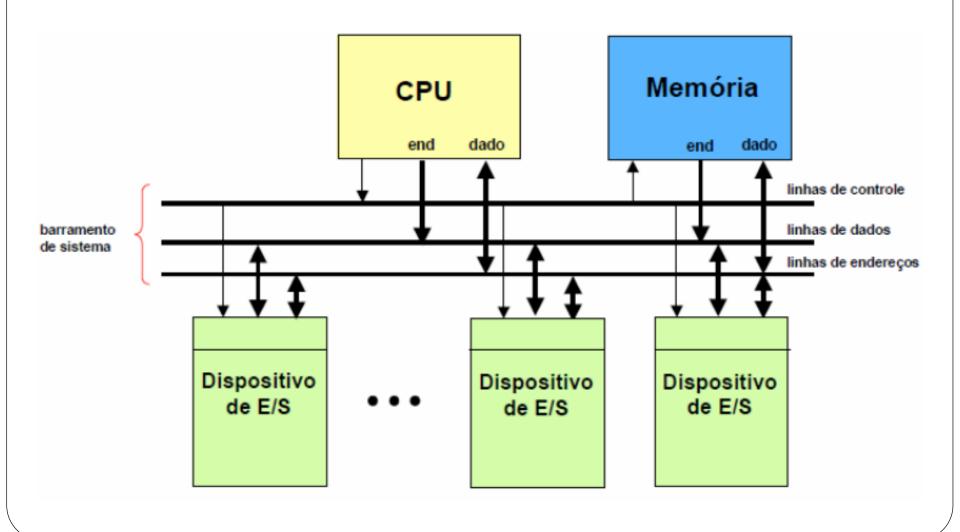
Programação de Periféricos

Barramentos

Edson Moreno

edson.moreno@pucrs.br

http://www.inf.pucrs.br/~emoreno


Apresentação

Contextualização

Exemplos de comunicação serial

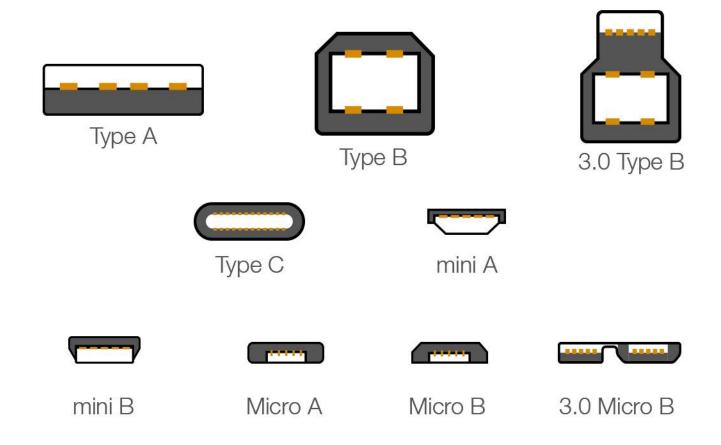
- Definição
 - Comunicação de fios com função comum
- Tipos
 - Internos: Está dentro do UControlador
 - Externos: Usado para interligar o UControlador com outros dispositivos
- Protocolo
 - Padrão adotado para garantir sincronização, largura, métodos de acesso e velocidade

- Largura de barramento
 - #bits de dados que podem trafegar no mesmo instante de tempo (serial/paralelo)
- Métodos de acesso
 - Mestre: dispositivo que inicia a comunicação
 - Escravo: dispositivo que responde a requisição
- Sincronismo
 - (semi)Síncrono: mesma velocidade do Ucontrolador
 - Assíncrono: velocidade difere do Ucontrolador

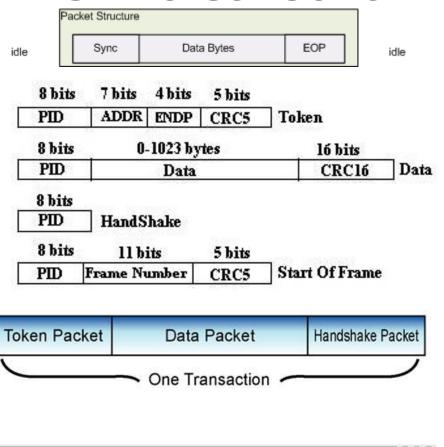
- Exemplos
 - Industry Standard Architecture (ISA)
 - Largura de 8bits(XT), 16bits (AT) e 32bits (EISA)
 - Velocidade 8MHz
 - Peripheral Component Interconnected (PCI)
 - Largura de 32 a 64 bits de dados
 - Velocidade de 33 a 66 MHz
 - Accelerated Graphics Port (AGP)
 - V1.0 → 266MBps (66MHz)
 - V2.0 → 1.066MBps
 - V3.0 → 2.133MBps

Apresentação

Contextualização


Exemplos de comunicação serial

- Exemplos de interfaces de transferência serial
 - Universal serial Bus (USB)
 - Inter Integrated Circuit (I2C)
 - Serial Peripheral Interface (SPI)
 - Universal Asynchronous receiver/transmitter (UART)


Universal serial Bus (USB)

- Um conector para até 127 dispositivos;
 - Taxa de transferência
 - USB1.0: 12Mbps (fullspeed) ou 1,5Mbps (lowspeed);
 - USB2.0: 480Mbps (High Speed);
 - USB3.0: 5Gbps (Super Speed).
 - USB3.1: 10Gbps
 - Protocolo
 - O host USB envia um pacote start offrame(SOF) a cada 1ms
 - Demais dispositivos ficam na escuta
 - Se o endereço enviado casa com o "ouvinte" então este consome o pacote
 - Os seguintes formatos de pacotes são previstos
 - PID especifica o tipo de dado
 - Transação inicia com um token
 - EndP define a direção
 - Caso a comunicação requisite um retorno (e.g. uma leitura), um pacote HandShake é gerado pelo alvo

Tipos de USB

Universal serial Bus (USB)

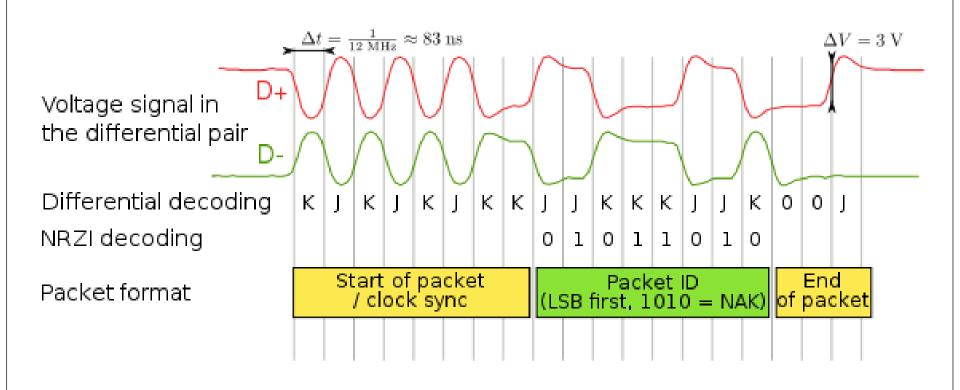
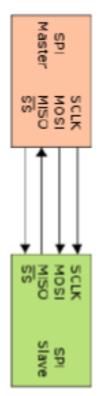
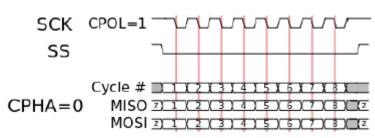

Transfer		1000
Transaction Token Packet	Data Packet	Status Packet

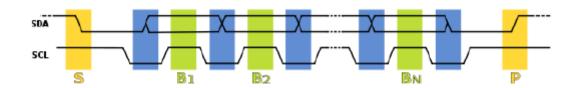
Table 8-1. PID Types

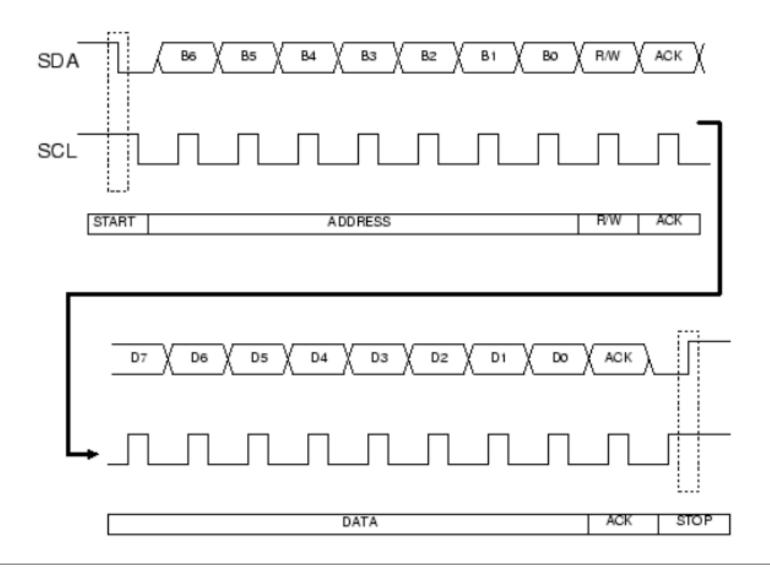
PID Type	PID Name	PID<3:0>*	Description					
Token	OUT	0001B	Address + endpoint number in host-to-function transaction Address + endpoint number in function-to-host transaction					
	IN	1001B						
	SOF	0101B	Start-of-Frame marker and frame number					
	SETUP	1101B	Address + endpoint number in host-to-function transaction for SETUP to a control pipe					
Data	DATA0	0011B	Data packet PID even					
	DATA1	1011B	Data packet PID odd					
	DATA2	0111B	Data packet PID high-speed, high bandwidth isochronous transaction in a microframe (see Section 5.9.2 for more information)					
	MDATA	1111B	Data packet PID high-speed for split and high bandwidth isochronous transactions (see Sections 5.9.2, 11.20, and 11.21 for more information)					
Handshake	ACK	0010B	Receiver accepts error-free data packet					
	NAK	1010B	Receiving device cannot accept data or transmitting device cannot send data					
	STALL	1110B	Endpoint is halted or a control pipe request is not supported					
	NYET	0110B	No response yet from receiver (see Sections 8.5.1 and 11.17-11.21)					
Special	PRE	1100B	(Token) Host-issued preamble. Enables downstream bus traffic to low-speed devices.					
	ERR	1100B	(Handshake) Split Transaction Error Handshake (reuses PRE value)					
	SPLIT	1000B	(Token) High-speed Split Transaction Token (see Section 8.4.2)					
	PING	0100B	(Token) High-speed flow control probe for a bulk/control					
	Reserved	0000B	endpoint (see Section 8.5.1)					
		Societicano enel	Reserved PID					


*Note: PID bits are shown in MSb order. When sent on the USB, the rightmost bit (bit 0) will be sent first


Diagrama de tempo USB

Serial Peripheral Interface (SPI)


- Protocolo de comunicação serial com 4 fios
 - MISO –Master In SlaveOut
 - MOSI –Master Out SlaveIn
 - SCK –Serial clock
 - SS –SlaveSelect–Define o dispositivo alvo (1/slv)
- Utiliza o modelo master/slave
 - Master é quem inicia a comunicação
- Modos de operação
 - Configura a fase de transferência do dado
 - Se na subida ou na descida do sinal de clock
 - Configura o valor "ociosidade"
 - Se quando o clock está em 1 ou quando em 0



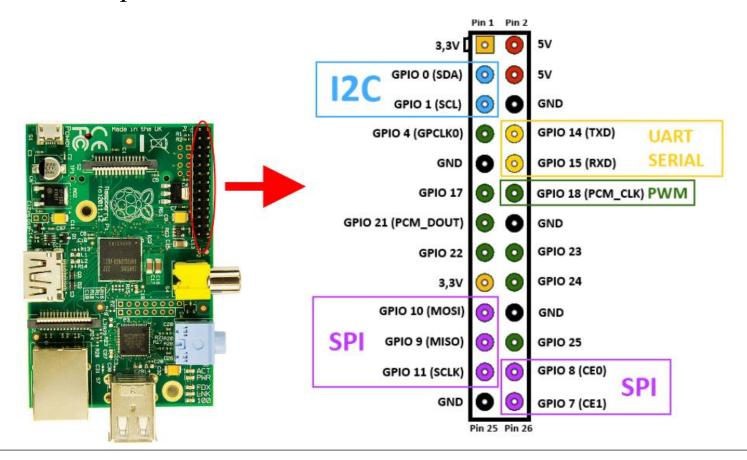
Inter Integrated Circuit (I2C)

- Protocolo de comunicação serial com 2 fios
 - Serial Data (SDA) e Serial Clock (SCL)
- Opera de foram bidirecional
 - Master / Slave
 - Suporta multi máster
- Possui 3 velocidades de transferência
 - Standard: 100kbps
 - Fast-mode: 400kbps
 - High-speed mode: >3,4Mbps
- A velocidade de transferência é controlada pelo mestre da comunicação

Inter Integrated Circuit (I2C)

Universal Asynchronous Receiver/Transmitter (UART)

- Transmissão e recepção assíncronas
 - Não existe mestre ou escravo no barramento
- Comunicação é ponto a ponto
- Exige dois sinais básicos
 - Rx (para recepção) e Tx (para transmissão)
- Velocidade de operação
 - 2400 bps, 4800 bps, 9600 bps, ..., 115200 bps


Bit number	1	2	3	4	5	6	7	8	9	10	11	
	Start bit		5–8 data bits								Stop bit(s)	
	Start	Data 0	Data 1	Data 2	Data 3	Data 4	Data 5	Data 6	Data 7	Stop		

Apresentação

Contextualização

Exemplos de comunicação serial

- Realizar o tutorial disponível no site
 - Será explorado o uso da UART

