
Time provisioning Evaluation of KVM, Docker and

Unikernels in a Cloud Platform

Bruno Xavier

Pontifı́cia Universidade Católica

do Rio Grande do Sul (PUCRS)

Email: bruno.xavier@acad.pucrs.br

Tiago Ferreto

Pontifı́cia Universidade Católica

do Rio Grande do Sul (PUCRS)

Email: tiago.ferreto@pucrs.br

Luis Jersak

Pontifı́cia Universidade Católica

do Rio Grande do Sul (PUCRS)

Email: luis.jersak@acad.pucrs.br

Abstract—Unikernels are a promising alternative for applica-
tion deployment in cloud platforms. They comprise a very small
footprint, providing better deployment agility and portability
among virtualization platforms. Similar to Linux containers, they
are a lightweight alternative for deploying distributed applica-
tions based on microservices. However, the comparison of uniker-
nels with other virtualization options regarding the concurrent
provisioning of instances, as in the case of microservices-based
applications, is still lacking. This paper provides an evaluation
of KVM (Virtual Machines), Docker (Containers), and OSv
(Unikernel), when provisioning multiple instances concurrently
in an OpenStack cloud platform. We confirmed that OSv out-
performs the other options and also identified opportunities for
optimization.

I. INTRODUCTION

The agility on systems provisioning has been a subject of

study with the rise of cloud computing. Applications, once

designed in a monolithic way on top of dedicated machines,

are now decomposed into smaller, specialized and distributed

services. This approach aims to deliver the benefits of elas-

ticity, portability, scalability and isolation faults. Furthermore,

the provided facilities of cloud computing have increased the

ephemeral property of systems in a way that applications are

in constant change, which implies in a systematic deployment

of new images throughout virtualized environments.

At the same time, lightweight virtualization systems, such

as Linux containers [1] and Unikernels [2], have become

alternatives to traditional operating systems running on top

of hypervisors [3]. The former, popularized by frameworks

like Docker [4], is already widely supported on private and

public cloud platforms. The latter is a recent architecture

model that still requires more studies. Unikernels are self-

contained instances in which kernel and application are com-

piled together in the same address space. By compiling only

the abstractions needed for the application purpose, Unikernels

remove unnecessary components resulting in smaller images

with faster boot time.

In this work, we evaluated the provisioning time using

OSv [5](Unikernel), Docker (Container), and KVM (Virtual

Machine) on top of an OpenStack cloud platform [6]. Open-

Stack is currently one of the most popular platforms used

for both private and public clouds. Through the utilization

Study developed by the Research Group of the PDTI 01/2015, financed by
Dell Computers of Brazil Ltd. with resources of Brazilian Law 8.248/91.

of the Rally benchmark tool [7] and OSProfiler library [8],

we conducted the spawning of several instances to investigate

the impact on provisioning time under parallel conditions. We

choose the OSv project as the Unikernel representative, since it

supports different hypervisors and language runtimes, enabling

a fairer comparison to Docker and KVM.

II. BACKGROUND

This section presents an overview on the virtualization

platforms used in our evaluation: KVM, Docker and OSv.

A. KVM (Kernel-based Virtual Machine)

KVM (Kernel-based Virtual Machine) is an open source

solution that converts Linux in a Type 1 hypervisor. Due to the

utilization of full virtualization and hardware assist, KVM en-

ables running VMs with unmodified guest operating systems.

KVM is implemented as a loadable kernel module, reducing

the hypervisor size significantly through the reutilization of a

large extent of Linux kernel facilities. In KVM, every VM is

implemented as a regular Linux process.

B. Docker

Docker is an open-source platform for the deployment and

management of Linux Containers. In Docker, containers are

built on top of images decoupled in a multi-layer filesystem

model. This architecture consists on multiple levels, one upon

another in a design that resembles a version control system. It

uses a technique called copy-on-write [9]. From the point of

view of a container, all layers are unified in a single vision.

However, the write operation is allowed only on the top layer.

C. OSv

OSv is an open-source unikernel framework, designed spe-

cially for deployment flexibility. It supports different hyper-

visors, such as KVM, Xen, VMWare and VirtualBox, as

opposed to MirageOS and ClickOS, which only support the

Xen hypervisor. OSv is compatible to most pre-compiled codes

of the Linux OS, due to the utilization of a dynamic linker to

translate POSIX calls. It also provides execution environments

for different languages, such as Java, C and Ruby, which

accelerates application development.

2016 16th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing

978-1-5090-2453-7/16 $31.00 © 2016 IEEE

DOI 10.1109/CCGrid.2016.86

277

D. Related Work

Several studies investigate the provisioning time on cloud

computing. Most of them, with comparisons between private

platforms or public providers. Moreover, some studies propose

optimizations throughout the provisioning workflow.

In [10], the authors provide a comparison between Open-

Stack and OpenNebula. An evaluation is done considering

provision of ephemeral instances, provisioning with additional

volumes, and provisioning without caching inside the com-

pute nodes. The study decoupled the provisioning time in

the following steps: request time, schedule time, platform

communication overhead and instance creation time.

Another evaluation [11] does a comparison among three

public cloud providers considering different resource config-

urations of virtual machines: image size and instance type.

In addition, the work investigated other conditions such as:

provisioning in a particular time of the day and in different

data center locations. Since the research was made on cloud

providers, the hypervisor time was abstracted.

In [12], among several performance aspects, the provision-

ing time is measured across distinct open source platforms

(Eucalyptus and OpenNebula), along with Amazon EC2. In

this case, Xen was chosen as the hypervisor for the open-

source platforms. The benchmarks were based on a workload

spread in a set of services on top of virtual machines to

simulate the Wikipedia service.

In [13], an experiment is done with the simultaneous pro-

visioning of 512 virtual machines on top of OpenNebula. The

study was focused on the optimization of OpenNebula in terms

of provisioning time.

III. EVALUATION

In OpenStack, an instance is considered ready when it

reaches a running state. This status differs for Docker and

regular virtual machines. In Docker it represents a container in

execution, and in KVM, it is a virtual machine ready to launch

the operating system. Therefore, we chose to decompose the

provisioning time in the following stages:

1) Instance and Operating System startup: Regarding

OSv/KVM and Linux/KVM, this stage is separated in

virtual machine and operating system startup. As for

Docker, it is the time for the container process to get

started;

2) Image creation: Comprises the copy of the image

from the Glance repository and its preparation inside

the compute node. For OSv/KVM and Linux/KVM,

the image is converted to the RAW format, resized to

the desired flavor and converted again to the QCOW2

format, which represents the final disk image. Docker

has to import the image and generate the metadata based

on the backend layered filesystem model;

3) Openstack Overhead: Considers the overhead gener-

ated by the platform with internal communication.

We chose the Rally Benchmark tool [7] to spawn the

instances. In order to measure the individual steps, internal

calls were traced with the OSProfiler library [8]. Nevertheless,

not all OpenStack projects have included the OSProfiler in

their current versions, which led us to write and apply patches

inside Nova and Neutron projects. The results were grouped

in three scenarios, which denotes the concurrent provisioning

of 10, 20 and 30 instances. In this way, we could analyse the

impact of the concurrency growth on a particular stage.

Our test environment is formed by two nodes. One as the

controller and the other one as a compute node. The machines

configuration is described in Table 1. A gigabit switch inter-

connects both machines, providing a theorical throughput of

1Gbps. On both nodes, we have installed OpenStack version

Kilo 2015.1.1 on top of a Linux Ubuntu 14.04. Docker (version

1.7.1) and the nova-docker driver were also installed on the

compute node. We have left OpenStack in the default con-

figuration except for the parameter max concurrent builds. It

was necessary to increase it to 30, since OpenStack originally

limits the concurrent provisioning for 10 instances.

Role CPU Memory Virtual Cores

Controller node Intel(R) Xeon(R) CPU E5-2650

2.00GHz

64GB 32

Compute node Intel(R) Xeon(R) CPU E5-2650

2.60GHz

128G 32

Table 1. Machine Specifications

Three images were built and sent to Glance. One in the

Docker TAR format and two in the QCOW2 format for both

KVM and OSv. We did not consider the variation in image

size as a factor for analysis as previous studies have already

investigated it [11], [12]. The images properties are shown

in Table 2. Regarding the available resources on the compute

node and the size of the images, a flavor was added to support

the simultaneous provisioning up to 30 instances: 512MB of

memory, 4GB for the disk and 1 vCPU.

Virtualization Format Image Size

KVM QCOW2 1.2G

Docker TAR 342M

OSv QCOW2 88M

Table 2. Images Properties

The first evaluation comprises the operating

system/container startup and the instance creation times.

As mentioned earlier, Docker does not have the latter, since

the spawning is already the API call to start the container

process. Figure 1 shows the results. Concerning the Operating

System/Container startup times, OSv/KVM and Docker

presented almost the same means for all scenarios, below one

second. Linux/KVM, on the other hand, showed a notable

growth, increasing by 92% and 48% with 20 and 30 instances

respectively. Regarding the variation, both Docker and

Linux/KVM increased the distance between the first and the

last instance/container (Figure 2). The internal synchronism

inside the Docker Engine implied in the serialisation of the

278

load. Therefore, the addition of concurrency will always

increase the overall time, albeit this fact should only be

relevant to a larger number of containers. There is no

difference in the instance creation times for Linux/KVM and

OSv/KVM since the image has the same format and the size

had no influence in the scenarios.

As mentioned before, the image creation step differs for

Docker and KVM (QCOW2) images. Concerning KVM, none

of the image measures was impacted by the concurrency, yet

the times are presented in Table 3. The copy from Glance

repository is the only factor which will impact in this stage,

depending on the image size. On the other hand, containers

showed a degradation. Despite the image copy from Glance,

which did not change, the parallel pressure on the same image

increased the times, presenting a variation between the first and

the last started container. This behaviour is explained by the

decompression of the images to check its metadata before the

import, causing a serialisation managed by the Docker API

(Figure 3).

Virtualization Copy from

Glance

Convertion Resize Disk Creation

OSv/KVM 1000ms 300ms 400ms 200ms

Linux/KVM 12000ms 300ms 400ms 200ms

Table 3. OSv and KVM Image Times

Figure 4 shows the overhead generated by the platform

across the concurrency scenarios. We defined overhead as the

operations executed by OpenStack till the spawning begins.

It comprises the internal HTTP communication among the

services; RPC calls within the same service and database

calls. In this sense, the platform has a significant impact on

the overall provisioning time. Despite the aspects that make

either Docker as OSv faster than regular virtual machines,

they still depend on the internal cloud mechanisms to get the

instances/containers ready. Like the instance creation stage,

both OSv/KVM and Linux/KVM show the same means, since

they rely on the same provisioning driver. Docker presented

less overhead, although both drivers were impacted by the

concurrency, increasing the times from 12 to 25 seconds, and

from 7 to 18 seconds, for KVM and Docker respectively.

Figure 5 depicts the overall provisioning times, covering the

request till the total workload of instances/containers become

ready in OpenStack. This stage does not include the image

copy from the Glance repository, which is strictly related to

the image size. Moreover, the operating system overhead was

suppressed, that can strongly vary concerning Linux/KVM

instances and somewhat with Docker containers, depending

on the concurrency load. OSv/KVM, on the other hand, as

presented in the first evaluation, has no variation in the op-

erating system startup, therefore, outperforming Linux/KVM

instances. Concerning Docker, the provisioning is mainly

impacted throughout the image import.

0.52

3.3

6.98

3.3
0.72

0.82

3.07

13.43

3.07
0.71

0.97

3.11

19.92

3.11
0.78

10 20 30

0

5

10

15

20

docker

linux/kvm

osv/kvm

docker

linux/kvm

osv/kvm

docker

linux/kvm

osv/kvm

T
im

e
(

se
co

nd
s

)

OS/Container Startup Instance Startup

Figure 1: Instance and Operating System/Container Startup for

10, 20 and 30 instances

10

15

20

25

30

20 30
Concurrent Instances

T
im

e
(s

ec
on

ds
)

(a) Linux/KVM OS startup variation

0.5

1.0

1.5

2.0

2.5

10 20 30
Concurrent Instances

T
im

e
(s

ec
on

ds
)

(b) Container startup variation

Figure 2: Boot time variation for Linux/KVM and Docker

IV. CONCLUSIONS AND FUTURE WORK

In this work we have conducted an experiment using

Docker, Linux/KVM and OSv/KVM to evaluate the provision-

ing time within these virtualization systems on an OpenStack

cloud platform. In this context, we have decomposed each

stage of a conventional provisioning pipeline to identify the

impact of each step on the technologies. In our results, OSv

outperforms Docker and Linux/KVM in the circumstances we

propose. It involves the initial provisioning of instances in an

environment with absence of caching. In a future work, we

intend to extend the study to different conditions. As Docker

has a multi-layered file system, it allows the incremental

deployment in case the compute node already cached its

279

15

17

19

21

23

25

27

29

10 20 30
Concurrent Instances

T
im

e
(s

ec
on

ds
)

Figure 3: Docker import time variation

7

12 12 12

20 20

18

25 25

0

10

20

10 20 30
Concurrent Instances

T
im

e
(s

ec
on

ds
)

docker

linux/kvm

osv/kvm

Figure 4: OpenStack communication overhead

underlying layers. On the other hand, OSv has to be fully

recompiled and re-provisioned. Hence, a new experiment may

be done with the provisioning of just the changed layers

concerning Docker. The work was also based on the same

image spawned by multiple instances. In this sense, a further

investigation will be done with a full stack application.

Despite the focus on the virtualization types, we observed

a significant impact caused by the cloud platform in the

overhead of the overall provisioning time. Therefore, this work

13

22

13

16

30

16

22

38

22

0

10

20

30

40

10 20 30
Concurrent Instances

T
im

e
(s

ec
on

ds
)

docker

linux/kvm

osv/kvm

Figure 5: OpenStack full workload times

may contribute to future studies considering different IaaS

environments and optimizations in OpenStack to improve the

deployment time of lightweight virtualization systems.

REFERENCES

[1] LXC. Acessed on: 20/03/2015. [Online]. Available: https:
//linuxcontainers.org

[2] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T. Gazag-
naire, S. Smith, S. Hand, and J. Crowcroft, Unikernels: library operating

systems for the cloud. ACM, May 2013, vol. 41.
[3] G. J. Popek and R. P. Goldberg, “Formal requirements for virtualizable

third generation architectures,” Communications of the ACM, vol. 17,
no. 7, pp. 412–421, Jul. 1974.

[4] What is Docker? Acessed on: 20/03/2015. [Online]. Available:
https://www.docker.com/whatisdocker

[5] A. Kivity, D. Laor, G. Costa, P. Enberg, and N. Har’El,
“OSv—Optimizing the Operating System for Virtual Machines,” 2014

USENIX Annual . . . , 2014.
[6] OpenStack. Acessed on: 20/03/2015. [Online]. Available: https:

//www.openstack.org
[7] OpenStack Rally. Acessed on: 20/07/2015. [Online]. Available:

https://wiki.openstack.org/wiki/Rally
[8] OSProfiler. Acessed on: 20/07/2015. [Online]. Available: https:

//github.com/stackforge/osprofiler
[9] S. Kasampalis, “Copy on write based file systems performance analysis

and implementation.”
[10] G. Carrozza, L. Battaglia, V. Manetti, A. Marotta, R. Canonico, and

S. Avallone, “On the Evaluation of VM Provisioning Time in Cloud
Platforms for Mission-Critical Infrastructures,” Cluster, Cloud and Grid

Computing (CCGrid), 2014 14th IEEE/ACM International Symposium

on, pp. 802–810, 2014.
[11] M. Mao and M. Humphrey, “A Performance Study on the VM Startup

Time in the Cloud,” in Cloud Computing (CLOUD), 2012 IEEE 5th

International Conference on. IEEE, 2012, pp. 423–430.
[12] Y. Ueda and T. Nakatani, “Performance variations of two open-source

cloud platforms,” Workload Characterization (IISWC), 2010 IEEE In-

ternational Symposium on, pp. 1–10, 2010.
[13] K. Razavi, S. Costache, A. Gardiman, K. Verstoep, and T. Kielmann,

“Scaling VM Deployment in an Open Source Cloud Stack,” in Sci-

enceCloud ’15: Proceedings of the 6th Workshop on Scientific Cloud

Computing. ACM Request Permissions, Jun. 2015, pp. 3–10.

280

