
136 Computer

F or those who think a lot about
embedded computing, as well as
the uninitiated, it’s important to
define exactly what the term
means. In brief, an embedded

system is any computer that is a com-
ponent in a larger system and that relies
on its own microprocessor.

But is embedded computing a field or
just a fad? The purpose of this new
bimonthly column is to give researchers
as well as practitioners an opportunity
to demonstrate that embedded com-
puting is an established engineering dis-
cipline with principles and knowledge
at its core.

A LONG HISTORY
People have been building embedded

systems—including complex systems—
for decades. The early microprocessors
were so limited that calling what they
did “computing” is generous; their pri-
mary function was to manage input-
output devices, and squeezing per-
formance out of these systems required
more craft than science.

By the early 1980s, however, design-
ers were using 16-bit microprocessors
to create very sophisticated applica-
tions. One example is the 68000,
which car designers used to build auto-
mobile engine controls that relied on
sophisticated algorithms to manage
fuel and spark. Using the 68000’s com-
putational power improved fuel effi-
ciency and reduced emissions while
making the engine easier to start in var-
ious environments. Some car design
algorithms used numerical methods
like Kalman filters; others were more
complex and used multiple modes too

difficult to implement in mechanical
controllers.

Laser and inkjet printers also
emerged in the 1980s. Print engines
require computational support for
both typesetting and real-time control.
First, users generate characters and
lines that a computation must convert
into pixels. Translating page descrip-
tion languages requires executing a
great deal of code that performs a wide
range of functions. Second, the pixels
must be delivered to the printer at just
the right moment; this is particularly
true of inkjets.

Cell phones use coprocessors for
digital-signal processing and micro-
processors for button control and pro-
tocol processing. By the early 1990s, a
typical cell phone contained five or six
DSPs and CPUs. The telephone infra-
structure also uses embedded DSPs and
microprocessors extensively.

NEW APPLICATIONS
Products ranging from the multibil-

lion-dollar B-2 bomber to home appli-
ances or one-dollar novelties now rely
on embedded computers. Personal dig-
ital assistants must support devices,
operating systems, and user-loaded
applications, just like PCs, but with

more stringent cost and power con-
straints. PDA design requires careful
attention to both hardware and soft-
ware.

In the next decade, some micro-
processors, largely invisible to users,
will be used for signal processing and
control—for example, to enable home
networking across noisy, low-quality
media such as power lines. Others will
be used to create advanced user inter-

faces—for example, for the entire clus-
ter of home entertainment devices.

Microprocessors have also enabled
new categories of portable devices
that will assume roles and perform
functions yet to be determined. The
cell phone and PDA combinations
that hit the market in 2001 are a
major step in the evolution of hand-
held devices. As third-generation
communication systems deploy, wire-
less networks will incorporate multi-
media—many cell phones used in
Japan already have large screens and
cameras, and wireless handsets will
soon feature video.

AN EMERGING FIELD
Although we all use embedded

devices on a daily basis, should embed-
ded computing have the status of a sep-
arate discipline such as integrated
engineering or software management?
The answer is a resounding yes.

Already central to most electronic
systems, embedded computers perform
increasingly numerous functions that
once would have been implemented in
random logic and that require many
algorithms too complex to build in
hardwired logic. Embedded computer
hardware and software are on the crit-

What Is Embedded
Computing?
Wayne Wolf, Princeton University

Evolving from a craft to an
engineering discipline over
the past decade, embedded
computing continues to
mature.

E M B E D D E D C O M P U T I N G

ical design path for many types of elec-
tronic systems.

It’s tempting to believe that adding
CPUs makes it easier to design and
change a system, but the opposite is
true. Any number of problems in an
embedded computing system can result
in disaster. For example,

• using an undersized hardware
platform causes software design
difficulties;

• bad software architecture can lead
to software, performance, and
power problems; and

• underestimating power consump-
tion can reduce the entire system’s
effective lifetime.

Software design is always challeng-
ing, particularly when it needs to meet
performance and power requirements
as well as achieve functional correct-
ness. In addition, programmability cre-
ates a temptation that entices designers
to write ever more complex specifica-
tions. As our ability to fabricate and
design complex systems improves, the
goal posts keep moving—we must per-
form better just to stay even.

Without techniques to reliably bring
complex embedded systems to fruition,
on time and on budget, we face prob-
lems keeping pace with very large-scale
integration. In conformance with
Moore’s law, advances in VLSI manu-
facturing over the next decade will
require using embedded computers to
build huge chips.

An embedded CPU is a predesigned
block of intellectual property that can
be reused many times. Embedded CPUs
require memory, another reusable IP
block. This reusability facilitates design
management, making it possible to at
least partly decouple hardware and soft-
ware designs. If they can characterize IP
block performance and understand IP
interactions, software designers can use
IP blocks as their models.

GOALS
A field is defined by its goals and

matures as it articulates ways to

achieve those goals. Embedded com-
puting has five primary objectives.

Architectural design
Embedded computing seeks to design

architectures that can execute a partic-
ular application’s functions—protocols,
signal processing, user interface, and so
on—while meeting all performance and
power requirements. The theoretical

basis for custom software architectures
evolved with real-time systems theory
in the 1970s; during the past decade,
hardware-software codesign developed
design algorithms.

Analysis
Embedded system designers also

strive to characterize both hardware
and software for performance, power,
and size. This goal is clearly related to
the first—we can’t design an architec-
ture until we understand the compo-
nents’ characteristics. Much progress
has been made in the last decade on var-
ious aspects of measurement including
timing analysis of embedded software
and power analysis of architectures.

Modeling
To analyze embedded systems at an

appropriate level of abstraction,
designers must create a hierarchy of
models. For example, analyzing a
microprocessor’s power consumption
entirely at the gate level—assuming the
manufacturer provides the gate-level
design—is less desirable than having
an abstract model that relates to the
behavior of the programs running on
the microprocessor. Researchers are
making progress in understanding how
to analyze a program without going
down to the instruction level, but more
work remains to be done.

Verification
Embedded system designs must meet

their functional specifications as well
as nonfunctional specs such as speed
and power consumption. Hardware-
software cosimulation tools developed
in the 1990s can simulate systems at
multiple levels of abstraction, which
greatly speeds up simulation through-
put. However, we need more advanced
formal methods to complement simu-
lation.

Application orientation
Developing architectures for com-

mon applications—wireless, video,
networking, and so on—is another
function of embedded computing. This
involves adjusting to design tradeoffs
that result from the ability to fit more
processing power onto a single chip.
Also, knowing just what state-of-the-
art technology is can be difficult
because developers often do not dis-
close novel designs until long after they
create them. We are making substan-
tial progress in understanding the basic
shape of architectures suitable for
many of the major application areas in
embedded computing.

T his column will consider both the
diversity and unity of embedded
computing in hardware, software,

and applications. We’ll look at partic-
ular domains—control, communica-
tions, and so on—to discuss the
problems that embedded system
designers encounter, but we’ll also step
back and examine broader principles.

I have my own opinions on embed-
ded computing, but various guest
columnists from both industry and
academia will also share their exper-
tise in this column. I look forward to
engaging in a dialogue with you in
future issues of Computer. �

Wayne Wolf is a professor of electrical
engineering at Princeton University
and CTO of MediaWorks Technology.
Contact him at wolf@princeton.edu.

January 2002 137

Embedded computer
hardware and software

are on the critical design
path for many types

of electronic systems.

