plus the number of clock cycles initially taken for that branch to become

ready for execution.

3.10 Stop

The program statement stop in Handel-C terminates execution of the process

immediately. Any process running in parallel with stop will continue to run.

Timings A stop statement takes in�nite time to execute.

3.11 Delay

The program statement delay in Handel-C corresponds to a statement to do

nothing, but to take exactly one cycle to do it. This is useful to avoid resource

con
icts (for instance, when using RAMs and ROMs), amongst other things. The

statement delay n is also supported where n is an non-negative integer constant

and the corresponding delay is n clock cycles.

Timings A delay statement takes 1 clock cycle.

3.12 Skip

The program statement skip in Handel-C corresponds to a statement to do

nothing, and to take no time doing it. It may be useful for statements such as

prialts, to denote an empty input guard.

Timings A skip statement does nothing and takes no time to execute.

However there are a (very) few places in the language where a statement must

take at least one clock cycle to execute, such as the body of a loop. This is a

consequence of the design decision that the while loop should execute in exactly
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the time taken by the sum of the actual execution times of the loop body (even

if there are zero of them).

If it were permitted for the body of the loop also to execute in zero cycles,

that would imply that the timing semantics of Handel-C were unimplementable

(and the compiler would end up producing a combinational loop in the control

logic). Hence such programs as

while (1)

if (e) skip; else a=b;

are syntactically banned in Handel-C because there is the potential for the loop

body to execute in zero cycles.

However, the compiler will, by default, automatically convert such skip state-

ments to delay statements in order that the program can be compiled. The user

is always warned of these conversions, since it may, in a few cases, be better to

convert them by hand rather than to allow the compiler to judge which particular

conversions to make.

3.13 Procedure Calls

Procedure calls are made in the following way:

name();

No parameters may be passed, and no return value is given. Procedure

calls are statements and therefore may not appear in expressions. Recursive and

mutually recursive procedures are not allowed. The states of any local variables

in a procedure are maintained between calls. It is important to avoid overlapping

calls when calling the same procedure twice in parallel, since unusual results can

arise (a warning will be generated by the compiler).

Timings The time taken for a procedure call to execute is exactly as long as

for the body of the procedure itself to execute, i.e there is no overhead in the call

mechanism.

4 Expressions

Expressions in Handel-C take no time to be evaluated, and so have no bearing on

the number of clock cycles a given program takes to execute. They do however

a�ect the maximum possible clock-speed for a program. The more complex an

expression, the more hardware will be involved in its evaluation and the longer

it is likely to take. The clock cycle time for the entire hardware program will

be set by the longest such evaluation in the whole program. Procedure calls

and assignments are prohibited within expressions. Consequently the familiar C

constructs of ++ and -- are not supported by Handel-C.
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4.1 Values

There are several types of value that can be used in an expression, and constants

and variables may be used without restriction.

However, there are some unusual restrictions on the use of RAMs and ROMs.

Because of their architecture, RAMs and ROMs are restricted to performing

operations sequentially; this doesn't �t well with the highly parallel nature of

most hardware. Only one element of an on-chip RAM or ROMmay be addressed

in any given clock cycle, and, as a result, familiar looking statements are often

disallowed, for example:

ram x[4];

x[1] = x[3] + 1; /* This is illegal */

The following statement is also disallowed:

ram x[4];

if (x[0] == 0) x[1] = 1; /* This is illegal */

This is because the expression evaluation and the assignment take place in the

same clock period. This problem can be avoided by placing a delay statement

before the assignment (and in some cases, putting a delay in the else part). This

problem will also crop up with other constructs such as while.

The same problems occurs when using external RAMs. Clearly only one

external RAM access may be made per cycle (per external RAM), and these

may take place on either the left or right hand side of an assignment, in channel

communications, in switch statements and in if statements. They may not

occur in loop controlling conditions, or in prialts.

The �nal type of value is any. This can be used in channel communications to

indicate that a channel read should occur but that the value should be discarded,

or that a channel write should occur but its value will be unde�ned. Its value in

expressions is also unde�ned.

4.2 Arithmetic operators

The following arithmetic operators are de�ned in Handel-C:

+ - * .*.

The �rst three have the usual meanings of addition, subtraction and multi-

plication. The .*. operator designates unsigned multiplication. + and - require

both operand expressions to deliver results of the same width. Any attempt to

add two expressions with di�ering widths will cause a compilation error. The

expression returned has the same number of bits as the original two expressions.

Any bits that over
ow during the calculation are lost.

For instance:
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const x = 10 : 4;

const y = 8 : 4;

z = x + y;

will put 2 into z because of over
ow of the 4-bit result.

Both * and .*. will accept expressions of di�ering widths, say m and n

bits respectively, and return an expression n+m bits wide. For instance, in the

following code fragment, z must be 7 bits wide.

const x = 8 : 4;

const y = 5 : 3;

z = x .*. y;

There is no runtime division operator provided by Handel-C, but div and

several other operators are provided for use only when describing constants.

a mod b a modulo b

a div b t(a=b)
log2 (a) t(log2 a)

These operators will raise an error if used in non-constant expressions. Some

examples of use are:

const x = 10 : 4;

const y = 7 : 3;

const z = x div y;

const w = 10 mod 7 : log2(z);

4.3 Relational operators

The following relational operators are de�ned in Handel-C for signed and un-

signed numbers:

Operator Signed Unsigned

Equal == ==

Not Equal != !=

Less Than < .<.

Greater Than > .>.

Less Than or Equal <= .<=.

Greater Than or Equal >= .>=.

In all cases, both sides must have the same bit width. The result of any of

these comparisons is a single bit with 0 representing false, and 1 representing

true, as usual.
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4.4 Logical Operators

The following logical operators are de�ned in Handel-C:

& | ^ ~

These have the meanings of AND, OR, exclusive-OR and NOT respectively.

Note that NOT is written with ~ rather than ! to di�erentiate it from channel

communication.

4.5 Bit Operators

The following bit operators are de�ned in Handel-C:

<< >> <- nn @ .

Left and right logical shifts are implemented in Handel-C using << and >>

respectively. The bit width of the result is the same as the width of the number

being shifted, the additional spaces being padded with zeroes.

The amount that a value is shifted by must be a constant, since shifts by

variable amounts are not implemented (constant shifts require no hardware, but

variable shifts would require a great deal). Handel-C contains special construct-

ors for taking or dropping numbers of bits from an expression. For an n bit

expression e, (e <- m) will return an expression formed from the least signi�c-

ant m bits of e. Similarly, (e nnm) will return an n�m bit expression formed

from all but the m least signi�cant bits of e. m must be a constant expression.

Two expressions can be bitwise concatenated to form a wider expression.

For an m bit expression e and an n bit expression f, (e @ f) will return an

m+ n bit expression which has e as the most signi�cant bits, and f as the least

signi�cant bits1.

An expression can be subscripted by constants to extract one or more bits

from its representation:

e.5

e.(5..7)

In the �rst example, the value denoted is that of bit 5 in the representation

of the value of e (bit 0 being the least signi�cant). In the second example, it is

the 3-bit �eld consisting of bits 5 through 7 of e.

4.6 Conditional Operators

Two conditional operators exist in Handel-C. One is very similar to the C con-

ditional except that all its elements must be expressions:

max = (a > b ? a : b);

1Note that this is the opposite sense from Handel-AS and from earlier versions of Handel-C
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The �rst expression must always be a boolean. In this example, the boolean

expression (a > b) is evaluated and the value of the whole conditional is the

value of the second expression (here a) if the boolean evaluates true, otherwise it

is the value of the third expression (here b). As with all expressions in Handel-C,

the whole conditional expression evaluates within one clock cycle. Both of the

selectable expressions must have the same width.

The second form of conditional expression is a generalisation of the �rst and

can have as many alternative as needed. It necessarily has a di�erent syntax

from the �rst form in order to remove parsing ambiguities:

cond (e, c1->e1, c2->e2, c3->e3, ..., default->d);

In this form, each of the ci are constant expressions which must each be

distinct, and the expressions ei are width compatible expressions. The expres-

sion e is evaluated and if its value matches any one of the ci, then the value of

the whole conditional is the value of the corresponding ei. If no value matches,

then the value of the conditional is given by the default expression d. If the ci

exhaustively cover all of the possible values of e then the default clause must be

omitted, otherwise it is mandatory.

4.7 Operator Precedence

The precedence and associativity of operators in Handel-C is shown in the follow-

ing list. Operators higher in the list are given higher precedence than operators

lower in the list. Operators on the same line have the same precedence.

right =

right :

left |

left &

left ^

left == !=

left < > <= >= .<. .>. .<=. .>=.

left @

left <- nn
left << >>

left + -

left * .*. mod div

right ~

left . ..

4.8 Built-in Functions

There are a number of built-in functions in Handel-C. In common with all

Handel-C functions they actually designate expressions, so that they all evaluate

within one clock cycle. In the following, #e designates the width of expression

e.
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Function Returns Width

abs (e) absolute value of expression e #e

rxrdy(c) true if channel c is ready to receive 1

txrdy(c) true if channel c is ready to transmit 1

exp2 (e) 2e 2#e

5 Language reference

The syntax of the language is given in BNF-like notation. Terminal symbols

are set in typewriter font (like this). Non-terminal symbols are set in italic

font (like that). Square brackets [: : : ] denote optional components. Braces f: : : g
denotes zero, one or several repetitions of the enclosed components. Braces

with a trailing plus sign f: : : g+ denote one or several repetitions of the enclosed

components. Parentheses (: : : ) denote grouping.

5.1 Lexical Conventions

5.1.1 Blanks

The following characters are considered as blanks: space, newline, horizontal

tabulation, carriage returns, line feed and form feed. Blanks are ignored, but

they separate adjacent identi�ers, literals and keywords that would otherwise be

confused as one single identi�er, literal or keyword.

5.1.2 Comments

Comments are introduced by the two characters /*, with no intervening blanks,

and terminated by the characters */, with no intervening blanks. Comments are

treated as blank characters. Nested comments are not handled; a lexer error will

be raised if any are encountered during parsing.

/* This is a legal comment. */

/* This is /* NOT */ a legal comment */

5.1.3 Identi�ers

ident ::= letter fletter j 0 : : : 9 j g

letter ::= A : : : Z j a : : : z

Identi�ers are sequences of letter, digits, and (the underscore character),

starting with a letter. All characters in an identi�er are meaningful and all

identi�ers are case-sensitive.

5.1.4 Integer literals

integer � literal ::= [�]f0 : : : 9g+

j [�](0x j 0X)f0 : : : 9 j A : : : F j a : : : fg+
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j [�](0o j 0O)f0 : : : 7g+

j [�](0b j 0B)f0 : : : 1g+

An integer literal is a sequence of one or more digits, optionally preceded by

a minus sign. By default, integer literals are in decimal (radix 10). The following

pre�xes select a di�erent radix:

0x, 0X hexadecimal (radix 16)

0o, 0O octal (radix 8)

0b, 0B binary (radix 2).

(The initial 0 is the digit zero; the O for octal is the letter O.)

5.1.5 Keywords

The identi�ers below are reserved as keywords, and cannot be employed other-

wise:

any bool bus case chan cond

const default delay div do else

eram false for if in inout

int led main mod out par

port prialt ram rom seq skip

spec stop target true tsport void

while

The following character sequences are also keywords:

{ } ( ) [ ]

< > <= >= == !=

.<. .>. .<=. .>=. << >>

# ; , : $ =

+ - * .*. & |

^ ~ ? ! ?' !'

<- -> @ \\ . ..

5.1.6 Ambiguities

Lexical ambiguities are resolved according to the \longest match" rule: when a

character sequence can be decomposed into two tokens in several di�erent ways,

the decomposition retained is the one with the longest �rst token.

6 Handel-C Vs C

While Handel-C was designed to look and feel as much as possible like a variant

of C, the nature of the target architecture is such that certain C language features

are inappropriate. These have therefore been removed in Handel-C.
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Similarly, C was found not to contain some constructors vital to the express-

iblilty of concepts like parallelism. Accordingly several new operators have been

added. The tables below summarise these operators available.

It is worth noting that assignment is not part of the of the expression language

in Handel-C, so the following code, which is perfectly legal (though arguably bad

style) in C is not permitted.

void main(void)

f
int a, b;

if (a = 1) b = 2

g

As a side e�ect of this the commonly used ++ and -- operators are not

available.
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Expressions

In Both In C Only In Handel-C only

(negation) -> (no structs) ? (Channel input)

+ . ! (Channel output)

- ! (logical negation) <- (take)

* (multiply) ++ nn (drop)

<< -- .<. (unsigned ops)

>> * (indirect) .>.

< & .<=.

> sizeof .>=.

<= / (divide) @ (concat)

>= % (modulo)

== && (logical and)

!= || (logical or)

& (boolean and)

^ (boolean exor)

| (boolean or)

? : (conditional)

[] (arrays)

Statements

In Both In C Only In Handel-C only

f;g break par fg
case/switch continue prialt fg
do while return stop

while goto skip

if else typedef

for (;;)

Types and type operators

In Both In C Only In Handel-C only

int char chan

const double bool

void enum spec

float eram

long ram

short rom

register

static

extern

struct

volatile

unsigned
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