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1 Introduction 
 

On May 29, 2003, the Accellera EDA 
standards organization announced the official 
approval of Accellera PSL (Property 
Specification Language), based on the Sugar 
language from IBM, and of SystemVerilog, 
which contains an assertion capability known as 
SVA (SystemVerilog Assertions).  SVA 
combines features from Synopsys OVA, 
Motorola CBV, and Accellera PSL. Since then, 
these assertion languages have been developed 
further within Accellera.  Throughout this paper, 
“PSL” and “SVA” refer to the PSL 1.1 and SVA 
3.1a versions of the languages, respectively.  
 A natural question that arises in this context 
is whether the semiconductor industry can 
benefit from two standards for assertion 
languages. More practically, for engineers who 
are about to embark on a new project, a pressing 
issue is that of whether to use one assertion 
language or the other.  

In this paper, we aim to provide background 
data for engineers, engineering managers and 
EDA methodologists about the basic differences 
between PSL and SVA. The actual decision of 
which language to use in a specific system, 
microprocessor or ASIC projects depends on 
numerous factors, and describing that decision 
process is beyond the scope of this article. 
However, we believe that the key principles 
described herein will aid in the selection of the 
appropriate assertion language to use for the task 
at hand. Practically, we feel that in many cases 
engineers will want to have working knowledge 
of both languages.  In fact, with the recent 
conclusion of the work done by a special 
committee chartered by Accellera to make sure 
the languages are made as close as possible, 
developing a working knowledge of the two 
languages is a straightforward task [1]. This 
alignment work was accomplished primarily in  
semantics, allowing tool builders to bridge 

between the languages.  Engineers need only to 
recognize the syntax and precedence differences. 

Before we move on, for completeness of 
exposition, a short overview of assertions and 
assertion-based verification (ABV) is in order. 
The interested reader is referred to the literature 
for additional breadth on the topic (cf., e.g. [2]). 
Generally speaking, ABV is a powerful 
paradigm for functional verification that 
augments and improves earlier approaches. As 
the complexity of hardware designs has grown to 
a degree that exposes limitations in the 
traditional approaches, the need for a better 
design methodology, one with improved levels 
of observability of the design behavior and 
controllability of the verification process, has 
become clear. ABV has been identified as a 
modern, powerful verification paradigm that can, 
if done right, assure enhanced productivity, 
higher design quality, and, ultimately, faster time 
to market and higher value to customers. With 
ABV, assertions are used to capture the required 
temporal behavior of the design in a formal and 
unambiguous way. The design can then be 
verified using dynamic and static verification 
technologies to assure that it indeed conforms to 
the design intent as captured by the assertions. 
One key characteristic of ABV is that the 
assertions capture the correct design behavior on 
a cycle-by-cycle basis and can accordingly be 
used to verify intermediate behaviors.  As a 
result, assertions can detect an incorrect design 
behavior at the time and place it happens. This 
significantly improves the ability to find and fix 
bugs without relying on final simulation results 
and therefore serves to shorten turnaround time 
for the design process.  

It should be clear from the above discussion 
that a suitable language should be available to 
capture the functional specification of the design, 
including assumptions, obligations, and 
invariants. PSL and SVA are two such languages.  

A sample assertion is shown below in both 
PSL and SVA . 



 
PSL: 
 
  assert always ( 
    {req && ack} |=>  
    {!req within gnt[->1]} 
  )@(posedge clk); 
 
SVA: 
 
  always @(posedge clk) 
  assert property ( 
    req && ack |=>  
    (!req within gnt[->1]) 
  ); 
 
This property reckons time according to the 
posedge of clk.  When checked in simulation, 
the property says that if req and ack are both 
true at a time point, then, beginning at the next 
time point, req must be false up to and 
including the first time point at which gnt is 
true. 
 

2 Why Two Languages? 
 
 As can be seen from the above examples, 
there is a high degree of similarity between PSL 
and SVA. This is, effectively, the result of the 
alignment work done by Accellera. Still, what 
are the differences between the languages, and 
why and where should each be used? The answer 
to this question requires an understanding of the 
different design decisions and objectives of the 
two languages, as well as their different 
language-theoretic foundations and purposes. To 
this end, the following section provides a user 
perspective of the differences, and the 
subsequent section clarifies the separate 
infrastructures of the languages. 
 

3 User Perspective 
 

SVA is part of and tightly tied into 
SystemVerilog.  As a result, SVA can be written 
directly as a part of SystemVerilog designs and 
testbenches.  SVA also inherits the expression 
language of SystemVerilog, including its data 
types, expression syntax, and semantics.  PSL is 
a separate language specifically designed to 
work with many HDLs and their expression 
layers.  As a result, PSL cannot be written 
directly as a part of any HDL. However, PSL 

properties can be attached to HDL models using 
binding directives, and tools can support PSL 
inclusion in HDLs  via comment pragmas.  
Similarly, SVA cannot be written directly into 
HDLs other than SystemVerilog, but tool 
support for the use of SVA with other HDLs is 
possible through binding directives and comment 
pragmas. 
 
3.1 User View of SVA 
 The full SystemVerilog language addresses 
needs of both hardware designers and 
verification engineers.  Its features support the 
design and verification of hardware from the 
block level up to the system and full-chip levels.  
In addition to the assertion sub-language, SVA, 
these features include sophisticated software 
constructs for the design of complex SoCs and 
for the development of the verification 
testbenches to validate them. 

There are several advantages to having SVA 
integrated with the full SystemVerilog language.  
 A designer can use SVA to embed assertions 
directly into the hardware design definition 
and/or into the testbench definition. These 
“white box” assertions record assumptions, 
expectations, and intentions of the designer that 
can quickly pinpoint design or integration 
mistakes and that are difficult to recapture after 
the design phase.  The assertion representation is 
at a level of precision that is not easily rendered 
in natural language and that enhances the 
documentation of the design. Designers and 
verification engineers can also use SVA to 
define temporal correctness properties and 
coverage events external to the design code.  A 
binding construct allows externally defined 
assertions to be attached to the appropriate 
signals in the design model or in a 
SystemVerilog testbench.  

The tight coupling of SVA with the full 
SystemVerilog language means that assertions 
can be written to interact with other testbench 
components in powerful ways and without 
crossing the boundary of a programming 
language interface.  For example, through the 
use of action blocks, the passing or failure of an 
assertion can be defined to trigger execution of a 
specific block of SystemVerilog code.  The code 
in the action block might call a failure handling 
task, update a testbench coverage database, or 
influence the heuristic parameters of a reactive or 
self-adaptive testbench.  As another example, an 
assertion can receive information by referring to 



an auxiliary HDL model constructed as part of 
the SystemVerilog testbench.  

SystemVerilog also provides a feature for 
attaching method calls to the detection of a 
temporal event within an assertion.  The method 
calls can be passed any data in the local state of 
the assertion at the time the event is detected, 
thereby enabling the communication of fine-
grained information about the event to other 
components of the SystemVerilog testbench.  As 
a result, assertions can be a convenient and 
effective construct for the development of 
SystemVerilog testbench monitors. 

In the future, SVA work will include 
investigations to provide adapters to other 
languages.  Some people are already working on 
extending the binding construct of 
SystemVerilog to be able to access a VHDL 
instance. 
 
3.2 User View of PSL 

Practically, only some companies can adopt 
a single language approach.  Most have to deal 
with both VHDL and Verilog For example, they 
may import IP from third parties who use the 
'other' language, or as a result of acquisition 
there may be different divisions using different 
languages.   

Furthermore, larger companies doing 
system-level design are often using, or planning 
to use, SystemC.  These companies are looking 
for a way of writing assertions starting at the 
system level, with the expectations that such 
assertions can flow down to the RTL domain 
with little or no modification and that those 
assertions, together with more developed at the 
RT level, will work transparently in both VHDL 
and Verilog contexts. In support of this initiative, 
an implementation of PSL for use with SystemC 
has been demonstrated at DAC’04 [3].  

Another domain addressed by PSL is that of 
system verification. A good number of system 
design houses (e.g. IBM, Intel, more) employ 
this pre-RTL methodology, where a high-level 
description of the system is modeled in an FSM 
form and verified against the architectural 
requirements [4]. PSL provides special support 
for this powerful verification methodology using 
the GDL (Generic Definition Language) flavor. 
A different application of PSL will be its 
extension to analog and mixed signal domains.  
A working group sponsored by the EU is 
presently pursuing the definition of such 
extensions to PSL [5]. Yet another pressing 

application is the verification of asynchronous 
designs, and work on extending PSL to support 
such design style is underway [6]. It is 
conceivable that more domains, applications and 
language flavors for PSL - which by design is 
flavor-extendible - will come up in the near 
future. One such creative application of PSL is 
its use for aerospace control applications [7]; an 
earlier one (where the base Sugar language was 
actually used) is for validation of railway 
interlock protocols [8]. 

PSL provides the capability to write 
assertions that range from system-level - in 
various kinds of systems - down to RT level. 
PSL has a structure of multiple abstraction layers 
and a rich set of operators that can be used at 
different levels of abstraction. The low-level 
layer of PSL, which governs the application 
domain, can be easily adjusted to many 
applications and design languages (e.g., the PSL 
Boolean layer - is suitable for reasoning about 
RTL designs - and has Verilog, VHDL, and 
GDL flavors). Moreover, the application layer 
can be even extended or replaced by a different 
layer to support new applications. In summary, 
PSL is a multi-purpose, multi-level, multi-flavor 
assertion language. In contrast, SVA is tightly 
connected to the SystemVerilog language.  
 

4 Language-Theoretic Perspective 
 

In this section, we compare and contrast 
PSL and SVA from a language-theoretic point of 
view.  At a high level PSL is divided into the 
Foundation Language (FL) and the Optional 
Branching Extension (OBE).  These are really 
separate sub-languages of PSL.  A FL formula 
and an OBE formula cannot generally be 
combined into a single PSL formula.  There is no 
analogous division in SVA, which is comparable 
as a whole to the FL sub-language of PSL. 
 
4.1 Linear and Branching Semantics 

PSL FL and SVA are linear temporal logics.  
This means that their formulas are interpreted 
over linear “traces” (i.e., “computation paths”) in 
which each state has at most a single successor.  
Both languages are well suited to the dynamic or 
simulation-based ABV paradigm, in which 
assertions are checked over particular simulation 
traces of a design interacting with a testbench.  
Both languages can also be used for static 
verification, in which a single verification 



computation can achieve the effect of checking 
an assertion over all possible linear traces.  Most 
engineers in most applications will find the 
linear logics PSL FL and SVA sufficient for their 
purposes.  

PSL provides additional support for 
advanced formal verification via the OBE.  The 
OBE is a branching temporal logic very similar 
to CTL [9].  This means that an OBE formula is 
interpreted over “computation trees” in which a 
state can have multiple successors, as, e.g., in the 
case of a design interacting with a non-
deterministic environment.  Multiple successors 
can be treated either conjunctively or 
disjunctively, and the treatment can vary from 
one point in the formula to another.  Thus, the 
OBE is well suited for expressing properties, 
such as freedom from deadlock, in which 
multiple successors need to be treated differently 
in different parts of the formula.  OBE formulas 
generally cannot be meaningfully interpreted 
over simulation traces.  Therefore, the checking 
of OBE formulas is typically limited to static 
techniques.  A discussion of the applicability of 
branching semantics in formal verification can 
be found in [10].  

SVA has no branching semantics features.  
 
4.2 The Linear Logics of PSL and SVA 
  Here we compare PSL FL and SVA, 
ignoring "forall" quantification in the former and 
local variables in the latter. 
 Both PSL FL and SVA are built over 
sublanguages of regular expressions.  The 
regular expressions are used to define finite 
linear temporal patterns.  In PSL FL, the regular 
expressions are called SEREs (“Sequential 
Extended Regular Expressions”), while in SVA 
the regular expressions are called sequences. 
 PSL and SVA are highly similar at the level 
of regular expressions. PSL offers more derived 
operators ("syntactic sugar") than SVA and 
fewer restrictions on multiply-clocked regular 
expressions.  For the typical user, though, either 
regular expression sublanguage will be entirely 
adequate. 
 Both languages provide for promotion of a 
regular expression to a strong formula, meaning 
that the temporal pattern described by the regular 
expression must be evidenced in the linear trace.  
PSL also offers promotion of a regular 
expression to a weak formula, which is not a 
feature of SVA (except as captured by weak 
finite-trace semantics).  Both languages provide 

implication operators for predicating the 
checking of a formula on match of the pattern 
specified by a regular expression. 
 Above the level of regular expressions, the two 
languages differ more substantially.  Both 
languages offer the Boolean operators for 
combining formulas.  PSL offers the full range 
of temporal operators from LTL [11] as language 
constructs: weak and strong “until”, “globally”, 
“eventually”, weak and strong “next -time”.  
From this list of operators, SVA offers only 
“globally” in the form of the SystemVerilog 
“always” or the implicit “globally” of a 
concurrent assertion.  However, SVA gives 
access to the weak LTL operators through user-
defined recursive properties, as discussed in the 
next sub-section. 
 Broadly speaking, above the level of regular 
expressions PSL provides uniform access to both 
safety and liveness operators, while SVA is more 
oriented towards safety.  In practice, safety 
properties tend to be much more common than 
liveness properties, and liveness checking is 
typically meaningful only with static verification 
techniques. 
 
4.3 Weak Linear Temporal Operators and 
Recursive Properties 

As indicated above, PSL FL includes all of 
the LTL operators as formula operators.  SVA 
has none of these operators at the formula level, 
although it does have “globally” at the assertion 
level.  However, SVA has a feature that allows 
the user to define parameterized properties that 
are equivalent to the LTL “globally” and weak 
“until” operators.  This feature is the recursive 
property. 

For example, to get the effect of the PSL  FL 
formula  
 
  always p 
 
a user of SVA can define the parameterized 
recursive property 
 
  property my_always(p1); 
    p1 and 
    (1’b1 |=> my_always(p1)); 
  endproperty 
 
and instantiate 
 
  my_always(p) 
 



Similarly, to get the effect of the PSL FL 
formula  
 
  p until q 
 
a user of SVA can define the parameterized 
recursive property 
 
  property my_until(p1, p2); 
    p2 or  
    (p1 and  
    (1’b1 |=> my_until(p1,p2))); 
  endproperty 
 
and instantiate 
 
  my_until(p,q) 
 
It follows that all of the weak formulas of PSL 
FL can be rendered in a straightforward way in 
SVA using recursive properties.  The rendering 
in SVA is somewhat less convenient than in FL 
because the recursive property definitions have 
to be written or imported from a library. 
 
4.4 Manipulating Data in Assertions 

It is a common problem when writing 
temporal assertions that data values that are 
observable at one time must be referenced at a 
later time when they are no longer directly 
observable.  For example, the value of a signal 
that is valid in one stage of a protocol may be 
needed to define correctness of a later stage 
when the signal is no longer valid.  The assertion 
may also need to compute some arithmetic 
combination of data that are valid at various 
times in order to define correctness. 

One general solution to this problem is to 
create an auxiliary state machine to capture and 
manipulate the data as required.  The assertion 
can then be written to reference the state 
machine at the appropriate times.  Both PSL and 
SVA support this approach.  In PSL, one can use 
the relevant modeling layer to define the 
auxiliary state machine, while in SVA the 
SystemVerilog HDL itself can be used.  A 
disadvantage to this approach is that the state 
machine can be quite complicated and error 
prone.  The closer the auxiliary state machine is 
to being a reference model for the design, the 
closer its complexity tends to approach that of 
the design itself. 

Both PSL and SVA provide alternatives to 
the auxiliary state machine approach to capturing 

and manipulating data for use in assertions.  In 
PSL, universal quantification (forall) can be 
applied at the top level of a formula.  This allows 
the assertion writer to introduce "dummy" 
variables that can be used to capture data at one 
point and reference it later.  For example, the 
PSL FL formula 
 
  forall v in boolean :   
  always ( 
    {a && (v == e1)} |=>      (1)  
    {b[->1]} |-> (e2 == v)   
  )@(posedge clk)      
   
reckons time according to the posedge of clk  
and says the following:   
 

Whenever a is true, the boolean value of e1  
at that time must equal the boolean value of 
e2 at the next strictly subsequent time such 
that b is true.   

 
The dummy variable v effectively samples the 
value of expression e1 when a is  true and holds 
this value until it is needed for the later 
comparison with e2 when b is true. 

The use of forall  for manipulating data 
has limitations.  The semantics is not very useful 
when the dummy variable appears only in the 
consequent of an implication.  For example, the 
PSL FL formula  
 
  forall v in boolean :   
  always ( 
    {a} |=>  
    {b[->1] : v == e1 ;    (2) 
      b[->1] : e2 == v}! 
  )@(posedge clk) 
 
reckons time according to the posedge of clk  
and says the following:   
 

If a is true, then 1) there are at least two 
future times at which b  is true, 2) e1  must 
be equal both to 0 and to 1 at the first of 
these times, and 3) e2 must be equal both to 
0 and to 1 at the second of these times.   

 
The contradictory requirements on e1 and e2 
are unlikely to be the intent of the assertion 
writer.  A more useful intended meaning is the 
following:   
 



If a is true, then there are at least two future 
times at which b  is true, and the value of e1  
at the first of these times must equal the 
value of e2 at the second of these times.   

 
This meaning is represented by the PSL FL 
formula 
 
  forall v in boolean :   
  always ( 
    {a} |=>        
   ( 

{b[->2]}!      (3) 
&&  
({b[->1] : v == e1} 
|=> {b[->1] : e2 == v}) 

    ) 
  )@(posedge clk) 
 
SVA supports the manipulation of data in 
assertions with special assertion variables, called 
local variables.  The local variables are declared 
as part of a regular expression or a formula.  A 
local variable can be assigned a value at the end 
of a match of any regular sub-expression.  The 
value stored in the local variable can then be 
referenced later in the assertion.  For example, 
the FL formula (1) above can be rendered in 
SVA as  
 
  property p1; 
    bit v ; 
    (a, v = e1) |=>  
    b[->1] |-> (e2 == v); 
  endproperty 
  always @(posedge clk) 
    assert property (p1); 
 
Assignment to and reference of a local variable 
in the consequent of an implication does not 
result in contradictory requirements as in FL 
formula (2) above.  FL formula (3) above can be 
rendered in SVAas  
 
  property p3; 
    bit v ; 
    a |=>  
    (b[->1], v = e1) ##1 
    b[->1] ##0 (e2 == v); 
  endproperty 
  always @(posedge clk) 
    assert property (p3); 
 

5 Summary 
 

Clearly, SVA and PSL are different 
languages, each with certain unique advantages 
and disadvantages.  In view of the discussion 
above, engineers will likely want to have a 
working knowledge and to use both languages, 
sometimes within the same project.  At a high 
level, the choice between the two may depend on 
interoperability and marketing decisions.  On a 
deeper technical level, there are fundamental 
language-theoretic differences between the two 
that may influence the choice, depending on the 
verification requirements and methodology.  
Lastly, we note that observations similar to ours 
about the applicability of different languages in 
different contexts have been made by other 
authors (cf. [12]), and a multiple-language 
approach has been argued to be a practical 
engineering methodology. 
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