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Platform	Overview
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Homogeneous	MPSoC
¢ Each	PE	has	the	same	architecture

PE	is	composed	of	one	processor,	local	memory,	DMNI,	and	
router

6x6 MPSoC instance
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Platform Organization
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Cluster-based	organization
¢ Provides	scalability	of	management	and	traffic	isolation
¢ Reclustering is	allowed
¢ Each	cluster	is	managed	by	a	cluster	manager	(CM)
¢ One	CM	is	responsible	for	access	a	external	repository	
containing	the	application	task	code
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Architectural Features
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Processor
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Plama v2	microprocessor1	

¢ 32	bits	RISC
¢ 3-stage	pipeline
¢ MIPS	I	ISA
¢ Add.	pagination	support
¢ UART
¢ Memory	mapped	registers
¢ syscall
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1. http://opencores.org/project,plasma



Local Memory
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Scratchpad	memory
¢ RAM
¢ Dual	port
¢ Size	is	parameterizable
¢ Pages are logically 
managed

	CM	–	Cluster	Manager	PE	/	SP	–	Slave	PE
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The	memory	implement	a	true	
dual-port	interface	enabling	
simultaneous	access	of	processor	
and	DMNI



DMNI
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Direct	Memory	Network	
Interface2

	CM	–	Cluster	Manager	PE	/	SP	–	Slave	PE
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2. DMNI: A Specialized Network Interface for NoC-based MPSoCs. In: ISCAS, 2016.

The	DMNI	implements	a	direct	interface	between	the	
local	memory	and	the	NoC.
It	is	an	approach	specialized	to	design	of	NoC-based	
MPSoC	systems



Router
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Hermes	NoC3
¢ XY	addressing
¢ XY	and	WF	routing
¢ Packet	Switching
¢ Wormhole	with	credit-based	

flow	control
¢ Takes	5	clock	cycles	to	arbitrage	

and	routing	a	packet 	CM	–	Cluster	Manager	PE	/	SP	–	Slave	PE

AP
PL
IC
AT
IO
N
	

RE
PO

SI
TO

RY

SP SP SP SP SP SP

SP SP SP SP SP SP

CM SP SP CM SP SP

SP SP SP SP SP SP

SP SP SP SP SP SP

CM SP SP CM SP SP

Processor
page	3
task

page	2
task

page	1
task

page	0	
kernel

DMNI

M
em

or
y

Router

Processing	Element	-	PE

HeMPS v7.3	uses	the	simplest	Hermes	NoC	implementation.	There	are	
several	others	Hermes	derivations

¢ Asynchronous
¢ Virtual-channel
¢ Frequency	Scaling
¢ Circuit-Switching
¢ Multicast,	…

3.	HERMES:	an	infrastructure	for	low	area	overhead	packet-switching	networks	on	chip.	In	Jornal of	Integration	on	VLSI,	2004



NoC packet and message structure
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From	the	NoC	point	of	view,	the	packet	has	a	header and	a	
payload

From	a	task	point	of	view	a	message	contains
¢ Message	header

Ø Encapsulates	the	packet	and	service	header
¢ Message	payload

Ø Optional	field.	It	may	contain	for	example	user	data	or	an	object	
code	of	a	task

Target
Address

Payload
Size

Service
Header Service	Payload	(optional)

Packet	header Packet	payload

Message	header Message	payload



Application Repository
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An	external	memory	
(off-chip)

Stores	the	application	
description	and	its	task	
object	code
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Logical Features
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Logical Features 
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Logical	Features	are	implemented	by	software	
components

¢ µkernels
ØSlave	
ØManager

¢ User’s	tasks

Logical	Features:
¢ System	Management
¢ User’s	Application	Execution



Logical Features
System Management
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Cluster-based Management
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Means	that	the	system	
is	logically	divided	into	
groups	of	processors	
managed	by	one	
Cluster	Manager	(CM)

	CM	–	Cluster	Manager	PE	/	SP	–	Slave	PE
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CM	is	a	PE	that	runs	the	manager µkernel
Performs	management	functions

¢ Task	mapping
¢ Task	migration
¢ Reclustering



Task Mapping
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	CM	–	Cluster	Manager	PE	/	SP	–	Slave	PE
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Task Mapping
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	CM	–	Cluster	Manager	PE	/	SP	–	Slave	PE
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Task Mapping
17

	CM	–	Cluster	Manager	PE	/	SP	–	Slave	PE
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Task Mapping
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	CM	–	Cluster	Manager	PE	/	SP	–	Slave	PE
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Reclustering
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	CM	–	Cluster	Manager	PE	/	SP	–	Slave	PE
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Reclustering
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	CM	–	Cluster	Manager	PE	/	SP	–	Slave	PE
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Reclustering
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	CM	–	Cluster	Manager	PE	/	SP	–	Slave	PE
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Reclustering
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	CM	–	Cluster	Manager	PE	/	SP	–	Slave	PE
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Reclustering
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	CM	–	Cluster	Manager	PE	/	SP	–	Slave	PE
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Task Migration
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	CM	–	Cluster	Manager	PE	/	SP	–	Slave	PE
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Task Migration
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Migration	occurs	into	steps
¢ Task	keeps	running	during	its	some	migration	steps
¢ Task	is	only	stopped	when	safe	points	are	automatically	
identified	by	the	migration	process	(software)

¢ Safe	point	are	moment	which	the	task	is	not	waiting	for	a	
message	from	another	task

2

Task keeps running

Safe state

Task is stoped and 
the context is saved

3 4

5

Context is restored 
and task resume 

its execution

6

1

Task recreation overhead Migration overhead
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1. Code migration

2. data migration



Logical Features
User’s Application Execution
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Application
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An	application	is	a	set	of	communicating	tasks (each	
task	is	a	.c	file)
Application	are	described	as	a	CTG:	Communicating	
Task	Graph.	Example	of	applications:

RECOG

P1

P2

P3

P4

BANK

DTW

INPUT IVLC IQUANT OUTPUTIDCT

MJPEG



Task
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Task	is	a	.c	file	which	perform	some	computation	and	
communication	with	other(s)	task(s)

Example of a task code

Example of an application task files

RECOG

P1

P2

P3

P4

BANK

DTW



User’s Application Execution
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SP	are	dedicated	to	execute	the	user	applications
SP	is	a	PE	that	runs	the	slave µkernel
Performs	support	for	user	task	execution

¢ TCB	– Task	Control	Block
¢ Inter-task	communication
¢ Scheduling
¢ Interruption	Handling
¢ API	– by	System	Calls
¢ Idle

	CM	–	Cluster	Manager	PE	/	SP	–	Slave	PE
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API
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HeMPS API	(MPI-based)
¢ void Send(Msg *	msg,	unsigned	int target	_task_ID)
¢ void Receive	(Msg *	msg,	unsigned	int source	_task_ID)
¢ unsigned	int GetTick(void)
¢ void Echo(char	*	string)
¢ void Exit(char	*	string)

Task	communicate	using	Send and	Receive primitives



Inter-task Communication
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Task	communicate	using	Send and	Receive primitives

Consumer	
Task

Producer	
Task

Case	2:	Send()	after	REQUEST,	deliveries	the	msg

MESSAGE	REQUEST1

MESSAGE	DELIVERY1

Case	1:	Send()	before	REQUEST,	store	msg	in	PIPE

Receive()

TIM
E

MESSAGE	REQUEST2 Receive()

MESSAGE	DELIVERY2

pipe→

pipe→

pipe→
READY RUNNING

WAITING

(a) (b)
pipe→
pipe→



Communication Layers
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Application
¢ Send the messsage by calling the Send API	primitive

ukernel

Application

Processor « DMNI

Application

ukernel

Processor « DMNI

Interconnection - NoC



Communication Layers
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ukernel programs	the	DMNI to	sendmemory	block	in	
a	packet	format

ukernel

Application

Processor « DMNI

Application

ukernel

Processor « DMNI

Interconnection - NoC



Communication Layers
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DMNI (send)	copies	packet	from	memory	and	inject	into	
NoC

¢ Can	perform	serialization
¢ Must	to	implement	the	NoC	flow	control

ukernel

Application
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Communication Layers
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send_packet():	function	that	programs	DMNI to	copy	a	
memory	block	to	the	NoC

Ø Assumes	that	the	memory	block	is	in	the	format	of	a	NoC	
packet
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DMNI - Send
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Objective:	copy	a	memory	block	injecting	into	the	NoC
¢ The	particular	feature	of	this	module	is	the	possibility	to	
transfer	two	memory	blocks	with	one	software	
programming

send_packet()	API	is	responsible	for	to	expose	the	DMNI
send	feature	to	the	software	by	configuring	MMR



Communication Layers
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NoC	– Network	on	Chip
¢ Send	the	packet	to	the	destination	PE
¢ Packet	is	divided	in	flits

ukernel

Application

Processor « DMNI

Application

ukernel

Processor « DMNI

Interconnection - NoC



Communication Layers
38

NoC	– Network	on	Chip
¢ Send	the	packet	to	the	destination	PE
¢ Packet	is	divided	in	flits

ukernel

Application

Processor « DMNI

Application
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Processor « DMNI

Interconnection - NoC



Communication Layers
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DMNI (receive)	copies	packet	from	NoC	and	transfers	into	memory
¢ Can	perform	deserialization
¢ Must	to	implement	the	NoC	flow	control

ukernel

Application

Processor « DMNI

Application

ukernel

Processor « DMNI

Interconnection - NoC



Communication Layers
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read_packet():	function	that	programs	the	DMNI to	
copy	a	NoC	packet	to	a	memory	block

Ø Fired	by	a	interruption
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DMNI - Receive
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Objective:	receiving	a	NoC	packet	coping	to	a	specified	memory	
address

¢ Also	it	generates	a	software	interruption	when	detects	a	incoming	
packet

receive_packet()	API	is	responsible	for	expose	the	DMNI receive	
feature	to	the	software	by	configuring	MMR

¢ Called	through	a	software	interruption,	generated	when	a	incoming	
packet	is	detected	by	DMNI



Communication Layers
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ukernel
¢ Handle	packets	from	DMNI by	implementing	a	interruption	handling	

mechanism	(OS_InterruptServiceRoutine)
¢ Is	responsible	to	program	the	DMNI

ukernel

Application

Processor « DMNI

Application

ukernel

Processor « DMNI

Interconnection - NoC



Communication Layers
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Application
¢ Receive	the	packet	by	calling	the	Receive primitive	API

ukernel

Application

Processor « DMNI

Application

ukernel

Processor « DMNI

Interconnection - NoC



Debugging
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Debugging
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Debugging	can	be	performed	from	two	perspective

From	the	system	developer	viewpoint
¢ By	using	the	HeMPS Debugger	Tool	(HDT)

From	the	user	viewpoint	
¢ By	using	Deloream

Ø Currently	integrated	into	HDT



Debugging Framework
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Data	Extraction	(back-end)
¢ Extracts	simulated	data	from	platform
¢ Inserts	into	a	DB	or	generated	log	files
¢ Data	extraction	following	a	standard	to	be	generic	

Graphical	Debugging	(front-end)
¢ Read extracted data from DB or log 
files

¢ Enable	easy	debugability by the
graphical	features

Simulator

MPSoC	Description
(RTL, TLM, Virtual)

Database

Proposed Debugging 
Graphical Tool Set

Others debugging 
front-end

Scope	of	the	
proposed	
framework

Data	Extraction	Layer	
(DEL)

Operating 
System object 

code

Set of 
applicatons 
object code



Overview
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Database
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Simulator

MPSoC	Description
(RTL, TLM, Virtual)

Proposed Debugging 
Graphical Tool Set

Operating 
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code

Set of 
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object code

platform.cfg

packet.cfg

CPU.cfg

Data	Extraction	Layer	
(DEL)

waveforms

Log files

GDB

queries

table	insertions



Main View
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Debug:
¢ Communication	flows
¢ Routing	Algorithms
¢ Link	utilization
¢ Management	Protocols
¢ Parallel	communications



Mapping View
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Debug
¢ Task	mapping	algorithm
¢ PEs occupation
¢ Task	execution	status



CPU Utilization View
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Enables	the	designer	to	verify	the	CPU	use	by	
different	software	parts	over	the	time
Debug

¢ Scheduling	algorithms	
¢ OS	and	task	bugs
¢ Other	software	malfucntions



Deloream
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Used	to	debug	the	application’s	tasks	logs
It	is	a	debugging tool	for	the	application	developer


