EMBEDDED COMPUTING

How Many System
Architectures?

Wayne Wolf, Princeton University

reviously, I talked about CPU

architectures and their 15

minutes of fame (“Whither

Warhol’s Law,” Computer,

Sept. 2002, pp. 96-97). Quite
a few instruction sets vie for attention
in the embedded systems marketplace
today. However, instruction sets pro-
vide only one piece of the design puz-
zle. An embedded system also requires
input and output, memory, and, fre-
quently, parallel processing. How best
to structure this overall system is the
fundamental architectural question in
embedded computing.

Developers often call an embedded
system’s hardware architecture a plaz-
form. The idea is that you select a
hardware platform, then write soft-
ware to fit onto it. If only things were
that easy. The platform provides the
computing resources required to run
the embedded application, and the
decisions about what hardware should
go into the platform often depend on
what sort of software you want to run.

PLATFORM CHOICES

Choosing a platform is a critical
decision in embedded system design:
Too much hardware and you’re wast-
ing money and probably power, too lit-
tle hardware and you can’t run the
application. Fitting the application
onto the platform means more than
just making sure you have all the right
I/O devices. Embedded systems have
strict performance goals, such as real-
time deadlines. If you don’t have
enough computing power of the right
type available to meet the deadline, the

system fails. Real-time operation
requires more than just having enough
computing power on average—it
requires enough power for the worst-
case scenario.

We must also consider power con-
sumption when choosing a platform.
When confronted with real-time per-
formance problems, developers tend to
respond reflexively by overdesigning
the platform and providing anywhere
from a little to a lot of extra computing
power. However, that computing
power consumes electrical power.
Battery-operated devices are always
highly sensitive about energy con-
sumption, but even systems plugged
into the wall must watch their con-
sumption because power dissipates as
heat. Fans to cool the electronics not
only cost money, but they can also be
noisy and unacceptably annoying in
many situations. For example, would
you buy an MP3 player with a fan?

Building a platform with some spe-
cialized hardware to support common
operations in the application can save
significant amounts of energy. The
InfoPad project at UC Berkeley in the
1990s clearly demonstrated the impor-
tance of specialized hardware for low-

power operation. InfoPad, one of the
first portable networked multimedia
devices, included specialized hardware
for graphics, video, and wireless oper-
ations, leaving the CPU free to perform
housekeeping functions. A special-pur-
pose unit can perform an operation
using less energy than a general-pur-
pose CPU—just eliminating the
instruction fetch and decode logic
saves significant energy. Further, a spe-
cial-purpose unit can be shut down

Constant pressures on the cost and
power consumption of embedded
systems will likely continue to
spawn a diversity of uniprocessor
and multiprocessor platforms.

when it is not needed. This is especially
important today, when leakage cur-
rents constitute a large fraction of a
unit’s total energy consumption.

GROWING THE CHIP ECOLOGY

The push toward higher VLSI levels
has added new urgency to the question
“How many platforms are necessary?”
The number of platforms required to
support embedded systems translates
directly into the number of different
chip types that semiconductor manu-
facturers need to supply.

Why more is better

Having more platforms offers
advantages for semiconductor manu-
facturers, particularly as the industry
consolidates. More platform options
mean more market niches for chip
companies, just as a richer ecology
spawns more species to occupy its
many environmental niches.

But it takes a lot of customers to
make a new chip type economically
viable. Designing a chip takes great
engineering effort, a cost that must be
spread over its manufacturing life.
Even the cost of the masks used to
manufacture chips has become a major

March 2003

Embedded Computing

CPU Memory 1/0
I I
<: Bus
I I
DMA Timers Displays

Figure 1. A simple bus-based architecture
for embedded systems.

factor in overall cost. Masks for a chip
manufactured in a 0.25-micron line-
width process a few years ago cost
about $120,000. Today, the masks in
the latest 90-nanometer process cost
$1 million. Given that the typical con-
sumer-grade chip sells in the $10 range,
you have to sell a whole lot of chips to
avoid having the design’s fixed costs
drive the chip’s unit cost to an unac-
ceptably high level.

However, today’s technology has cre-
ated several large chip markets. For
example, consumers buy about 30 mil-
lion CD players every year—that’s just
audio CD players, not computer CD
drives. While this may seem surprising,
remember that CD players are standard
equipment on boom boxes and other
audio systems. Increasingly, automo-
biles also ship with CD players installed.
Consumer audio and video components
alone provide a long list of high-volume
devices: DVD players and recorders,
digital still cameras, digital video cam-
eras, digital set-top boxes, and more.
PDAs constitute another major segment
of consumer electronics. And there are
plenty more major markets both within
consumer electronics and in the indus-
trial and military markets.

Fewer is simpler

The other side of the debate argues
that having fewer platforms makes life
simpler for both semiconductor man-
ufacturers and their customers. The
winners in the battle to provide the
standard embedded systems platform
would open up enormous markets.

Computer

The PC has been a huge cash cow for
the chip and computer industries. Vast
numbers of PCs have been sold, all
based on a relatively small number of
different parts. Customers and small
companies have been left the task of
making those PCs useful for individual
applications. Quite a few people in the
electronics industry would like to see
another killer category like the PC to
sustain the industry for another decade
or two. That means finding a common
hardware architecture that can serve
all sorts of markets efficiently enough
for economies of scale to overwhelm
any inefficiencies the platform engen-
ders for a particular operation.

For embedded system designers,
knowing that a small number of plat-
forms can adequately cover the design
space leads to comfort. Rather than
searching high and low for the right
combination of hardware and perform-
ing extensive experiments to measure
performance and power consumption,
knowing that the choice lies in two or
three platforms makes choosing one of
them straightforward. Because a plat-
form can be chosen quickly, work on the
system can swiftly proceed to software
design and implementation. Further, the
characteristics of a platform—its speed
for various operations, power con-
sumption, and so on—can be more
thoroughly characterized. Better char-
acterization leads to easier and faster
software development because the
implications of a software design deci-
sion can be predicted by looking at the
code, rather than performing a series of
custom-designed experiments.

DEFINING THE NICHES

What sorts of platforms might we
envision to support embedded appli-
cations? The simplest such platform is
what I call the PC architecture because
it resembles an early personal com-
puter. This architecture, shown in
Figure 1, has a simple bus-based orga-
nization. A single CPU is supported by
some memory, timers, a direct memory
access (DMA) controller, some /O,
and perhaps a display driver. This

block diagram closely reflects the
design of the early PCs. Modern PCs
are considerably more complex, with
graphics operations, audio, and net-
working commonly offloaded from the
main CPU into separate specialized
processing units.

Uniprocessor simplicity

The uniprocessor architecture’s
biggest advantage is simplicity. Its
design means that the hardware is
fairly straightforward—the bus,
caches, and other components are sim-
ple to design and manufacture. More
importantly, the software is simple. To
develop an application for this plat-
form, programmers need only a
straightforward programming model.
The programmer doesn’t need to
worry about synchronizing data, hand-
shaking, or any of those other com-
plexities that make parallel programs
harder to debug.

Uniprocessing is attractive if it works.
In the embedded world, that means the
CPU must be fast enough to perform
the real-time operations with enough
capacity to provide a reasonable oper-
ating margin. As VLSI technology
improves and CPUs run faster, more
applications will fall into this category.

The hardware block diagram of a
basic PDA is not much more complex
than that shown in Figure 1—we need
only a little extra hardware to read the
touch screen. A single CPU performs
handwriting recognition and the data-
base functions associated with the
PDA applications. A flash-based MP3
player is also simple—basically the
architecture shown in Figure 1 with a
headphone amplifier for an I/O device.
A single CPU is more than fast enough
to decode MP3 audio in real time.

Moving to multiprocessors
However, consumer appetites con-
tinue to grow. As people see more, they
want more. Not only does this mean a
demand for more functionality, such as
a move from audio to video, it also
requires a device that does more things
at one time. PDA applications are de-

signed along a traditional model in
which one thing at a time happens—the
CPU doesn’t have to worry about
spreading itself among multiple simul-
taneous deadlines. However, imagine an
audio player that receives its music input
from a network. That device must now
juggle the audio and networking loads
simultaneously. Because both these tasks
run at relatively high rates, the CPU
operates under a much greater burden.

As another example, consider the
lowly CD player. Compact disc tech-
nology is an amazing triumph of sophis-
ticated electronics and signal processing
over cheap, low-quality components.
Even a traditional CD player that plays
audio CDs without decompression
requires a DSP to perform real-time
servo algorithms, along with a separate
unit to perform the modified Reed-
Solomon decoding required to correct
errors. All this is in addition to an ana-
log front end that performs the truly
high-rate signal processing. If you want
to play MP3 files, you need to add
another CPU for the audio decode. You
now have a fairly sophisticated multi-
processor running in real time.

Video applications require even more
powerful multiprocessors. Philips’
Viper chip provides a digital television
platform that contains a MIPS CPU
along with a Trimedia processor. The
Trimedia is a very-long-instruction-
word CPU that can execute five opera-
tions per clock cycle. Each of these
CPUs has its own bus, and a third bus
feeds video data from bulk memory to
the two processors. In addition, dozens
of devices and accelerators support var-
ious aspects of video operation.

CRITICAL INSTANTS

Some have argued that only two or
three platforms will survive to serve the
embedded systems market. Others
claim that the diverse needs of embed-
ded applications require many more
platforms. Who is right? The answer
depends in part on marketing, politics,
and other unforeseen forces. But a little
bit of science can give us some insight
into how many platforms we may need

to make designers’ lives a little easier.

I’ve covered rate-monotonic analy-
sis before (“Household Hints for
Embedded Systems Designers,”
Computer, May 2002, pp. 106-108).
This little piece of theory provides the
foundation for real-time systems and
helps us predict how efficiently a CPU
can meet real-time deadlines. A key
concept in rate-monotonic analysis is
the critical instant: the combination of
events that leads to the highest proces-
sor load. The critical instant occurs
when the deadlines line up so that all
the real-time processes are ready to
run. This means that all the higher-pri-
ority processes must finish before any
lower-priority processes can run.
Further, a high-rate process can have
several deadlines in the same period as
a single, slower-rate process.

All this means that juggling several
tasks at once imposes a significant load
on a processor. Rate-monotonic analy-
sis also teaches us that we can’t always
utilize 100 percent of the processor if
we want to meet all our deadlines. This
means that splitting up a complex set
of tasks across several smaller CPUs
often makes it easier to meet perfor-
mance goals. We’ve also seen that
using several specialized processors can
improve power consumption.

sors is application-specific. It

might be possible to come up with
a fairly generic architecture that would
let a designer turn on and shut down
parallel processing elements as neces-
sary. But we’d also need good virtual
I/O to turn this sort of architecture into
a general platform. It is likely that we
will see a diversity of embedded sys-
tems platforms for quite some time to
come.

T he division into multiple proces-

Wayne Wolf is a professor of electrical
engineering at Princeton University and
author of Computers as Components:
Principles of Embedded Computing Sys-
tem Design (Morgan Kaufman, 2000).
Contact him at wolf@princeton.edu.

IEEE

INFORMATION
TECHNOLOGY
LIBRARY (ITeL)

IEEE Journals, Magazines &
Conference Proceedings on:

m Computing

m Communications

m Signal Processing

m Circuits and Systems

An ideal collection for businesses
and universities focusing on
these technologies!

The IEEE Information
Technology Library (ITeL) brings
you online access to 39 top-cited
IEEE periodicals and more than
900 IEEE conferences, presenting
the very latest technical research.

Developed by the IEEE
Computer, Communications,
Signal Processing and Circuits
and Systems Societies.

Request a
free trial today:

+1 800 701 IEEE (4333)
(USA/CANADA)

+1732 981 0060
(WORLDWIDE)

onlineproducts@ieee.org
(EMAIL)

<IEEE

IEEE Information
Driving Invention...
in Information Technology

www.ieee.org/onlinepubs

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

