
How to program in Handel

(based on the Handel hardware compiler, version H161)

Mike Spivey and Ian Page and Wayne Luk

Last revised by Ian Page, August 1995



Contents

1 Introduction 3

2 How to use the compiler 3

3 Program structure 4

4 Expression syntax 6

5 Command syntax 8

5.1 Skip, Delay, and Stop : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8
5.2 Assignment : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8
5.3 Communication : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9
5.4 Parallel composition : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9
5.5 Sequential composition : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10
5.6 Conditional : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10
5.7 Loops : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11
5.8 Selection : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11
5.9 Alternation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12

6 On-chip RAM and ROM 12

6.1 Restrictions on using ROM and RAM structures : : : : : : : : : : : : : : : : : : : 13
6.2 An alternative to the RAM structure : : : : : : : : : : : : : : : : : : : : : : : : : : 14

7 Channel protocol converters 14

7.1 Simulator channels: CPC SimIn, CPC SimOut. : : : : : : : : : : : : : : : : : : : : 14
7.2 Straight-through channels: CPC NullIn, CPC NullOut. : : : : : : : : : : : : : : 15
7.3 Communication via ports: CPC PortIn, CPC PortOut. : : : : : : : : : : : : : : 15
7.4 Communication through ports: CPC NhPortIn, CPC NhPortOut. : : : : : : : : 16
7.5 Communication with a transputer event line: CPC EventOut. : : : : : : : : : : : 16
7.6 Interfaces to external SRAM: CPC SRam. : : : : : : : : : : : : : : : : : : : : : : 16

8 O�-chip RAM 16

8.1 Simulating with external RAMs : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 18

9 Using the HARP board 18

10 Using the compiler 19

11 Statement timing 21

12 Advanced features 21

12.1 Sub-expressions and sub-statements : : : : : : : : : : : : : : : : : : : : : : : : : : 21
12.2 Local declarations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 22
12.3 Tagging of statements and expressions : : : : : : : : : : : : : : : : : : : : : : : : : 23
12.4 Signal names and the bus constructor : : : : : : : : : : : : : : : : : : : : : : : : : 23
12.5 Explicit channel synchronisation : : : : : : : : : : : : : : : : : : : : : : : : : : : : 24
12.6 Compiler control variables : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 25

12.6.1 Simulator control : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 25

1



12.6.2 FPGA control : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 26
12.6.3 Print control : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 26
12.6.4 Transform control : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 27
12.6.5 Optimiser control : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 27

12.7 Other compiler functions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 28
12.8 Signal timing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 29

A Appendix: Documentation �les 30

B A tricky issue with loop implementation 31

C Mapping Statements into Hardware. 32

C.0.1 Assignment. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 32
C.0.2 Sequential Composition. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 33
C.0.3 Parallel Composition. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 33
C.0.4 Miscellaneous Constructs. : : : : : : : : : : : : : : : : : : : : : : : : : : : : 34
C.0.5 Channel Input and Output. : : : : : : : : : : : : : : : : : : : : : : : : : : : 34
C.0.6 Binary Choice. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 35
C.0.7 Guarded Iteration. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 35

2



1 Introduction

This is a practical guide to writing programs in Ian Page's Handel language and compiling them
into hardware netlists.

Handel is an imperative programming language similar to a subset of occam. It provides
variables with assignment and the conventional control structures of sequencing, conditionals
and loops, as well as parallel composition and CSP-like commands for communication between
processes and with the outside world.

A Handel program is not usually compiled into machine code, but into a collection of hard-
ware gates and ip-ops. Each variable in the program corresponds to a hardware register, and
each expression to a combinational circuit that computes its value from the register contents.
The control structure of the program becomes a network of control logic that activates the reg-
isters at the proper time, and synchronises communication between the parallel processes. The
result is an implementation of the Handel program which uses genuine parallelism for maximum
performance. Typical applications include parallelisation of the inner loops of compute-intensive
programs, construction of special-purpose processors, and replacements for random logic in em-
bedded systems.

A convenient way of realising the circuit that is output by the compiler is to load it into a
dynamically recon�gurable Field-Programmable Gate Array chip, such as the ones manufactured
by Xilinx and installed on the HARP board we have constructed. To this end, the compiler
produces its output in the correct format for input to the place and route stages of the Xilinx
design software.

2 How to use the compiler

Unlike most compilers, this one does not take input in the form of a source program text. Instead,
the input to the compiler is an SML data object that represents the source program as an abstract
syntax tree. To use the compiler, you write an SML expression that evaluates to a syntax tree
which represents a Handel program. You can then apply the compiler to the syntax tree to
produce the corresponding hardware netlist. There are a number of good references that can be
consulted for details of the SML language [1, 2, 3, 4]

To help you write down the syntax tree for your program, we provide a collection of SML
functions and operators that build syntax trees for constructs in the Handel language. The
abstract syntax approach has several advantages:

� It is often convenient to write a fragment of SML that generates the syntax tree for your
Handel program, instead of writing the Handel program directly. SML is used here in its
intended role, as a meta-language. This can be especially useful when the program has
some regular, even if complex, structure. Also, the compiler can be much smaller when
meta-language features are supported instead of a larger number of language features.

It is of course possible to use program generators with text-based programming languages.
However, the SML meta-programming approach results in a framework which is fully type-
checked. Additionally there is no tedious stage of writing the generated program as a text
�le and reading it into the compiler.

� It is easy for to experiment with modi�cations to the language and compiler without having
to modify and maintain a parser. It is also easy for the user to build translators from higher-
level languages into Handel.

3



These advantages are important both for the user of Handel and for the implementor; but
there a few disadvantages that show up when things go wrong. Errors in a Handel program can
show themselves at a number of di�erent stages:

� The SML system may �nd a syntax error in the expression you write for the syntax tree of
the Handel program.

� The SML system may �nd a type error in the expression.

� The Handel compiler may discover errors in the program.

� The program may contain no detectable errors, but may describe the wrong piece of hard-
ware (ie. you wrote the wrong program correctly).

The error messages you get at each stage are sometimes hard to relate to the source program you
intended to write.

3 Program structure

A simple Handel program consists of some SML declarations, followed by an SML expression that
builds the abstract syntax tree for the program. The compiler expects to �nd the program to
be compiled in the global variable prog. The SML declarations introduce the resources (such
as variables and channels) used in the program and give them SML identi�ers to facilitate the
construction of the program proper.

The abstract syntax tree itself can be constructed using the Handel function which takes
three parameters:

� the declaration of the program's external interface,

� the declaration of the internal variables and channels,

� the program body.

So a program typically consists of four parts: the list of SML declarations, followed by the
three-part syntax tree. Here is a small example that conforms to this pattern:

val X = Int 1 "X"

val Out = Chan 1 "Out" ;

prog := Handel (

[ CPC_SimOut Out ],

[ X ],

Seq [

X := C 0,

While (TRUE,

Seq [

Out !! X,

X := X + C 1 ] ) ]

);

4



This program uses a single variable X and a single channel Chan, each 1 bit wide. The channel
is connected to the outside world, and the program outputs the values 0 and 1 alternately,
continuing to output values as long as the environment is prepared to accept them.

The �rst part of this program introduces identi�ers X and Out as SML values so that they
can be used in the rest of the program. The compiler provides a set of functions that create
variables, channels, etc. Each returns a value that represents the resource in the Handel program.
For example, the SML declaration

val R = Int 8 "R"

calls the compiler function Int to create an SML value representing a variable named `R' of width
8 bits. The function returns a value of type EXPR that will be used later in writing the program
body; this value is bound to the SML identi�er R.

The main reason for having these SML declarations is so that identi�ers can be used to
construct the Handel program proper. The string passed to Int is the print name of the resource,
and is used to identify the variable in compiler error messages and simulator output. It may also
be used to name wires in the �nal netlist, thus aiding back-tracing. By convention, these print
names are spelled the same as the SML identi�ers used in writing the program body, but you can
make them di�erent if you like. Because the names are simply related to the names of the �nal
(attened) netlist, there may be constraints from the downstream CAD software to be taken into
account. It is usually preferable to choose unique, alphanumeric 1 print names for each variable
and channel used in a program.

Another function used in this part of the program is Chan. Like Int, this takes a width and
a string, but it creates a channel that can be used with input and output commands rather than
expressions and assignments. Both Int and Chan are overloaded with a variant that takes a list
of strings as the second argument and will return the corresponding list of EXPR values. Neither
Int nor Chan cause the compiler to generate any hardware to represent the register or channel:
this is done later when the compiler works on the abstract syntax tree.

The remaining parts of the program are contained in one assignment to the global variable
prog :

prog := Handel (

<external protocols>,

<internal resources>,

<program body>

);

The external interface is declared by a list of protocols. Each protocol is obtained by applying a
protocol converter to one of the internal channels created earlier. The protocol converter describes
how the internal channel is made to interact with the outside world; CPC_SimOut is a channel
protocol converter which the simulator implements as handshaken output to the screen. Section 7
describes some of the protocol converters currently implemented.

The internal resources are declared by a simple list, which will normally contain exactly those
integers and channels that have been created in the �rst part but not used as external resources.

The last part is the command which is the body of the program. The syntax of Handel
expressions is described in section 4 and the syntax of commands is described in section 5.

1when using the Xilinx macro package, names with a leading " " are reserved

5



4 Expression syntax

Table 1 shows the operators that can be used to build Handel expressions. For each of these
operators, there is an SML operator that takes arguments of type EXPR and delivers a result of
the same type. Some of these are overloaded meanings of the usual arithmetic operators; others
are speci�c to Handel programs.

As an example, if X and Y are variables that have been declared as decribed in Section 3, then
we can write the Handel expression

X + Y

This is uses the + operator between Handel expressions: from the SML point of view, both the
variables X and Y and the whole expression have type EXPR, and the + operator simply constructs
a little piece of syntax tree. When this piece of tree is submitted to the Handel compiler, it builds
an adder into the output circuit.

Each expression in Handel has a width, and the compiler demands that widths agree in
assignment statements, that addition takes two arguments of the same width and produces a
results of the same width again, and so on. The widths of arguments and results are shown in the
table. A boolean expression is simply any expression of width 1, and the results of comparison
operators have this width.

The primitive items in expressions are variables and integer constants. The integer constant
37 can be written either as C 37 (with an unspeci�ed width) or as Const(37,8) (with an explicit
width of 8 bits). For the most part, the compiler can deduce from the program what widths
should be given to constants: for example, in the expression X + C 1, the constant 1 must have
the same width as X. But sometimes the compiler fails to deduce the width, and you need to
specify it yourself.

Some of the operators need more explanation.

� The expression Cond (b,t,f) evaluates the Boolean expression b, and delivers either the
expression t, or f, depending on whether b = 1 or 0, respectively. The expressions t, and
f should have the same width.

� The expression E <- k (pronounced \E take k") returns the least signi�cant k bits of E, and
E \\ k (pronounced \E drop k") gives all but the least signi�cant k bits. In both cases, k
must be a compile-time constant, and in fact it is an SML integer, rather than a Handel

expression. The width of this expression depends on the value of k and the width of E..

� The expression E1 ^ E2 concatenates the bit-strings that are the values of E1 and E2, so
its width is the sum of the widths of E1 and E2. The bits from E1 form the least signi�cant
part of the result and those from E2 form the most signi�cant part.

Handel operators (such as <-) that treat expressions as lists of bits identify bit 0 with the �rst
element of the list. So the LSbit operator could be de�ned at the SML level by:

fun LSbit expr = expr <- 1

(In fact, this is a de�nition that is built into the Handel compiler). The user is encouraged to
de�ne other useful SML functions to aid construction of programs: they have the e�ect of open
subroutines, expanded at the point of each call.

Unlike some programming languages, Handel does not have implicit `coercions' that widen and
narrow the values of expressions; instead, the conversion of (for example) an 8-bit unsigned value
X to 16 bits must be written explicitly as X ^ ZEROS 8. Here ZEROS n is just an abbreviation for
Const(0,n). Truncation of a 16-bit value to 8 bits can be achieved by writing X <- 8, taking
the least signi�cant 8 bits of X.

6



Widths of
args result

Unary pre�x operators

DECODE 2x n 2n

~ bitwise NOT n n

ABS absolute value (2's comp) n n

LSbit leftmost bit n 1
MSbit rightmost bit n 1

Arithmetic operators

+ addition n, n n

- subtraction n, n n

* multiplication m, n m+ n

Comparison operators

== equality n, n 1
!= inequality n, n 1
|>| signed greater than n, n 1

(also |>=|, etc.)
$>$ unsigned greater than n, n 1

(also $>=$, etc.)

Bit operators

^ concatenation of bit-strings n, m n+m

<- take n, const k k

\\ drop n, const k n� k

EXOR bitwise exclusive-OR n, n n

/\ bitwise AND n, n n

\/ bitwise OR n, n n

BIT bit selection n, const 1

Conditional Operator

Cond (b,t,f) 1; n; n n

Table 1: Handel operators

7



5 Command syntax

We now describe the syntax of Handel commands. Each construct is illustrated by an example
and an SML declaration of the functions used to build a tree for the construct. The functions
we describe here are not necessarily the actual constructors for the syntax tree, so there is no
guarantee that they can be used for pattern-matching in functions that process Handel programs:
in fact, the set of constructors may change from time to time, but the functions described here
will continue to exist.

In what follows, we are quite precise about the number of clock cycles taken by an execution
of each kind of command. There are two reasons for this: �rst, to help you to estimate the cost
of each construct in execution time and calculate how fast your program will run; and second,
because it is sometimes expedient to exploit the synchronous nature of the implementation. This
involves writing programs that disobey the rules of Occam about simultaneous access by parallel
programs to shared variables or channels. The rules are there to make asynchronous or other
implementations possible, and knowing that our implementations use synchronous concurrency
lets us predict the behaviour of programs that do not obey them. However, this is not a very
good idea except in special circumstances, and it requires careful reasoning.

5.1 Skip, Delay, and Stop

Format:

Skip

or

Delay

or

Stop

SML function:

Skip, Delay, Stop : STAT

The Skip command does nothing and takes no time. The Delay command also does nothing,
but takes one clock cycle to do it. The Stop command has only one purpose, which is to refuse
to terminate.

5.2 Assignment

Assignment comes in two avours: the familiar single assignment that gives a new value to a
single variable, and a simultaneous assignment that changes the values of several variables at the
same instant. Both are expressed using the overloaded := operator of SML.

Format:

var := exp

or

[var1, var2, ..., varn] := [exp1, exp2, ..., expn]

SML functions:

op := : EXPR * EXPR -> STAT

op := : EXPR list * EXPR list -> STAT

8



The ordinary SML assignment operator is another overloaded meaning of the := operator. It
can be distinguished from the tree-constructing forms described here by the fact that its left
argument has a ref type. Although the left argument of the tree-constructing := operator is a
Handel variable, it is represented by a constant fragment of tree.

There is also the primitive constructor Assign, which takes a list of (var, expression) pairs;
this may be more convenient for use in a program generator:

Assign: (EXPR * EXPR) list -> STAT

Each kind of assignment command takes a single cycle; all the LHS variables are updated
simultaneously with the values of the RHS expressions. The results are unpredictable if two
assignments to the same variable are executed simultaneously: this can happen if two assignments
to the same variable are executed simultaneously by two parallel processes. Unless you are certain
of the correctness of programs that share variables, it is best to follow the rule of Occam that
forbids such assignments.

5.3 Communication

Format:

chan ?? var

chan !! exp

SML functions:

op ?? : EXPR * EXPR -> STAT

op !! : EXPR * EXPR -> STAT

These commands perform input and output on a channel. The other end of the channel may
be another parallel process in the Handel program, or it may be connected to the outside world
through a protocol converter. SML does not allow the meaning of certain symbols (such as !) to
be rede�ned or overloaded: that is why we have not used the more conventional occam/CSP ?

and ! operators to denote input and output. This is also the reason behind the choice of names
for certain other Handel functions.

The compiler generates hand-shaking hardware that delays input and output commands on
a channel until one of each kind is ready. After this, the value is transferred in a single cycle.
There is no time overhead for synchronisation, so an output command to a channel will complete
in a single cycle, provided another process is already waiting to input on that channel or arrives
at an input command at the same instant.

It is illegal to have two input commands or two output commands for the same channel active
at once; the rules of Occam forbid sharing of channels by parallel processes in this way, and it is
best to obey them except in special circumstances.

Channels of zero width are possible when synchronisation only is required; `Any' is special
EXPR which can be used with any input or output command when the value to be transmitted
is irrelevant.

5.4 Parallel composition

Format:

Par [ cmd1, cmd2, ..., cmdn ]

SML function:

Par: STAT list -> STAT

9



When a parallel composition is executed, all the individual commands start at the same
instant; they execute with genuine parallelism, and the whole parallel composistion terminates
when all the individual commands have terminated.

No clock cycles are taken by the Par construct itself, so the time taken by the whole parallel
combination is the maximum of the times taken by the individual commands.

There is also an in�x version of Par with this format:

cmd1 || cmd2

SML function:

op || : STAT * STAT -> STAT

The compiler arranges things so that repeated binary composition produces the same hardware
as a single use of Par, so

cmd1 || cmd2 || ... || cmdn

is just as e�cient as the Par form shown above.

5.5 Sequential composition

Format:

Seq [ cmd1, cmd2, ..., cmdn ]

SML function:

Seq: STAT list -> STAT

The sequential composition of two or more commands is executed by starting the �rst com-
mand immediately, and starting each successive command when the preceding one �nishes. The
whole composistion �nishes when the last command has �nished. The time taken to execute the
combination is the sum of the times taken by the individual commands.

There is also an in�x form of Seq:

cmd1 $$ cmd2

SML function:

op $$ : STAT * STAT -> STAT

No special measures need be taken in the compiler to make

cmd1 $$ cmd2 $$ ... $$ cmdn

equivalent in e�ciency to the Seq form above, because the two forms naturally compile into the
same hardware.

5.6 Conditional

Format:

If (cond, then-part, else-part)

SML function:

If: EXPR * STAT * STAT -> STAT

The If command uses the value of the Boolean (i.e. one-bit) condition to decide whether to
execute the then-part command or the else-part command. It takes the same time as whichever
command is selected; no additional time is taken for the decision. The else part of the conditional
is not optional, but can be a simple Skip command.

10



5.7 Loops

Format:

While(cond, body)

Until(cond, body)

SML function:

While: EXPR * STAT -> STAT

Until: EXPR * STAT -> STAT

The While command executes its body repeatedly until the condition is false. The time taken
is the sum of the times for each execution of the body { again, there is no overhead 2 for the test.
If the condition is false initially, the While command takes zero time. The Until command is
similar except that the test is done after each execution of the loop body, and repetition continues
until the test is true, so that the loop body is always executed at least once.

5.8 Selection

Format:

Case (switch,

[([label], body), ([label1, label2, ...], body), ... ],

optional_default)

where the optional default is

Default statement

or

NoDefault

ML function:

Case: EXPR * (int list * STAT) list * OPT_STAT -> STAT

OPT_STAT: Default of STAT

| NoDefault

A Case statement is executed by evaluating the switch expression, and executing whichever
arm of the statement has a matching label. If no label matches, the default part is executed. If
NoDefault is speci�ed and the label matches are not exhaustive, then Stop is assumed. Each
arm has a list of labels, so that an arm can handle more than one value of the switch expression.

Because the implementation of the Case statement involves a decoder, it is a good idea to
arrange the width of the switch expression to be as small as possible; otherwise, large amounts
of almost useless hardware are generated. If the value of an 8-bit variable X is known to be at
most 5, say, it is better to say

Case (X <- 3, [...], ...)

than simply use X itself as the switch expression. Only the low-order 3 bits of X are needed to
discriminate the cases, and the compiler will not have to build a 256-output decoder.

Another way of achieving similar behaviour is to use nested If commands where the user
has explicit control over the selection mechanism. Nested conditional expressions might also be
a suitable alternative to the case statement in some circumstances.

2advanced users may wish to know about an implementation issue concerning loops with zero-time bodies which

is covered in Appendix B

11



5.9 Alternation

Format:

PriAlt [(cond, guard, body), ...]

ML function:

PriAlt: (EXPR * STAT * STAT) list -> STAT

In a PriAlt command, all the guard commands should be input commands, of the form
chan ?? var. All the conditions should be booleans (one bit wide). The command is executed
as follows: it waits until there is at least one arm in which both the condition is true and the guard
is ready for communication. The textually �rst of these active arms is chosen for execution: the
communication takes place in one clock cycle, then the body of the arm is executed. Execution
of the whole construct �nishes when the chosen body �nishes. The time taken for the whole
command is one clock cycle more than the time taken to execute the chosen body.

6 On-chip RAM and ROM

The compiler can generate small RAM and ROM structures by building them from gates and
ip-ops. They are expensive structures when implemented on today's FPGAs and only make
sense when kept very small.

On-chip RAMs and ROMs are created by the SML functions

Ram: string * int * int -> (EXPR list -> EXPR)

Rom: string * int * int list -> (EXPR list -> EXPR)

The expression Ram (name, D, A) creates a RAM with data width D and address width A:
it has 2A locations each D bits wide. The expression Rom (name, D, data) creates a ROM
containing the list of integers data. Its data width is D, and its address width is just large
enough to address all the elements of data, that is dlog2Ne where N is the length of data.

Both functions return a result of type EXPR list -> EXPR. The idea is that if A is a RAM
or ROM, you should write `A[i]' to access the i'th element of A. SML parses this expression as
the function A applied to the singleton list [i], hence the type. Despite the fact that a list of
expressions appears as the subscript, we do not provide multi-dimensional arrays. This notation
is a bit of a hack, but it was done to make Handel array accesses look a little more familiar since
SML doesn't support new bracketing operators.

The following program is an example of the use of the Rom structure. It de�nes a ROM of
width 7 with 12 elements and sequentially reads the elements into X. The example also shows the
use of SML functions to derive by calculation some parameters for the program. In particular,
the programmer speci�es the set of values to go into the Rom structure (vals) and the desired
data width of the values (DW); SML then calculates (at compile time) the minimum width of the
index register for the Rom and the �nal value for the loop test.

val vals = [2,4,6,8,10,12,111,3,5,7,9,127]

val DW = 7

val n = length vals

val w_indx = ilog2 n

val X = Int DW "X"

val table = Rom ("table", DW, vals)

val indx = Int w_indx "indx" ;

prog := Handel (

12



[],

[ indx, X, table[] ],

Until (indx == C (n mod (2**w_indx)),

[X, indx] := [table [indx], indx + C 1]

)

);

The following program is a similar example which �lls a RAM with values and then reads
them all back continuously:

val DW = 4;

val AW = 3;

val DATA = Int DW "DATA"

val ADDR = Int AW "ADDR"

val MEM = Ram ("MEM", DW, AW);

val Ch1 = Chan DW "Ch1";

prog := Handel (

[ CPC_SimOut Ch1],

[ ADDR, DATA, MEM[] ],

Seq [ Until (ADDR == C 0,

[ADDR, MEM [ADDR]] :=

[ADDR + C 1, C ((2**DW)-1) - (ADDR ^ Const (0, DW-AW))]

),

ADDR := C 0,

While (TRUE,

[ADDR, DATA] := [ADDR + C 1, MEM [ADDR]] $$ Ch1 !! DATA )

]

);

6.1 Restrictions on using ROM and RAM structures

An important consideration is that a RAM or ROM can only be used once in each clock cycle,
because the memories constructed are single-ported; multi-port RAMs and ROMs would far too
expensive to implement on current FPGAs. This means that even a statement as apparently
innocent as

A[i] := A[j]

is not allowed, because it involves two accesses to the RAM A in the same clock cycle. What you
have to write instead is something like

Seq [ TMP := A[j], A[i] := TMP ]

Things are made even more tricky than this, because expressions in di�erent places can be
evaluated simultaneously: for example, the test of a while loop is evaluated simultaneously with
expressions in the �rst command of its body, so the loop

While (A[i] > 0,

Seq [

SUM := SUM + A[i],

i := i + C 1])

is not allowed either: it needs a Delay statement before the assignment to SUM. The compiler tries
to issue warnings about this kind of thing, but it will sometimes give warnings about perfectly
sound programs, and it is the user's responsibility to validate all cases. This situation will be
eased when full scope and usage rules for the language are built into the compiler (one day!).

13



6.2 An alternative to the RAM structure

For many applications that involve systolic computation or replicated parallel processes, RAMs
are not the thing to use, because (as we've seen) they allow access to only one location at a time.
What is needed in these applications is an array of variables that allows simultaneous access to
all of them. To create such an array you can build your own SML functions, or you can use the
built-in function

Ints: int -> int -> string -> EXPR list

like this:

val Pipeline = Ints 10 DW "X"

This declaration creates a row of 10 variables, each DW bits wide, binding Pipeline to a list
of them. Their print names are X_0, X_1, etc. . For convenience, you can now de�ne

fun X[n] = nth (Pipeline, n)

and write X[3] in your program for the fourth X variable (umbering starts from zero, of course).
Note that is only a compile-time indexing operation as no list of registers will exist in the �nal
hardware! SML can now be used very conveniently to build such things as a Handel parallel
assignment in which all the elements can be moved simultaneously down the pipeline:

Assign (zip (tl Pipeline, Pipeline))

7 Channel protocol converters

Some of the channels created in the �rst part of the program may be connected to the world
outside the Handel program. To do this, it is necessary to specify the conversion hardware
that mediates between the outside world and the internal conventions of hardware compiled from
Handel; this is achieved by choosing a Channel Protocol Converter, or CPC. For example, channel
communication between the FPGA and the transputer on the HARP board might be synchronised
by setting bits in a ags register and interrupting the transputer, and the appropriate protocol
converter hardware would convert between this convention and the handshaking convention used
inside the FPGA.

Typically, protocol converters are uni-directional, so you have to decide in advance whether
a certain channel will be used for input or for output. A few converters, like those used to access
external RAM, provide a bundle of several uni-directional channels, some used for input and
some for output.

7.1 Simulator channels: CPC SimIn, CPC SimOut.

CPC_SimIn : EXPR -> CPC * IO_SPEC

CPC_SimOut : EXPR -> CPC * IO_SPEC

These converters are designed to be used only with the Handel simulator during testing. They
do not have any parameters concerned with physical location of pads connecting the channels to
the outside world and are thus easier to use in an early stage of development. Each CPC takes
a channel as its only parameter and delivers the structure required by the compiler.

The following program show a simple example of a program which uses two simulated channels:

val X = Int 8 "X"

val Ch1 = Chan 8 "Ch1"

val Ch2 = Chan 8 "Ch2";

14



prog := Handel (

[ CPC_SimIn Ch1, CPC_SimOut Ch2 ], [ X ],

While(TRUE, Seq [Ch1 ?? X, Ch2 !! X + C 1 ]));

7.2 Straight-through channels: CPC NullIn, CPC NullOut.

These protocol converters are completely empty and simply pass the data bus and the two
handshake signals for the internal channel to the outside world via named pads. The data pads
are presented least signi�cant �rst, and the handshake pads appear in the order receive ready,

transmit ready. The external device must conform to the communication protocol that is used
between Handel processes.

val X = Int 4 "X"

val Ch = Chan 4 "Ch"

val data_pads = [ "p10", "p11", "p12", "p13"]

val rx_rdy_pad = "p50"

val tx_ack_pad = "p55";

prog := Handel (

[ (CPC_NullOut (data_pads, rx_rdy_pad, tx_rdy_pad), Output Ch)],

[ X ],

While (TRUE, Seq [ X := X + C 1, Ch !! X ] )

);

This example gives �ctitious names to the four data pads and two handshake pads on the
target FPGA. In a real situation, the user might care to put such de�nitions in a �le speci�c to
a particular chip or board, so that they can be shared and easily be incorporated into Handel
programs.

The full CPC speci�cation consists of a pair of elements. The �rst is one of the system-
provided CPC generator functions applied to the pad description structure. These CPCs have
the type:

CPC_NullIn : string list * string * string -> CPC

CPC_NullOut : string list * string * string -> CPC

The second component is a data structure indicating which Handel channels are to be con-
nected to the CPC and which data direction they will use.

The Handel channel protocol is such that the externally-produced handshake line (in this case
rx_rdy since it is an output channel) can be raised at any time to signal that the outside world is
ready to recieve data from the channel. The internally-generated handshake signal will be raised
whenever an output command to the channel is executed. When both handshake lines are high,
synchronisation takes place and the communication is scheduled. All signals are sampled on the
rising edge of the global clock. The external handshake signal must be removed before the rising
edge of the clock pulse after the communication is scheduled or it will be taken as a request for
a further communication.

7.3 Communication via ports: CPC PortIn, CPC PortOut.

These CPCs are very similar to the null channels. However, unlike channels, ports are always
ready to communicate. Thus, the Handel program is completely responsible for synchronising
the communication. To reect this, there is no returning handshake signal from the environment
present in the external interface. Internally, the CPC ties the returning handshake signal to

15



the originating handshake signal. The handshake signal originating from the Handel program
is present in the interface, so that the environment can take note of when an input or output
communication with the port takes place.

CPC_PortIn : string list * string -> CPC

CPC_PortOut : string list * string -> CPC

7.4 Communication through ports: CPC NhPortIn, CPC NhPortOut.

These are similar to CPC_PortIn and CPC_PortOut except that the remaining outgoing handshake
line is also dropped from the interface. Data is communicated whenever the Handel program writes
to the port, but the outside world doesn't know when this is happening.

CPC_NhPortIn : string list -> CPC

CPC_NhPortOut : string list -> CPC

7.5 Communication with a transputer event line: CPC EventOut.

This CPC is designed to interact with the event channel of a transputer. The two pads are
connected to the transputer's event acknowledge and request pins respectively.

CPC_EventOut : string * string -> CPC

7.6 Interfaces to external SRAM: CPC SRam.

This is the channel-based converter for external (o�-chip) static ram. See Section 8 for full details
of its use.

8 O�-chip RAM

Both the HARP board and our simulator support access to RAM that is not part of the FPGA
chip. Only certain types of static RAM are currently supported. This RAM is treated as a
process which communicates over three channels. The Addr channel carries the address to the
ram, the Write channel carries the write data to the ram, and the Read channel carries the return
data from the ram.

To write to a RAM location, a Handel program should simultaneously output on both the
address and write channels, like this:

Par [Addr !! a, Write !! x]

This command never needs to wait for the RAM to be ready, so it executes in a single clock cycle.
One can annotate this with the TakingTicks tag for the bene�t of the optimiser:

Par [(Addr !! a) TakingTicks 1, (Write !! x) TakingTicks 1]

To read from the RAM, the Handel program should simultaneously output on the address channel
and input on the read channel, like this:

Par [Addr !! a, Read ?? x]

This command also executes in a single cycle and can be annotated as above. Although this seems
to require the RAM to send the data before it has received the address, it is physically possible
because the address value is present on the channel before the clock event that synchronises
the communication. At the start of their execution, these output and input primitives merely

16



signal their readiness to communicate; it is entirely up to the remote (SRAM) process to decide
when these communications will take place. This particular protocol converter uses knowledge
of the internal channel implementation to achieve a useful doubling of speed. Thus, the protocol
converters for these o�-chip RAMs are necessarily technology-dependent and their design needs
a good understanding of the external device and of the hardware generated by the compiler.

Of course, two parallel processes must not try to use the same RAM at once; but this is just an
instance of the rule that two processes must not try to output to the same channel at once. The
e�ects of trying to communicate on the address channel without simultaneously communicating
on either the read or the write channel, and so on, are unde�ned.

The following example shows an example of a simple program using o�-chip RAM:

val AW = 3

val ram_size = 2**AW

val hi_addr = ram_size-1

val DW = 8

val A = Int AW "A"

val V = Int DW "V"

val SUM = Int DW "SUM"

(* RAM0 defines an AW x DW-bit SRAM with chip-enable (CE),

write-enable (WE), and output-enable (OE) control signals.

We invent some chip pad names here for the interface signals as we

are not bothered about a real implementation.

*)

val RAM0 = MakeExtRam ("RAM0", AW, DW);

val RAM0_IF = ( "RAM0",

["A0", "A1", "A2"],

["D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7"],

"CE", ["WB"], ["O_EN"]

);

prog := Handel (

[ (CPC_SRam RAM0_IF, RamIF RAM0) ],

[ A, V, SUM ],

"Add up all RAM contents and overwrite location 0 with the sum" Comments

Seq [

Until (A == C ((hi_addr+1) mod ram_size),

Seq [ RamRead RAM0 (A, V),

SUM := SUM + V,

A := A + C 1

]),

RamWrite RAM0 (C 0, SUM)

]

);

Not surprisingly, the most complex part of the program is the de�nition of the protocol
converter. The chosen protocol converter is CPC_SRam which supports reading and writing to an
o�-chip SRAM and is also keyed into the built-in Handel simulator. CPC_SRam takes a tuple as
its parameter which gives the interface a name (RAM0), and provides names for all the FPGA
pads which are connected to the RAM chip. In this example explanatory names have been given,
rather than the names of pads on any currently available FPGA chip.

17



The parametrised protocol converter, CPC_SRam RAM_IF, forms one half of the only external
interface in this example. The other half is the speci�cation of the internal channels connected
to this protocol converter. For convenience, the compiler knows about some generic styles of
interface, and RamIF denotes the style of interface with an address channel and two unidirectional
data channels.

In this example, the program uses simple SML functions for reading and writing to the o�-
chip RAM to aid readability of the program. These are Handel/ built-in functions, but users can
obviously write their own.

fun RamRead (ram:EXT_RAM) (addr, data) =

((#1 ram)!!addr) TakingTicks 1 || ((#2 ram)??data) TakingTicks 1;

fun RamWrite (ram:EXT_RAM) (addr, data) =

((#1 ram)!!addr) TakingTicks 1 || ((#3 ram)!!data) TakingTicks 1;

8.1 Simulating with external RAMs

The simRamList function calls the simulator function sim and also allows the user to preset the
contents of any simulated external rams.

simRamList : (string * int * int * int list) list -> unit

The parameter of the simRamList function is a list of a 4-tuples: (name of ram, its address width,
its data width, list of initial values); one for each ram used. The following shows how to invoke
the simulator (having �rst compiled the above program) with the ram contents prede�ned by a
given list.

simRamList [("RAM0", AW, DW, 1 -- hi_addr+1)];

To look at ram contents after simulation use:

peekRange "RAM0" 0 hi_addr;

The following is a similar example of simulation, but with the initial RAM contents prede�ned
by a function:

simRamFun : (string * int * int * (int -> int)) list -> unit

fun init_fun i = 10 + i;

simRamFun [("RAM0", AW, DW, init_fun)];

9 Using the HARP board

Each HARP board has 128K of static RAM organised as two banks, each of 32K x 16-bit directly
connected to a Xilinx 3195 chip (a 3090 on the single prototype board). These banks are com-
pletely independent and can be used simultaneously for reads or writes to di�erent addresses.
They could also be used together as a single 32k x 32-bit memory. The Xilinx chip also sits on
the bus of the T805 transputer and has more or less full access to the bus and to the T805 Event
pins.

A con�guration �le exists for the FPGA which maps this SRAM onto the bus of the transputer.
Using this, it is possible to set up data in the SRAM directly from a program running on the
transputer, then reload the FPGA with your Handel program, run it to completion (as signalled
by programmed use of the Event channel) and then reload the SRAM mapping con�guration to
examine the data left in the SRAM by the Handel program.

The CPC_SRam converter mentioned in Section 8 works on the HARP SRAM, but does not sup-
port all possible con�guration options at present. The �le /mclab/page/handel/harp_pins.sml

18



contains de�nitions of the Xilinx pin assignments on the HARP board; this will be needed for
setting up the parameters for any HARP CPCs.

The following is part of an application program for the HARP board that uses this CPC and
the Event CPC.

use "/mclab/page/handel/harp_pins.sml";

val AW = 15 (* For an address width for 32K *)

val DW = 16 (* of 16-bit words *)

val Addr = Chan AW "Addr"

val Din = Chan DW "Din"

val Dout = Chan DW "Dout"

val RAM_IF = ( "RAM0", SRL_A, SRL_D,

SRL_CE, [SR_WB0, SR_WB1], [SRH_IO_EN]

);

val Ram_CPC = (CPC_SRam RAM_IF, RamIF (Addr, Din, Dout))

val Event = Chan 0 "Event"

val Event_CPC = (CPC_EventOut EventPads, Output Event);

prog := Handel (

[ Ram_CPC, Event_CPC ],

....

10 Using the compiler

The Handel compiler is an SML program that is used from the top-level interactive read-eval-
print loop of SML. Integrated with it is a gate-level simulator that can simulate the hardware
generated by the compiler, with input and output to the screen. After putting your program in
a �le, say sample.sml, here are the steps to follow in compiling and simulating it:

1. Start the compiler by typing \handel" (assuming that you have /mclab/page/handel or
another suitable directory on your search path). The SML top-level will start, and a minus
sign will appear as the prompt.

2. Type \use "sample.sml";" to load your program into the SML system. The program is
written as an assignment to the global variable prog, and the SML system will build a data
structure that represents the program and assign it to the prog variable.

As it loads your program, the SML system will display large amounts of uninteresting and
largely meaningless stu�. You should watch out, however, for error messages from the SML
system that mean your program is ill-formed when considered as an SML expression, or
that it contains SML type errors.

After this, the prog variable contains an SML data structure that is the abstract syntax
tree of your Handel program. Subsequent commands to the compiler system usually need no
parameters as they all look in the prog variable for the program. One important command
available at this stage is \pp();" which pretty-prints the Handel program on the screen in
a form similar to an occam program. This can be used to verify that your SML commands
actually created the Handel program that you intended.

19



3. To compile the program into hardware and produce netlist output �les type any of the
following:

c(); (* simple compilation *)

co(); (* same with hardware optimisation *)

cof(); (* same with full optimisation *)

\c();", \co();" or \cof();". at the minus sign prompt. As it processes your program,
the compiler may print error messages, and it will probably print messages like these:

After compilation : 15 LATCHES, 52 GATES, 3 INVERTERS; SIZE 75

After fast optimisations: 9 LATCHES, 15 GATES, 3 INVERTERS; SIZE 26

After fan-in adjustment : 9 LATCHES, 15 GATES, 3 INVERTERS; SIZE 26

to indicate how much hardware it has generated. The SIZE parameter is the di�erence
between (a) the sum of the total number of inputs to all the components in the circuit and
(b) the total number of components; a circuit with fewer but more complex gates may have
a larger SIZE than one with a larger number of simpler gates.

After this step, the compiler has generated a representation of the hardware in memory,
and written the netlist to one or more �les on disk. It is the in-memory representation that
is used by the simulator. The disk-�le representation is only used by later stages of the
FPGA con�guration process. Thus, it is only possible to use the simulator on a program
immediately after it has been compiled.

You may want to pp(); the program again at this point, as the compiler makes source
level transformations to the program, for example when inferring the widths of constants,
or reporting certain errors or warnings about the program.

4. Run the simulator by typing \sim();". The ensuing output shows the values of all program
variables at each clock cycle. When a simulated external channel is ready for communica-
tion, you will be asked whether the environment of the program is ready to communicate
before being shown the output value or asked for the input value. By answering \no" (by
typing \n") several times, you can watch the behaviour of your program when it is waiting.

By default, the compiler writes the output net-list to disk in two forms: a .hwp �le in the
compiler's own format, and another �le in a proprietary format. For Xilinx FPGAS, the second
�le is in .xnf format; the netlist may be slightly di�erent from the .hwp �le, because the compiler
adds extra gates to reduce the maximum fan-in of gates to 4 or less as required by Xilinx netlists
for the 3000 series FPGAs for example. Both output �les contain a pretty-printed version of the
input program.

The .xnf or other proprietary-format �le can be the input to vendor-provided software that
will place & route the net-list on an FPGA chip. The .hwp �le is of use to investigate the e�ects
of optimisation, or to see what parts of a program contribute most hardware. The .hwp �le is
both more terse and more readable than the .xnf �le. Normally however the user will not look
at either of these �les.

The name of the output �les can be set by assigning to the SML string variable file. The
default value is "default", so the two output �les are called "default.hwp" and "default.xnf".
The compiler can also generate BLIF �les and netlists suitable for Concurrent Logic FPGAs.
However, as we do not normally use these facilities, these implementations may not be complete.

20



11 Statement timing

The timing of Handel programs is, very deliberately, kept simple. Essentially, all expressions in
Handel programs evaluate within a single clock cycle. The major corollary is that assignment and
Delay statements each take one clock cycle to execute, as does communication which is ready to
run. All other statement constructors (except Stop of course!) take no additional clock cycles
for any housekeeping operations, and thus their timing is determined solely by the statements in
their bodies which are actually executed.

The following table summarises the timing behaviour of Handel statements in terms of clock
cycles. The actual length of a clock cycle can not in principle be determined at compile-time, as
it depends on the results of the (NP-hard) netlist-to-FPGA mapping performed by the vendor's
FPGA software.

Statement Clock cycles for execution

Skip 0
Delay 1
Stop 1

Assign 1
ChanIn (when ready) 1
ChanOut (when ready) 1
PriAlt (when ready) 1 (time of guard statement) + time of statement executed
While � (times of guarded statements executed)
Until � (times of guarded statements executed)
If time of guarded statement executed
Case time of guarded statement executed
Seq � times of nested statements
Par maximum (times of nested statements)
Let time of nested statement
Declare time of nested statement
Tag time of nested statement

12 Advanced features

Here we describe some features of the Handel language and compiler which are not needed by
beginning users, but which may well be useful for later projects. They allow the user to write
programs which can be compiled into more e�cient implementations by the explicit use of sharing,
for example.

12.1 Sub-expressions and sub-statements

Sometimes it is necessary to avoid building the same hardware twice, when only one copy is
actually needed. Handel has a sub-expression capability to support this. Sub-expressions can be
de�ned once and used multiple times, either in a statement or an expression. The hardware is
generated from the sub-expression declaration, not from its use. The relevant parts of Handel
abstract syntax are:

datatype EXPR = Where of LETENV * EXPR

| Subexp of string

.....

datatype STAT = Let of LETENV * LETENV2 * STAT

21



.....

withtype LETENV = (string * int * EXPR) list

and LETENV2 = (string * STAT) list

The Subexp constructor takes a string identi�er for the sub-expression and references the value
of the subexpression, which is in turn de�ned by either the Where or Let constructor. The int
parameter in the environment list is the width in bits of the sub-expression. For convenience, we
allow the name of a sub-expression to be any string: it is not used to construct signal names in
the .xnf output.

In the following example, a single multiplier is implemented once and used twice. The statistics
show the size of this program with and without sharing:

val DW = 16

val X = Int DW "X"

val Y = Int DW "Y"

val Ch1 = Chan DW "Ch1"

;

prog := Handel (

[ CPC_SimOut Ch1 ],

[ X, Y ],

While (TRUE,

Let ([("X*X", DW, (X * X) <- DW)], [],

Y := Subexp "X*X" + Subexp "X*X" $$

(Ch1 !! Y || X := X + C 1)

)

)

);

After fast optimisation : 35 LATCHES, 605 GATES, 3 INVERTERS; SIZE 822

After fast optimisation : 36 LATCHES, 1372 GATES, 3 INVERTERS; SIZE 1859

These subexpressions are actually parameterless functions. They are not evaluated to an integer
value at the point of declaration and given the same value throughout the scope of the declaration;
they are thus very di�erent from the VAL constructor in occam for instance.

The expression hardware generated is purely combinational hardware which depends on the
current values of any variables used in its de�nition. If these values change, then so does the
value of the sub-expression. Handel sub-expressions are thus in e�ect parameterless functions.

Sub-expressions are de�ned in the context of sub-expressions placed earlier in the list, so that
they can be nested. Recursive de�nitions are of course unimplementable in �nite hardware, and
not supported.

12.2 Local declarations

Declarations of variables and channels can be placed close to their use, rather at the top level of
a Handel program using the Declare constructor:

datatype STAT = Declare of EXPR list * STAT

....

The EXPR list is the list of resources being declared, and their scope is the statement. Because of
the naming restrictions imposed by the way we use the Xilinx software, these local declarations
don't operate quite as you might like. Firstly, all variable and channel names used throughout a

22



Handel program really should be distinct. Secondly, no scope checking is currently done by the
compiler, so it is the responsibility of the user to ensure appropriate hygiene rules.

In essence, the situation is very much as if all resources were de�ned at the top level. However,
there are two bene�ts from this rather inadequate treatment of local declarations. Firstly, it can
aid documentation, by keeping resource declaration close to the point of use. Secondly, it makes
it possible to generate fragments of Handel with local variables by SML functions, which therefore
do not need to a�ect the top-level declaration list. Such SML functions can of course use the
Int and Chan keywords locally, so that they can be completely responsible for generating code
fragments together with the associated declarations.

12.3 Tagging of statements and expressions

It is possible to add a string `tag' to any Handel expression or statement. There are several types
of these tags as shown in the following extracts from the compiler abstract syntax:

datatype TAG

= Comment of string (* User comments *)

| AutoComment of string (* Compiler-introduced comments *)

| Warning of string (* Compiler-introduced warnings *)

| Error of string (* Compiler-introduced error warnings *)

| Pos of POS (* Position in source file *)

| Ticks of INT (* For attaching timing assertions *)

| Width of int (* To tag widths after inferencing *)

datatype EXPR = TagExp of TAG * EXPR

....

datatype STAT = Tag of TAG * STAT

....

The Comment constructor simply allows the user to attach a comment to some fragment of
program for documentation purposes. The AutoComment constructor is for comments which are
added to the user program by the compiler, such as when the user requests statement timing
data to be added. The compiler may likewise add tags of type Warning or Error to the program
if some violation, or possible violation, of its `health checks' is detected. The Pos and Width tags
are for the compiler's internal use to aid error reporting and width inferencing respectively. None
of these tags have any semantics.

Currently the only one with any semantics is a Ticks tag which, when attached to a channel
input or output statement, is interpreted as an assertion that the communication will complete
in exactly the number of clock cycles speci�ed, no matter when it is scheduled. Its usual purpose
is to tell the compiler that some communication with the outside world will always complete in
one cycle and this may allow the compiler to further optimise the hardware produced.

12.4 Signal names and the bus constructor

The Bus constructor takes a list of strings which are signal names and delivers them as an EXPR

which can be used in any Handel expression. This can be useful for joining circuits compiled by
the Handel compiler to those generated by other means, such as the Ruby compiler.

Joining such circuits together is also the major reason that certain wire names in a Handel
netlist are simply formed from the names of the resources they are connected to. It allows the
user to predict Handel wire names and use them in the construction of non-Handel circuits. The
currently supported names that are likely to be of use are shown in the following example by
reference to Handel declarations:

23



val Reg = Int 16 "Reg"

val Ch = Chan 16 "Ch"

Resource Connections Signal names

Register input wires I_Reg_IN_0 ... I_Reg_IN_15

Register output wires I_Reg_0 ... I_Reg_15

Register clock enable I_Reg_CE

Channel data wires C_Ch_0 ... C_Ch_15

Channel receive-ready wire C_Ch_RXRDY

Channel transmit-ready wire C_Ch_TXRDY

12.5 Explicit channel synchronisation

The Handel abstract syntax has two constructors, RxRdy, and TxRdy which support forms of
synchronisation not possible with the occam-style commands on their own. They each take a
channel as parameter and deliver a Boolean EXPR which is TRUE if the corresponding channel
is ready to communicate in the appropriate direction. RxRdy is TRUE if there is some receiving
process (??) ready to run on the channel; TxRdy is TRUE if there is some transmitting process (!!)
ready. These expressions allow programs to `peek' at channels to see if a communication issued
in this cycle would succeed. They can support optimisations of time-critical programs and also
allow the user to build their own Alt-style commands.

For example, the following program computes Fibonacci numbers correctly and obeys occam
scope and usage rules:

val DW = 16

val A = Int DW "A"

val B = Int DW "B"

val Ch1 = Chan DW "Ch1"

;

prog := Handel (

[ CPC_SimOut Ch1],

[ A, B ],

[A, B] := [C 1, C 1] $$

While (TRUE,

[A, B] := [B, A + B] $$ Ch1 !! A

)

);

This program obviously produces a new result every two clock cycles. If we want to produce
a result on every clock cycle we might re-write the iterated command as:

[A, B] := [B, A + B] || Ch1 !! A

This program violates the occam usage rule concerning variables in a PAR statement. However,
the synchronous semantics of Handel mean that this is a perfectly well-behaved program. In fact,
in this context, the only badly-behaved Handel program is one which tries to update a shared
resource (variable, channel, RAM etc.) more than once in the same cycle.

Even though the semantics of this program are perfectly well-de�ned, they may not correspond
with the programmer's intent. If the output channel is always ready to receive a value, then the
timing semantics of Handel guarantee that the parallel assignment and the communication will
both be scheduled at the same instant and will both complete in a single cycle. This means that
the correct (i.e., current) value of A will be communicated. If however, the output channel is

24



blocked for even one cycle, A will be updated before it is communicated and one of the desired
output values will have been lost forever.

The situation can be recovered and made perfectly hygienic if the programmer provides a
guarantee that the output channel will always be ready to run. This can be done by a proof
of the timing behaviour of the receiving process, or by using a Port-style CPC on the output
channel, rather than a handshaken CPC. An output statement which is guaranteed to complete
in a single cycle can be annotated by the keyword TakingTicks, such as

(ch1 !! A) TakingTicks 1

which will allow the hardware optimiser to perform a better optimisation.
If this guarantee cannot be made, it is still possible to write the program in such a way that it

produces a new value on every clock cycle that the channel is ready to receive. One way of doing
this is by using RxRdy to peek at the channel to see if it is ready, and delaying the assignment
and communication until it is:

While (TRUE,

Par [ While (~(RxRdy Ch1), Delay) $$ [A, B] := [B, A + B],

Ch1 !! A

]

)

These facilities can sometimes be very useful in contexts like this where saving a single clock
cycle in an inner loop is important. Here, it can double the speed of the program by reducing
the inner loop from two cycles to one. However, they are not straightforward to use, nor should
you expect them to be. It is in fact quite easy to write a program with these primitives which is
unimplementable withinHandel synchronous semantics. For instance, if both ends of a channel try
to peek at each other and use the information to decide whether they will try to communicate
with the other, there is an unresolvable decision to be made. Compiling such a program will
usually result in a loop in the combinational hardware (which the simulator will detect). Such
programs are hard to analyse automatically, so it is the user's responsibility to analyse carefully
any programs which use them.

12.6 Compiler control variables

There are a number of global variables which control various aspects of the compiler's operation.
Variables with related functions are placed together into structures. Not all variables are listed
here, as some of them are not meant for general use.

12.6.1 Simulator control

After compiling a program and before simulating it, you may want to alter the list of variables
that the simulator prints out. By default it prints all variables on each clock cycle. This is the
signature of the module:

structure Sim_control = struct

(* ident. base variable *)

type MONITOR = (string * MON_FUNC) * EXPR

val monitor_list = ref [] : MONITOR list ref

val radix = ref 10 (* Base for displaying numbers.*)

val display_step = ref 1; (* How often to print outputs. *)

end;

By explicitly assigning to the monitor list variable, it is possible to force the simulator to
print out any variable or channel any number of times with di�erent bases, for example.

25



val X = Int 16 "X";

prog := Handel ( [ ], [ X ], Until (FALSE, X := X + C 1) );

c();

Sim_control.monitor_list :=

[(("X", Sim_res.radix 10), X), (("X", Sim_res.radix 16), X)];

sim();

Note that if you compiled and optimised this program it would be optimised away to no
hardware at all, since it performs no output to the environment!

By examining the compiler source code, advanced users can write their own monitor functions
to do more interesting things with the values from simulations. You may want to log them into
a �le, or display them as a picture in an `xterm' for example.

12.6.2 FPGA control

The following structure contains variables that deal with particular target technologies. They
allow the netlists to be generated in Xilinx (default), VHDL, Concurrent, or Blif formats. The
latter three are not well supported since we don't use them on a daily basis; however they might
be usable. The relevant output �les are su�xed .xnf, .vhdl, .conc, .blif respectively. The
three pad strings de�ne which FPGA pins the Clock, Stop, and Finish signals are wired to, if
any.

structure fpga_control =

struct

(* Extracts from harp_pins.sml are used for default values. *)

val Harp1a_fpga = "3090PQ160-125"

val M2 = "P44" (* Harp1 LED (output) pad *)

val MasterClk = "P160" (* Frequency Synthesiser input pad *)

val not_ErrorX = "P55" (* Tram Error line - NOT T805 VISIBLE*)

(* Miscellaneous definitions for the netlist output.

Defaults values are set for HARP1 boards.

Many of these options only make sense for Xilinx chips.

*)

datatype FPGA = Xilinx2000 | Xilinx3000 | VHDL | VHDL2 | Concurrent | Blif

val fpga_type = ref Xilinx3000 (* FPGA family *)

val fpga_chip = ref Harp1a_fpga(* Destination chip type *)

val clock_pad = ref MasterClk (* Global clock input pad

Xtal Osc+AClk used if set to "" *)

val clock_divider = ref 1 (* Between InputClock & ClockDrive *)

val notError_pad = ref not_ErrorX (* Active if Stop is executed *)

val finish_pad = ref M2 (* Asserted on termination *)

val carry_weight = ref 50 (* Timing weight for carry lines *)

val critical_weight = ref 100 (* Timing weight for critical lines*)

end;

12.6.3 Print control

The following variables a�ect the way that various things are rendered by the pretty-printer.
The full_sig_names variable controls whether the names of nets in the �nal netlist are in a

26



symbolic form somewhat related to the program variables and control struictures, or whether
they are essentially numbers. Xilinx software has an annoying habit of truncating net names in
summary output, which means that it can't be processed automatically by user software; hence
the provision of this mode.

The remaining control variables should be self-explanatory:

structure print_control =

struct

val verbosity = ref 1 (* How noisy to be during compilation *)

val debug_level = ref 0 (* How noisy to be during simulation *)

val const_widths = ref false (* suffix constants with their widths *)

val int_width = ref 32 (* width of an occam INT *)

val var_widths = ref true (* suffix vbl decls with their widths *)

val merge_decls = ref true (* merge declarations of same type *)

val user_comments = ref true (* Whether to pp these things .... *)

val auto_comments = ref true

val warnings = ref true

val assertions = ref true

val full_sig_names = ref true (* Print signals as names (or numbers)*)

end;

12.6.4 Transform control

The transform control variables each de�ne whether the compiler should make the associated
source level transformation, or apply the associated check. If add_times is true, the compiler
prepends a comment to every statement giving its minimum and maximum execution time, in
clock cycles. Similarly, if add_space is true, statements are commented with an estimate of the
number of gates and ip-ops that will be generated by the compiler. This does not include the
e�ect of any optimisations that the compiler may apply.

The width inference system can be disabled with width_infer. The force_delay transfor-
mation will add Delay statements to avoid any combinational loops that might result from While

and Until loops with guarded statements that might execute in 0 cycles. The remaining two
variables control the application of checks on the soundness of the Handel program.

structure transform_control =

struct

val add_times = ref false (* Add statement timings to source? *)

val add_space = ref false (* Add statement h/w space to source? *)

val width_infer = ref true (* Infer widths of constants? *)

val force_delay = ref true (* Add minimal delays to While/Until *)

val balance_delay = ref false (* Add delays to balance If and Case? *)

val check_decls = ref true (* Check declarations in user program *)

val health_checks = ref true (* Apply health checks to user program *)

end;

12.6.5 Optimiser control

These variables control the netlist optimiser. par_minimax will remove the synchronisers from
any arms of a Par which have a (statically determinable) execution time always guaranteed to
be less than some other arm.

The bottom-up, Common Sub-Expression extractor removes (some) gates with an identical
function, and is controlled by cse_iterations. Set to a natural number it will run for that

27



number of iterations, or until �xed point whichever comes �rst; set negative it will run until �xed
point. It will only run if the netlist optimiser is also run. The remaining functions are obvious
from the comments:

structure optimiser_control =

struct

val io_single_tick = ref true (* Remove synchronisers from fast i/o *)

val par_minimax = ref true (* Minimax the Par finish signals *)

val strip_comments = ref false (* Remove comments from block list *)

(* These enable specific gate-level optimisation passes, when full *)

(* optimisation (`cof ()' or `optimise 9') is selected. *)

val graph = ref true (* Fast pattern-matching and others. *)

val cse = ref true (* Common subexpression elimination. *)

(* Enabling both tci and tci_inv at once is counterproductive as *)

(* tci can actually reduce the amount of information available to *)

(* tci_inv, and hence it can make fewer optimisations. *)

val tci = ref false (* Transitive closure of implication. *)

val tci_inv = ref true (* Implication through inverters too. *)

(* During full gate-level optimisation, all enabled optimisations are *)

(* repeated until there is no change in the circuit. This variable *)

(* puts a limit on the total number of repetitions. (~1 == no limit). *)

val max_iterations = ref ~1 (* Iterate until fixpoint or this many. *)

end;

12.7 Other compiler functions

This section lists the most commonly-used compiler commands and functions:

c : unit -> unit applies the compiler to the `prog' variable

co : unit -> unit applies the compiler to the `prog' variable and then performs a partial
hardware optimisation

cof : unit -> unit applies the compiler to the `prog' variable and then performs a full hard-
ware optimisation

sim : unit -> unit runs the simulator on the most recently compiled program

f : string -> unit sets variable �le; used for subsequent input/output operations. No su�x
should be given.

u : unit -> unit issues an SML `use' for �le.sml

## : EXPR -> int returns the width (in bits) of an expression.

pp : unit -> unit pretty-prints the `prog' variable

ps : STAT -> unit pretty-prints a statement

pe : EXPR -> unit pretty-prints an expression

pd : EXPR -> unit pretty-prints a declaration

28



12.8 Signal timing

The hardware circuits produced by the Handel compiler are simple synchronous �nite state ma-
chines of the Mealy form. All state is represented by explicit ip-ops and there are no combi-
national logic cycles. All ip-ops are edge-triggered from the same global clock. Conditional
updating of a ip-op is achieved by controlling its clock-enable input. Any hardware implemen-
tation must ensure that all ip-ops are set to 0 before the clock is started, and that clock-skew is
low enough that no ip-op to ip-op combinational circuit is faster than the maximum clock-
skew. These conditional are ful�lled by implementations on the Xilinx 3000 series devices that we
use. The clock frequency is determined solely by the maximum ip-op to ip-op combinational
delay, including any path via external hardware, plus any setup time for the ip-ops used.

In normal operation, there are only two `system' signals emitted by the circuits. One is the
FINISH signal which indicates that the computation has terminated. The other is the STOP signal,
which is asserted when any Handel process executes the Stop command. These two signals may be
high for only a single cycle, are therefore also made available in latched form as FINISH_OUT and
STOP_OUT. Once asserted, these signals will be high until the circuit is reset. In normal use, these
signals are not used. Instead, the user is encouraged to program explicit channel communications
to signal termination or failure to the environment.

There is only one input system signal (apart from the clock of course). The START signal
must be high at the rising edge of one clock cycle, and must thereafter be low, at least until the
circuit asserts the FINISH signal. Currently, the circuit generates its own START signal from the
clock, so the user does not normally have to be concerned with this signal either.

All other inputs and outputs of a Handel circuit correspond to channels declared as part of the
external interface speci�cation of the program. Each channel is possibly mediated by Channel
Protocol Converter hardware. The hardware produced by CPCs is under the control of the user
and is thus arbitrary. CPC circuitry may not conform to the design principles of Handel circuits
(and indeed cannot when asynchronous interfaces are constructed).

Acknowledgement

This report relates in part to work carried out by Oxford University Computing Laboratory in
the Esprit OMI/HORN (P7249) Research Programme.

29



A Appendix: Documentation �les

The following �les can be found in /mclab/page/handel:

README A �le describing the current state of the compiler and the available �les.

handel Executable code of the compiler for Sparc processors.

sample.sml A sample Handel program.

examples.sml A set of simple example programs in Handel, illustrating some of its features.

Handelast.sml The sml code from the compiler de�ning its abstract syntax tree structures.
Useful for its de�nitions of the EXPR, STAT and PROG datatypes.

Sugar.sml The sml code of the standard `syntactic sugar' functions already loaded into the
compiler. Their use can ease the writing of Handel programs in SML.

harp pins.sml De�nitions of Xilinx 3195 pin assignments for the Harp1 board.

Much information on our work has been mounted on the world-wide web:

http://www.comlab.ox.ac.uk/oucl/hwcomp.html

In addition, there is a selection of documentation �les, papers, and project reports on our
hardware compilation work available by anonymous ftp. Connect to ftp.comlab.ox.ac.uk and
�nd the documents in Documents/techpapers/Ian.Page. This area is also directly accessible
from the web.

We also have a local news group, prg.hwcomp, which contains various announcements about
local activities in hardware compilation.

30



B A tricky issue with loop implementation

The Handelimplementation of loops is chosen so that a loop with a body which executes in a
single cycle will also perform an entire loop in a single clock cycle. This has the major advantage
that it is possible to construct loops which execute at the actual clock frequency of the hardware.

This means that the loop guard must be evaluated by the hardware without taking any
additional clock cycles. Another possibility exists which is to take one clock cycle to evaluate the
loop guard. But as this would slow down these very important, single-cycle loops by as much as
50%, this was felt to be unacceptable.

The problem with using the faster implementation strategy for loops is that it will not work
properly if the body of the While loop is a command that may execute in zero time, because that
ultimately results in a cyclic path in combinational hardware.

The precise rule is that the circuit compiled for the loop body must not have a combinational
path from its start signal to its �nish signal, even if it is impossible for the body actually to
execute in zero time. Loops that violate this rule are not common, because any initialisation
code for an inner loop will take time and introduce ip-ops into the control path, breaking the
combinational path.

However, to solve any remaining problems, the compiler incorporates an automatic transfor-
mation that will introduce one or more Delay commands into programs to force all loop bodies
to always take at least one clock cycle to execute. If the user is not satis�ed with where the
compiler decides to place the necessary Delay commands, the program can be re-written to put
them in a more appropriate place.

Fortunately, the user need not normally be concerned with this issue. Very occasionally, one
additional clock cycle delay will be added to a user program in rectifying this situation. The user
is informed if this transformation is made.

31



C Mapping Statements into Hardware.

The transformation of an arbitrary user program into normal form can be accomplished by a series
of syntax-directed applications of the laws of programming to the program. The theoretical basis
for this and the transformation steps themselves can be found in the references [5, 6, 7].

The current Handel compiler does not in fact follow these steps. Instead, the program is
transformed directly into a netlist graph, which intentionally achieves the same result, but much
more quickly. In fact it is much easier to comprehend the basis of the normal form transforma-
tion by looking at the fragments of netlist graph which are generated by each of the language
constructs, rather than by looking at the normal form transformation steps themselves. The
transformation laws are considerably obscured by the necessity to deal formally with shared use
of the datapaths, which are just about the simplest parts of the hardware!

All variables in the user program are mapped to hardware registers which are constructed from
sets of J-K ip-ops. The registers have input multiplexors if they have multiple sources. This
happens when they are the target of more than one assignment or communication in the program.
The control circuits for the statements in the program generate the multiplexor control signals
and the clock enable signals for destination registers. As previously explained, all expressions are
implemented as combinational logic.

In fact, this is about all there is to say about the datapath generation strategy, which is very
straightforward. The datapath generated by this strategy thus exactly matches the dataow
graph of the original user program. If the programmer speci�cally wants some other form of
datapath, it is his responsibility to transform the program into a form which exhibits the datapath
architecture required, although we have implemented some automatic transformations of this
nature for particular forms of datapath. The conversion of a user program into the combination
of a machine code program and an application-speci�c microprocessor is a good example of such
a transformation [8].

Each control construct in the program maps onto a control circuit in the hardware. We use a
pair of control handshake signals (start and finish) for each circuit. A handshake signal which
is active, is simply a signal which is high at the rising edge of the global clock. We also make an
environment assumption that a start signal will never be given to a control circuit if there has
not been a corresponding �nish signal from any previous start signal. The individual circuits are
designed to maintain this environment guarantee to any nested control circuits. Since the entire
program is only a single statement at the top-level, this translates into an assumption that the
environment will start the hardware program running just once and will not attempt to start it
again before the program has completed.

To improve readability in the control circuit diagrams which follow, we use a box with a
triangle in the upper-left corner to represent a single instance of a control circuit. Each control
circuit has a single input and a single output signal which implements the control handshake
protocol. The connections between these circuits and the datapath is fairly obvious and is thus
not shown in any detail here.

C.0.1 Assignment.

Because of the method of handling expressions, the assignment statement is particularly simple
to implement and its control circuit is shown in Fig. 1. The start signal forms the clock-enable
signal for the destination register(s) of the assignment. At the end of the cycle in which the
assignment is scheduled, the expression hardware has calculated the new value (by assumption),
and it is thus loaded into the destination register. The start signal is delayed by a single cycle

32



to provide the finish signal, since an assignment is always scheduled immediately, and it always
completes in exactly one clock cycle (again by assumption).

FINISH

START

ClockCE R

EXPR

Clock

Q

D

R

MUX

E E

FINISH

START START

FINISH

Clock

Q

D

Clock

Q

D

11

1

2 2

2

Clock

Figure 1: Assignment: Control and Data Multiplexing.

The left-hand part of Fig. 1 shows the circuitry generated by a single assignment of the
form R := EXPR. The right-hand part of Fig. 1 shows the portion of datapath generated by
two assignment statements which target the same register. An active start signal steers the
appropriate expression value through the multiplexor to the input of the destination register.
Whichever start signal is active also enables the destination register via the OR gate.

If the rules of occam programming are enforced, then any two assignments to the same
variable cannot be in separate arms of a Par statement, so the issue of what happens when the
two assignments are scheduled at the same time simply does not arise. If the user wants to use the
additional transformational rules of Handel programs to allow such assignments into two parallel
processes, then there is a proof obligation which must show that the two assignments cannot
be scheduled in the same clock cycle, and the user must also shoulder the additional burden of
arguing what the semantics of his particular use of such shared store is.

C.0.2 Sequential Composition.

The control circuit for sequential composition is trivially simple. The start and �nish signals
of the component processes are connected together together in a `daisy-chain' as shown in the
left-hand part of Fig. 2. It is particularly clear from this diagram that the control strategy is
basically that of `one-hot' control state encoding. This particular scheme appears to be well-
suited to DPGA implementations since it requires little in the way of wiring resources when
compared to encoded representations of control state.

C.0.3 Parallel Composition.

The right-hand side of Fig. 2 shows the control circuitry for parallel composition. This circuit
passes control simultaneously to all the parallel statements to initiate parallel execution. The PAR
statement of occam is de�ned to be synchronised, so that the whole construct terminates only
when all of the constituent components have terminated. Thus, the PAR control circuit collects
together the separate �nish signals in a set of ip-ops and produces its own �nish signal as soon
as the last �nish signal is generated. In addition, this signal resets the synchroniser ip-ops
ready for the next time that this circuit is used.

Optimisations are routinely performed to remove such synchronisers, wherever a textual anal-
ysis of the program can demonstrate a partial ordering on the termination times of the individual
processes.

33



S

S

S
1

2

n

FINISH

START

D

Q

D D

QQ

FINISH

START

1 2 n
S S S

Figure 2: Sequential and Parallel Composition.

C.0.4 Miscellaneous Constructs.

Fig. 3 shows the control circuitry for some minor control constructs. The Skip and Delay

constructs have no e�ect on the state of the computation. They take exactly 0 and 1 clock cycles
respectively to complete.

FINISH

START

FINISH

START

Clock

Q

D

FINISH

START

GND

Signal

STOP

GlobalQ

D

Clock

FINISH

START

GND

Figure 3: Skip, Delay, Stop1, Stop2.

The Stop1 and Stop2 circuits show two di�erent re�nements of the Stop construct. Stop

represents a broken computation (`bottom' in the semantics). The Stop1 circuit simply refuses
to pass on the handshake signal (though of course it could do anything at all!) The Stop2 circuit
uses a local latch to remember that a particular instance of the Stop command was activated
and the state of this latch can be monitored by external hardware for debugging purposes, for
example.

C.0.5 Channel Input and Output.

Fig. 4 shows the control circuitry for synchronised channel input and output. The left-hand
circuit is the same for either and input or an output command. Synchronisation is achieved
by looping back the start signal through a ip-op and a multiplexor which is controlled by
the transfer signal. The control token is trapped in this feedback loop until activation of the
transfer signal.

The ready signal goes to the arbitration circuit and returns as the transfer signal to indicate
when the partner to this communication is also ready to run. When both circuits are ready to
communicate, the lower-left circuit is activated, which is simply the assignment circuit seen earlier.

34



D

Q D

1

S0

Clock

Q

D

Clock

Ready

Transfer

Reg. Load

START

FINISH

op.rdy 1

op.rdy 2

op.rdy n

ip.rdy 1

ip.rdy 2

ip.rdy n

transfer.accept

op.rdy
ip.rdy

Figure 4: Communication: Synchronisation and Arbitration

It can be clearly seen from these diagrams that communication is just distributed, synchronised
assignment.

As with assignment, the scope and usage rules of occam guarantee that there can be no more
than one input and one output command scheduled for the same channel at the same time, hence
the very simple arbitration circuit on the right-hand side of the �gure.

C.0.6 Binary Choice.

The left-hand side of Fig. 5 shows the control circuitry for the binary choice, or If, statement.
The start signal is steered to trigger just one of the guarded commands under the control of the
guard expression. Since only one command can be active, the finish signals of the two arms
can be simply ORed together to derive the completion handshake signal for the entire construct.

S
1

S
2

START

FINISH

BE

FINISH

S

BE

START

Figure 5: If and While Constructs.

C.0.7 Guarded Iteration.

The right-hand side of Fig. 5 shows the control circuitry for the While loop. It is somewhat
similar to the If circuit except that here the start signal is steered either to the feedback loop
or to form the finish signal, under the control of the circuit which implements the Boolean
guard expression. The control token is trapped in the feedback loop until the controlling Boolean
expression, BE, evaluates to false.

A very similar circuit exists for the Until loop which always executes at least once and tests
the guard expression at the end of the loop. This form of the loop doesn't exist in occam but it
is sometimes useful in hardware compilation since it avoids the need for the duplicated hardware
(or procedure call) which would be necessary to implement the program Until x Do y as the
program y; While Not x Do y.

35



There is a tricky design issue involved with these iteration circuits. The particular imple-
mentation shown here is not at all the obvious one, and without further steps being taken it is
actually capable of failing. This implementation was pursued despite these problems because it
leads to a simpler and more reasonable timing calculus than the alternatives.

The control circuit fails if the controlled statement S has any path through it which ex-
ecutes in zero time. This is because there is then a combinational path through the box S,
which then creates a combinational loop in the hardware because of the feedback loop in the
While control circuit. For instance, either of the programs While x Do Skip, or While x Do

(If a Then b Else Skip), would create a loop in the combinational circuitry because of the
decision that a false-guarded loop should not take a clock cycle to execute.

The simplest way of implementing the desired semantics without introducing any undesirable
combinational loops would be to insist that evaluating the guard expression should take one clock
cycle itself, thus breaking the combinational loop. However with hardware compilation we will
often be interested in writing loops which execute a single iteration in a single clock cycle. Here
it would be unacceptable to introduce even one extra cycle into the loop execution as it would
halve system performance.

The scheme adopted in Handel is to use the time-e�cient circuit and to make the compiler
perform a pre-transformation on the program to replace certain instances of Skip with Delay so
that no zero-time loop bodies exist in the program.

36



References

[1] Laurence Paulson. ML for the Working Programmer. CUP, 1991.

[2] Chris Reade. Elements of Functional Programming. Addison-Wesley, 1989.

[3] �Ake Wikstr�om. Functional Programming Using Standard ML. Prentice Hall, 1987.

[4] Je�rey D. Ullman. Elements of ML Programming. Prentice-Hall, 1993.

[5] J.P. Bowen and He Jifeng. Programs to hardware. In P.G. Larsen, editor, Tutorial Material,

Formal Methods Europe '93, Industrial-Strength Formal Methods, pages 437{450, 1993. In
A.P. Ravn (ed.), Provably Correct Systems (ProCoS) tutorial.

[6] Jifeng He, Ian Page, and Jonathan Bowen. Towards a provably correct hardware implementa-
tion of Occam. In G.J. Milne and L. Pierre, editors, Correct Hardware Design and Veri�cation

Methods, Proc. IFIP WG10.2 Advanced Research Working Conference, CHARME'93, volume
683 of Lecture notes in Computer Science, pages 214{225. Springer-Verlag, 1993.

[7] Jonathan Bowen, Jifeng He, and Ian Page. Hardware compilation. In J.P. Bowen, editor,
Towards Veri�ed Systems, Real-time Safety-Critical Systems, chapter 10, pages 193{207. El-
sevier, 1994.

[8] Ian Page. Automatic design and implementation of microprocessors. In Proceedings of

WoTUG-17, pages 190{204, Amsterdam, April 1994. IOS Press. ISBN 90-5199-1630.

37


