
hcc: A Handel-C Compiler

Matthew Aubury

Ian Page

Geo� Randall

Jonathan Saul

Robin Watts

Oxford University Computing Laboratory

August 28, 1996

Contents

1 Invoking the compiler 4

2 General Controls 5

3 Compiler Controls 5

4 Optimiser Controls 7

5 Simulation Controls 8

6 Notes on the Compiler 9

6.1 Integer numbers : 9

6.2 Bit Operators : 9

6.3 The STOP Statement : 9

6.4 Renaming : 9

6.5 Preprocessing : 9

6.6 Simulator Behaviour : 9

7 Interfaces 10

7.1 Channel Protocol Converters : 10

7.1.1 Simulation CPCs : 11

7.1.2 Simple Port CPCs : 11

7.2 Target Speci�cations : 12

8 Compiler Output 13

8.1 XNF netlist output : 13

8.1.1 Embedded OCCAM : 14

8.1.2 Embedded Placement and Routing : : : : : : : : : : : : : 15

1

9 Error Messages 16

9.1 Parse Errors : 16

9.2 Semantic Errors : 16

9.3 Health Check Errors : 17

9.4 Width Inferencer Errors : 18

9.5 Compiler Errors : 18

9.6 Block Checking Errors : 19

9.7 Optimiser Errors : 20

9.8 Netlist Output Errors : 20

9.9 Simulator Errors : 21

9.10 General Errors : 21

2

Foreword

Handel-C is a simple programming language designed to enable the compilation

of programs into synchronous, usually FPGA based, hardware implementations.

Handel is not a hardware description language though; rather it is a product of

a long term research programme at Oxford investigating `system codesign' { the

creation of systems comprised of both hardware and software components { from

a single program.

This research is underpinned by the belief that the engineering of any system

should be based on sound mathematical principles, and that this is especially

true of tomorrow's large-scale and highly parallel systems. So while the syn-

tax of Handel-C reminiscent of that of Kernigan and Ritchie's C programming

language, Handel is founded on the semantics of Hoare's CSP algebra.

It should be emphasised that Handel-C and the associated software are

very much part of developing research projects, and are subject to considerable

changes.

This document describes the operation of the hcc compiler. It does not

concern the Handel-C language or the Harp recon�gurable computing platforms

which are often used with it. These are covered in [8] and [5, 6, 7] respectively.

Some examples of Handel-C programs are contained in [9].

Acknowledgements

We would like to acknowledge the work of everyone in the Oxford Hardware

Compilation Group, and all those involved in the development of Standard ML

of New Jersey, Caml light and MOSML.

3

1 Invoking the compiler

The Handel-C compiler can be invoked by the hcc command. The most basic

use is simply to supply it with a Handel-C �lename:

% hcc example.c

This will read the Handel-C program, compile it to hardware, perform hard-

ware optimisations, output a .hwp �le (and .xnf �le or other target-speci�c

netlist �le if a hardware target is speci�ed in the Handel-C program), and run

the hardware simulator, directing input and output to the user's terminal. The

system thus appears rather like a conventional compile-and-run system for any

other programming language.

For each clock cycle the simulator prints the number of clock cycles since

the program was started, and the state of all variables at the start of the cycle.

Variables are shown in the order that they were declared, and their values are

shown as unsigned base 10 integers. If variables are required from an external

channel then the user is prompted for a value. Pressing return represents a

channel that is not ready. If variables are output to an external channel then

the user is asked whether the channel is ready for output on each cycle until the

answer y is received, when the output value is printed. Output values are shown

as both signed and unsigned base 10 integers.

The compiler accepts several
ags to change this default behaviour, and these

can be listed by invoking the compiler with the -h
ag:

% hcc -h

-- Handel-C Hardware Compiler, Beta release: H163.11

-- (c) Ian Page et al, OUCL, 1991-96

Usage: hcc [option list] filename, where an option is one of:

-q|--quiet Quiet output

-v|--verbose Verbose output

-vv|--very-verbose Very verbose output

-v[0-9] Set verbosity level explicitly

-cpp|--c-preprocess Run external C-preprocessor first

-nr|--no-renaming Turn off automatic renaming (aliasing)

-ast|--add-statement-time Add statement time information

-ass|--add-statement-space Add statement space information

-ald|--add-logic-depth Add combinational logic depth information

-nfd|--no-force-delays Don't force minimal delays in loops

-nwi|--no-width-inference Turn off constant width inferencer

-nhc|--no-health-checks Turn off source code health checks

-nsn|--no-sanitise Turn off source code "sanitisation"

-pp|--pretty-print Pretty print source program after parsing

-ppa|--pretty-print-after Pretty print source program after compiling

-O|--optimise Turn on all major optimisations

-O[0-9] Set optimisation level explicitly

-s|--simulate Simulate after compilation

-ns|--no-simulate Halt after compilation

-ss|--simulate-steps n Set cycles between display for simulator

4

-su|--simulate-until n Simulate for n step

-se|--simulate-extra n Simulate for n steps after exhausting input

-if|--input-file fname Specify an input for simulation data

-of|--output-file fname Specify an output for simulation data

-?|-h|--version|--help Print this message

These are described in more detail in the following sections.

2 General Controls

These
ags control verbosity level (i.e. how much information is reported to the

user at each stage of compilation).

� -q or --quiet Reduce terminal output to a minimum

The quiet option causes the compiler only to output fatal error messages,

or other vital user information.

� -v or --verbose Increase amount of terminal output

The verbose option causes the compiler to output additional warnings and

information about which stage of compilation it is involved in.

� -vv or --very-verbose Greatly increase amount of terminal

output

The very verbose option causes the compiler to output a great deal of de-

tailed information about the progress of the compilation. It is particularly

useful in conjunction with high optimisation levels (see next section), to

view the progress of the optimisation.

� -v number Set verbosity level explicitly

This option sets the verbosity explicitly. The number 0 is equivalent to the

quiet option, 1 is equivalent to the default setting, 2 is equivalent to the

verbose option, and 3 is equivalent to the very verbose option.

3 Compiler Controls

These
ags control the behaviour of the compiler.

� -cpp or --c-preprocess Run external C-preprocessor

On both unix and DOS, normal path searching is used to �nd a program

called cpp. If found, it is run with the source �le as input and generates a

temporary �le for the preprocessed data, which is deleted after use. If the

preprocessor is not found, the compiler attempts to compile the raw source

program.

� -nr or --no-renaming Turn o� automatic renaming (aliasing)

5

By default, the compiler renames variables and channels with the same

name by pre�xing one of them with an underscore (as many times as ne-

cessary to avoid con
icts). Clashes of this sort cause problems in generating

the netlist, since signal names in the netlist are formed from variable names.

This option turns o� the renaming procedure.

� -ast or --add-statement-time Add comments showing clock ticks

taken by each statement

The pretty-printed program contains comments which show how many

clock ticks will be taken by each statement in the program. When an

exact number can't be determined statically, both a lower and an upper

bound are given.

This option automatically forces the -ppa option.

� -ass or --add-statement-space Add space estimate comments to

each statement

The pretty-printed program contains comments which show approximately

how much hardware is generated by each statement in the program. There

is a separate estimate for the number of
ip-
ops and the number of prim-

itive gates. The estimate is made prior to any hardware optimisations since

these optimisations explicitly do not respect statement boundaries.

This option automatically forces the -ppa option.

� -ald or --add-logic-depth Add logic-depth estimate comments to

each statement

The pretty-printed program contains comments which show approximately

the worst-case logic depth introduced by each statement. Usually, the lo-

gic depth will be determined by the expressions contained in a statement,

and in particular by any multiplication, addition or subtraction operations.

Note that hardware optimisation may reduce logic depth signi�cantly.

This option automatically forces the -ppa option.

� -nfd or --no-force-delays Inhibit automatic introduction of

delays in loops etc.

This option causes the compiler to inhibit its normal action which is to

transform the program so as to introduce delays into loops and other places

which might otherwise cause combinational cycles to appear in the gener-

ated hardware. Its only reasonable use is to allow you to view the pretty-

printed program before these delays are added.

� -nwi or --no-width-inference Inhibit automatic width inference

phase

This option causes the compiler to inhibit its normal action of inferring

the width of constants and variables which have not been given an explicit

width (in bits) in the program. The compiler can only compile a program

which has all widths made explicit, either by this automatic process or by

the user.

6

� -nhc or --no-health-checks Inhibit automatic source `health

checking' phase

This option causes the compiler to inhibit its normal action of checking

scope, usage and other rules on the program. Using it will allow certain

illegal programs to compile. The option has no reasonable use in normal

circumstances.

� -nsn or --no-sanitise Inhibit automatic source sanitisation

Performs some simple source code re-arrangement to produce more read-

able pretty-printed output.

� -pp or --pretty-print Pretty print source program after parsing

This option causes the compiler to print the source program immediately

after parsing. This shows the internal representation of the program be-

ing compiled. It can sometimes be useful to determine if the compiler is

interpreting your source program in the way you expected.

� -ppa or --pretty-print-after Pretty print source program after

compilation

This option causes the compiler to pretty-print the source program after

the compilation process. This shows the �nal internal representation of the

program after optimisation and other transformations. It is also contains

comments added by the compiler to record warnings, errors and information

requested by the user with the -ast and other compiler
ags.

4 Optimiser Controls

These
ags control the behaviour of the optimiser, in particular setting the

tradeo� between the e�ectiveness of the optimiser and the time taken to op-

timise.

� -O or --optimise Turn on all major optimisation features

This is a lot slower than the standard optimisations, and should only be

used in the �nal stages of development. There is typically a 10-20% im-

provement in the size of circuits optimised this way over default optimisa-

tions.

� -O number Set optimisation level explicitly

The default optimisation level is set at 6, all major optimisations are turned

on by level 7. The features at each level are:

Optimise Level Action

0 No optimisation

1 Peephole optimisations only

2 + Common Subexpression Elimination

3 + Inductive CSE for latches

7 + Conditional Rewriting

7

5 Simulation Controls

� -ns or --no-simulate Turn o� automatic simulation

This option causes the compiler to terminate immediately after the com-

pilation and optimisation stages, rather than to enter the simulator. It is

useful when checking the syntax of the program, or when doing a �nal

optimisation prior to hardware mapping.

� -s or --simulate Simulate after compilation

This option causes the compiler to simulate the circuit after the compilation

and optimisation stages. This is turned on by default, and thus this option

is only useful in overriding a preceding -ns option.

� -ss number or --simulate-steps number Set no. of cycles between

display

This option determines the number of cycles the simulator will run for

before echoing the state of each of the program variables. By default it is

set to one, but this will generate a great deal of output and slow down the

simulation during long runs.

� -su number or --simulate-until number Set no. of simulation

cycles

This option puts a hard limit on the number of cycles that the simulator

will run for. By default, the simulator will run until either the program

�nishes or the \Stop" signal is asserted (by a stop statement).

� -se number or --simulate-extra number Set number of extra

cycles

This option causes the simulator to terminate number cycles after the input

�le (speci�ed by the -if option) is exhausted. Set to zero for termination

immediately after the input �le is empty.

� -if �lename or --input-file �lename Set input �lename for

simulator

Using this option will cause the simulator to take input from a �le instead of

the terminal. It behaves exactly as though the numbers were being typed,

and as a result the �le format is decimal numbers separated by carriage

returns. An empty line is equivalent to refusing input for a cycle. Multiple

input channels are not currently (correctly) supported.

� -of �lename or --output-file �lename Set output �lename for

simulator

Using this option will cause the simulator to output data written to (out)

channels to a �le, rather than the terminal. It will never refuse output. The

�le format is again carriage return separated decimal numbers.

8

6 Notes on the Compiler

6.1 Integer numbers

Integer constants in Handel-C may range over any values. However the div and

mod operators can not at present work on integers outside the range �230 to

230 � 1, or -1073741824 to 1073741823.

6.2 Bit Operators

The compiler cannot infer widths through bit shifts, and so a reasonable program

may give an \uninferable width" error. Correct this by declaring the width of

each identi�er and constant in the expression being shifted.

6.3 The STOP Statement

In simulation execution of the entire program will stop as soon as a stop state-

ment is executed, whereas in the hardware any process running in parallel with

stop will continue to run.

6.4 Renaming

The compiler includes a renaming scheme, so that a name may be used more

than once. This is because names of certain nets in the netlist are derived

directly from the names of variables and channels in the program. This is in

order to aid traceability and hardware debugging. If the parser �nds the name

of a variable, channel etc. declared for a second or subsequent time, its internal

name is prepended with enough underscore characters to di�erentiate it from

earlier incarnations.

6.5 Preprocessing

Preprocessor directives such as #include and #define can be used, but since

the compiler does not incorporate a C-preprocessor of its own, such source �les

must be pre-processed by some third party program, such as UNIX or GNU cpp.

The -cpp option calls cpp to do this. The compiler does, however, understand

the directives introduced by any standard pre-processor and can therefore report

back the location of errors in the original source �les.

6.6 Simulator Behaviour

The Handel-C compiler contains an inbuilt gate level simulator to allow testing

of circuits after compilation and optimisation.

Due to the way in which the simulator works, it is limited to simulating

circuits which do not contain any combinational loops. Most Handel-C programs

will conform to this without any problems, but it is possible to generate circuits

that have combinational loops within them.

Generally these loops can arise in one of 3 ways:

9

� 1. PriAlts with external channels for guards can result in problems. Essen-

tailly the simulator considers the \user" that drives the handshake lines for

the channel communications by replying to its prompts as a component of

the circuit. It therefore
ags prialts on external channels as combinational

cycles that involve the user.

� 2. Reading the transmission states of external channels (via rxrdy or

txrdy), and then using these states to decide whether to do an input/output

on the same channel, again produces a combinational cycle involving the

user.

� 3. Accessing a location in an external RAM determined by the contents

of another external RAM, and doing the reverse elsewhere in the program

produces combinational cycles.

Whether or not combinational cycles involving the user are actually a problem

comes down to precisely what the user is doing. To convince the simulator that

there is no problem, an extra bu�er process can be employed so as to avoid

prialting on external channels.

To avoid the problem with mutually indexing RAMs, it su�ces to load the

value from one of the RAMs into a register, and then to operate from this register

in the next cycle.

7 Interfaces

This section describes some of the interfacing and technology speci�c parts of

the Handel-C system.

7.1 Channel Protocol Converters

In this section the speci�cation of Channel Protocol Converters (CPCs) for

Handel-C programs are described. A CPC is a mechanism for mediating between

the internal channel communication protocols used by Handel-C programs and

the communication protocols used by the environment of the program. They

are thus used to build all the interfaces between a Handel-C program and its

environment.

In the hardware, a Handel-C channel is implemented as a shared data bus

which has as many wires as the width of the channel. The only communication

model which is supported over such channels is that which is implemented by

the input and output commands (? and !). Non-standard uses of channels may

be possible, but are unsupported.

An arbitrary number of Handel-C processes may share access to a channel.

The communication is synchronised, point-to-point, and unbu�ered. The imple-

mentation only supports communications which are characterised by having at

most a single reader and a single writer ready to cummicate over any one channel

on any one clock cycle. Other uses may be possible but are unsupported. These

conditions can be guaranteed by enforcing occam-style scope and usage rules on

channels.

10

If a channel is used as a parameter to main, then the external environment

may use that channel to communicate with the Handel-C program. In this case,

and for each channel, the external environment must be modelled either as a

reader or a writer, but not both. Accordingly these channels are tagged as either

input or output channels (with respect to the Handel-C program). Any use of

a channel designated as an input channel must involve only input commands,

and similarly for output channels. Any other uses are unsupported.

7.1.1 Simulation CPCs

For ease of simulation during early phases of development of Handel-C programs,

the compiler supports some simple, technology-independent CPCs. These simply

connect the input/output channels of a Handel-C program to the built-in simu-

lator. Input and output channels are declared using the following syntax:

void main(chan (in) STDIN : 8,

chan (out) STDOUT : 32,

chan (out) ERROR)

f ...

g

The keyword chan introduces a channel parameter. The quali�ers (in) and

(out) specify that all communications within the Handel-C program using that

channel are generated by either input or output commands respectively. The user

must also supply a local name for the channel. The width quali�er is optional,

and can be omitted with the usual proviso that the width inferencer must be able

to infer the width of the channel from the rest of the program. The declared

names of channels and variables are used to form names of signals in the netlist

associated with those structures. This can help the designer who must interact

with tools which are `downstream' of the Handel-C system.

7.1.2 Simple Port CPCs

The declaration of simple port CPCs is very similar to the use of external rams, in

that it uses the `spec' mechanism. A spec block for a simple port looks something

like this:

const spec <spec name> = f

data = f "P1", "P2", "P3", "P4", ... g,

txrdy = "Pt",

rxrdy = "Pr"

g;

void main(port (<direction>) <port name> = <spec name | spec>)

f ...

g

11

where <direction> = in | out.

This named spec gives the pin names for the signals associated with the port.

Note that the pins for the data port are given with the least signi�cant bit �rst,

and that the number of pins speci�ed should be equal to the width of the port.

For an input port the I/O blocks will be con�gured as input pads, and for an

output port as output pads.

The txrdy signal is asserted when a writer wishes to output to the port.

This will be asserted by the CPC in the case of an output port, and by the

environment for an input port.

The rxrdy signal is asserted when a reader wishes to input from the port.

This will be asserted by the CPC in the case of an input port, and by the

environment for an output port.

When both handshake lines are high on the rising edge of the clock, synchron-

isation takes place and the communication is scheduled. The external handshake

signal must be removed before the rising edge of the clock pulse after the commu-

nication is scheduled or it will be taken as a request for a further communication.

Behaviour is not de�ned for requests for communication which are o�ered and

withdrawn before synchronisation takes place.

For any control or data signal asserted by a CPC, the assertion is coincident

with the rising edge of the Handel-C clock. How long such signals take to propag-

ate to the FPGA pins will depend on the complexity, placement, and routing of

the internal circuitry, and the Handel-C compiler can thus give no guarantees on

these delays.

For any control or data signal asserted by the environment, the CPC will

sample that signal on the rising edge of the Handel-C clock. For the reasons

given above, the Handel-C compiler has no control over delays, so it is up to the

user to ensure that propagation delays, setup times for registers etc. are met.

Only full ports are completely supported. However, some degenerate cases of

port CPCs may work by leaving out one or both of the rxrdy and txrdy signals

from the spec. For instance, leaving out the rxrdy signal from an output port

results in the communication always succeeding immediately. The environment

can then use the txrdy signal as a `data valid' signal. Additionally the txrdy

signal may also be suppressed, as might be required on a port which transmits

on every clock cycle so that no `data valid' signal is needed.

7.2 Target Speci�cations

In this section the speci�cation of a target hardware environment for a Handel-C

program is described.

The compiler requires a number of miscellaneous pieces of information in

order to complete the output of a technology-speci�c netlist. Some of these

relate the program to the target hardware platform, and others are speci�c to

each CPC.

The items related to the program as a whole are gathered together into a

data structure which is passed to the compiler via a target= construction in the

parameter list to main. This is an example of such a data structure for the Harp1

card.

12

const spec harp = f

fpga type = "Xilinx3000",

fpga chip = "3195PQ160-3",

clock pad = "P160",

not error pad = "P55",

finish pad = "P44",

clock divider = "1",

carry weight = "50",

critical weight = "100"

g;

void main(target=harp) f ...

g

The fpga_type �eld carries the de�nition of the target FPGA device family.

For the HARP card, the family must be Xilinx3000. There are similar, but

unsupported, options for the 2000, 4000, and 6000 families of Xilinx parts.

The fpga_chip �eld is a string which gets inserted into the xnf output �le

as required by the xilinx tools. The clock_pad �eld speci�es which pin of the

FPGA carries the clock for the Handel-C program. The not_error_pad �eld

speci�es the pin which is activated (until program restart) if a Handel-C stop

command is executed and finish_pad speci�es the pin which is activated (until

program restart) when the Handel-C program terminates.

The clock_divider string contains a positive integer which speci�es how

many clock cycles of the supplied clock (on clock_pad) are used to generate

a single clock cycle for the Handel-C program. All integers except "1" are

unsupported.

The carry_weight and critical_weight �elds specify the xnf criticality

weighting of certain nets. Most ripple carry lines are tagged with the former

weighting, while the latter is an unsupported feature.

8 Compiler Output

In this section the output formats supported by the compiler are described. Cur-

rently, only support for Xilinx XNF format output �les has been implemented

in Handel-C.

8.1 XNF netlist output

The default mode of the Handel-C compiler is to output XNF format �les. This

netlist format is proprietary to Xilinx, but is supported by a wide range of

di�erent tools from di�erent vendors.

The XNF produced by the compiler can be fed directly to Xilinx tools, but

encoded within the XNF is extra information that may be useful when placing

and routing, or when interfacing software to the design. Lines in the XNF �le

which begin

13

USER,HDR,

contain information which documents the date and time of compilation, the ver-

sion of the Handel compiler used, and the source �le concerned.

Lines in the XNF �le which begin

USER,SRC,

contain a pretty-printed version of the program which was compiled by the (core)

Handel compiler. This may di�er in some ways from the Handel-C program

submitted by the user as the compiler may have performed certain source level

transformations before the �nal step of compilation into hardware.

Lines in the XNF �le which begin with either of

USER,NET,

USER,xmacros,

contain comments which relate parts of the XNF �le to the fragments of the

program that generated them. These comments are not intended to be exhaustive

or even very useful.

Certain language constructions of a Handel-C program (such as channels or

ports connected to the outside world) may output extra information into the

XNF �le that may be of use in later stages of the design process.

This extra information is encoded by lines of the XNF source that begin:

USER,HANDEL,.xxx,

where xxx is replaced by a string describing the type of information contained

within those lines. For instance, external channels de�ned in Handel-C will

output lines beginning with either of the following lines

USER,HANDEL,.mac,

USER,HANDEL,.occ,

These lines can be extracted from the �le manually with an editor or by using

a suitable perl script and used in various di�erent ways as described below.

8.1.1 Embedded OCCAM

The `.occ' lines give some OCCAM source code that may be useful for interfa-

cing between OCCAM channels used by programs running on the transuter and

Handel-C channels in the hardware when used with the Harp board.

This OCCAM includes 2 versions of an event handler for each of the TDS

and the Toolset and the required \PLACE"ments of variables in the address

space. This OCCAM is tied to the particular con�guration of channels used in

each design and so may change between runs of the compiler.

The Event Handlers are written to be general and can often be simpli�ed in

the light of knowledge about the way the program will behave (for instance it may

be possible to shut the handler down by closing just one channel as opposed to

closing them all individually). Such customisation is essential to ensure e�ciency.

14

8.1.2 Embedded Placement and Routing

The `.mac' lines give some commands that can be fed to the Xilinx xact tools to

generate pre-placement and routing information for the external components of

a circuit.

Typically sections of the circuit that communicate with the outside world

are very timing dependent; in particular, parts of any circuit that communicate

between separately clocked systems (e.g. between the FPGA and transputer on

the HARP board) must be very carefully designed to avoid problems of meta-

stability and data slew.

To make them adequately reliable, the design of such interfaces necessarily

encompasses much more than just the gate-level design of the circuit itself; for

example, gate, wire and pin delays must all be taken into account in order to

make the interfaces work successfully. Thus it is not reasonable to expect that

such carefully designed circuits can be exposed to a general-purpose place and

route system such as the Xilinx ppr tools.

The Handel-C system interacts with the xilinx software via xnf-format �les.

Unfortunately the xnf language does not support the transfer of pre-routed

designs, although pre-placed designs can be speci�ed. Since some of the CPCs

necessarily have to be pre-routed, the system writes a set of text lines which

are actually Xilinx LCA editor commands that wire up these critical CPC cir-

cuits. To achieve the level of reliability of communication that the HARP and

Handel-C systems were designed for, it is necessary to use this information to

force the Xilinx software to implement the CPCs in precisely the intended way,

placement and routing included.

Detailed instructions for interacting with the Xilinx software are contained

in [5]

15

9 Error Messages

The following error messages can be caused at di�erent stages in compilation.

9.1 Parse Errors

Illegal character

A character or character sequence in the input sequence stream was not

recognised. Check the source �le.

Unmatched closing comment

A closing comment was found when the compiler was not parsing a comment.

Remove the closing comment.

Unterminated comment

The compiler read to the end of a �le whilst still parsing a comment. Insert

another closing comment.

Nested comment

An opening comment was found whilst already parsing a comment. Remove

the nested comment.

Syntax error

The compiler did not recognised the sequence of tokens given. Check the

form of the statement shown, and that the previous statement was terminated by

a semicolon.

9.2 Semantic Errors

Procedure : : :not declared

A procedure call was made to an undeclared procedure. Check that the

declaration name exactly matches the calling name.

Rede�nition of parameter : : :

A parameter given to a spec format argument was declared more than once.

Remove the repeated declaration.

Parameter : : :not declared

A parameter required in a spec de�nition was not given (this is also caused

when no spec de�nition is given to an external RAM). Insert the required de�n-

ition.

eram: insu�cient address pins

The number of elements required in the interface declaration of an external

RAM exceeds the maximum address bus width of the RAM. Use a larger RAM

or a smaller number of elements.

eram: insu�cient data pins

The width of data bus required by the interface declaration cannot be satis�ed

by the number of data pins given in the spec declaration. Use a narrower bus or

a wider RAM.

16

eram: no clock enable pin

No CE pin was provided to the external RAM. Add one.

eram: unknown parameters in de�nition

There were additional unexpected parameters in the spec de�nition for an

external RAM. Remove the o�ending parameters.

Multiple de�nitions of : : :

A certain identi�er was declared twice. Change the name of one of the de-

clarations.

: : :not declared

The given identi�er was used but not declared. Declare it.

Expected : : : to be an : : :

A name was found matching an identifer, but the object was not of the

expected type. Check the allowed usage of the object.

: : : cannot be used without a subscript

A name of a RAM or ROM was given but without a subscript (pointers are

not supported). Subscript the identi�er.

cannot subscript : : :with an expression

An object (perhaps an array) is being subscripted by a non-constant, which

is not allowed. Unsubscript the identi�er.

9.3 Health Check Errors

Not declared (warning)

An identi�er was used but not declared. This error should not occur with

Handel-C.

Never read from : : : (warning)

A channel or variable is never read from. This variable or channel is likely

to be removed during optimisation.

Never written to : : : (warning)

A channel or variable is never written to. This variable or channel is likely

to be replaced by a constant zero during optimisation.

Duplicated declaration

An declaration has occured twice. Remove one of the declarations.

Duplicated name

A name has been used twice. Remove one of the names.

Bad param

A value that is not a channel is written to by a channel communication.

Illegal channel input statement involving : : :

A value that is not a channel is read from by a channel communication.

Loop may have zero-time body (warning)

17

The given loop may take zero cycles to execute. If this is the case, a com-

binatorial cycle will be generated. This will be broken automatically by the

compiler.

Duplicated LHS in Assignment

In a parallel assignment the same value is written to twice.

Check variable/channel usage in par (warning)

A variable or channel is written to in more than one branch of a par. This

may not be a problem if the program is correctly structured.

Check procedure usage in par (warning)

A procedure is used in more than one branch of a par. This may not be a

problem if the program is correctly structured.

9.4 Width Inferencer Errors

Invalid Inference

Widths of objects have been speci�ed in a contradictory way. The expression

in which the contradiction was found is printed.

Incomplete Inference

There were insu�cient widths speci�ed in the source program for the compiler

to infer as much information as required. Specify more information.

Inference Internal Error

The width inferencer has detected an invalid state. This error should never

occur, please report.

Unexpected EXPR in Declare

An expression was found in a declaration. This error should never occur,

please report.

Unexpected EXPR in IO list

An expression was found in an interface speci�cation. This error should never

occur, please report.

Unexpected EXPR in MonList

An expression was found in a simulator monitor list. This error should never

occur, please report.

9.5 Compiler Errors

EXCEPTION: BAD ASSIGNMENT

An attempt was made to assign to something other than a register, RAM,

channel or bus.

EXCEPTION: BAD BUS MATCH

An internal error occured in the compiler. This error should never occur,

please report.

EXCEPTION: BAD CONST

18

A constant of unde�ned width or of width zero has been found.

EXCEPTION: BAD DECL

An invalid type of declaration has been made. This error should never occur,

please report.

EXCEPTION: BAD EXPR

An attempt was made to compile an invalid expression. This error should

never occur, please report.

EXCEPTION: BAD STAT

A bad statement was found, probably reading from a non channel. This error

should never occur, please report.

EXCEPTION: INCONSISTENT ASSERTION

The compiler could not meet timing constraints given in the source program.

EXCEPTION: OP BUS OF

An attempt was made to make a bus from an invalid object. This error

should never occur, please report.

EXCEPTION: SYMBOL NAME CLASH

An identi�er name has been used twice, and has lead to a con
ict in the

netlist. Change one of the names.

EXCEPTION: Uninferable Width

A bit width could not be inferred. This may be due to an underspeci�ed left

or right shift in Handel-C.

EXCEPTION: WIDTHS DONT MATCH

An attempt was made to combine two expressions of di�ering widths. This

error should never occur, please report.

9.6 Block Checking Errors

Fatal Error: AND gate with empty input list

Fatal Error: OR gate with empty input list

Fatal Error: XOR gate with empty input list

Fatal Error: TSC gate with empty input list

Fatal Error: Inverter with empty input list

Fatal Error: Inverter with multiple inputs

Fatal Error: Distributed gates still present in block list

Fatal Error: Wires still present in block list

Fatal Error: removing distributed gates

Fatal Error: Di�erent types of distributed gate with same output

An internal compiler error has occured. This error should never occur, please

report.

19

9.7 Optimiser Errors

Fatal Error: le gate: Floating input found

Fatal Error: This shouldn't have happened! (1)

Fatal Error: This shouldn't have happened! (2)

Fatal Error: gengraph: Distributed gate found in blocklist!

Fatal Error: set essential: Floating input found!

Fatal Error: gengraph2: Inverter found with >1 input!

Fatal Error: set behaviour: Dummy Node!

Fatal Error: �x drains: Floating input found

Fatal Error: set all needs opt: Floating input found!

Fatal Error: dispnode: Floaty input!

Fatal Error: rewrite: Floaty input!

Fatal Error: Floaty input! (doscan)

Fatal Error: Floaty input! (simplify)

Fatal Error: Floaty input! (dorewrite)

Fatal Error: Floaty input! (dopass)

An internal error has occurred. This error should never occur, please report.

9.8 Netlist Output Errors

EXCEPTION: BAD BLOCK

An attempt was made to output a block in a format in which it is not valid.

Fatal Error: extra output function has not been implemented for BLIF

format

BLIF output format cannot support the combined netlist format used with

XNF.

Fatal Error: BLIF format does not support bidirectional pads

BLIF output format does not support features compiled into the netlist.

Fatal Error: ClockConnections: Clock Dividers are Xnf speci�c

The netlist generated contained a clock divider, but the desired output format

was not XNF.

Fatal Error: ClockGenerator: Internal crystal oscillators are Xnf Spe-

ci�c

The netlist generated contained an internal crystal oscillator, but the desired

output format was not XNF.

Fatal Error: CPC TPChanOut can only output Xilinx : : :

Fatal Error: CPC TPChanOut can only output Xilinx : : :

20

Fatal Error: CPC TPChanInOut can only output Xilinx : : :

Fatal Error: CPC TPPortInOut can only output Xilinx : : :

An attempt was made to use a CPC with non-Xilinx output.

9.9 Simulator Errors

EXCEPTION: SIG VAL

An unusual signal value was discovered during simulation. This error should

never occur, please report.

Fatal Error: Cannot simulate BlackBox called : : :

An unusual \blackbox" was found in the netlist, rendering it unsimulatable.

This error should never occur, please report.

Fatal Error: Simulator can't proceed

An error has occurred rendering the netlist unsimulatable.

Fatal Error: Program has errors which make the output unsimulatable

An error has occurred rendering the netlist unsimulatable.

9.10 General Errors

Out of memory

The compiler ran out of memory. This is normally indicative of an in�nite

loop. This error should never occur, please report.

Evaluation failed : : :

An internal error occurred. This error should never occur, please report.

Invalid argument : : :

An internal error occurred. This error should never occur, please report.

I/O failure : : :

Some I/O failure occurred, such as not being able to read the input �le, or

write the output netlist.

Uncaught exception

Some unspeci�ed error occurred. This error should never occur, please re-

port.

21

References

[1] Michael Spivey and Ian Page. \How to design hardware with Handel", Tech-

nical Report, Oxford University Computing Lab, 1993.

[2] Ian Page and Wayne Luk, \Compiling OCCAM into FPGAs" in FPGAs,

Eds Will Moore and Wayne Luk, 271-283, Abingdon EE & CS books, 1991.

[3] Geraint Jones, \Programming in OCCAM", Prentice-Hall International,

1987.

[4] INMOS Ltd, \The OCCAM2 Programming Manual", Prentice-Hall Inter-

national, 1988.

[5] A E Lawrence, \HARP (TRAMple) Manual, Volume 1, User Manual for

HARP 1 and HARP 2".

[6] A E Lawrence, \Macro support for the Xilinx Architecture", 1995.

[7] A E Lawrence, \The HARP software library and utility package", 1996.

[8] M Aubury, I Page, G Randall, J Saul, R Watts, \Handel-C Language Ref-

erence Guide", 1996.

[9] M Aubury, I Page, G Randall, J Saul, R Watts, \Handel-C Program Ex-

amples", 1996.

22

