
Programming the Harp-2 using Handel-C

Andrew Bailey

University of Oxford

June 23, 1996

Disclaimer: The Handel-C compiler has yet to be extensively test in programming the Harp-2 board.

This note aims at helping the novice get started in programming the board but may be inadequate for

some tasks. I hope to rectify this soon, however, there is one known problem which is described in the

text.

1 Introduction

In order to program the Harp-2 using Handel-C requires the use of the Occam Toolset (referred
to as OTS) and the Xilinx tools (which will be collectively referred to as XACT). It is assumed
that the reader has set these two systems up correctly and is able to use them at least for small
examples. There are two other documents that contain relevant information: the Handel-C manual
and \The HARP Software Library and Utility Packages", both of which should be in the directory
where this document was found. Chapter 5 of the Handel-C manual contains some information
relevant to programming the Harp-2 cards but only the descriptions given in this document have
been known to generate working programs on a Harp-2. These are described by way of an example:
num.c.

1



2 Example: num.c

All the source �les described in this section can be found in ex/num.
num.c is probably one of the simplest of Handel-C programs, being a one place bu�er between an

output and input channel on the Harp-2 transputer. Chapter 5, particularly section 5.2.1, describes
the intention of the spec declaration, whilst the behaviour is captured by the while loop. The
constant dw is the data width of the integers used throughout the program.

/* HCC File
* File: num.c
* Purpose: Reads value from transputer and send it back
* Author: Andrew Bailey, Hardware Compilation Group, OUCL
* Date: 6 June 1996
* Documentation:
* Related Files: num.occ, harpnum.occ, num.pgm
*/

const spec harp2 = f
fpga type = "Xilinx3000",
fpga chip = "3195APQ160-3",
clock pad = "P160",
not error pad = "P55",
finish pad = "P44",
clock divider = "1",
carry weight = "50",
critical weight = "100"

g;

const dw = 8;
const forever = 1;

void main(target = harp2,
chan (in) cin : dw,
chan (out) cout : dw)

f
int num : dw;
while (forever)f

cin ? num;
cout ! num;

g
g

If this �le is processed by hcc (the Handel-C compiler) by the invocation hcc num.c a �le num.xnf
is generated. This is suitable for input to the XACT tools, however, it also contains code for two
other systems within it as USER comments. These are an Occam program, for the harp transputer
end of the communication channels speci�ed in the Handel-C program, and a list of commands for
the XACT layout editor to place and route the time critical components of the implementations
of the channels in the FPGA. Both these fragments should be extracted in to separate �les, either
using an editor, or using the supplied PERL script, extract.pl (extrac.pl .occ xn�le gets the
Occam fragment and extract.pl .mac xn�le gets the LCA commands and puts them in a �le
with the XNF �le root name with .occ and .mac extension respectively).

Using num.xnf and num.mac we can now generate the FPGA con�guration as follows:

1. Start the XACT editor and select expert mode and the appropriate FPGA part and Speed (this
example uses the 3195APQ160 part and -3 speed). Select the new �le option and give it a name (I

2



use xnum.lca) and select editlca. Once the screen is ready, type execute num.mac at the command
line and wait a few minutes while the layout and routing takes place. The resulting layout can be
found at the top right of the FPGA. So far only the time critical nets have be routed, the balance
of those possible at this time (the design is still only partially complete) can be done by issuing
the route * command. Once this is completed the partial design can be saved for use as a guide �le.

2. Process the handel-C xnf in order to make a rawbits �le as follows:

xnfmerge num

xnfprep num

lca2xnf -b xnum num.pgf

xnfmap -k num

ppr num guide=xnum

makebits -b -t num

The use of lca2xnf on xnum.lca generates a guide �le for xnfmap (-k option); given the messages
from xnfmap it's not clear whether this is having an e�ect but this is merely following guidelines in
the XACT documentation. From this sequence of tools a rawbits �le, num.rbt, is generated which
will be used to generate an Occam code fragment (a procedure described later) to con�gure the
FPGA to behave as described by the Handel-C program.

We can now generate programs for the Harp-2 transputer and associated network. The network
used for this example consists of a T805 root transputer and a Harp-2 card attached to link 2 of
the root via link 1. You should specify your network by editing network.inc in harp/libs.

For the root transputer a very simple program is used that takes and send values from the host
system and sends and receives values to the Harp-2 transputer, as shown below:

3



#INCLUDE "hostio.inc"

PROC num (CHAN OF SP fs, ts,
CHAN OF INT to.harp.tp, from.harp.tp)

#USE "hostio.lib"
INT inval, htval:
BOOL err:
SEQ
so.write.string (fs, ts, "Enter Clock Freq (MHz): ")
so.read.echo.int(fs, ts, inval, err)
to.harp.tp ! inval
WHILE TRUE
SEQ

so.write.string (fs, ts,"Enter a number: ")
so.read.echo.int (fs, ts, inval, err)
so.write.nl (fs,ts)
to.harp.tp ! inval
from.harp.tp ? htval
so.write.string(fs,ts, "Number is: ")
so.write.int(fs, ts, htval, 8)
so.write.nl(fs,ts)

:

The program for the Harp transputer is as follows:

4



PROC harp.tp.num(CHAN OF INT from.root.tp, to.root.tp)
#INCLUDE "harp1dec.inc"
#INCLUDE "harp1lpc.inc"
-- #USE "harp1all.lib" -- causes problems with imakef
#USE "harp1ba.lib" -- Harp basic library
#USE "harp1f.lib" -- Harp frequency library
#INCLUDE "fpgaconf.inc" -- configuration of FPGA; from xbits
#INCLUDE "hcnum.occ" -- Occam generated by Handel-C

VAL MHz IS 1000000:

PROC setup.FPGA(VAL []INT config, VAL INT length.count, VAL INT freq)
BOOL programmed:
INT val:
VAL clock.off IS pll.data \/ (pll.notstb \/ (pll.mx.ss \/ pll.block)):
SEQ
configure(config, length.count, clock.off, programmed) -- from harp1ba.lib
CHAN OF INT frequency:
CHAN OF report reply:
PAR
set.for.frequency(frequency,reply) -- from harp1f.lib
SEQ
frequency ! (freq * MHz)
reply ? CASE pll.value; val

FPGA.clock.control (val) -- from harp1ba.lib
:

-- Abbreviations to undo Adrian's/Handel's nosensical ones!
read.ready IS ready.C.cout.0:
read.data IS FPGA.chan.ports[1] :
write.ready IS ready.ChanOut.Bus.3:
write.data IS FPGA.chan.ports[0]:
INT inval,rtval:
SEQ

from.root.tp ? inval
setup.FPGA(config, length.count, inval)
PAR
Event.Handler(write.data,[read.ready,write.ready])
WHILE TRUE

SEQ
from.root.tp ? inval
write.ready ! TRUE
write.data ! inval
read.ready ! TRUE
read.data ? rtval
to.root.tp ! (rtval /\ #FF)

:

The two INCLUDEd �les contains the hardware and port con�guration of the connection between
the transputer and FPGA (harp1plc.inc actually includes these two thus you need actually include
just that �le).

harpl1all.lib contains all the other supplied harp libraries. However, because of the way
OTS imakef works, the resulting make�le requires editing because of a line length problem. In this
case I have elected to use just the two libraries required for this program to avoid this problem.

5



fpgaconf.inc is generated from num.rbt by the transputer program xbits which is in harp/utils.
Note that this program appends to the speci�ed output �le so it is best to delete old version before
running xbits. A program rbttoocc is also available in the sun4 bin but I have not used this in
anger yet.

hcnum.occ is the �le extracted from the Handel-C generated XNF �le. As generated it contains
some declarations for use in the users Occam programs. The principle object is an event handler
process which controls data transfer on each of the channels speci�ed and is speci�c to the number
of channels between the FPGA and Transputer (see the Libraies manual). Unfortunately this
cannot be used as is because it contains two versions for the event handler - I have used version 1.
The actual resulting �le can be found in ex/num.

setup.FPGA is, as the name suggests, a procedure to setup the FPGA and clock generator. I
am currently at a loss to describe how much of this procedure works but it is probably adequate for
most situations. Detail examination of the Harp hardware manual and library and utilities manual
is probably required before experimenting with changes to this procedure.

The initial SEQ of the program receives a value from the host via the root transputer to set the
clock frequency for use in the call of setup.FPGA. The parameters config and length.count come
from fpgaconf.inc being an Occam table with the FPGA con�guration and its size respectively.

Once the FPGA is con�gured, the event handler is started in parallel with the main program.
This loop demonstrates the necessary steps to read and write to the FPGA. To write, the program
must wait until TRUE is received on the ready channel, similarly for reading. The last thing to
note that although the FPGA is con�gured to receive bytes, the transputer sends and receives
(reads) INTs (32 bits). Hence it is necessary to mask the result to the bitwidth of the channel.

The pgm �le for num is quite straight forward:

#INCLUDE "network.inc"

#INCLUDE "hostio.inc"
#USE "num.c9h"
#USE "harpnum.c9h"

CONFIG
CHAN OF SP fs, ts :
PLACE fs, ts ON hostlink :
CHAN OF INT root.to.harp, harp.to.root:
PLACE root.to.harp, harp.to.root ON blink:
PLACED PAR
PROCESSOR root.t
num(fs,ts,root.to.harp,harp.to.root)

PROCESSOR harp1
harp.tp.num(root.to.harp,harp.to.root)

:

network.inc describes the transputer network as described earlier.
A point to note is that the event handler code is parameterised on the number of read and

write channels between the transputer and FPGA, but not the channel widths. Thus the same
code can be used for di�erent values of dw in the Handel-C program (remember to change the mask
value in harpnum.occ as appropriate). Although this can be as large as 32 we are currently getting
incorrect results with 24 and 32. We know that 4, 8 and 16 work and guess that all channel widths
less than 16 will work. We believe this may be a software problem (possibly Xilinx layout).

6


