
PUCRS University, Computer Science Department, 
Porto Alegre, Brazil

1

HeMPS Platform
v7.3

Marcelo	Ruaro,	Eduardo	Wachter,	Guilherme Madalozzo,	Guilherme Castilhos,	André	
del	Mestre

Fernando	G.	Moraes



Platform	Overview
2

Homogeneous	MPSoC
¢ Each	PE	has	the	same	architecture

PE	is	composed	of	one	processor,	local	memory,	DMNI,	and	
router

6x6 MPSoC instance

 PE Architecture
PE PE PE PE PE PE

PE PE PE PE PE PE

PE PE PE PE PE PE

PE PE PE PE PE PE

PE PE PE PE PE PE

PE PE PE PE PE PE

Processor

LO
CAL	M

EM
O
RY

Router DMNI



Platform Organization
3

Cluster-based	organization
¢ Provides	scalability	of	management	and	traffic	isolation
¢ Reclustering is	allowed
¢ Each	cluster	is	managed	by	a	cluster	manager	(CM)
¢ One	CM	is	responsible	for	access	a	external	repository	
containing	the	application	task	code

	CM	–	Cluster	Manager	PE	/	SP	–	Slave	PE

AP
PL
IC
AT
IO
N
	

RE
PO

SI
TO

RY
SP SP SP SP SP SP

SP SP SP SP SP SP

CM SP SP CM SP SP

SP SP SP SP SP SP

SP SP SP SP SP SP

CM SP SP CM SP SP

Processor
page	3
task

page	2
task

page	1
task

page	0	
kernel

DMNI

M
em

or
y

Router

Processing	Element	-	PE



Architectural Features

4



Processor
5

Plama v2	microprocessor1	

¢ 32	bits	RISC
¢ 3-stage	pipeline
¢ MIPS	I	ISA
¢ Add.	pagination	support
¢ UART
¢ Memory	mapped	registers
¢ syscall

	CM	–	Cluster	Manager	PE	/	SP	–	Slave	PE

AP
PL
IC
AT
IO
N
	

RE
PO

SI
TO

RY

SP SP SP SP SP SP

SP SP SP SP SP SP

CM SP SP CM SP SP

SP SP SP SP SP SP

SP SP SP SP SP SP

CM SP SP CM SP SP

Processor
page	3
task

page	2
task

page	1
task

page	0	
kernel

DMNI

M
em

or
y

Router

Processing	Element	-	PE

1. http://opencores.org/project,plasma



Local Memory
6

Scratchpad	memory
¢ RAM
¢ Dual	port
¢ Size	is	parameterizable
¢ Pages are logically 
managed

	CM	–	Cluster	Manager	PE	/	SP	–	Slave	PE

AP
PL
IC
AT
IO
N
	

RE
PO

SI
TO

RY

SP SP SP SP SP SP

SP SP SP SP SP SP

CM SP SP CM SP SP

SP SP SP SP SP SP

SP SP SP SP SP SP

CM SP SP CM SP SP

Processor
page	3
task

page	2
task

page	1
task

page	0	
kernel

DMNI

M
em

or
y

Router

Processing	Element	-	PE

The	memory	implement	a	true	
dual-port	interface	enabling	
simultaneous	access	of	processor	
and	DMNI



DMNI
7

Direct	Memory	Network	
Interface2

	CM	–	Cluster	Manager	PE	/	SP	–	Slave	PE

AP
PL
IC
AT
IO
N
	

RE
PO

SI
TO

RY

SP SP SP SP SP SP

SP SP SP SP SP SP

CM SP SP CM SP SP

SP SP SP SP SP SP

SP SP SP SP SP SP

CM SP SP CM SP SP

Processor
page	3
task

page	2
task

page	1
task

page	0	
kernel

DMNI

M
em

or
y

Router

Processing	Element	-	PE

2. DMNI: A Specialized Network Interface for NoC-based MPSoCs. In: ISCAS, 2016.

The	DMNI	implements	a	direct	interface	between	the	
local	memory	and	the	NoC.
It	is	an	approach	specialized	to	design	of	NoC-based	
MPSoC	systems



Router
8

Hermes	NoC3
¢ XY	addressing
¢ XY	and	WF	routing
¢ Packet	Switching
¢ Wormhole	with	credit-based	

flow	control
¢ Takes	5	clock	cycles	to	arbitrage	

and	routing	a	packet 	CM	–	Cluster	Manager	PE	/	SP	–	Slave	PE

AP
PL
IC
AT
IO
N
	

RE
PO

SI
TO

RY

SP SP SP SP SP SP

SP SP SP SP SP SP

CM SP SP CM SP SP

SP SP SP SP SP SP

SP SP SP SP SP SP

CM SP SP CM SP SP

Processor
page	3
task

page	2
task

page	1
task

page	0	
kernel

DMNI

M
em

or
y

Router

Processing	Element	-	PE

HeMPS v7.3	uses	the	simplest	Hermes	NoC	implementation.	There	are	
several	others	Hermes	derivations

¢ Asynchronous
¢ Virtual-channel
¢ Frequency	Scaling
¢ Circuit-Switching
¢ Multicast,	…

3.	HERMES:	an	infrastructure	for	low	area	overhead	packet-switching	networks	on	chip.	In	Jornal of	Integration	on	VLSI,	2004



NoC packet and message structure
9

From	the	NoC	point	of	view,	the	packet	has	a	header and	a	
payload

From	a	task	point	of	view	a	message	contains
¢ Message	header

Ø Encapsulates	the	packet	and	service	header
¢ Message	payload

Ø Optional	field.	It	may	contain	for	example	user	data	or	an	object	
code	of	a	task

Target
Address

Payload
Size

Service
Header Service	Payload	(optional)

Packet	header Packet	payload

Message	header Message	payload



Application Repository
10

An	external	memory	
(off-chip)

Stores	the	application	
description	and	its	task	
object	code

	CM	–	Cluster	Manager	PE	/	SP	–	Slave	PE

AP
PL
IC
AT
IO
N
	

RE
PO

SI
TO

RY

SP SP SP SP SP SP

SP SP SP SP SP SP

CM SP SP CM SP SP

SP SP SP SP SP SP

SP SP SP SP SP SP

CM SP SP CM SP SP

Processor
page	3
task

page	2
task

page	1
task

page	0	
kernel

DMNI

M
em

or
y

Router

Processing	Element	-	PE



Logical Features

11



Logical Features 
12

Logical	Features	are	implemented	by	software	
components

¢ µkernels
ØSlave	
ØManager

¢ User’s	tasks

Logical	Features:
¢ System	Management
¢ User’s	Application	Execution



Logical Features
System Management

13



Cluster-based Management
14

Means	that	the	system	
is	logically	divided	into	
groups	of	processors	
managed	by	one	
Cluster	Manager	(CM)

	CM	–	Cluster	Manager	PE	/	SP	–	Slave	PE

AP
PL
IC
AT
IO
N
	

RE
PO

SI
TO

RY

SP SP SP SP SP SP

SP SP SP SP SP SP

CM SP SP CM SP SP

SP SP SP SP SP SP

SP SP SP SP SP SP

CM SP SP CM SP SP

Processor
page	3
task

page	2
task

page	1
task

page	0	
kernel

DMNI

M
em

or
y

Router

Processing	Element	-	PE

CM	is	a	PE	that	runs	the	manager µkernel
Performs	management	functions

¢ Task	mapping
¢ Task	migration
¢ Reclustering



Task Mapping
15

	CM	–	Cluster	Manager	PE	/	SP	–	Slave	PE

AP
PL
IC
AT
IO
N
	

RE
PO

SI
TO

RY
SP SP SP SP SP SP

SP SP SP SP SP SP

CM SP SP CM SP SP

SP SP SP SP SP SP

SP SP SP SP SP SP

CM SP SP CM SP SP

App

App.	is	stored	into	
AR	and	request	to	

execute	into	
MPSoC



Task Mapping
16

	CM	–	Cluster	Manager	PE	/	SP	–	Slave	PE

AP
PL
IC
AT
IO
N
	

RE
PO

SI
TO

RY
SP SP SP SP SP SP

SP SP SP SP SP SP

CM SP SP CM SP SP

SP SP SP SP SP SP

SP SP SP SP SP SP

CM SP SP CM SP SP

App

App.	is	stored	into	
AR	and	request	to	

execute	into	
MPSoC



Task Mapping
17

	CM	–	Cluster	Manager	PE	/	SP	–	Slave	PE

AP
PL
IC
AT
IO
N
	

RE
PO

SI
TO

RY
SP SP SP SP SP SP

SP SP SP SP SP SP

CM SP SP CM SP SP

SP SP SP SP SP SP

SP SP SP SP SP SP

CM SP SP CM SP SP

App

CM	handles	the	
request	and	select	
an	appropriated	
cluster	to	receive	

the	App	
description



Task Mapping
18

	CM	–	Cluster	Manager	PE	/	SP	–	Slave	PE

AP
PL
IC
AT
IO
N
	

RE
PO

SI
TO

RY
SP SP SP SP SP SP

SP SP SP SP SP SP

CM SP SP CM SP SP

SP SP SP SP SP SP

SP SP SP SP SP SP

CM SP SP CM SP SP

CM	start	to	map	
the	application’s	
tasks	into	its	SP

cluster

App
t1

t2

t3

Task	code	is	
transferred	from	

AP	



Reclustering
19

	CM	–	Cluster	Manager	PE	/	SP	–	Slave	PE

AP
PL
IC
AT
IO
N
	

RE
PO

SI
TO

RY
SP SP SP SP SP SP

SP SP SP SP SP SP

CM SP SP CM SP SP

SP SP SP SP SP SP

SP SP SP SP SP SP

CM SP SP CM SP SP

t1

t2 t3

t1 t2

t3

t1

t2

t3 ?



Reclustering
20

	CM	–	Cluster	Manager	PE	/	SP	–	Slave	PE

AP
PL
IC
AT
IO
N
	

RE
PO

SI
TO

RY
SP SP SP SP SP SP

SP SP SP SP SP SP

CM SP SP CM SP SP

SP SP SP SP SP SP

SP SP SP SP SP SP

CM SP SP CM SP SP

CM	as	for	
borrowed	resource	
from	neighbors	

CMs

?
t1

t2 t3

t1 t2

t3

t1

t2

t3



Reclustering
21

	CM	–	Cluster	Manager	PE	/	SP	–	Slave	PE

AP
PL
IC
AT
IO
N
	

RE
PO

SI
TO

RY
SP SP SP SP SP SP

SP SP SP SP SP SP

CM SP SP CM SP SP

SP SP SP SP SP SP

SP SP SP SP SP SP

CM SP SP CM SP SP

CMs	response	the	
resource	request

?
t1

t2 t3

t1 t2

t3

t1

t2

t3



Reclustering
22

	CM	–	Cluster	Manager	PE	/	SP	–	Slave	PE

AP
PL
IC
AT
IO
N
	

RE
PO

SI
TO

RY
SP SP SP SP SP SP

SP SP SP SP SP SP

CM SP SP CM SP SP

SP SP SP SP SP SP

SP SP SP SP SP SP

CM SP SP CM SP SP

CM	choice	one	
resource,	releasing	
others	resources

?
t1

t2 t3

t1 t2

t3

t1

t2

t3



Reclustering
23

	CM	–	Cluster	Manager	PE	/	SP	–	Slave	PE

AP
PL
IC
AT
IO
N
	

RE
PO

SI
TO

RY
SP SP SP SP SP SP

SP SP SP SP SP SP

CM SP SP CM SP SP

SP SP SP SP SP SP

SP SP SP SP SP SP

CM SP SP CM SP SP

Task	is	allocated	
into	borrowed	

resource
t3

t1

t2 t3

t1 t2

t3

t1

t2



Task Migration
24

	CM	–	Cluster	Manager	PE	/	SP	–	Slave	PE

AP
PL
IC
AT
IO
N
	

RE
PO

SI
TO

RY
SP SP SP SP SP SP

SP SP SP SP SP SP

CM SP SP CM SP SP

SP SP SP SP SP SP

SP SP SP SP SP SP

CM SP SP CM SP SP

t1 t2

t2

Task	is	stopped	at	
source	processor	
and	migrated	to	
new	processor

Task migration is based on 
recreation process



Task Migration
25

Migration	occurs	into	steps
¢ Task	keeps	running	during	its	some	migration	steps
¢ Task	is	only	stopped	when	safe	points	are	automatically	
identified	by	the	migration	process	(software)

¢ Safe	point	are	moment	which	the	task	is	not	waiting	for	a	
message	from	another	task

2

Task keeps running

Safe state

Task is stoped and 
the context is saved

3 4

5

Context is restored 
and task resume 

its execution

6

1

Task recreation overhead Migration overhead

CODE M
IGRATION

time

Source PE

Target PE

Migration order

DATA M
IGRATION

TM in RUNNING state TM in READY state
1. Code migration

2. data migration



Logical Features
User’s Application Execution

26



Application
27

An	application	is	a	set	of	communicating	tasks (each	
task	is	a	.c	file)
Application	are	described	as	a	CTG:	Communicating	
Task	Graph.	Example	of	applications:

RECOG

P1

P2

P3

P4

BANK

DTW

INPUT IVLC IQUANT OUTPUTIDCT

MJPEG



Task
28

Task	is	a	.c	file	which	perform	some	computation	and	
communication	with	other(s)	task(s)

Example of a task code

Example of an application task files

RECOG

P1

P2

P3

P4

BANK

DTW



User’s Application Execution
29

SP	are	dedicated	to	execute	the	user	applications
SP	is	a	PE	that	runs	the	slave µkernel
Performs	support	for	user	task	execution

¢ TCB	– Task	Control	Block
¢ Inter-task	communication
¢ Scheduling
¢ Interruption	Handling
¢ API	– by	System	Calls
¢ Idle

	CM	–	Cluster	Manager	PE	/	SP	–	Slave	PE

AP
PL
IC
AT
IO
N
	

RE
PO

SI
TO

RY

SP SP SP SP SP SP

SP SP SP SP SP SP

CM SP SP CM SP SP

SP SP SP SP SP SP

SP SP SP SP SP SP

CM SP SP CM SP SP



API
30

HeMPS API	(MPI-based)
¢ void Send(Msg *	msg,	unsigned	int target	_task_ID)
¢ void Receive	(Msg *	msg,	unsigned	int source	_task_ID)
¢ unsigned	int GetTick(void)
¢ void Echo(char	*	string)
¢ void Exit(char	*	string)

Task	communicate	using	Send and	Receive primitives



Inter-task Communication
31

Task	communicate	using	Send and	Receive primitives

Consumer	
Task

Producer	
Task

Case	2:	Send()	after	REQUEST,	deliveries	the	msg

MESSAGE	REQUEST1

MESSAGE	DELIVERY1

Case	1:	Send()	before	REQUEST,	store	msg	in	PIPE

Receive()

TIM
E

MESSAGE	REQUEST2 Receive()

MESSAGE	DELIVERY2

pipe→

pipe→

pipe→
READY RUNNING

WAITING

(a) (b)
pipe→
pipe→



Communication Layers
32

Application
¢ Send the messsage by calling the Send API	primitive

ukernel

Application

Processor « DMNI

Application

ukernel

Processor « DMNI

Interconnection - NoC



Communication Layers
33

ukernel programs	the	DMNI to	sendmemory	block	in	
a	packet	format

ukernel

Application

Processor « DMNI

Application

ukernel

Processor « DMNI

Interconnection - NoC



Communication Layers
34

DMNI (send)	copies	packet	from	memory	and	inject	into	
NoC

¢ Can	perform	serialization
¢ Must	to	implement	the	NoC	flow	control

ukernel

Application

Processor « DMNI

Application

ukernel

Processor « DMNI

Interconnection - NoC



Communication Layers
35

send_packet():	function	that	programs	DMNI to	copy	a	
memory	block	to	the	NoC

Ø Assumes	that	the	memory	block	is	in	the	format	of	a	NoC	
packet

Producer	PE Consumer	PE

Hardware

µKernel

DMNI

Send

Need	to	send	
a	packet:

send_packet()

LO
CA

L	
M
EM

O
RY

DMNI	
programing

Network	On	Chip

DMNI

Receive

DMNI	
programing

Interruption

LO
CAL	M

EM
O
RY

Receive	the	
packet:

read_packet()
Paylo.	Size
Payload	...

Header

Paylo.	Size
Payload	...

Header



DMNI - Send
36

Objective:	copy	a	memory	block	injecting	into	the	NoC
¢ The	particular	feature	of	this	module	is	the	possibility	to	
transfer	two	memory	blocks	with	one	software	
programming

send_packet()	API	is	responsible	for	to	expose	the	DMNI
send	feature	to	the	software	by	configuring	MMR



Communication Layers
37

NoC	– Network	on	Chip
¢ Send	the	packet	to	the	destination	PE
¢ Packet	is	divided	in	flits

ukernel

Application

Processor « DMNI

Application

ukernel

Processor « DMNI

Interconnection - NoC



Communication Layers
38

NoC	– Network	on	Chip
¢ Send	the	packet	to	the	destination	PE
¢ Packet	is	divided	in	flits

ukernel

Application

Processor « DMNI

Application

ukernel

Processor « DMNI

Interconnection - NoC



Communication Layers
39

DMNI (receive)	copies	packet	from	NoC	and	transfers	into	memory
¢ Can	perform	deserialization
¢ Must	to	implement	the	NoC	flow	control

ukernel

Application

Processor « DMNI

Application

ukernel

Processor « DMNI

Interconnection - NoC



Communication Layers
40

read_packet():	function	that	programs	the	DMNI to	
copy	a	NoC	packet	to	a	memory	block

Ø Fired	by	a	interruption

Producer	PE Consumer	PE

Hardware

µKernel

DMNI

Send

Need	to	send	
a	packet:

send_packet()

LO
CA

L	
M
EM

O
RY

DMNI	
programing

Network	On	Chip

DMNI

Receive

DMNI	
programing

Interruption

LO
CAL	M

EM
O
RY

Receive	the	
packet:

read_packet()
Paylo.	Size
Payload	...

Header

Paylo.	Size
Payload	...

Header



DMNI - Receive
41

Objective:	receiving	a	NoC	packet	coping	to	a	specified	memory	
address

¢ Also	it	generates	a	software	interruption	when	detects	a	incoming	
packet

receive_packet()	API	is	responsible	for	expose	the	DMNI receive	
feature	to	the	software	by	configuring	MMR

¢ Called	through	a	software	interruption,	generated	when	a	incoming	
packet	is	detected	by	DMNI



Communication Layers
42

ukernel
¢ Handle	packets	from	DMNI by	implementing	a	interruption	handling	

mechanism	(OS_InterruptServiceRoutine)
¢ Is	responsible	to	program	the	DMNI

ukernel

Application

Processor « DMNI

Application

ukernel

Processor « DMNI

Interconnection - NoC



Communication Layers
43

Application
¢ Receive	the	packet	by	calling	the	Receive primitive	API

ukernel

Application

Processor « DMNI

Application

ukernel

Processor « DMNI

Interconnection - NoC



Debugging

44



Debugging
45

Debugging	can	be	performed	from	two	perspective

From	the	system	developer	viewpoint
¢ By	using	the	HeMPS Debugger	Tool	(HDT)

From	the	user	viewpoint	
¢ By	using	Deloream

Ø Currently	integrated	into	HDT



Debugging Framework
46

Data	Extraction	(back-end)
¢ Extracts	simulated	data	from	platform
¢ Inserts	into	a	DB	or	generated	log	files
¢ Data	extraction	following	a	standard	to	be	generic	

Graphical	Debugging	(front-end)
¢ Read extracted data from DB or log 
files

¢ Enable	easy	debugability by the
graphical	features

Simulator

MPSoC	Description
(RTL, TLM, Virtual)

Database

Proposed Debugging 
Graphical Tool Set

Others debugging 
front-end

Scope	of	the	
proposed	
framework

Data	Extraction	Layer	
(DEL)

Operating 
System object 

code

Set of 
applicatons 
object code



Overview
47

Database

Communication	
Table

Computation	
Table

Simulator

MPSoC	Description
(RTL, TLM, Virtual)

Proposed Debugging 
Graphical Tool Set

Operating 
System object 

code

Set of 
applicatons 
object code

platform.cfg

packet.cfg

CPU.cfg

Data	Extraction	Layer	
(DEL)

waveforms

Log files

GDB

queries

table	insertions



Main View
48

Debug:
¢ Communication	flows
¢ Routing	Algorithms
¢ Link	utilization
¢ Management	Protocols
¢ Parallel	communications



Mapping View
49

Debug
¢ Task	mapping	algorithm
¢ PEs occupation
¢ Task	execution	status



CPU Utilization View
50

Enables	the	designer	to	verify	the	CPU	use	by	
different	software	parts	over	the	time
Debug

¢ Scheduling	algorithms	
¢ OS	and	task	bugs
¢ Other	software	malfucntions



Deloream
51

Used	to	debug	the	application’s	tasks	logs
It	is	a	debugging tool	for	the	application	developer


