Property Specification Language

Reference Manual

Version 1.1

June 9, 2004

Copyright© 2004 by Accellera. All rights reserved.
Notices

Accellera Standards documents are developed within Accellera and the Technical Committees of Accellera
Organization, Inc. Accellera develops its standards through a consensus development process, approved by its
members and board of directors, which brings together volunteers representing varied viewpoints and interests to
achieve the final product. Volunteers are not necessarily members of Accellera and serve without compensation.
While Accellera administers the process and establishes rules to promote fairness in the consensus development
process, Accellera does not independently evaluate, test, or verify the accuracy of any of the information
contained in its standards.

Use of an Accellera Standard is wholly voluntary. Accellera disclaims liability for any personal injury, property
or other damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or
indirectly resulting from the publication, use of, or reliance upon this, or any other Accellera Standard document.

Accellera does not warrant or represent the accuracy or content of the material contained herein, and expressly
disclaims any express or implied warranty, including any implied warranty of merchantability or suitability for a
specific purpose, or that the use of the material contained herein is free from patent infringement. Accellera
Standards documents are supplied “AS IS.”

The existence of an Accellera Standard does not imply that there are no other ways to produce, test, measure,
purchase, market, or provide other goods and services related to the scope of an Accellera Standard.
Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change due to
developments in the state of the art and comments received from users of the standard. Every Accellera Standard
is subjected to review periodically for revision and update. Users are cautioned to check to determine that they
have the latest edition of any Accellera Standard.

In publishing and making this document available, Accellera is not suggesting or rendering professional or other
services for, or on behalf of, any person or entity. Nor is Accellera undertaking to perform any duty owed by any
other person or entity to another. Any person utilizing this, and any other Accellera Standards document, should
rely upon the advice of a competent professional in determining the exercise of reasonable care in any given
circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to
specific applications. When the need for interpretations is brought to the attention of Accellera, Accellera will
initiate action to prepare appropriate responses. Since Accellera Standards represent a consensus of concerned
interests, it is important to ensure that any interpretation has also received the concurrence of a balance of
interests. For this reason, Accellera and the members of its Technical Committees are not able to provide an
instant response to interpretation requests except in those cases where the matter has previously received formal
consideration.

Comments for revision of Accellera Standards are welcome from any interested party, regardless of membership
affiliation with Accellera. Suggestions for changes in documents should be in the form of a proposed change of
text, together with appropriate supporting comments. Comments on standards and requests for interpretations
should be addressed to:

Accellera Organization
1370 Trancas Street #163
Napa, CA 94558

USA

ii Property Specification Language Reference Manual Version 1.1

Note: Attention is called to the possibility that implementation of this standard may require use of subject
matter covered by patent rights. By publication of this standard, no position is taken with respect to the
existence or validity of any patent rights in connection therewith. Accellera shall not be responsible for
identifying patents for which a license may be required by an Accellera standard or for conducting inquir-
ies into the legal validity or scope of those patents that are brought to its attention.

Accellera is the sole entity that may authorize the use of Accellera-owned certification marks and/or trademarks
to indicate compliance with the materials set forth herein.

Authorization to photocopy portions of any individual standard for internal or personal use must be granted by
Accellera Organization, Inc., provided that permission is obtained from and any required fee is paid to Accellera.
To arrange for authorization please contact Lynn Horobin, Accellera, 1370 Trancas Street #163, Napa, CA
94558, phone (707) 251-9977, e-mail lynn@accellera.org. Permission to photocopy portions of any individual
standard for educational classroom use can also be obtained from Accellera.

Suggestions for improvements to the Property Specification Language and/or to this manual are welcome. They
should be sent to the Property Specification Language email reflector

viv@eda.org
The current Working Group’s website address is

www.eda.org/vfv

Version 1.1 Property Specification Language Reference Manual iii

The following individuals contributed to the creation, editing, and review of Property Specification Language

version 1.0 and/or version 1.1.

Ken Albin

Johan Alfredsson
Thomas L. Anderson
Roy Armoni

Shoham Ben-David
Jayaram Bhasker
Kuang-Chien (KC) Chen
Edmund M. Clarke
Ben Cohen

Simon Davidmann
Bernard Deadman
Surrendra Dudani
Cindy Eisner

E. Allen Emerson
Andrea Fedeli

Dana Fisman

Tom Fitzpatrick
Limor Fix
Peter L. Flake
Harry Foster

Daniel Geist
Vassilios Gerousis
Michael J.C. Gordon
John Havlicek
Hakan Hjort
Richard Ho

Yaron Kashai

Joseph Lu

Adriana Maggiore

Erich Marschner
Johan Martensson
Anthony Mclsaac
Hillel Miller
Avigail Orni
Christian Pichler
Carl Pixley
Sitvanit Ruah
Ambar Sarkar
Andrew Seawright
Sandeep K. Shukla
Michael Siegel

iv

Motorola, Inc.

Safelogic

0-In Design Automation, Inc.
Intel, Corp.

IBM Haifa Research Lab
Cadence Design Systems
Verplex Systems, Inc.
Carnegie Mellon

Consultant

Co-Design Automation, Inc
SDV, Inc

Synopsys, Inc

IBM Haifa Research Lab
University of Texas at Austin
STMicroelectronics, Ltd.

Weizmann Institute of Science,
IBM Haifa Research Lab

Co-Design Automation, Inc
Intel, Corp.
Co-Design Automation, Inc.

Jasper Design Automation, Inc.,
Verplex Systems, Inc.

IBM Haifa Research Lab
Infineon Technologies
University of Cambridge
Motorola, Inc.

SafeLogic

0-In Design Automation, Inc.
Verisity Design, Inc.

Nvidia, Inc.,
Sun Microsystems

AltraVerifica Ltd.,
TransEDA Technology Ltd

Cadence Design Systems
Safelogic
STMicroelectronics, Ltd.
Motorola, Inc.

IBM Haifa Research Lab
Siemens

Synopsys, Inc.

IBM Haifa Research Lab
Paradigm Works

0-In Design Automation, Inc.
University of California, Irvine

Infineon Technologies

Property Specification Language Reference Manual

Work Group Chair

Work Group Co-Chair

Version 1.1

Bassam Tabbara Novas Software, Inc.

David Van Campenhout Verisity Design, Inc.

Gal Vardi Marvell Semiconductor, Ltd
Moshe Y. Vardi Rice University

Bow-Yaw Wang Verplex Systems, Inc.

Klaus Winkelmann Infineon Technologies
Yaron Wolfsthal IBM Haifa Research Lab

Revision history:

Version 0.1, 1st draft 05/10/02
Version 0.1, 2nd draft 05/17/02
Version 0.7, 1st draft 08/14/02
Version 0.7, 2nd draft 08/16/02
Version 0.7, 3rd draft 08/23/02
Version 0.7, 4th draft 08/26/02
Version 0.7, 5th draft 08/30/02
Version 0.7, 6th draft 09/08/02
Version 0.7, 7th draft 09/10/02
Version 0.8, 1st draft 09/12/02
Version 0.9, 1st draft 01/21/03
Version 0.95, 1st draft 01/26/03
Version 1.0 01/31/03
Version 1.01 04/25/03
Version 1.1, draft a 03/20/04
Version 1.1, draft b 04/17/04
Version 1.1, draft ¢ 04/21/04
Version 1.1, draft d 04/21/04
Version 1.1, release 06/09/04

Version 1.1 Property Specification Language Reference Manual

vi

Property Specification Language Reference Manual

Version 1.1

Table of Contents

Lo OVETVIBW .ttt ettt ettt et e sttt et ea e at e bbbt bt a e b ettt et et e st eueeueeueeaeetenaeneen 1
O B 110 LT OO OO OO OO P O PR P PO PPRRPR 1

1.2 PUIPOSE. ¢ttt ettt ettt et e sat e e a e bt e e a e ettt s a e et e ebe e et e bt s a bt e bt e at e et e e sateeatee 1

L2201 MOIVALION ..ttt sttt ettt ettt ettt et st be s bbbttt et enteneebesbenaen 1

L.2.2 GOGIS.uiiiiiiieitettetese sttt ettt ettt ettt et ettt eae et b e 1

1.3 USAEE -eeeeueteiieiieeettee ettt ettt et bt e et e b e e a e bt a e bt e bt et e bt e b e e bt s at e e be e at e et esate et s 1

1.3.1 Functional SPEeCITICAtIONeeueeitieuieiieieeie ettt ettt e e eee s 1

1.3.2 Functional VEIIfICAtIONc.cceeiruiriiriiniiiiicieteteiee sttt ettt ettt st 2

1.4 Contents of this StANAATd...........eovertiriiriiiiiei ettt ettt et enes 4

2. REIEIENCES ...ttt ettt ettt ettt ettt et eb et ae e s 5
3e DETINILIONS ettt ettt ettt ettt ettt b e sttt ettt eatea et a e bbb b ettt eneeaeeae ettt shenbe e 7
T8 B <304 V1T) (o 2RSS 7

3.2 Acronyms and abDIEVIATIONScecieruirieiiieieiietieteetie sttt ettt et e st e e bt et e ste et e eseeneeseeeneesseeeeeesneans 10

T O -1 111221 5 (o) s FO TSRS 11
4.1 ADSITACT STIUCLUIE ...ttt ettt sttt ettt eae e bt sbe et et ebesaesaesaesn st eneebenbensenaeas 11

1T LAYETS ettt ettt e ettt et a et et e s bt e e sh et e bt e bt st e beenaae s 11

A.1.2 FIAVOTS ettt ettt ettt ettt sttt ettt sttt r e 11

4.2 LeXICAl SEIUCTUIEeouiruiriirtiierietcteet ettt ettt sttt sttt et ettt b e ebe et e b e sa et ss st eneebesbenbenaens 12

42,1 TACNETIETS. ettt ettt st sttt et ebe et aeerenae e 12

L =) A {03 (o TSP 12

423 OPETATOTS .eeeeiieiieeiteeieeeite ettt et ettt e s bt et e s bt e s bt et e e s at e e bt e sbt e st e e sbteeabeesbeeeabeeabeesaneebeenneeen 13

424 IMIACTOS ...ttt st st e st a e st st n e 17

4.2.5 COMMENES ..ottt sttt st et e e st e e st e e s e e e s e e neene e aeeas 19

4.3 SYNLAX weetitiiiieeite ettt ettt b et e b e bt e bt e bt e bt e bt e bt e ebt e e bt e eb e e et e e bt sabeebeenaeeas 20

43,1 CONVENTIONS ...uturenteiteiietintt ettt ettt ettt etee st se ettt et et e st et e st eaesaesaeebenbesae st e s enseneeneerenrenee 20

4.3.2 HDL dePENAENCIESveovieeieeieie ettt ettt ettt et ettt see et et e see e et eneeteeneenes 21

A4 SEIMANTICSeoueeteuiitieteite ettt ettt ettt ettt ettt b ettt e et et e st ebeeaeebesa e et e b e sa et eae st eneebeeae bt naen 24

4.4.1 Clocked vs. unclocked evaluation..........c.coeeerierieiiiiiiinininereeese et 24

4.4.2 Safety vs. lIVENESS PIOPETLICSecuirueereieieriieiiereeeierteeiteteeieesteeseeteeseeseeeseeaesneenaesreensesseeneenes 24

4.4.3 Linear vs. branching lOZICoeouiiiiiiiiiiiiee ettt 25

N 11 010 (318101 RSP 25

4.4.5 Finite-length versus infinite-length behaviorcccooiiiiiiiiii e 25

4.4.6 The concept Of STIENZLHoiuiiiiiiiiee e e et 26

T & 7o To) [TV) < PSSP 29
5.1 EXPIession TYPE CLASSEScc.eeieruiiierieitieieeiieie et teie ettt et ettt e st e s st e e et e et e eseeeeeaeennesaesseeneeeneans 29

TN O B 23 U403 (13 () s SRS 29

5.1.2 BOOI@AN CXPIESSIONS ...euveeueitieiieitieiietieieettetesteeseesaeestesseenteeseeseeseeneesseeneesseeaesseeseeseensenneenes 30

5.1.3 BitVeCtOr @XPIESSIONS. .. .eeueeteeterteeutertieteettenteaueeneeseeestesseenteeseensesseeeesseensesseesesseensesseensesseenes 30

5.1.4 NUMETIC EXPIESSIONS ..eeuveueentiriterteesietieteateetesueeeesseessesseenseaseensesseensesseensesseensesneensesseensesseenes 31

S5.1.5 SHIANE CXPICSSIONS. 1..eeuvieuieetitierteeteeteetteteeseetteneesteetesaeaseebeeseenseeseenseeneesseeneesseeneesseensensenneenes 31

Version 1.1 Property Specification Language Reference Manual vii

RTNN 5 4 o) (1153 (o) 0 0 0] 4 11 1SSt 31

5.2.1 HDL @XPIESSIONS ...cuueetieuiertieiiesteeiesteettenteeetesteeneeneeeaeeseeeseensesseenseessensesneenseeneenseeneenseeneensesnenn 32

5.2.2 PSL @XPIESSIONS. ..uttueetteuieetieieesteetesteette bt eetesteenee et eneeseeeseeaseemeesseessenseeneenseeneenseeneenseeneenseanean 33

523 BUilt-in fUNCHOMNSeouiiiiiiiiiiitirtirterert ettt ettt s ees 33

5.2.4 UNION @XPIESSIONS. ..uuiueeeteuieteeiterteetteteeteenteesteeeeneenseeseeseaseessesseensesseenseeseenseeseenseeseensenseenees 38

5.3 ClOCK EXPIESSIONS ...ueeutieuietieiteitieiesteeeteetteiteeteeaeesteeeesaeensease e tesseenseseenteaseenseaseensesneeneesseansenseennenseans 38

5.4 Default clock declarationc.oeecuerieieiiinirinicreeese ettt ettt et e 39

LT <33T 1 2 TSP 41
6.1 SeqUENTIAl EXPIESSIONS ...uvieueitieierieeeeeteete st et et ete et e testeetesaeeseesseenaesseanseeseenseeseenseeseensensenseeneenseens 42

6.1.1 Sequential Extended Regular Expressions (SERES)ccccooivieriiinieiieieceeeeeeee 42

0.1.2 SEQUEIICES ..ottt ettt et ettt e s bttt e bt st e bt e st bt e st e e b e sbnesabe et 46

6.1.3 NAMEA SEQUEIICES -..uviueeeieuieieeiierieetteteeteente et eeteesteeeeseesesseessesseenseaseeseeseenseeseenseeseensesneenees 51

6.1.4 NaMEd SNAPOINLS ..eueiiieieieieiieite ettt ettt et ste et e ste st et e st et e eseesteeseeeeeneenaeeneenseanean 53

TN s 0] 011 1 1 TSRS PRSPt 55

LT B Sl D o) (0313 5 FO TSRS 55

6.2.2 Optional Branching Extension (OBE) properties...........ccccueverireeneneenienieie e 72

6.2.3 ReplICAtEd PIOPEITIES .. .eeeieeieieieieie ettt ettt ettt ettt ettt te b et e e te e e se e e saeeneeseeanean 79

6.2.4 NAMEA PLOPEITICS . ..eeueetieitetieieiteerteeteete et et e ete e e eteeeeseeeeesaeetesbeenseaseensesseensenseeneesseeneensesnean 82

I <) GV (e 1103 s B) RS SSTR PR 85
7.1 Verification dif@CHIVES.....c.coiruiriiriirtitiietctcieteeet ettt ettt ettt et et be e e bbb s seennene 85

ToL L @SSEIT e e e e e e et e et sae e an 85

ToL2 ASSUINIE ..ottt et e st e a e et e e st e b e a e e et et ene e e et sae st enn e ne s 86

7.1.3 QSSUIME GUATANEIEEeeutiruieeiieeieeiteeitte e et et e site e bt e sttt e steesateeabeesatesabeesbeesaeeebeesateeseebeenns 87

T LA TESITICE .ottt ettt ettt ettt ettt et et es e bt bt a e e ettt e st et aesa e b b e nnen 87

715 TESIIICE UATANTEE.eeueeuietieeieteeieerteette it ee e eteenee et et e seeeaeesaeeeesbeente st enseeseenseseeneesseeneensennean 88

ToLiB COVET ittt et et st st e sttt e h e e esae e e e ene e e e s et enesaeenneeaean 88

7.1.7 fairness and StroNg fAIIMESS.uerueeieriieieri ettt ettt ettt et neeenean 89

7.2 VErifICatiOn UNIES......coiririirtirteteteeeiteieett ettt ettt ettt ettt ettt s ae bbbttt eatesesaeete s b seesaennenne 90

7.2.1 Verification unit bindingccooieiiiiiiiieiieieeee et 91

7.2.2 Verification unit iNHEIITANCEcoceevivrerieieiiieiiieen ettt s 92

7.2.3 Verification unit SCOPING TULESccueeriiiuiiiiiitiiieiieie ettt eas 93

8. IMOACING LAY ...ttt ettt ettt ettt e et et e e et ente s st e eeeseente e st e seeteeneeeaeeeeeneeneeanean 95
8l INEEZEOI TANEES ..cveeeeiieiiieteee ettt ettt et e s bt et e b et sttt sat e e bt e bt e st e sbe et et 95

8.2 SIIUCTUIES ...ttt ettt et ettt s bt et e et e sae e e e sae s e s e eaneneene 96

PN 013114 N PSPPSR 97
F N 0013814 2 J PRSP PR 109
viii Property Specification Language Reference Manual Version 1.1

1. Overview

1.1 Scope

This document specifies the syntax and semantics for the Accellera Property Specification Language.

1.2 Purpose
1.2.1 Motivation

Ensuring that a design's implementation satisfies its specification is the foundation of hardware verification. Key
to the design and verification process is the act of specification. Yet historically, the process of specification has
consisted of creating a natural language description of a set of design requirements. This form of specification is
both ambiguous and, in many cases, unverifiable due to the lack of a standard machine-executable representa-
tion. Furthermore, ensuring that all functional aspects of the specification have been adequately verified (that is,
covered) is problematic.

The Accellera Property Specification Language (PSL) was developed to address these shortcomings. It gives the
design architect a standard means of specifying design properties using a concise syntax with clearly-defined for-
mal semantics. Similarly, it enables the RTL implementer to capture design intent in a verifiable form, while
enabling the verification engineer to validate that the implementation satisfies its specification through dynamic
(that is, simulation) and static (that is, formal) verification means. Furthermore, it provides a means to measure
the quality of the verification process through the creation of functional coverage models built on formally spec-
ified properties. Plus, it provides a standard means for hardware designers and verification engineers to rigor-
ously document the design specification (machine-executable).

1.2.2 Goals
PSL was specifically developed to fulfill the following general hardware functional specification requirements:

— easy to learn, write, and read

— concise syntax

— rigorously well-defined formal semantics

— expressive power, permitting the specification for a large class of real world design properties
— known efficient underlying algorithms in simulation, as well as formal verification

1.3 Usage

PSL is a language for the formal specification of hardware. It is used to describe properties that are required to
hold in the design under verification. PSL provides a means to write specifications that are both easy to read and
mathematically precise. It is intended to be used for functional specification on the one hand and as input to
functional verification tools on the other. Thus, a PSL specification is an executable documentation of a hard-
ware design.

1.3.1 Functional specification
PSL can be used to capture requirements regarding the overall behavior of a design, as well as assumptions about
the environment in which the design is expected to operate. PSL can also capture internal behavioral require-

ments and assumptions that arise during the design process. Both enable more effective functional verification
and reuse of the design.

Version 1.1 Property Specification Language Reference Manual 1

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Overview

One important use of PSL is for documentation, either in place of or along with an English specification. A PSL
specification can describe simple invariants (for example, signals r ead_enabl e and wi t e_enabl e are
never asserted simultaneously) as well as multi-cycle behavior (for example, correct behavior of an interface
with respect to a bus protocol or correct behavior of pipelined operations).

A PSL specification consists of assertions regarding properties of a design under a set of assumptions. A prop-
erty is built from Boolean expressions, which describe behavior over one cycle, sequential expressions, which
describe multi-cycle behavior, and temporal operators, which describe relations over time between Boolean
expressions and sequences. For example, consider the the following Verilog Boolean expression:

ena || enb

This expressions describes a cycle in which at least one of the signals ena and enb are asserted. The PSL
sequential expression

{req; ack; !cancel}

describes a sequence of cycles, such that r eq is asserted in the first, ack in the second, and cancel deasserted
in the third. They can be connected using the temporal operators al ways and next to get the property

al ways {req; ack;!cancel}(next[2] (ena || enb))

which means that following any sequence of {r eq; ack; ! cancel } (i.e., al ways), either ena or enb is
asserted two cycles later (i.e., next [2]). Adding the directive assert as follows:

assert always {req; ack;!cancel }(next[2] (ena || enb));

completes the specification, indicating that this property is expected to hold in the design and that this expecta-
tion needs to be verified.

1.3.2 Functional verification

PSL can also be used as input to verification tools, for both verification by simulation, as well as formal verifica-
tion using a model checker or a theorem prover. Each of these is discussed below.

1.3.2.1 Simulation
A PSL specification can also be used to automatically generate checks of simulations. This can be done, for
example, by directly integrating the checks in the simulation tool; by interpreting PSL properties in a testbench
automation tool that drives the simulator; by generating HDL monitors that are simulated alongside the design;
or by analyzing the traces produced at the end of the simulation.
For instance, the following PSL property:

al ways (req -> next !req)
states that signal r eq is a pulsed signal — if it is high in some cycle, then it is low in the following cycle. Such

a property can be easily checked using a simulation checker written in some HDL that has the functionality of the
Finite State Machine (FSM) shown in Figure 1.

2 Property Specification Language Reference Manual Version 1.1

Overview

Ireq

onereq

req

O

Figure 1—A simple (deterministic) FSM that checks the above property

For properties more complicated than the property shown above, manually writing a corresponding checker is
painstaking and error-prone, and maintaining a collection of such checkers for a constantly changing design
under development is a time-consuming task. Instead, a PSL specification can be used as input to a tool that auto-
matically generates simulatable checkers.

Although in principle, all PSL properties can be checked for finite paths in simulation, the implementation of the
checks is often significantly simpler for a subset called the simple subset of PSL. Informally, in this subset, com-
position of temporal properties is restricted to ensure that time moves forward from left to right through a prop-
erty, as it does in a timing diagram. (See Section 4.4.4 for the formal definition of the simple subset.) For
example, the property

always (a -> next[3] (b))
which states that, if a is asserted, then b is asserted three cycles later, belongs to the simple subset, because a
appears to the left of b in the property and also appears to the left of b in the timing diagram of any behavior that
is not a violation of the property. Figure 2 shows an example of such a timing diagram.
An example of a property that is not in this subset is the property

always ((a && next[3](b)) -> c)
which states that, if a is asserted and b is asserted three cycles later, then ¢ is asserted (in the same cycle as a).
This property does not belong to the simple subset, because although ¢ appears to the right of a and b in the prop-

erty, it appears to the left of b in a timing diagram that is not a violation of the property. Figure 3 shows an exam-
ple of such a timing diagram.

Version 1.1 Property Specification Language Reference Manual 3

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Overview

b

Figure 2—A trace that satisfies "always (a -> next[3] (b))"

C

Figure 3—A trace that satisfies "always ((a && next[3] (b)) -> ¢)"
1.3.2.2 Formal verification

PSL is an extension of the standard temporal logics LTL and CTL. A specification in the PSL Foundation Lan-
guage (respectively, the PSL Optional Branching Extension) can be compiled down to a formula of pure LTL
(respectively, CTL), possibly with some auxiliary HDL code, known as a satellite.

1.4 Contents of this standard
The organization of the remainder of this standard is

— Chapter 2 (References) provides references to other applicable standards that are assumed or required for
PSL.

— Chapter 3 (Definitions) defines terms used throughout this standard.

— Chapter 4 (Organization) describes the overall organization of the standard.

— Chapter 5 (Boolean layer) defines the Boolean layer.

— Chapter 6 (Temporal layer) defines the temporal layer.

— Chapter 7 (Verification layer) defines the verification layer.

— Chapter 8 (Modeling layer) defines the modeling layer.

— Appendix A (Syntax rule summary) summarizes the PSL syntax rules.

— Appendix B (Formal syntax and semantics of the temporal layer) defines the formal syntax and semantics
of the temporal layer.

4 Property Specification Language Reference Manual Version 1.1

2. References

This standard shall be used in conjunction with the following publications. When any of the following standards
is superseded by an approved revision, the revision shall apply.

The IEEE Standard Dictionary of Electrical and Electronics Terms, Sixth Edition.

IEEE Std 1076-2002, IEEE Standard VHDL Language Reference Manual.

IEEE Std 1076.6-1999, IEEE Standard for VHDL Register Transfer Level (RTL) Synthesis.

IEEE Std 1364-2001, IEEE Standard for Verilog Hardware Description Language.

IEEE P1364.1 (Draft 2.2, April 26,2002), Draft Standard for Verilog Register Transfer Level Synthesis.

Accellera 3.1a System Verilog Language Reference Manual

Version 1.1 Property Specification Language Reference Manual 5

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

References

Property Specification Language Reference Manual

Version 1.1

3. Definitions

For the purposes of this standard, the following terms and definitions apply. The /EEE Standard Dictionary of
Electrical and Electronics Terms [B1] should be referenced for terms not defined in this standard.

3.1 Terminology
This section defines the terms used in this standard.

3.1.1 assertion: A statement that a given property is required to hold and a directive to verification tools to verify
that it does hold.

3.1.2 assumption: A statement that the design is constrained by the given property and a directive to verification
tools to consider only paths on which the given property holds.

3.1.3 behavior: A path.

3.1.4 Boolean: A Boolean expression.

3.1.5 Boolean expression: An expression that yields a logical value.

3.1.6 checker: An auxiliary process (usually constructed as a finite state machine) that monitors simulation of a
design and reports errors when asserted properties do not hold. A checker may be represented in the same HDL

code as the design or in some other form that can be linked with a simulation of the design.

3.1.7 completes: A sequential expression (or property) completes at the last cycle of any design behavior
described by that sequential expression (or property).

3.1.8 computation path: A succession of states of the design, such that the design can actually transition from
each state on the path to its successor.

3.1.9 constraint: A condition (usually on the input signals) that limits the set of behaviors to be considered. A
constraint may represent real requirements (e.g., clocking requirements) on the environment in which the design
is used, or it may represent artificial limitations (e.g., mode settings) imposed in order to partition the verification
task.

3.1.10 count: A number or range.

3.1.11 coverage: A measure of the occurrence of certain behavior during (typically dynamic) verification and,
therefore, a measure of the completeness of the (dynamic) verification process.

3.1.12 cycle: An evaluation cycle.

3.1.13 describes: A Boolean expression, sequential expression, or property describes the set of behaviors for
which the Boolean expression, sequential expression, or property holds.

3.1.14 design: A model of a piece of hardware, described in some hardware description language (HDL). A
design typically involves a collection of inputs, outputs, state elements, and combinational functions that com-

pute next state and outputs from current state and inputs.

3.1.15 design behavior: A computation path for a given design.

Version 1.1 Property Specification Language Reference Manual 7

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Definitions

3.1.16 dynamic verification: A verification process in which a property is checked over individual, finite
design behaviors that are typically obtained by dynamically exercising the design through a finite number of
evaluation cycles. Generally, dynamic verification supports no inference about whether the property holds for a
behavior over which the property has not yet been checked.

3.1.17 evaluation: The process of exercising a design by iteratively applying values to its inputs, computing its
next state and output values, advancing time, and assigning to the state variables and outputs their next values.

3.1.18 evaluation cycle: One iteration of the evaluation process. At an evaluation cycle, the state of the design
is recomputed (and may change).

3.1.19 extension: An extension of a path is a path that starts with precisely the succession of states in the given
path.

3.1.20 False: An interpretation of certain values of certain data types in an HDL. In the SystemVerilog and Ver-
ilog flavors, the single bit value 1’ b0, 1’ bx, 1’ bz ar e interpreted as the logical value False. In the
VHDL flavor, he values STD.Standard.Boolean’(False) and STD.Standard.Bit’(‘0”), as well as the values
IEEE.std logic_1164.std_logic’(‘0’), IEEE.std_logic 1164.std logic’(‘X’), and

IEEE.std logic 1164.std_logic’(‘Z’) are all interpreted as the logical value False. In the GDL flavor, the Bool-
ean value ' f al se' and bit value OB are both interpreted as the logical value False.

3.1.21 finite range: A range with a finite high bound.

3.1.22 formal verification: A verification process in which analysis of a design and a property yields a logical
inference about whether the property holds for all behaviors of the design. If a property is declared true by a for-
mal verification tool, no simulation can show it to be false. If the property does not hold for all behaviors, then
the formal verification process should provide a specific counterexample to the property, if possible.

3.1.23 holds: A term used to talk about the meaning of a Boolean expression, sequential expression or property.
Loosely speaking, a Boolean expression, sequential expression, or property holds in the first cycle of a path iff
the path exhibits the behavior described by the Boolean expression, sequential expression, or property. The def-
inition of holds for each form of Boolean expression, sequential expression, or property is given in the appropri-
ate subsection of Chapter 6.

3.1.24 holds tightly: A term used to talk about the meaning of a sequential expression (SERE). Sequential
expressions are evaluated over finite paths (behavior). Loosely speaking, a sequential expression holds tightly
along a finite path iff the path exhibits the behavior described by the sequential expression. The definition of
holds tightly for each form of SERE is given in the appropriate subsection of Section 6.1.

3.1.25 liveness property: A property that specifies an eventuality that is unbounded in time. Loosely speaking,
a liveness property claims that "something good" eventually happens. More formally, a liveness property is a
property for which any finite path can be extended to a path satisfying the property. For example, the property
"whenever signal req is asserted, signal ack is asserted some time in the future" is a liveness property.

3.1.26 logic type: An HDL data type that includes values that are interpreted as logical values. A logic type may
include values that are not interpreted as logical values. Such a logic type usually represents a multi-valued
logic.

3.1.27 logical value: A value in the set {True, False}.

3.1.28 model checking: A type of formal verification.

3.1.29 monitor: See: checker.

8 Property Specification Language Reference Manual Version 1.1

Definitions

3.1.30 number: A non-negative integer value, and a statically computable expression yielding such a value.

3.1.31 occurs, occurrence: A Boolean expression is said to “occur” in a cycle if it holds in that cycle. For exam-
ple, “the next occurrence of the Boolean expression” refers to the next cycle in which the Boolean expression
holds.

3.1.32 path: A succession of states of the design, whether or not the design can actually transition from one state
on the path to its successor.

3.1.33 positive count: A positive number or a positive range.

3.1.34 positive number: A number that is greater than zero (0).

3.1.35 positive range: A range with a low bound that is greater than zero (0).

3.1.36 prefix: A prefix of a given path is a path of which the given path is an extension.

3.1.37 property: A collection of logical and temporal relationships between and among subordinate Boolean
expressions, sequential expressions, and other properties that in aggregate represent a set of behaviors.

3.1.38 range: A series of consecutive numbers, from a low bound to a high bound, inclusive, such that the low
bound is less than or equal to the high bound. In particular, this includes the case in which the low bound is equal
to the high bound. Also, a pair of statically computable integer expressions specifying such a series of consecu-
tive numbers, where one expression specifies the low bound of the series, and the other expression specifies the
high bound of the series. A range may describe time range, event repetitions or bits of a bus or a vector. For time
and repetition range, the low bound must be the left integer and the high bound must be the right integer. For vec-
tors and bus bits range the order is not important, unless restricted by the underlying flavor.

3.1.39 required (to hold): A property is required to hold if the design is expected to exhibit behaviors that are
within the set of behaviors described by the property.

3.1.40 restriction: A statement that the design is constrained by the given sequential expression and a directive
to verification tools to consider only paths on which the given sequential expression holds.

3.1.41 safety property: A property that specifies an invariant over the states in a design. The invariant is not
necessarily limited to a single cycle, but it is bounded in time. Loosely speaking, a safety property claims that
"something bad" does not happen. More formally, a safety property is a property for which any path violating the
property has a finite prefix such that every extension of the prefix violates the property. For example, the prop-
erty, "whenever signal req is asserted, signal ack is asserted within 3 cycles" is a safety property.

3.1.42 sequence: A sequential expression that is enclosed in curly braces.

3.1.43 sequential expression: A finite series of terms that represent a set of behaviors.

3.1.44 SERE: A sequential expression.

3.1.45 simulation: A type of dynamic verification.

3.1.46 starts: A sequential expression starts at the first cycle of any behavior for which it holds. In addition, a
sequential expression starts at the first cycle of any behavior that is the prefix of a behavior for which it holds.
For example, if a holds at cycle 7 and b holds in every cycle from 8 onward, then the sequential expression

{a; b[*] ;c} startsatcycle7.

3.1.47 strictly before: Before, and not in the same cycle as.

Version 1.1 Property Specification Language Reference Manual 9

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Definitions

3.1.48 strong operator: A temporal operator, the (non-negated) use of which creates a liveness property.

3.1.49 terminating condition: A Boolean expression, the occurrence of which causes a property to complete.
3.1.50 terminating property: A property that, when it holds, causes another property to complete.

3.1.51 True: An interpretation of certain values of certain data types in an HDL.

In the SystemVerilog and Verilog flavors, the single bit value 1' b1 is interpreted as the logical value True. In
the VHDL flavor, the values STD. St andar d. Bool ean' (True), STD. Standard.Bit' ('1'), and
| EEE. std_l ogi c_1164.std_l ogic' (' 1') areall interpreted as the logical value True. In the GDL fla-

vor, the Boolean value ' t r ue' and bit value 1B are both interpreted as the logical value True.

3.1.52 verification: The process of confirming that, for a given design and a given set of constraints, a property
that is required to hold in that design actually does hold under those constraints.

3.1.53 weak operator: A temporal operator, the (non-negated) use of which does not create a liveness property.

3.2 Acronyms and abbreviations

This section lists the acronyms and abbreviations used in this standard.

BNF extended Backus-Naur Form

cpp C pre-processor

CTL computation tree logic

EDA electronic design automation
FL Foundation Language

FSM finite state machine

GDL General Description Language
HDL hardware description language

iff if and only if
LTL linear-time temporal logic
PSL Property Specification Language

OBE Optional Branching Extension

RTL Register Transfer Level

SERE Sequential Extended Regular Expression
VHDL VHSIC Hardware Description Language

10 Property Specification Language Reference Manual Version 1.1

4. Organization

4.1 Abstract structure

PSL consists of four layers, which cut the language along the axis of functionality. PSL also comes in four fla-
vors, which cut the language along the axis of HDL compatibility. Each of these is explained in detail in the fol-
lowing sections.

4.1.1 Layers

PSL consists of four layers: Boolean, temporal, verification, and modeling.

4.1.1.1 Boolean layer

This layer is used to build expressions that are, in turn, used by the other layers. Although it contains expressions
of many types, it is known as the Boolean layer because it is the supplier of Boolean expressions to the heart of
the language — the temporal layer. Boolean layer expressions are evaluated in a single evaluation cycle.

4.1.1.2 Temporal layer

This layer is the heart of the language; it is used to describe properties of the design. It is known as the temporal
layer because, in addition to simple properties, such as “signals a and b are mutually exclusive”, it can also
describe properties involving complex temporal relations between signals, such as, “if signal C is asserted, then
signal d shall be asserted before signal e is asserted, but no more than eight clock cycles later.” Temporal expres-
sions are evaluated over a series of evaluation cycles.

4.1.1.3 Verification layer

This layer is used to tell the verification tools what to do with the properties described by the temporal layer. For
example, the verification layer contains directives that tell a tool to verify that a property holds or to check that a
specified sequence is covered by some test case.

4.1.1.4 Modeling layer

This layer is used to model the behavior of design inputs (for tools, such as formal verification tools, which do
not use test cases) and to model auxiliary hardware that is not part of the design, but is needed for verification.

4.1.2 Flavors

PSL comes in four flavors: one for each of the hardware description languages SystemVerilog, Verilog, VHDL,
and GDL!. The syntax of each flavor conforms to the syntax of the corresponding HDL in a number of specific
areas — a given flavor of PSL is compatible with the corresponding HDL's syntax in those areas.

4.1.2.1 SystemVerilog flavor

In this flavor, all expressions of the Boolean layer, as well as modeling layer code, are written in SystemVerilog
syntax (see Accellera SystemVerilog version 3.1a). The SystemVerilog flavor also has limited influence on the

syntax of the temporal layer. For example, ranges of the temporal layer are specified using the SystemVerilog-
style syntaxi:j .

'The definition of GDL is not yet available publicly. This flavor is included in the LRM as a placeholder for future development.

Version 1.1 Property Specification Language Reference Manual 11

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Organization

4.1.2.2 Verilog flavor

In this flavor, all expressions of the Boolean layer, as well as modeling layer code, are written in Verilog syntax
(see IEEE Std 1364-2001)%. The Verilog flavor also has limited influence on the syntax of the temporal layer.
For example, ranges of the temporal layer are specified using the Verilog-style syntax i : j .

4.1.2.3 VHDL flavor

In this flavor, all expressions of the Boolean layer, as well as modeling layer code, are written in VHDL syntax.
(See IEEE Std 1076-2002). The VHDL flavor also has some influence on the syntax of the temporal layer. For
example, ranges of the temporal layer are specified using the VHDL-style syntax i to j.

4.1.2.4 GDL flavor

In this flavor, all expressions of the Boolean layer, as well as modeling layer code, are written in GDL syntax.

The GDL flavor also has some influence on the syntax of the temporal layer. For example, ranges of the tempo-
ral layer are specified using the GDL-style syntax i . . | .

4.2 Lexical structure
This section defines the identifiers, keywords, operators, macros and comments used in PSL.
4.2.1 Identifiers

Identifiers in PSL consist of an alphabetic character, followed by zero or more alphanumeric characters; each
subsequent alphanumeric character may optionally be preceded by a single underscore character.

PSL identifiers are case-sensitive in the System Verilog and Verilog flavors and case-insensitive in the VHDL and
GDL flavors.

Example
mut ex
Read_Transacti on
L_123
4.2.2 Keywords
Keywords are reserved identifiers in PSL, so an HDL name that is a PSL keyword cannot be referenced directly,

by its simple name, in an HDL expression used in a PSL property. However, such an HDL name can be refer-
enced indirectly, using a hierarchical name or qualified name as allowed by the underlying HDL.

2For more information on references, see Chapter 2.

12 Property Specification Language Reference Manual Version 1.1

Organization

The keywords used in PSL are shown in Table 1.

Table 1—Keywords

A E next_a sequence
AF EF next_a! stable
AG EG next e strong
AX EX next_e!
abort endpoint next_event to®
l !
always eventually! next_event!
a@ next_event_a U
an F next_event_a! union
assert fairness next_event e until
assume fell next_event_e! until!
assume_guarantee forall not® until!
until_
before G onehot
before! onehot0 vmode
before! in or vprop
before !nf . vunit
boolean inherit ropert
oolean isP property w
isunknown prev within
clock
const never report X
countones next restrict X!
cover next! restrict_guarantee
rose
default

2and is a keyword only in the VHDL flavor; see the flavor macro AND_OP (4.3.2).

is is a keyword only in the VHDL flavor; see the flavor macro DEF_SYM(4.3.2).
‘not is a keyword only in the VHDL flavor; see the flavor macro NOT_OP (4.3.2).
dorisa keyword only in the VHDL flavor; see the flavor macro OR_OP (4.3.2).

‘to is a keyword only in the VHDL flavor; see the flavor macro RANGE_SYM(4.3.2).

(o

4.2.3 Operators
4.2.3.1 HDL operators

For a given flavor of PSL, the operators of the underlying HDL have the highest precedence. In particular, this
includes logical, relational, and arithmetic operators of the HDL. The HDL's logical operators for negation, con-
junction, and disjunction of Boolean values can be used in PSL for negation, conjunction, and disjunction of
properties as well. In such applications, those operators have their usual precedence and associativity, as if the
PSL properties that are operands produced Boolean values of a type appropriate to the logical operators native to
the HDL.

4.2.3.2 Foundation Language (FL) operators

Various operators are available in PSL. Each operator has a precedence relative to other operators. In general,
operators with a higher relative precedence are associated with their operands before operators with a lower rela-
tive precedence. If two operators with the same precedence appear in sequence, then the operators are associated
with their operands according to the associativity of the operators. Left-associative operators are associated with
operands in left-to-right order of appearance in the text; right-associative operators are associated with operands
in right-to-left order of appearance in the text.

Version 1.1 Property Specification Language Reference Manual 13

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Organization

Table 2—FL operator precedence and associativity

Operator class Associ ativity Qper ators

(highest precedence)

HDL operators

Union operator left uni on

Clocking operator left @

SERE repetition operators left [*] [+] [=1] [->]

Sequence within operator left within

Sequence AND operators left & &&

Sequence OR operator left |

Sequence fusion operator left :

Sequence concatenation operator left ;

FL termination operator left abort

FL occurrence operators right next* event ual | y!
X X! F

FL bounding operators right U w
until* bef or e*

Sequence implication operators right | -> =>

Boolean implication operators right -> <->

FL invariance operators right al ways never

(lowest precedence) G

NOTE—The notation NeXt * represents the next family of operators, which includes the operators next, next!,
next _a, next_a!, next_e, next_e!, next_event, next_event!, next_event_a!, and
next event _e!. The notation unti | * represents the until family of operators, which includes the operators
until,until!,until_,anduntil! . The notation bef or e* represents the before family of operators, which
includes the operators bef or e, bef ore! ,bef ore_,andbefore! _.

4.2.3.2.1 Clocking operator
For any flavor of PSL, the FL operator with the next highest precedence after the HDL operators is that used to
specify the clock expression that controls when the property is evaluated. The following operator is the unique
member of this class:

@ clock event
The clocking operator is left-associative.

4.2.3.2.2 SERE repetition operators

For any flavor of PSL, the Foundation Language (FL) operators with the next highest precedence are the repeti-
tion operators that construct Sequential Extended Regular Expressions (SEREs). These operators are:

[*] consecutive repetition
[+] consecutive repetition
[=] non-consecutive repetition

[->] goto repetition

SERE repetition operators are left-associative.

14 Property Specification Language Reference Manual Version 1.1

Organization

4.2.3.2.3 Sequence within operator
For any flavor of PSL, the FL operator with the next highest precedence is the sequence within operator, which is
used to describe behavior in which one sequence occurs during the course of another, or within a time-bounded
interval:

Wi t hi n sequence within operator
The sequence within operator is left-associative.

4.2.3.2.4 Sequence conjunction operators

For any flavor of PSL, the FL operators with the next highest precedence are the sequence conjunction operators,
which are used to describe behavior consisting of parallel paths. These operators are:

& non-length-matching sequence conjunction
&& length-matching sequence conjunction

Sequence conjunction operators are left-associative.
4.2.3.2.5 Sequence disjunction operator

For any flavor of PSL, the FL operator with the next highest precedence is the sequence disjunction operator,
which is used to describe behavior consisting of alternative paths:

| sequence disjunction
The sequence disjunction operator is left-associative.
4.2.3.2.6 Sequence fusion operator

For any flavor of PSL, the FL operator with the next highest precedence is the sequence fusion operator, which is
used to describe behavior in which a later sequence starts in the same cycle in which an earlier sequence finishes:

sequence fusion
The sequence fusion operator is left-associative.
4.2.3.2.7 Sequence concatenation operator

For any flavor of PSL, the FL operator with the next highest precedence is the sequence concatenation operator,
which is used to describe behavior in which one sequence is followed by another:

; sequence concatenation
The sequence contatenation operator is left-associative.
4.2.3.2.8 FL termination operator

For any flavor of PSL, the FL operator with the next highest precedence is the FL termination operator, used to
specify a condition which will cause both current and future obligations to be canceled:

abort immediate termination of current and future obligations

Version 1.1 Property Specification Language Reference Manual 15

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Organization

The FL termination operator is left-associative.
4.2.3.2.9 FL occurrence operators

For any flavor of PSL, the FL operators with the next highest precedence are those used to specify when a subor-
dinate property must hold, if the parent property is to hold. These operators are:

eventual | y! must hold at some time in the indefinite future
next* must hold at some specified future time or range of future times

FL occurrence operators are right-associative.
4.2.3.2.10 Bounding operators

For any flavor of PSL, the FL operators with the next highest precedence are those used to specify a condition
after which the parent property need not hold. These operators are:

until* musthold up to a given event
bef ore* must hold at some time before a given event

FL bounding operators are right-associative.
4.2.3.2.11 Suffix implication operators

For any flavor of PSL, the FL operators with the next highest precedence are those used to describe behavior
consisting of a property that holds at the end of a given sequence. These operators are:

| -> overlapping suffix implication

| => non-overlapping suffix implication

The suffix implication operators are right-associative.

NOTE—The FL Property {r} (f) is an alternative form for (and has the same semantics as) the FL Property {r} |-> f.
4.2.3.2.12 Logical implication operators

For any flavor of PSL, the FL operators with the next highest precedence are those used to describe behavior
consisting of a Boolean, a sequence, or a property that holds if another Boolean, sequence, or property holds.

These operators are:

-> logical IF implication
<-> logical IFF implication

The logical IF and logical IFF implication operators are right-associative.
4.2.3.2.13 FL invariance operators

For any flavor of PSL, the FL operators with the next highest precedence are those used to specify when a subor-
dinate property must hold, if the parent property is to hold. These operators are:

al ways must hold, globally
never must NOT hold, globally

16 Property Specification Language Reference Manual Version 1.1

Organization

FL occurrence operators are right-associative.

4.2.3.3 Optional Branching Extension (OBE) operators

Operator cl ass Associativity COperators

(highest precedence)

HDL operators

OBE occurrence operators left AX AG AF EX EG EF
Al U] E[U]

Boolean implication operators right -> <->

(lowest precedence)

Table 3—OBE operator precedence and associativity
4.2.3.3.1 OBE occurrence operators
For any flavor of PSL, the Optional Branching Extension (OBE) operators operators with the next highest prece-

dence after the HDL operators after the HDL operators are those used to specify when a subordinate property
must hold, if the parent property is to hold. These operators include the following:

AX on all paths, at the next state on each path

AG on all paths, at all states on each path

AF on all paths, at some future state on each path
EX on some path, at the next state on the path

EG on some path, at all states on the path

EF on some path, at some future state on the path

Al U] onallpaths, in every state up to a certain state on each path
E[U] onsome path, in every state up to a certain state on that path

The OBE occurrence operators are left-associative.
4.2.3.3.2 OBE implication operators

For any flavor of PSL, the OBE operators with the next highest precedence are those used to build properties
from Boolean expressions and subordinate properties through implication. These operators include:

-> logical IF implication
<-> logical IFF implication

4.2.4 Macros

PSL provides macro processing capabilities that facilitate the definition of properties. VHDL and GDL flavors
support cpp pre-processing directives (e.g., #define, #ifdef, #else, #include, and #undef). SystemVerilog and Ver-
ilog flavors support Verilog compiler directives (e.g., ‘define, “ifdef, “else, "include, and “undef). All flavors also
support PSL macros %for and %if, which can be used to conditionally or iteratively generate PSL statements.
The cpp style and Verilog compiler directives must be fully parsed first, the PSL macros must be parsed in the
second iteration, and any underlying flavor directives must be parsed last.

Version 1.1 Property Specification Language Reference Manual 17

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Organization

4.2.4.1 The %for construct

The % or construct replicates a piece of text a number of times, with the possibility of each replication receiving
a parameter. The syntax of the % or construct is as follows:

% or /var/ in [exprl/ .. /expr2/ do
%@nd“'
or:
%or /var/ in{ /item, /item, ... , /item } do
%@nd“'

The replicator name var is any legal PSL identifier name. It cannot be the same as any other identifier (variable,
unit name, design signal etc.) except another non wrapping PSL replicator var. The replication expressions exprn
must be statically computed expressions resulting a legal PSL range. A replication item ifem is any legal PSL
alphanumeric string or previously defined cpp style macro.

In the first case, the text inside the %for-%end pairs will be replicated expr2-exprl+1 times (assuming that
expr2>=exprl). In the second case, the text will be replicated according to the number of items in the list. Dur-
ing each replication of the text, the loop variable value is substituted into the text as follows. Suppose the loop
variable is called ii. Then the current value of the loop variable can be accessed from the loop body using the fol-
lowing three methods:

The current value of the loop variable can be accessed using simply ii if ii is a separate token in the text. For
instance:

% or ii in 0..3 do

define aa(ii) :=1ii > 2;
%end

is equivalent to:

define aa(0) := 0 > 2;
define aa(l) :=1 > 2;
define aa(2) := 2 > 2;
define aa(3) := 3 > 2;

Ifii is part of an identifier, the value of ii can be accessed using %/{ii} as follows:
%or ii in 0..3 do

define aa%qii} :=ii > 2
%end

is equivalent to:

define aa0 := 0 > 2;
define aal := 1 > 2;
define aa2 := 2 > 2;
define aa3 := 3 > 2;

18 Property Specification Language Reference Manual Version 1.1

Organization

If ii needs to be used as part of an expression, it can be accessed as follows:
%or ii in 1..4 do

define aa%ii-1} := Hii-1} > 2
%end

The above is equivalent to:

define aa0 := 0 > 2;
define aal := 1 > 2;
define aa2 := 2 > 2;
define aa3 := 3 > 2;

The following operators can be used in pre-processor expressions:

< >

<= >=

+ -

* /
%

4.2.4.2 The %if construct

The % f construct is similar to the #i f construct of the cpp pre-processor. However, % f must be used when
it is conditioned on variables defined in an encapsulating % or . The syntax of % f is as follows:

% f [expr/ % hen
%@nd""

or:
% f [expr/ % hen
Welsé"
%@nd“'

4.2.5 Comments

PSL provides the ability to add comments to PSL specifications. For each flavor, the comment capability is con-
sistent with that provided by the corresponding HDL environment.

For the SystemVerilog and Verilog flavors, both the block comment style (/ * */)and the trailing com-
ment style (/ / <eol>) are supported.

For the VHDL flavor, the trailing comment style (-- <eol>) is supported.

For the GDL flavor, both the block comment style (/ * */) and the trailing comment style (- -

<eol>) are supported.

Version 1.1 Property Specification Language Reference Manual 19

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Organization

4.3 Syntax

4.3.1 Conventions

The formal syntax described in this standard uses the following extended Backus-Naur Form (BNF).

a)

b)

d)

e)

2

h)

The initial character of each word in a nonterminal is capitalized. For example:
PSL_Statement

A nonterminal can be either a single word or multiple words separated by underscores. When a multiple-
word nonterminal containing underscores is referenced within the text (e.g., in a statement that describes
the semantics of the corresponding syntax), the underscores are replaced with spaces.

Boldface words are used to denote reserved keywords, operators, and punctuation marks as a required
part of the syntax. For example:

vunit (;

The : : = operator separates the two parts of a BNF syntax definition. The syntax category appears to the
left of this operator and the syntax description appears to the right of the operator. For example, item d)
shows three options for a Vunit Type.

A vertical bar separates alternative items (use one only) unless it appears in boldface, in which case it
stands for itself. For example:
Vunit_Type ::= vunit | vprop | vmode

Square brackets enclose optional items unless they appear in boldface, in which case they stand for
themselves. For example:

Sequence Declaration ::= sequence Name [(Formal Parameter List) | DEF_SYM Sequence ;

indicates (Formal Parameter List) is an optional syntax item for Sequence Declaration, whereas

| Sequence [* [Range]]

indicates that (the outer) square brackets are part of the syntax, while Range is optional.

Braces enclose a repeated item unless they appear in boldface, in which case they stand for themselves.
A repeated item may appear zero or more times; the repetition is equivalent to that given by a left-recur-
sive rule. Thus, the following two rules are equivalent:

Formal Parameter List ::= Formal Parameter { ; Formal Parameter }
Formal Parameter List ::= Formal Parameter | Formal Parameter List; Formal Parameter

A comment in a production is preceded by a colon (:) unless it appears in boldface, in which case it
stands for itself.

If the name of any category starts with an italicized part, it is equivalent to the category name without the
italicized part. The italicized part is intended to convey some semantic information. For example,
vunit Name is equivalent to Name.

The main text uses italicized type when a term is being defined, and nonospace font for examples and refer-
ences to constants such as 0, 1, or X values.

20

Property Specification Language Reference Manual Version 1.1

Organization

4.3.2 HDL dependencies

PSL is defined in several flavors, each of which corresponds to a particular hardware description language with
which PSL can be used. Flavor macros reflect the flavors of PSL in the syntax definition. A flavor macro is
similar to a grammar production, in that it defines alternative replacements for a nonterminal in the grammar. A
flavor macro is different from a grammar production, in that the alternatives are labeled with an HDL name and
in the context of a given HDL, only the alternative labeled with that HDL name can be selected.

The name of each flavor macro is shown in all uppercase. Each flavor macro defines analogous, but possibly dif-
ferent syntax choices allowed for each flavor. The general format is the term Fl avor Macr o, then the actual
macro name, followed by the = operator, and, finally, the definition for each of the HDLs.

Example

Fl avor Macr o RANCGE _SYM =
SystenVerilog: : / Verilog: : / VHDL: to / CGDL:

shows the range symbol macro (RANGE_SYM).

PSL also defines a few extensions to Verilog declarations as shown in Box 1.

Extended Verilog Declaration ::=
Verilog module or generate item_declaration
| Extended Verilog Type Declaration

Box 1—Extended Verilog Declarations

4.3.2.1 HDL_UNIT

At the topmost level, a PSL specification consists of a set of HDL design units and a set of PSL verification units.
The Flavor Macro HDL__UNI T identifies the nonterminals that represent top-level design units in the grammar
for each of the respective HDLs, as shown in Box 2.

Flavor Macro HDL_UNIT =
SystemVerilog: SystemVerilog_module_declaration
/ Verilog: Verilog module declaration
/ VHDL: VHDL design unit
/ GDL: GDL _module declaration

Box 2—Flavor macro HDL UNIT

Version 1.1 Property Specification Language Reference Manual 21

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Organization

4.3.2.2 HDL_MOD_NAME

PSL verification units refer to HDL modules or design units. The Flavor Macro HDL_ MOD NAME specifies

how modules and design units can be referred to in the various flavors.

Flavor Macro HDL MOD NAME =
SystemVerilog: module Name
/ Verilog: module Name
/ VHDL: entity_aspect
/ GDL: module_ Name

Box 3—Flavor macro HDL MOD NAME

4.3.2.3 HDL_DECL and HDL_STMT

PSL verification units may contain certain kinds of HDL declarations and statements.

Flavor macros

HDL_DECL and HDL__STMT connect the PSL syntax with the syntax for declarations and statements in the gram-

mar for each HDL. Both of these are shown in Box 4.

Flavor Macro HDL _DECL =
SystemVerilog: SystemVerilog module or generate item_declaration
/ Verilog: Extended Verilog Declaration
/ VHDL: VHDL_declaration
/ GDL: GDL_module_item_declaration
Flavor Macro HDL_STMT =
SystemVerilog: SystemVerilog_ module or_ generate_item
/ Verilog: Verilog_module or generate item
/ VHDL: VHDL_concurrent_statement
/ GDL: GDL _module_item

Box 4—Flavor macros HDL _DECL and HDL STMT

4.3.2.4 HDL_EXPR

Expressions shall be valid expressions in the underlying HDL description. This applies to expressions appearing
directly within a temporal layer property, as well as to any sub-expressions of those expressions. The definition

of HDL_EXPR captures this requirement, as shown in Box 5.

Flavor Macro HDL_EXPR =
SystemVerilog: SystemVerilog Expression
/ Verilog: Verilog_Expression
/ VHDL: VHDL Expression
/ GDL: GDL_Expression

Box 5—Flavor macro HDL _EXPR

22 Property Specification Language Reference Manual

Version 1.1

Organization

4.3.2.5 HDL_RANGE

Some HDLs provide special syntax for referring to the range of values that a variable or index may take on. Fla-
vor macro HDL_RANGE captures this possibility, as shown in Box 5. Unlike other flavor macros, this one only
includes options for those languages that support special range syntax.

Flavor Macro HDL_RANGE =
VHDL: VHDL_Expression

Box 6—Flavor macro HDL RANGE

NOTE—Flavor macro HDL_RANGE only applies in a VHDL context, because VHDL is the only language that includes
special syntax for referring to previously defined ranges.

4.3.2.6 AND_OP, OR_OP, and NOT_OP

Each flavor of PSL overloads the underlying HDL's symbols for the logical (i.e., Boolean) conjunction, disjunc-
tion, and negation operators so the same operators are used for conjunction and disjunction of Boolean expres-
sions and for conjunction, disjunction, and negation of properties. The definitions of AND_OP, OR_OP, and
NOT_OP reflect this overloading, as shown in Box 7.

Flavor Macro AND OP =

SystemVerilog: && / Verilog: && / VHDL: and / GDL: &
Flavor Macro OR_OP =

SystemVerilog: || / Verilog: ||/ VHDL: or / GDL: |
Flavor Macro NOT _OP =

SystemVerilog: ! / Verilog: ! / VHDL: not / GDL: !

Box 7—Flavor macros AND_OP, OR_OP, and NOT _OP

4.3.2.7 RANGE_SYM, MIN_VAL, and MAX_ VAL

Within properties it is possible to specify a range of integer values representing the number of cycles or number
of repetitions that are allowed to occur. PSL adopts the general form of range specification from the underlying
HDL, as reflected in the definition of RANGE_SYM M N_VAL, and MAX_VAL shown in Box 8.

Flavor Macro RANGE SYM =

SystemVerilog: : / Verilog: : / VHDL: to / GDL: ..
Flavor Macro MIN_VAL =

SystemVerilog: 0 / Verilog: 0 / VHDL: 0 / GDL: null
Flavor Macro MAX VAL =

SystemVerilog: $ / Verilog: inf/ VHDL: inf / GDL: null

Box 8— Flavor macros RANGE SYM, MIN VAL, and MAX VAL

However, unlike HDLs, in which ranges are always finite, a range specification in PSL may have an infinite
upper bound. For this reason, the definition of MAX_ VAL includes the keyword inf, representing infinite.

Version 1.1 Property Specification Language Reference Manual 23

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Organization

4.3.2.8 LEFT_SYM and RIGHT_SYM

In replicated properties, it is possible to specify the replication index Name as a vector of boolean values. PSL
allows this specification to take the form of an array reference in the underlying HDL, as reflected in the defini-
tion of LEFT_SYM and Rl GHT_SYM shown in Box 9.

Flavor Macro LEFT _SYM =

SystemVerilog: [/ Verilog: [/ VHDL: (/ GDL: (
Flavor Macro RIGHT SYM =

SystemVerilog: | / Verilog: | / VHDL:) /GDL:)

Box 9—Flavor macro LEFT SYM and RIGHT SYM

4.3.2.9 DEF_SYM

Finally, as in the underlying HDL, PSL can declare new named objects. To make the syntax of such declarations
consistent with those in the HDL, PSL adopts the symbol used for declarations in the underlying HDL, as
reflected in the definition of DEF_SYMshown in Box 10.

Flavor Macro DEF_SYM =
SystemVerilog: =/ Verilog: =/ VHDL: is / GDL: :=

Box 10—Flavor macro DEF _SYM

4.4 Semantics
In this document, the following terms are used to describe the semantics of the language:

— shall indicates a required aspect of the PSL specification and can indicates an optional aspect of the PSL
specification.

— In the informal (i.e., English) description of the semantics of the temporal layer, holds (or doesn t hold)
indicates that the design does (or does not) behave in the manner specified by a property.

4.4.1 Clocked vs. unclocked evaluation

PSL properties can be modified by using a clock expression to indicate that time shall be measured in clock
cycles of the clock expression. Such a property is a clocked property. The meaning of a clocked property is not
affected by the granularity of time as seen by the verification tool. Thus, a clocked property shall give the same
result for cycle-based and event-based verification.

Properties that are not modified by a clock expression are unclocked properties.

PSL does not dictate how time ticks for an unclocked property. Thus, unclocked properties are used to reason
about the sequence of signal values as seen by the verification tool being used. For instance, a cycle-based sim-
ulator sees a sequence of signal values calculated cycle-by-cycle, while an event-based simulator running on the
same design sees a more detailed sequence of signal values.

4.4.2 Safety vs. liveness properties

A safety property is a property that specifies an invariant over the states in a design. The invariant is not neces-

sarily limited to a single cycle, but it is bounded in time. Loosely speaking, a safety property claims that “some-
thing bad” does not happen. More formally, a safety property is a property for which any path violating the

24 Property Specification Language Reference Manual Version 1.1

Organization

property has a finite prefix such that every extension of the prefix violates the property. For example, the prop-
erty “whenever signal r eq is asserted, signal ack is asserted within 3 cycles” is a safety property.

A liveness property is a property that specifies an eventuality that is unbounded in time. Loosely speaking, a
liveness property claims that “something good” eventually happens. More formally, a liveness property is a
property for which any finite path can be extended to a path satisfying the property. For example, the property
“whenever signal r eq is asserted, signal ack is asserted sometime in the future” is a liveness property.

4.4.3 Linear vs. branching logic

PSL contains both properties that use linear semantics as well as those that use branching semantics. The former
are properties of the PSL Foundation Language, while the latter belong to the Optional Branching Extension.
Properties with linear semantics reason about computation paths in a design and can be checked in simulation, as
well as in formal verification. Properties with branching semantics reason about computation trees and can be
checked only in formal verification.

While the linear semantics of PSL are the ones most used in properties, the branching semantics add important
expressive power. For instance, branching semantics are sometimes required to reason about deadlocks.

4.4.4 Simple subset

PSL can express properties that cannot be easily evaluated in simulation, although such properties can be
addressed by formal verification methods.

In particular, PSL can express properties that involve branching or parallel behavior, which tend to be more diffi-
cult to evaluate in simulation, where time advances monotonically along a single path. The simple subset of PSL
is a subset that conforms to the notion of monotonic advancement of time, left to right through the property,
which in turn ensures that properties within the subset can be simulated easily. The simple subset of PSL contains
any PSL FL property meeting all of the following conditions:

— The operand of a negation operator is a Boolean.

— The operand of a never operator is a Boolean or a Sequence.

— The operand of an event ual | y! operator is a Boolean or a Sequence.

— The left-hand side operand of a logical and operator is a Boolean.

— The left-hand side operand of a logical or operator is a Boolean.

— The left-hand side operand of a logical implication (- >) operator is a Boolean.
— Both operands of a logical iff (<- >) operator are Boolean.

— The right-hand side operand of a non-overlapping unt i | * operator is a Boolean.
— Both operands of an overlapping unt i | * operator are Boolean.

— Both operands of a bef or e* operator are Boolean.

All other operators not mentioned above are supported in the simple subset without restriction. In particular, all
of the next _event operators and all forms of suffix implication are supported in the simple subset.

4.4.5 Finite-length versus infinite-length behavior
The semantics of PSL allow us to decide whether a PSL property holds on a given behavior. How the outcome

of this problem relates to the design depends on the behavior that was analyzed. In dynamic verification only
behaviors that are finite in length are considered. In such a case, PSL defines four levels of satisfaction of a

property:

Version 1.1 Property Specification Language Reference Manual 25

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Organization

Holds strongly:

— 1o bad states have been seen
— all future obligations have been met
— the property will hold on any extension of the path

Holds (but does not hold strongly):

— 1o bad states have been seen
— all future obligations have been met
— the property may or may not hold on any given extension of the path

Pending:

— 1o bad states have been seen
— future obligations have not been met
— (the property may or may not hold on any given extension of the path)

— a bad state has been seen
— (future obligations may or may not have been met)
— the property will not hold on any extension of the path

4.4.6 The concept of strength

PSL uses the term strong in two different ways: an operator may be strong, and the satisfaction of an assertion
on a path may be strong. While the two are related, the use of the concept of strength in each context is best
understood first in isolation. Each is presented below, then the relation between them is explained.

4.4.6.1 Strong vs. weak operators

Some operators have a terminating condition that comes at an unknown time. For example, the property “busy
shall be asserted until done is asserted” is expressed using an operator of the unt i | family, which states that sig-
nal busy shall stay asserted until the signal done is asserted. The specific cycle in which signal done is
asserted is not specified.

Operators such as these come in both strong and weak forms. The strong form requires that the terminating con-
dition eventually occur, while the weak form makes no requirements about the terminating condition. For exam-
ple, the strong and weak forms of “busy shall be asserted until done is asserted” are (busy until! done)
and (busy until done), respectively. The former states that busy shall be asserted until done is asserted
and that done shall eventually be asserted). The latter states that busy shall be asserted until done is asserted
and that if done is never asserted, then busy shall stay asserted forever.

The distinction between weak and strong operators is related to the distinction between safety and liveness prop-
erties. A property that uses a non-negated strong operator is a liveness property, while one that contains only
non-negated weak operators is a safety property.

4.4.6.2 Strong satisfaction
Strong satisfaction is related to the status of a property on a finite path, as seen for example in simulation. If a
property holds on a finite path, and in addition, we know that the property will hold on any extension of the path,

we say that the property is satisfied strongly. For instance, the property (expressed in English) p is eventually
asserted holds strongly on a finite path on which p is asserted at some point. The property (expressed in English)

26 Property Specification Language Reference Manual Version 1.1

Organization

p is always asserted does not hold strongly on such a path (and indeed holds strongly on no finite path), because
we can never be sure that extending the path will not cause the property to fail.

4.4.6.3 Relating the two concepts of strength
The relationship between the strength of an operator and the strength of satisfaction of a property is as follows:
assume we have a property p such that the only negation appears on boolean expressions. Replace all operators

in p with their strong versions, and call the result p_s. Then property p holds strongly on a finite path iff prop-
erty p_s holds on the path.

Version 1.1 Property Specification Language Reference Manual 27

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Organization

28

Property Specification Language Reference Manual

Version 1.1

5. Boolean layer

The Boolean layer consists of expressions that represent design behavior. These expressions build upon the
expression capabilities of the HDL(s) used to describe the design under consideration. All expressions in the
Boolean layer evaluate immediately, at an instant in time.

Expressions may be of various HDL-specific data types. Certain classes of HDL data types are distinguished in
PSL, due to their specific roles in describing behavior. Each class of data types in PSL corresponds to a set of
specific data types in the underlying HDL design.

Expressions may involve HDL-specific expression syntax or PSL-defined operators and built-in functions.
PSL-defined operators and built-in functions map onto underlying HDL-specific operations, as appropriate for
the HDL context and the data type of the expression.

HDL-specific expressions are not redefined by PSL. Rather, PSL uses a subset of the existing IEEE standards.
See Chapter 8 (Modeling layer) for details.

5.1 Expression Type Classes

Five classes of expression are distinguished in PSL: Bit, Boolean, BitVector, Numeric, and String expressions.
Each of these correspond to a set of specific data types in the underlying HDL context, and an interpretation of
the values of those data types. Some PSL expressions and built-in functions require operands that belong to spe-
cific expression classes. Others take operands of any type.

Any Type =
HDL or PSL Expression

Box 11—Any type expression

5.1.1 Bit expressions

Bit expressions represent the values of individual signals or memory elements in the design. The data types used
in bit expressions include types that model bits as strictly binary (having values in {0,1}) as well as multi-valued
logic types, with values in {X, 0, 1, Z}.

Bit ::=
bit HDL or PSL_Expression

Box 12—Bit expression

In Verilog, the built-in logic type is a Bit type.
In SystemVerilog, the built-in types bit and logic are Bit types.

In VHDL, type STD.Standard.Bit, and type IEEE.Std Logic 1164.std_ulogic, as well as subtypes thereof, are Bit
types.

Version 1.1 Property Specification Language Reference Manual 29

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Boolean layer

5.1.2 Boolean expressions

Boolean expressions, for which the Boolean layer is named, describe states of the design, in terms of signals, val-
ues, and their relationships. They represent simple properties, which can be composed using temporal operators
to create temporal properties.

Boolean ::=
boolean HDL or PSL_Expression

Box 13—Boolean expression

Boolean expressions may be dynamic, i.e., they may contain signals whose values change over time. Boolean
expressions may have subexpressions of any type.

In VHDL, type STD.Standard.Boolean is a Boolean type.

Any Bit type is interpretable as a Boolean type. For Verilog and SystemVerilog, a BitVector expression may also
appear where a Boolean expression is required, in which case the expression is interpreted as True or False
according to the rules of Verilog and SystemVerilog, respectively, for interpreting an expression that appears as
the condition of an if statement.

The return value from a PSL expression or built-in function that returns a Boolean value is of the appropriate
type for the context. For Verilog, the return value is of the built-in logic type; for SystemVerilog, the return value

is of the built-in type logic, for VHDL, the return value is of type STD.Standard. Boolean.

Literals True and False represent the corresponding literals in the underlying HDL Boolean type (or Bit type
interpreted as a Boolean type) involved in a given expression.

A Boolean expression is required wherever the nonterminal Boolean appears in the syntax.
5.1.3 BitVector expressions

BitVector expressions represent words composed of bits, of various widths.

BitVector ::=
bitvector HDL or PSL_Expression

Box 14—RBitVector expression

In Verilog, and in SystemVerilog, any reg, wire, or net type, and any word in a memory, is interpretable as a
BitVector type.

In VHDL, any type that is a one-dimensional array of a Bit type is interpretable as a BitVector type.
The return value from a PSL built-in function that returns a BitVector value is of the appropriate type for the con-

text. For Verilog, the return value is a vector of the built-in logic type; for SystemVerilog, the return value is a
vector of the built-in type logic; for VHDL, the return value is of type IEEE.Std Logic 1164.std ulogic vector.

30 Property Specification Language Reference Manual Version 1.1

Boolean layer

5.1.4 Numeric expressions

Numeric expressions represent integer constants such as cycle or occurrence counts that are part of the definition
of a temporal property.

Number ::=
numeric. HDL _or PSL_Expression

Box 15—Numeric expression

In Verilog, any BitVector expression that contains no unknown bit values is interpretable as a Numeric expres-
sion. In SystemVerilog, any integral type is interpretable as a Numeric type. In VHDL, any expression of an
integer type is interpretable as a Numeric expression.

The return value from a PSL built-in function that returns a Numeric value is of the appropriate type for the con-
text. For Verilog, the return value is a vector of the built-in logic type; for SystemVerilog, the return value is of
the built-in type int; for VHDL, the return value is of type STD.Standard.Integer.

A Numeric expression is required wherever the nonterminal Number appears in the syntax.

Restrictions

Numeric expressions must be statically evaluable--signals or variables that can change value over time are not
allowed in expressions that must be Numeric. Numeric expressions are always non-negative; in some cases they
must be non-zero as well.

5.1.5 String expressions

String expressions represent text messages that are attached to a PSL directive to help in debugging.

String ::=
string HDL _or PSL_Expression

Box 16—String expression

In Verilog, any string literal is a String expression. In SystemVerilog, any expression of type string is a String
expression. In VHDL, any expression of type STD.Standard.String is a String expression.

A String expression is required wherever the nonterminal String appears in the syntax.

5.2 Expression forms

Expressions in the Boolean Layer are built from HDL expressions, PSL expressions, PSL built-in functions, end-
point instances, and union expressions, as Box 16 illustrates.

Version 1.1 Property Specification Language Reference Manual 31

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Boolean layer

HDL or PSL Expression ::=
HDL_Expression
| PSL_Expression
| Built_In_Function_Call
| Union_Expression
| Endpoint_Instance

Box 17—HDL or PSL Expression

In each flavor of PSL, at any place where an HDL subexpression may appear within an HDL or PSL expression,
the grammar of the corresponding HDL is extended to allow any form of HDL or PSL expression. Thus HDL
expressions, PSL expressions, built-in functions, endpoints, and union expressions may all be used as subexpres-
sions within HDL or PSL expressions.

NOTE—Subexpressions of a Boolean expression may be of any type supported by the corresponding HDL.

5.2.1 HDL expressions

An HDL expression may be used wherever a Bit, Boolean, BitVector, Numeric, or String expression is required,
provided that the type of the expression is (or is interpretable as) the required type.

HDL _ Expression ::=
HDL EXPR

Flavor Macro HDL_EXPR =
SystemVerilog: SystemVerilog_Expression
/ Verilog: Verilog_Expression
/ VHDL: VHDL_Expression
/ GDL: GDL_Expression

Box 18—HDL expression

Informal semantics

The meaning of an HDL expression in a PSL context is determined by the meanings of the names and operator
symbols of the HDL expression.

For each name in the HDL expression, the meaning of the name is determined as follows.

a) If'the current verification unit contains a (single) declaration of this name, then the object created by that
declaration is the meaning of this name.

b) Otherwise, if the transitive closure with respect to inheritance of all verification units inherited by the
current verification unit contains a (single) declaration of this name, then the object created by that dec-
laration is the meaning of this name.

¢) Otherwise, if the default verification mode contains a (single) declaration of this name, then the object
created by that declaration is the meaning of this name.

d) Otherwise, if this name has an unambiguous meaning at the end of the design module or instance associ-
ated with the current verification unit, then that meaning is the meaning of this name.

e) Otherwise, this name has no meaning.

32 Property Specification Language Reference Manual Version 1.1

Boolean layer

It is an error if more than one declaration of a given name appears in the current verification unit (in step (a)), or
in the transitive closure of all inherited verification units (in step (b)), or in the default verification mode (in step
(c)), or if the name is ambiguous at the end of the associated design module or instance (in step (d)).

For each operator symbol in the HDL expression, the meaning of the operator symbol is determined as follows.

— For the SystemVerilog, Verilog, and GDL flavors, this operator symbol has the same meaning as the cor-
responding operator symbol in the HDL.

— For the VHDL flavor, if this operator symbol has an unambiguous meaning at the end of the design unit
or component instance associated with the current verification unit, then that meaning is the meaning of
this operator symbol.

— Otherwise, this operator symbol has no meaning.

See 7.2 for an explanation of verification units and modes.

5.2.2 PSL expressions

PSL defines a collection of operators that represent underlying HDL operators..

HDL or PSL Expression ::=
PSL_Expression

PSL_Expression ::=
Boolean - > Boolean
| Boolean <- > Boolean

Box 19—PSL expression

Both PSL expression operators involve operands that are (or are interpretable as) Boolean. Each produces a
Boolean result.

Informal semantics

Each of these operators represent, or map to, equivalent operators defined by the HDL in which the relevant por-
tion of the design is described, as appropriate for the data types of the operands.

In a Verilog or SystemVerilog context, the mapping is as follows. PSL expression a -> b maps to the equiva-
lent expression (!a || b), and PSL expression a <-> b maps to the equivalent expression

((a & b) || ('a && !'b)).

In a VHDL context, the mapping is as follows. PSL expression a -> b maps to the equivalent expression

(not a or b),andPSL expressiona <-> b maps to the equivalent expression

((a and b) or (not a and not b)).

In the GDL flavor, these operators are native operators, so no mapping is involved.

5.2.3 Built-in functions

PSL defines a collection of built-in functions that detect typically interesting conditions.

Version 1.1 Property Specification Language Reference Manual 33

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Boolean layer

Built In Function Call ::=
prev (Any Type [, Number])
next (Any_Type S
stable (Any Type)
rose (Bit
fell (Bit)
isunknown (BitVector)
countones (BitVector)
onehot (BitVector)
onehot0 (BitVector)

Box 20—Built-in functions

There are two classes of built-in functions. Functions prev(), next (), stabl e(),rose(),andfell ()
all have to do with the values of expressions over time. Functions i sunknown(), count ones(),
onehot (), and onehot O() all have to do with the values of bits in a vector at a given instant.

5.2.3.1 prev()

The built-in function pr ev() takes an expression of any type as argument and returns a previous value of that
expression. With a single argument, the built-in function pr ev() gives the value of the expression in the previ-
ous cycle, with respect to the clock of its context. If a second argument is specified and has the value i , the built-
in function pr ev() gives the value of the expression in the i th previous cycle, with respect to the clock of its
context.

The clock context may be provided by the PSL property in which the function call is nested, or by a relevant
default clock declaration. If the context does not specify a clock, the relevant clock is that corresponding to the

granularity of time as seen by the verification tool.

NOTE—The first argument of pr €V (') is not necessarily a Boolean expression. For example, if the argument to pr ev()
is a bit vector, then the result is the previous value of the entire bit vector.

Restrictions

Ifa call to prev() includes a Number, it must be a positive Number that is statically evaluatable.

Example

In the timing diagram below, the function call pr ev(a) returns the value 1 at times 3, 4, and 6, and the value 0
at other times, if it does not have a clock context. In the context of clock cl k, the cal | prev(a) returns the
value 1 at times 5 and 7, and the value 0 at other tick points. In the context of clock cl Kk, the call pr ev(a, 2)
returns the value 1 at time 7, and 0 at other tick points.

time 01234567

34 Property Specification Language Reference Manual Version 1.1

Boolean layer

5.2.3.2 next()

The built-in function next () gives the value of a signal of any type at the next cycle, with respect to the finest
granularity of time as seen by the verification tool. In contrast to the built-in functions prev(), st abl e(),
rose(),andfell (), the function next () is not affected by the clock of its context.

Restrictions

The argument of next () shall be the name of a signal; an expression other than a simple name is not allowed.
A call to next () can only be used on the right-hand-side of an assignment to a memory element (register or
latch). It cannot be used on the right-hand-side of an assignment to a combinational signal, nor can it be used
directly in a property.

Example
In the timing diagram below, the function call next (@) returns the value 1 at times 1, 2, and 4.

tinme 01234567

5.2.3.3 stable()

The built-in function st abl e() takes an expression of any type as argument and produces a Boolean result that
is true if the argument's value is the same as it was at the previous cycle, with respect to the clock of its context.

The clock context may be provided by the PSL property in which the function call is nested, or by a relevant
default clock declaration. If the context does not specify a clock, the relevant clock is that corresponding to the
granularity of time as seen by the verification tool.

The function st abl e() can be expressed in terms of the built-in function pr ev() as follows: st abl e(e) is

equivalent to the Verilog or SystemVerilog expression (prev(e) == e), and is equivalent to the VHDL

expression (prev(e) = e), where e is any expression. The function st abl e() can be used anywhere a
Boolean is required.

Example

In the timing diagram below, the function call st abl e(@) is true at times 1, 3, and 7, and at no other time if it
does not have a clock context. In the context of clock cl Kk, the function call st abl e(@) is true at the tick of
cl k at time 5 and at no other tick point of cl k.

tinme 01234567

Version 1.1 Property Specification Language Reference Manual 35

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Boolean layer

5.2.3.4 rose()

The built-in function r ose() takes a Bit expression as argument and produces a Boolean result that is true if the
argument's value is | at the current cycle and 0 at the previous cycle, with respect to the clock of its context, oth-
erwise it is false.

The clock context may be provided by the PSL property in which the function call is nested, or by a relevant
default clock declaration. If the context does not specify a clock, the relevant clock is that corresponding to the
granularity of time as seen by the verification tool.

The function r ose() can be expressed in terms of the built-in function prev() as follows: r ose(b) is
equivalent to the Verilog or SystemVerilog expression (pr ev(b) ==1" b0 && b==1" bl), and is equivalent to
the VHDL expression (prev(b) =" 0" and b="1"), where b is a Bit signal. The function r ose(b) can be
used anywhere a Boolean is required.

NOTE—For a given property f and signal clk, f@rose(clk), f@(posedge clk), and f@(rising_edge(clk)) all have equivalent
semantics, provided that signal clk takes on only 0 and 1 values, and no signal in f changes at the same time as clk (i.e., there
are no race conditions).

If signal clk can take on X or Z values, then the semantics of fl@(posedge clk) may differ from those of f@rose(clk) and
f@(rising_edge(clk)), because (posedge clk) will generate an event on 0->X, X->1, 0->Z, and Z->1 transitions of clk,
whereas rose(clk) and rising_edge(clk) will ignore these transitions.

If at least one signal appearing in f changes at the same time as clk, then the semantics of f@(posedge clk), f@rose(clk), and
f@(rising_edge(clk)) may be different, due to differences in their respective handling of race conditions.

Example

In the timing diagram below, the function call r ose(@) is true at times 2 and 5 and at no other time, if it has no
clock context. In the context of clock cl k, the function call r ose(a) is true at the tick of ¢l k at time 3 and at
no other tick point of cl K.

tine 01234567

5.2.3.5 fell()

The built-in function f el | () takes a Bit expression as argument and produces a Boolean result that is true if the
argument's value is 0 at the current cycle and 1 at the previous cycle, with respect to the clock of its context, oth-
erwise it is false.

The clock context may be provided by the PSL property in which the function call is nested, or by a relevant
default clock declaration. If the context does not specify a clock, the relevant clock is that corresponding to the
granularity of time as seen by the verification tool.

The function f el | () can be expressed in terms of the built-in function prev() as follows: fel |l (b) is
equivalent to the Verilog or SystemVerilog expression (pr ev(b) ==1" b1l && b==1’ b0), and is equivalent to
the VHDL expression (prev(b) ="1" and b="0"), where b is a Bit signal. The function f el | (b) can be
used anywhere a Boolean is required.

36 Property Specification Language Reference Manual Version 1.1

Boolean layer

NOTE—For a given property f and signal clk, f@fell(clk), f@(negedge clk), and f@(falling_edge(clk)) all have equivalent
semantics, provided that signal clk takes on only 0 and 1 values, and no signal in f changes at the same time as clk (i.e., there
are no race conditions).

If signal clk can take on X or Z values, then the semantics of f@(negedge clk) may differ from those of f@fell(clk) and
f@(falling_edge(clk)), because (negedge clk) will generate an event on 1->X, X->0, 1->Z, and Z->0 transitions of clk,
whereas fell(clk) and falling_edge(clk) will ignore these transitions.

If at least one signal appearing in f changes at the same time as clk, then the semantics of f@(negedge clk), f@fell(clk), and
f@(falling_edge(clk)) may be different, due to differences in their respective handling of race conditions.

Example
In the timing diagram below, the function call fell(a) is true at times 4 and 6 and at no other time if it does not
have a clock context. In the context of clock clk, the function call fell(a) is true at the tick of clk at time 7 and at

no other tick point of clk.

tine 01234567

5.2.3.6 isunknown()

The built-in function i sunknown() takes a BitVector as argument. It returns True if the argument contains
any bits that have “unknown” values (i.e., values other than 0 or 1); otherwise it returns False.

Function i sunknown() can be used anywhere a Boolean is required.
5.2.3.7 countones()

The built-in function count ones() takes a BitVector as argument. It returns a count of the number of bits in
the argument that have the value 1.

Bits that have unknown values are ignored.

NOTE—Although function count ones() returns a Numeric result, it can only be used where a Number is required if it has
a statically evaluable argument.

5.2.3.8 onehot(), onehot0()

The built-in function onehot () takes a BitVector as argument. It returns True if the argument contains exactly
one bit with the value 1; otherwise it returns False.

The built-in function onehot 0() takes a BitVector as argument. It returns True if the argument contains at
most one bit with the value 1; otherwise it returns False.

For either function, bits that have unknown values are ignored.

Functions onehot () and onehot O() can be used anywhere a Boolean is required

Version 1.1 Property Specification Language Reference Manual 37

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Boolean layer

5.2.4 Union expressions

The union operator specifies two values, shown in Box 20, either of which can be the value of the resulting
expression.

Union_Expression ::=
Any_Type union Any Type

Box 21—Union expression

Restrictions:
The two operands must be of the same underlying HDL type.
Example
a = b union c;
This is a non-deterministic assignment of either b or ¢ to variable or signal a.
5.2.4.1 Endpoints

PSL defines a special variable called an endpoint, which signals the completion of a sequence. Endpoint declara-
tions and instantiations are described in 6.1.4.1 and 6.1.4.2, respectively.

5.3 Clock expressions

Booleans (either Boolean HDL expressions, or PSL expressions) can be used as clock expressions, which indi-
cate when other Boolean expressions are evaluated.

Clock Expression :=
boolean_Name
| boolean Built In_Function_Call
| Endpoint_Instance
| (Boolean)
| (HDL_CLK_EXPR)

Flavor Macro HDL _CLK EXPR =
SystemVerilog: SystemVerilog_Event Expression
/ Verilog: Verilog_Event Expression
/ VHDL: VHDL_Expression
/ GDL: GDL_Expression

Box 22—Clock expression

Any PSL expression that is a Boolean expression can be enclosed in parentheses and used as a clock expression.
In particular, PSL built-in functions r ose() andf el | (), and endpoint instances, can be used as clock expres-
sions. Boolean names, built-in function calls, and endpoint instances can also be used as clock expressions with-
out enclosing them in parentheses.

In the SystemVerilog flavor, any expression that SystemVerilog allows to be used as the condition in an if state-
ment can be used as a clock expression. In addition, any SystemVerilog event expression that is not a single

38 Property Specification Language Reference Manual Version 1.1

Boolean layer

Boolean expression can be used as a clock expression. Such a clock expression is considered to hold in a given
cycle iff it generates an event in that cycle.

In the Verilog flavor, any expression that Verilog allows to be used as the condition in an i f statement can be
used as a clock expression. In addition, any Verilog event expression that is not a single Boolean expression can
be used as a clock expression. Such a clock expression is considered to hold in a given cycle iff it generates an
event in that cycle.

In the VHDL flavor, any expression that VHDL allows to be used as the condition in an i f statement can be
used as a clock expression.

In the GDL flavor, any expression that GDL allows to be used as the condition inan i f statement can be used as
a clock expression.

5.4 Default clock declaration

A default clock declaration, shown in Box 23, specifies a clock expression for directives that have an outermost
property or sequence that has no explicit clock expression.

PSL_Declaration ::=
Clock Declaration
Clock_Declaration ::=
default clock DEF_SYM Clock Expression ;

Box 23—Default clock declaration

Restrictions
At most one default clock declaration shall appear in a given verification unit.
Informal semantics

If the outermost property of an assert, assunme, or assunme_guar ant ee directive has no explicit clock
expression, then the clock expression for that property is given by the applicable default clock declaration, if one
exists; otherwise the clock expression for the property is the expression Tr ue.

Similarly, if the outermost sequence of a cover, restrict,orrestrict_guarant ee directive has no
explicit clock expression, then the clock expression for that sequence is determined by the applicable default
clock declaration, if one exists; otherwise the clock expression for the sequence is the expression Tr ue.

The applicable default clock declaration is determined as follows.

a) If the current verification unit contains a (single) default clock declaration, then that is the applicable
default clock declaration.

b) Otherwise, if the transitive closure with respect to inheritance of all verification units inherited by the
current verification unit contains a (single) default clock declaration, then that is the applicable default
clock declaration.

¢) Otherwise, if the default verification mode contains a (single) default clock declaration, then that is the
applicable default clock declaration.

d) Otherwise, no applicable default clock declaration exists.

Version 1.1 Property Specification Language Reference Manual 39

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Boolean layer

It is an error if, in step a), more than one default clock declaration appears in the current verification unit; or if, in
step b), more than one default clock declaration appears in the transitive closure of all inherited verification units;
or if, in step ¢), more than one default clock declaration appears in the default verification mode.

Example
default clock = (posedge clkl);

assert always (req -> next ack);
cover {req; ack; !'req; !'ack};

is equivalent to

assert (always (req -> next ack)) @posedge clKk);
cover {req; ack; !'req; !'ack} @ posedge clkl);

NOTE—A property f@True, in the context of a default clock, has the same effect as property f, without a default clock. The
clock expression True effectively masks the default clock so that it has no effect on property f.

NOTE—The default clock declaration
default clock = True ;

has the same effect as having no default clock declaration.

40 Property Specification Language Reference Manual Version 1.1

6. Temporal layer

The temporal layer is used to define properties, which describe behavior over time. Properties can describe the
behavior of the design or the behavior of the external environment.

A property is built from four types of building blocks:

— Boolean expressions

— clock expressions

— sequential expressions (which are themselves built from Boolean expressions)
— subordinate properties

Boolean expressions and clock expressions are part of the Boolean layer; they are described in section 5.
Sequential expressions are described in 6.1 and properties in 6.2.

Some terms used in this section and their definitions are:

holds tightly: The term used to talk about the meaning of a sequential expression (SERE). Sequential expres-
sions are evaluated over finite paths (behaviors). The definition of holds tightly captures the meaning of a SERE
by determining the finite paths that "match" the SERE. The meaning of a SERE depends on the operators and
sub-SEREs that constitute the SERE. Thus, the definition of holds tightly is given in the sub-sections of Section
6.1; for each SERE operator, the sub-section describing that operator defines the finite paths on which a SERE
that combines other SEREs using that operator holds tightly, given the meaning of these subordinate SEREs.
Formally, a sequential expression holds tightly on a given trace iff that trace tightly models the sequential expres-
sion, as defined in Appendix B.

For example, {a;b;c} holds tightly on a path iff the path is of length three, where 'a' is true in the first cycle, 'b' is
true in the second and 'c' is true in the third. The SERE {a[*];b} holds tightly on a path iff 'b' is true in the last
cycle of the path, and 'a’ is true in all preceding cycles.

holds: The term used to talk about the meaning of a Boolean expression, sequential expression, or property. A
Boolean expression, sequential expression, or property is evaluated over the first cycle of a finite or infinite path.
The definition of holds captures the meaning of a Boolean expression, sequential expressions or property by
determining the paths (starting at the current cycle) that "obey" them. The meaning of a property depends on the
operators and subordinate properties that constitute the property. Thus, the definition of holds is given in the sub-
sections of Section 6.2; for each operator it is defined, in the sub-section describing that operator, which are the
paths the composed property holds on (at their first state). Formally, a Boolean expression, sequential expression,
or property holds on a given trace iff the trace models (or satisfies) that Boolean expression, sequential expres-
sion, or property, as defined in Appendix B.

For example, a Boolean expression 'p' holds in the first cycle of a path iff 'p' evaluates to True in the first cycle. A
SERE holds on the first cycle of a path iff it holds tightly on a prefix of that path. The sequential expression
{a;b;c} holds on a first cycle of a path iff 'a' holds on the first cycle, 'b' holds on the second cycle and 'c' holds on
the third. Note that the path itself may be of length more than 3. The sequential expression {a[*];b} holds in the
first cycle of a path iff: 1) the path contains a cycle in which 'b' holds, and 2) 'a' holds in all cycles before that
cycle. It is not necessary that the cycle in which 'b' holds is the last cycle of the path (contrary to the requirement
for {a[*];b} to hold tightly on a path). Finally, the property 'always p' holds in a first cycle of a path iff 'p' holds
in that cycle and in every subsequent cycle.

describes: A Boolean expression, sequential expression, or property describes the set of behavior for which the
Boolean expression, sequential expression, or property holds.

occurs: A Boolean expression is said to “occur” in a cycle if it holds in that cycle. For example, “the next occur-
rence of the Boolean expression” refers to the next cycle in which the Boolean expression holds.

Version 1.1 Property Specification Language Reference Manual 41

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Temporal layer

starts: A sequential expression starts at the first cycle of any behavior for which it holds. In addition, a sequen-
tial expression starts at the first cycle of any behavior that is the prefix of a behavior for which it holds. For
example, if a holds at cycle 7 and b holds at every cycle from 8 onward, then the sequential expression
{a; b[*]; c} starts at cycle 7.

completes: A sequential expression completes at the last cycle of any design behavior on which it holds tightly.
For example, if @ holds at cycle 3, b holds at cycle 4, and ¢ holds at cycle 5, then the sequence { a; b; ¢} com-
pletes at cycle 5. Similarly, given the behavior { a; b; c}, the property a bef or e ¢ completes when ¢ occurs.
NOTE—A sequence that holds eventually completes, while a sequence that starts may or may not complete.

terminating condition: A Boolean expression, the occurrence of which causes a property to complete.

terminating property: A property that, when it holds, causes another property to complete.

NOTE—These terms are used to describe the semantics of the temporal layer as precisely as possible in English. In any case
where the English description is ambiguous or seems to contradict the formal semantics provided in Appendix B, the formal
semantics take precedence.

6.1 Sequential expressions
6.1.1 Sequential Extended Regular Expressions (SEREs)

Sequential Extended Regular Expressions (SEREs), shown in Box 24, describe single- or multi-cycle behavior
built from a series of Boolean expressions.

SERE ::=
Boolean
| Sequence
| Sequence Instance

Box 24—SEREs and Sequences

The most basic SERE is a Boolean expression. A Sequence (see 6.1.2) and a Sequence Instance (see 6.1.3.2) are
also SEREs.

More complex sequential expressions are built from Boolean expressions using various SERE operators. These
operators are described in the subsections that follow.

NOTE—SEREs are grouped using curly braces ({ }), as opposed to Boolean expressions that are grouped using parentheses
(())- See section 6.1.2.4.

6.1.1.1 Simple SEREs
Simple SEREs represent a single thread of subordinate behaviors, occurring in successive cycles.
6.1.1.1.1 SERE concatenation (3)

The SERE concatenation operator (;), shown in Box 25, constructs a SERE that is the concatenation of two other
SERE:s.

42 Property Specification Language Reference Manual Version 1.1

Temporal layer

SERE ::=
SERE ; SERE

Box 25—SERE concatenation operator

The right operand is a SERE that is concatenated after the left operand, which is also a SERE.
Restrictions

None.

Informal semantics

For SEREs A and B:

A; B holds tightly on a path iff there is a future cycle n, such that A holds tightly on the path up to and
including the nth cycle and B holds tightly on the path starting at the n+1th cycle.

6.1.1.1.2 SERE fusion (:)

The SERE fusion operator (:), shown in Box 26, constructs a SERE in which two SEREs overlap by one cycle.
That is, the second starts at the cycle in which the first completes.

SERE ::=
SERE : SERE

Box 26—SERE fusion operator

The operands of : are both SEREs.
Restrictions

None.

Informal semantics

For SEREs A and B:

A: B holds tightly on a path iff there is a future cycle n, such that A holds tightly on the path up to and
including the nth cycle and B holds tightly on the path starting at the nth cycle.

6.1.1.2 Compound SEREs

Compound SEREs represent a set of one or more threads of subordinate behaviors, starting from the same cycle,
and occurring in parallel.

Version 1.1 Property Specification Language Reference Manual 43

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Temporal layer

SERE ::=
Compound_SERE

Compound_SERE ::=
Repeated SERE
| Braced_SERE
| Clocked SERE

Box 27—Compound SEREs

A Repeated SERE, a Braced SERE, and a Clocked SERE (all of which are forms of Sequence; see 6.1.2) are
Compound SEREs. Compound SERE operators allow the construction of additional forms of Compound SERE.

6.1.1.2.1 SERE or ()

The SERE or operator (|), shown in Box 28, constructs a Compound SERE in which one of two alternative Com-
pound SEREs hold at the current cycle.

Compound SERE ::=
Compound_SERE | Compound SERE

Box 286—SERE or operator

The operands of | are both Compound SEREs.
Restrictions

None.

Informal semantics

For Compound SEREs A and B:

A| B holds tightly on a path iff at least one of A or B holds tightly on the path.

6.1.1.2.2 SERE non-length-matching and (&)

The SERE non-length-matching and operator (&), shown in Box 29, constructs a Compound SERE in which two
Compound SEREs both hold at the current cycle, regardless of whether they complete in the same cycle or in dif-
ferent cycles.

Compound SERE ::=
Compound SERE & Compound SERE

Box 29—SERE non-length-matching and operator

44 Property Specification Language Reference Manual Version 1.1

Temporal layer

The operands of & are both Compound SEREs.
Restrictions

None.

Informal semantics

For Compound SEREs A and B:

A&B holds tightly on a path iff either A holds tightly on the path and B holds tightly on a prefix of the
path or B holds tightly on the path and A holds tightly on a prefix of the path.

6.1.1.2.3 SERE length-matching and (& &)

The SERE length-matching and operator (&&), shown in Box 30, constructs a Compound SERE in which two
Compound SEREs both hold at the current cycle, and furthermore both complete in the same cycle.

Compound SERE ::=
Compound SERE && Compound SERE

Box 30—SERE length-matching and operator

The operands of && are both Compound SEREs.
Restrictions

None.

Informal semantics

For Compound_SEREs A and B:

A&E&B holds tightly on a path iff A and B both hold tightly on the path.

6.1.1.2.4 SERE within

The SERE within operator (Wi t hi n), shown in Box 31, constructs a Compound SERE in which the second
Compound SERE holds at the current cycle, and the first Compound SERE starts at or after the cycle in which
the second starts, and completes at or before the cycle in which the second completes.

Compound SERE ::=
Compound_SERE within Compound_SERE

Box 31—SERE within operator

The operands of Wi t hi n are both Compound SEREs.

Version 1.1 Property Specification Language Reference Manual 45

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Temporal layer

Restrictions
None.

Informal semantics

For Compound SEREs A and B:

A w t hi n B holds tightly on a path iff the SERE {[*];A;[*]} && {B} holds tightly on the path.

6.1.2 Sequences

A sequence is a SERE that can appear at the top level of a declaration, directive, or property.

Sequence ::=

Sequence Instance
| Repeated SERE

| Braced_SERE

| Clocked SERE

Box 32—Sequences

Sequence Instances are described in section 6.1.3.2. The remaining forms of Sequence are described in the fol-

lowing subsections.

6.1.2.1 SERE consecutive repetition ([*])

The SERE consecutive repetition operator ([*]), shown in Box 33, constructs repeated consecutive concatenation
of a given Boolean or Sequence.

Repeated SERE::=

Boolean [* [Count]
| Sequence [* [Count
[[* [Count] |

| Boolean [+]

| Sequence [+]

|+

]
11

Count ::=

Range ::

Number
| Range

Low_Bound RANGE SYM High Bound

Low_Bound ::=

Number
| MIN_ VAL

High Bound ::=

Number
| MAX VAL

46

Box 33—SERE consecutive repetition operator

Property Specification Language Reference Manual

Version 1.1

Temporal layer

The first operand is a Boolean or Sequence to be repeated. The second operand gives the Count (a number or
range) of repetitions.

If the Count is a number, then the repeated SERE describes exactly that number of repetitions of the first oper-
and.

Otherwise, if the Count is a range, then the repeated SERE describes any number of repetitions of the first oper-
and such that the number falls within the specified range. If the high value of the range (High Bound) is speci-
fied as MAX VAL, the repeated SERE describes at least as many repetitions as the low value of the range. If the
low value of the range (Low_Bound) is specified as MIN_ VAL, the repeated SERE describes at most as many
repetitions as the high value of the range. If no range is specified, the repeated SERE describes any number of
repetitions, including zero, i.e., the empty path is also described.

When there is no Boolean or Sequence operand and only a Count, the repeated SERE describes any path whose
length is described by the second operand as above.

The notation [+] is a shortcut for a repetition of one or more times.
Restrictions

If the repeated SERE contains a Count, and the Count is a Number, then the Number shall be statically comput-
able. If the repeated SERE contains a Count, and the Count is a Range, then each bound of the Range shall be
statically computable, and the low bound of the Range shall be less than or equal to the high bound of the Range.

Informal semantics
For Boolean or Sequence A and numbers N and m

— Al *n] holds tightly on a path iff the path can be partitioned into n parts, where A holds tightly on each
part.

— Al *n: n holds tightly on a path iff the path can be partitioned into between n and m parts, inclusive,
where A holds tightly on each part.

— Al *0: n holds tightly on a path iff the path is empty or the path can be partitioned into m or less parts,
where A holds tightly on each part.

— Al *n:i nf] holds tightly on a path iff the path can be partitioned into at least n parts, where A holds
tightly on each part.

— Al *0: i nf] holds tightly on a path iff the path is empty or the path can be partitioned into some number
of parts, where A holds tightly on each part.

— A *] holds tightly on a path iff the path is empty or the path can be partitioned into some number of
parts, where A holds tightly on each part.

— Al +] holds tightly on a path iff the path can be partitioned into some number of parts, where A holds
tightly on each part.

— [*n] holds tightly on a path iff the path is of length n.

— [*n: n holds tightly on a path iff the length of the path is between n and m, inclusive.

— [*0: n holds tightly on a path iff it is the empty path or the length of the path is m or less.

— [*n:inf] holds tightly on a path iff the length of the path is at least n.

— [*0:i nf] holds tightly on any path (including the empty path).

— [*] holds tightly on any path (including the empty path).

— [+] holds tightly on any path of length at least one.

NOTE—If a repeated SERE begins with a Sequence that is itself a repeated SERE (e.g., a[*2][*3], where the repetition oper-
ator [*3] applies to the Sequence that is itself the repeated SERE a[*2]), the semantics are the same as if that Sequence were
braced (e.g., {a[*2]}[*3]).

Version 1.1 Property Specification Language Reference Manual 47

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Temporal layer

6.1.2.2 SERE non-consecutive repetition ([=])

The SERE non-consecutive repetition operator ([=]), shown in Box 34, constructs repeated (possibly non-con-
secutive) concatenation of a Boolean expression.

Repeated SERE ::=

Boolean [= Count |
Count ::=

Number

| Range
Range ::=

Low_Bound RANGE_SYM High Bound
Low Bound ::=

Number | MIN_VAL
High Bound ::=

Number | MAX VAL

Box 34—SERE non-consecutive repetition operator

The first operand is a Boolean expression to be repeated. The second operand gives the Count (a number or
range) of repetitions.

If the Count is a number, then the repeated SERE describes exactly that number of repetitions.

Otherwise, if the Count is a range, then the repeated SERE describes any number of repetitions such that the
number falls within the specified range. If the high value of the range (High Bound) is specified as MAX VAL,
the repeated SERE describes at least as many repetitions as the low value of the range. If the low value of the
range (Low_Bound) is specified as MIN_ VAL, the repeated SERE describes at most as many repetitions as the
high value of the range. If no range is specified, the repeated SERE describes any number of repetitions, includ-
ing zero, i.e., the empty path is also described.

Restrictions

If the repeated SERE contains a Count, and the Count is a Number, then the Number shall be statically comput-
able.

If the repeated SERE contains a Count, and the Count is a Range, then each bound of the Range shall be stati-
cally computable, and the low bound of the Range shall be less than or equal to the high bound of the Range.

Informal semantics
For Boolean A and numbers n and m

— A =n] holds tightly on a path iff A occurs exactly n times along the path.

— Al =n: n holds tightly on a path iff A occurs between n and m times, inclusive, along the path.

— Al =0: n holds tightly on a path iff A occurs m times or less along the path.

— Al =n:i nf] holds tightly on a path iff A occurs at least n times along the path.

— A] =0: i nf] holds tightly on a path iff A occurs any number of times along the path, i.e., A[=0:inf] holds
tightly on any path.

NOTE—If a repeated SERE begins with a Sequence that is itself a repeated SERE (e.g., a[=2][*3], where the repetition oper-
ator [*3] applies to the Sequence that is itself the repeated SERE a[=2]), the semantics are the same as if that Sequence were
braced (e.g., {a[=2]}[*3]).

48 Property Specification Language Reference Manual Version 1.1

Temporal layer

6.1.2.3 SERE goto repetition ([->])

The SERE goto repetition operator ([->]), shown in Box 35, constructs repeated (possibly non-consecutive) con-
catenation of a Boolean expression, such that the Boolean expression holds on the last cycle of the path.

Repeated SERE ::=

Boolean [-> [positive_Count] |
Count ::=

Number

| Range
Range ::=

Low_Bound RANGE_SYM High Bound
Low_ Bound ::=

Number | MIN_VAL
High Bound ::=

Number | MAX VAL

Box 35—SERE goto repetition operator

The first operand is a Boolean expression to be repeated. The second operand gives the Count of repetitions.
If the Count is a number, then the repeated SERE describes exactly that number of repetitions.

Otherwise, if the Count is a range, then the repeated SERE describes any number of repetitions such that the
number falls within the specified range. If the high value of the range (High Bound) is specified as MAX VAL,
the repeated SERE describes at least as many repetitions as the low value of the range. If the low value of the
range (Low_Bound) is specified as MIN_VAL, the repeated SERE describes at most as many repetitions as the
high value of the range. If no range is specified, the repeated SERE describes exactly one repetition, i.e., behav-
ior in which the Boolean expression holds exactly once (only at the last cycle on the path).

Restrictions

If the repeated SERE contains a Count, it shall be a statically computable, positive Count (i.e., indicating at least
one repetition). If the Count is a Range, then each bound of the Range shall be statically computable, and the low
bound of the Range shall be less than or equal to the high bound of the Range.

Informal semantics
For Boolean A and numbers N and m

— Al - >n] holds tightly on a path iff A occurs exactly n times along the path and the last cycle at which it
occurs is the last cycle of the path.

— Al ->n:m holds tightly on a path iff A occurs between n and m times, inclusive, along the path, and the
last cycle at which it occurs is the last cycle of the path.

— Al ->1:m holds tightly on a path iff A occurs m times or less along the path and the last cycle at which
it occurs is the last cycle of the path.

— Al ->n:inf] holds tightly on a path iff A occurs at least n times along the path and the last cycle at
which it occurs is the last cycle of the path.

— Al ->1:inf] holds tightly on a path iff A occurs one or more times along the path and the last cycle at
which it occurs is the last cycle of the path.

— Al - >] holds tightly on a path iff A occurs in the last cycle of the path and in no cycle before that.

Version 1.1 Property Specification Language Reference Manual 49

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Temporal layer

NOTE—If a repeated SERE begins with a Sequence that is itself a repeated SERE (e.g., a[->2][*3], where the repetition oper-
ator [*3] applies to the Sequence that is itself the repeated SERE a[->2]), the semantics are the same as if that Sequence were
braced (e.g., {a[->2]}[*3]).

6.1.2.4 Braced SERE

A SERE enclosed in braces is another form of sequence, as shown in Box 36.3

Braced SERE ::=
{ SERE }

Box 36—Braced SERE

6.1.2.5 Clocked SERE (@)

The SERE clock operator (@), shown in Box 37, provides a way to clock a SERE.

Clocked SERE ::=
Braced SERE @ Clock Expression

Box 37—SERE clock operator

The first operand is the braced SERE to be clocked. The second operand is a clock expression (see section 5.3)
with which to clock the SERE.

Restrictions

None.

Informal semantics

For unclocked SERE A and Boolean CLK:
A@CLK holds tightly on a given path iff (if and only if) CLK holds in the last cycle of the given path,
and A holds tightly on the path obtained by extracting from the given path exactly those cycles in which

CLK holds.

NOTE—When clocks are nested, the inner clock takes precedence over the outer clock. That is, the SERE
{a;b@clk2;c} @clk is equivalent to the SERE {a@clk; b@clk2; c@clk}, with the outer clock applied to only the unclocked
sub-SEREs. In particular, there is no conjunction of nested clocks involved.

3In the Verilog flavor, if a series of tokens matching { HDL_or PSL Expression } appears where a Sequence is allowed, then it should be
interpreted as a Sequence, not as a concatenation of one argument.

50 Property Specification Language Reference Manual Version 1.1

Temporal layer

Examples
Example 1

Consider the following behavior of Booleans a, b, and clk, where "time" is at the granularity observed by the ver-
ification tool:

The unclocked SERE {a;b} holds tightly from time 2 to time 3. It does not hold tightly over any other interval of
the given behavior.

The clocked SERE {a;b}@clk holds tightly from time 0 to time 3, and also from time 1 to time 3. It does not
hold tightly over any other interval of the given behavior.

Example 2

Consider the following behavior of Booleans a, b, c, clkl, and clk2, where "time" is at the granularity observed
by the verification tool:

clki 0 1 0 1 0 1 0 1
a 01 1 0 0 0 O O
b 0 0 01 0 0 O O
c 0 0 0 01 0 1 O
clke 1. 0 0 1 0 0 1 O

The unclocked SERE {{a;b};c} holds tightly from time 2 to time 4. It does not hold tightly over any other inter-
val of the given behavior.

The multiply-clocked SERE {{a;b}@clkl;c}@clk2 holds tightly from time 0 to time 6 and from time 1 to time
6. It does not hold tightly over any other interval of the given behavior.

The singly-clocked SEREs {{a;b};c}@clkl and {{a;b};c}@clk2 do not hold tightly over any interval of the
given behavior.

6.1.3 Named sequences
A given sequence may describe behavior that can occur in different contexts (i.e., in conjunction with other
behavior). In such a case, it is convenient to be able to define the sequence once and refer to the single definition

in each context in which the sequence applies. Declaration and instantiation of named sequences provide this
capability.

Version 1.1 Property Specification Language Reference Manual 51

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Temporal layer

6.1.3.1 Sequence declaration

A sequence declaration, shown in Box 38, defines a sequence and gives it a name. A sequence declaration can
also specify a list of formal parameters that can be referenced within the sequence.

PSL_Declaration ::=
Sequence Declaration
Sequence Declaration ::=
sequence PSL Identifier [(Formal Parameter List)] DEF_SYM Sequence ;
Formal Parameter List ::=
Formal Parameter { ; Formal Parameter }
Formal Parameter ::=
sequence Param_Type PSL_Identifier { , PSL_Identifier }
sequence Param_Type ::=
const | boolean | sequence

Box 38—Sequence declaration

Informal Semantics

The PSL identifier following the keyword sequence in the sequence declaration is the name of the sequence.
The PSL identifiers given in the formal parameter list are the names of the formal parameters of the named
sequence.

Restrictions

The name of a declared sequence shall not be the same as the name of any other PSL declaration in the same ver-
ification unit. Formal parameters of a sequence declaration are limited to parameter kinds const, bool ean,
and sequence.

Examples

sequence BusArb (bool ean br, bg; const n) =
{ br; (br & !'bg)[*0:n]; br && bg };

The named sequence BUSAr b represents a generic bus arbitration sequence involving formal parameters br
(bus request) and bg (bus grant), as well as a parameter n that specifies the maximum delay in receiving the bus

grant.

sequence ReadCycl e (sequence ba; bool ean bb, ar, dr) =
{ ba; {bb[*]} && {ar[->]; dr[->]}; !bb };

The named sequence ReadCycl e represents a generic read operation involving a bus arbitration sequence and
Boolean conditions bb (bus busy), ar (address ready), and dr (data ready).

NOTE—There is no requirement to use formal parameters in a sequence declaration. A declared sequence may refer directly
to signals in the design as well as to formal parameters.

6.1.3.2 Sequence instantiation

A sequence instantiation, shown in Box 39, creates an instance of a named sequence and provides actual param-
eters for formal parameters (if any) of the named sequence.

52 Property Specification Language Reference Manual Version 1.1

Temporal layer

Sequence_Instance ::=

sequence_Name [(Actual Parameter List)]
Actual Parameter List ::=

sequence_Actual Parameter {, sequence Actual Parameter }
sequence_Actual Parameter ::=

Number | Boolean | Sequence

Box 39—Sequence instantiation

Restrictions
For each formal parameter of the named sequence, the sequence instantiation shall provide a corresponding
actual parameter. For a const formal parameter, the actual parameter shall be a statically evaluable integer
expression. For a bool ean formal parameter, the actual parameter shall be a Boolean expression. For a
sequence formal parameter, the actual parameter shall be a Sequence.
Informal semantics
An instance of a named sequence describes the behavior that is described by the sequence obtained from the
named sequence by replacing each formal parameter in the named sequence with the corresponding actual
parameter from the sequence instantiation.
Examples
Given the declarations for the sequences BUsAr b and ReadCycl e in 6.1.3.1,

BusArb (breq, back, 3)
is equivalent to

{ breq; (breq && !'back)[*0:3]; breq && back }
and

ReadCycl e(BusArb(breq, back, 5), breq, ardy, drdy)

is equivalent to

{ { breq; (breq && !back)[*0:5]; breq && back }; {breq[*]} && {ardy[->];
drdy[->]}; !'breq }

6.1.4 Named endpoints

An endpoint is a special kind of Boolean-valued variable that indicates when an associated sequence completes.
6.1.4.1 Endpoint declaration

An endpoint declaration, shown in Box 40, defines an endpoint for a given sequence and gives the endpoint a

name. An endpoint declaration can also specify a list of formal parameters that can be referenced within the
sequence.

Version 1.1 Property Specification Language Reference Manual 53

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Temporal layer

PSL Declaration ::=

Endpoint_Declaration
Endpoint_Declaration ::=

endpoint PSL_Identifier [(Formal Parameter List)] DEF_SYM Sequence ;
Formal Parameter List ::=

Formal Parameter { ; Formal Parameter }
Formal Parameter ::=

sequence Param_Type PSL_Identifier { , PSL_Identifier }
sequence_Param_Type ::==

const | boolean | sequence

Box 40—Endpoint declaration

Informal Semantics

The PSL identifier following the keyword endpoi nt in the endpoint declaration is the name of the endpoint.
The PSL identifiers given in the formal parameter list are the names of the formal parameters of the named end-
point.

Restrictions

The name of a declared endpoint shall not be the same as the name of any other PSL declaration in the same ver-
ification unit. Formal parameters of an endpoint declaration are limited to parameter kinds const , bool ean,
and sequence.

Example

endpoi nt ActiveLowReset (boolean rb, clk; const n) =
{ rb!'=1"bl[*n:inf]; rb==1"bl } @ posedge clk);

The endpoint Act i veLowReset represents a generic reset sequence in which the reset signal is asserted (set to
0) for at least n cycles of the relevant clock before being released (set to 1).

NOTE—There is no requirement to use formal parameters in an endpoint declaration. The sequence in an endpoint declara-
tion may refer directly to signals in the design as well as to formal parameters.

6.1.4.2 Endpoint instantiation

An endpoint instantiation, shown in Box 41, creates an instance of a named endpoint and provides actual param-
eters for formal parameters (if any) of the named endpoint.

54 Property Specification Language Reference Manual Version 1.1

Temporal layer

Boolean ::=
boolean HDL or PSL_Expression
boolean HDL or PSL_Expression ::=
endpoint Name [(Actual Parameter List)]
Actual Parameter List ::=
sequence_Actual Parameter { , sequence_Actual_Parameter }
sequence Actual Parameter ::=
Number | Boolean | Sequence

Box 41—Endpoint instantiation

Restrictions

For each formal parameter of the named endpoint, the endpoint instantiation shall provide a corresponding actual
parameter. For a const formal parameter, the actual parameter shall be a statically evaluable integer expression.
For a bool ean formal parameter, the actual parameter shall be a Boolean expression. For a sequence formal
parameter, the actual parameter shall be a Sequence.

Informal semantics

An instance of a named endpoint has the value True in any evaluation cycle that is the last cycle of a behavior on
which the associated sequence, modified by replacing each formal parameter in the named sequence with the
corresponding actual parameter from the sequence instantiation, holds tightly.

Examples

Given the declaration for the endpoint Act i veLowReset in 6.1.4.1,

ActiveLowReset (res, ntlk, 3)

is True each time r s has the value 1' b1 at the rising edge of ntl k, provided that r es did not have the value
1' b1 at the three immediately preceding rising edges of ntl k; it is False otherwise.

6.2 Properties

Properties express temporal relationships among Boolean expressions, sequential expressions, and subordinate
properties. Various operators are defined to express various temporal relationships.

Some operators occur in families. A family of operators is a group of operators that are related. A family of
operators usually share a common prefix, which is the name of the family, and optional suffixes that include, for
example, the strings !, _, and ! _. For instance, the until family of operators include the operators until !,
until,until! _,anduntil _.

6.2.1 FL properties

FL Properties, shown in Box 42, describe single- or multi-cycle behavior built from Boolean expressions,
sequential expressions, and subordinate properties.

Version 1.1 Property Specification Language Reference Manual 55

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Temporal layer

FL Property ::==
Boolean
| (FL_Property)

Box 42—FL properties

The most basic FL Property is a Boolean expression. An FL Property enclosed in parentheses is also an FL prop-
erty.

More complex FL properties are built from Boolean expressions, sequential expressions, and subordinate proper-
ties using various temporal operators.

NOTE—Like Boolean expressions, FL properties are grouped using parentheses (()), as opposed to SEREs that are grouped
using curly braces ({ }).

6.2.1.1 Sequential FL properties

Sequential expressions are FL properties which describe a demand that a certain single- or multi-cycle behavior
(built from Boolean expressions) hold.

FL Property ::==
Sequence ['

Box 43—Sequential FL property

Restrictions

None.

Informal semantics
For a Sequence S:

* The FL property S! holds on a given path iff there exists a prefix of the path on which S holds tightly.
* The FL property S holds on a given path iff either there exists a prefix of the path on which S holds tightly, or the given
path exhibits no evidence that the property S! does not hold on it.

NOTE—If S contains no contradictions, an easier description of the semantics of the property S can be given as follows: The
FL property S holds on a given path iff either there exists a prefix of the path on which S holds tightly, or the given path can
be extended to a path on which S holds tightly.

6.2.1.2 Clocked FL properties

The FL clock operator operator (@ , shown in Box 44, provides a way to clock an FL Property.

FL Property ::=
FL_Property @ Clock Expression

Box 44—FL property clock operator

56 Property Specification Language Reference Manual Version 1.1

Temporal layer

The first operand is the FL Property to be clocked. The second operand is a Boolean expression with which to
clock the FL Property.

Restrictions

None.

Informal semantics

For FL property A and Boolean CLK:

A@CLK holds on a given path iff A holds on the path obtained by extracting from the given path exactly
those cycles in which CLK holds.

NOTE—When clocks are nested, the inner clock takes precedence over the outer clock. That is, the property
(a -> b@l k2) @l k is equivalent to the property (a@! k -> b@l k2), with the outer clock applied to only the
unclocked sub-properties (if any). In particular, there is no conjunction of nested clocks involved.

Example 1

Consider the following behavior of Booleans a, b, and cl k, where "time" is at the granularity observed by the
verification tool:

The unclocked FL Property

(a until! b)
holds at times 5, 7, and 8, because b holds at each of those times. The property also holds at times 3 and 4,
because a holds at those times and continues to hold until b holds at time 5. It does not hold at any other time of
the given behavior.
The clocked FL Property

(auntil! b) @lk
holds at times 2, 3, 4, 5, 6, and 7. It does not hold at any other time of the given behavior.

Example 2

Consider the following behavior of Booleans a, b, ¢, cl k1, and cl k2, where "time" is at the granularity
observed by the verification tool:

Version 1.1 Property Specification Language Reference Manual 57

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Temporal layer

The unclocked FL Property

(c & next! (a until! b))

holds at time 6. It does not hold at any other time of the given behavior.

The singly-clocked FL Property

(c & next! (a until! b)) @l k1l

holds at times 4 and 5. It does not hold at any other time of the given behavior.

The singly-clocked FL Property

(a until! b)@l k2

does not hold at any time of the given behavior.

The multiply-clocked FL Property

(c & next! (a until! b)@lkl) @l k2

holds at time 0. It does not hold at any other time of the given behavior.

6.2.1.3 Simple FL properties

6.2.1.3.1 always

The al ways operator, shown in Box 45, specifies that an FL property holds at all times, starting from the

present.

FL_Property ::=
always FL_Property

Box 45—always operator

The operand of the al ways operator is an FL Property.

Restrictions

None.

58

Property Specification Language Reference Manual

Version 1.1

Temporal layer

Informal semantics

An al ways property holds in the current cycle of a given path iff the FL Property that is the operand holds at the
current cycle and all subsequent cycles.

NOTE—If the operand (FL property) is temporal (i.e., spans more than one cycle), then the al way s operator defines a prop-
erty that describes overlapping occurrences of the behavior described by the operand. For example, the property always
{a; b; c} describes any behavior in which { @; b; ¢} holds in every cycle, thus any behavior in which a holds in the first
and every subsequent cycle, b holds in the second and every subsequent cycle, and ¢ holds in the third and every subsequent
cycle.

6.2.1.3.2 never

The never operator, shown in Box 46, specifies that an FL property or a sequence never holds.

FL Property ::=
never FL_Property

Box 46—never operator

The operand of the never operator is an FL Property.
Restrictions

Within the simple subset (see section 4.4.4), the operand of a never property is restricted to be a Boolean
expression or a sequence.

Informal semantics

A never property holds in the current cycle of a given path iff the FL Property that is the operand does not hold
at the current cycle and does not hold at any future cycle.

6.2.1.3.3 eventually!

The event ual | y! operator, shown in Box 47, specifies that an FL property holds at the current cycle or at
some future cycle.

FL Property ::=
eventually! FL. Property

Box 47—eventually! operator

The operand of the event ual | y! operator is an FL Property.
Restrictions

Within the simple subset (see section 4.4.4), the operand of an event ual | y! property is restricted to be a
Boolean or a Sequence.

Version 1.1 Property Specification Language Reference Manual 59

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Temporal layer

Informal semantics

An event ual | y! property holds in the current cycle of a given path iff the FL Property that is the operand
holds at the current cycle or at some future cycle.

6.2.1.3.4 next

The next family of operators, shown in Box 48, specify that an FL property holds at some next cycle.

FL_Property ::=
next! FL_Property
| next FL_Property
| next! [Number | (FL_Property)
| next [Number | (FL_Property)

Box 48—next operators

The FL Property that is the operand of the next ! or next operator is a property that holds at some next cycle.
If present, the Number indicates at which next cycle the property holds, that is, for number i, the property holds

at the i™ next cycle. If the Number operand is omitted, the property holds at the very next cycle.

The next ! operator is a strong operator, thus it specifies that there is a next cycle (and so does not hold at the
last cycle, no matter what the operand). Similarly, next ! [i] specifies that there are at least i next cycles.

The next operator is a weak operator, thus it does not specifies that there is a next cycle, only that if there is, the
property that is the operand holds. Thus, a weak next property holds at the last cycle of a finite behavior, no mat-

ter what the operand. Similarly, next [i] does not specify that there are at least i next cycles.

NOTE—The Number may be 0. That is, next [0] () is allowed, which says that f holds at the current cycle.

Restrictions

If a property contains a Number, then the Number shall be statically computable.

Informal semantics

A next! property holds in the current cycle of a given path iff:

1) there is a next cycle and

2) the FL property that is the operand holds at the next cycle.
A next property holds in the current cycle of a given path iff:

1) there is not a next cycle or

2) the FL property that is the operand holds at the next cycle.

A next![i] property holds in the current cycle of a given path iff:
1) thereisan iM next cycle and

2) the FL property that is the operand holds at the i" next cycle.
A next[i] property holds in the current cycle of a given path iff:
1) there is not an i" next cycle or

2) the FL property that is the operand holds at the i" next cycle.

NOTE—The formula next (f) is equivalent to the formula next [1] (f).

60

Property Specification Language Reference Manual

Version 1.1

Temporal layer

6.2.1.4 Extended next FL properties
6.2.1.4.1 next_a

The next _a family of operators, shown in Box 49, specify that an FL property holds at all cycles of a range of
future cycles.

FL_Property ::=
next_a! [finite Range | (FL_Property)
| next_a [finite Range | (FL_Property)

Box 49—next_a operators

The FL Property that is the operand of the next _a! or next _a operator is a property that holds at all cycles
between the i and jth next cycles, inclusive, where i and j are the low and high bounds, respectively, of the finite
Range.

The next _a! operator is a strong operator, thus it specifies that there is a jth next cycle, where j is the high
bound of the Range.

The next _a operator is a weak operator, thus it does not specify that any of the ith through jth next cycles neces-
sarily exist.

Restrictions

If anext _a or next _a! property contains a Range, then the Range shall be a finite Range, each bound of the
Range shall be statically computable, and the left bound of the Range shall be less than or equal to the right
bound of the Range.

Informal semantics

— A next_al[i:j] property holds in the current cycle of a given path iff:
1) thereisa jth next cycle and
2) the FL Property that is the operand holds at all cycles between the i™ and /™ next cycle, inclusive.
— A next_a[i:j] property holds in the current cycle of a given path iff the FL Property that is the
operand holds at all cycles between the i and jth next cycle, inclusive. (If not all those cycles exist, then
the FL Property that is the operand holds on as many as do exist).

NOTE—The left bound of the Range may be 0. For example, next _a[0: n] (f) is allowed, which says that f holds start-
ing in the current cycle, and for n cycles following the current cycle.

Version 1.1 Property Specification Language Reference Manual 61

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Temporal layer

6.2.1.4.2 next_e

The next _e family of operators, shown in Box 50, specify that an FL property holds at least once within some
range of future cycles.

FL_Property ::=
next_e! [finite. Range | (FL_Property)
| next_e [finite_ Range | (FL_Property)

Box 50—next_e operators

The FL Property that is the operand of the next _e! or next _e operator is a property that holds at least once
between the i™ and jth next cycle, inclusive, where i and j are the low and high bounds, respectively, of the finite
Range.

The next _e! operator is a strong operator, thus it specifies that there are enough cycles so the FL property that
is the operand has a chance to hold.

The next _e operator is a weak operator, thus it does not specify that there are enough cycles so the FL property
that is the operand has a chance to hold.

Restrictions

Ifanext e or next e! property contains a Range, then the Range shall be a finite Range, each bound of the Range
shall be statically computable, and the left bound of the Range shall be less than or equal to the right bound of the
Range.

Informal semantics

— A next_e![i..]j] propertyholds in the current cycle of a given path iff there is some cycle between
the i and jth next cycle, inclusive, where the FL Property that is the operand holds.
— A next_e[i..]] propertyholds in the current cycle of a given path iff
1) there are less than j next cycles following the current cycle, or
2) there is some cycle between the i and jth next cycle, inclusive, where the FL Property that is the
operand holds.

NOTE—The left bound of the Range may be 0. For example, next _e[0: n] () is allowed, which says that f holds either
in the current cycle or in one of the n cycles following the current cycle.

6.2.1.4.3 next_event

The next _event family of operators, shown in Box 51, specify that an FL property holds at the next occur-
rence of a Boolean expression. The next occurrence of the Boolean expression includes an occurrence at the cur-
rent cycle..

FL Property ::==
next_event! (Boolean) (FL_Property)
| next_event (Boolean) (FL_Property)
| next_event! (Boolean) [positive Number | (FL_Property)
| next_event (Boolean) [positive Number | (FL_Property)

Box 51—next_event operators

62 Property Specification Language Reference Manual Version 1.1

Temporal layer

The rightmost operand of the next _event ! or next _event operator is an FL Property that holds at the next
occurrence of the leftmost operand. If the FL Property includes a Number, then the property holds at the ih
occurrence of the leftmost operand (where i is the value of the Number), rather than at the very next occurrence.

The next _event ! operator is a strong operator, thus it specifies that there is a next occurrence of the leftmost
operand. Similarly, next _event ! [i] specifies that there are at least i occurrences.

The next _event operator is a weak operator, thus it does not specify that there is a next occurrence of the left-
most operand. Similarly, next _event [i] does not specify that there are at least i next occurrences.

Restrictions

If a next _event or next _event! property contains a Number, then the Number shall be a statically com-
putable, positive Number.

Informal semantics

— A next_event! property holds in the current cycle of a given path iff:
1) the Boolean expression and the FL Property that are the operands both hold at the current cycle, or
at some future cycle, and
2) the Boolean expression holds at some future cycle, and the FL property that is the operand holds at
the next cycle in which the Boolean expression holds.

— A next_event property holds in the current cycle of a given path iff:
1) the Boolean expression that is the operand does not hold at the current cycle, nor does it hold at any
future cycle; or
2) the Boolean expression that is the operand holds at the current cycle or at some future cycle, and the
FL property that is the operand holds at the next cycle in which the Boolean expression holds.
— A next_event![i] property holds in the current cycle of a given path iff:
1) the Boolean expression that is the operand holds at least i times, starting at the current cycle, and
2) the FL property that is the operand holds at the i™ occurrence of the Boolean expression.
— A next_event[i] property holds in the current cycle of a given path iff:
1) the Boolean expression that is the operand does not hold at least i times, starting at the current cycle,
or
2) the Boolean expression that is the operand holds at least i times, starting at the current cycle, and the
FL property that is the operand holds at the i occurrence of the Boolean expression.

NOTE—The formula next _event (true) (f) is equivalent to the formula next [0] (f). Similarly, if p holds in the
current cycle, then next _event (p) (f) is equivalent to next _event (true) (f) and therefore to next[0] (f).
However, none of these is equivalent to next (f) .

6.2.1.4.4 next_event_a
The next _event _a family of operators, shown in Box 52, specify that an FL property holds at a range of the

next occurrences of a Boolean expression. The next occurrences of the Boolean expression include an occur-
rence at the current cycle.

Version 1.1 Property Specification Language Reference Manual 63

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Temporal layer

FL Property ::==
next_event_a! (Boolean) [finite positive Range | (FL_Property)
| next_event_a (Boolean) [finite_positive_ Range | (FL_Property)

Box 52—next_event_a operators

The rightmost operand of the next _event _a! or next _event _a operator is an FL Property that holds at
the specified Range of next occurrences of the Boolean expression that is the leftmost operand. The FL Property
that is the rightmost operand holds on the ith through jth occurrences (inclusive) of the Boolean expression, where
i and j are the low and high bounds, respectively, of the Range.

The next _event _al operator is a strong operator, thus it specifies that there are at least j occurrences of the
leftmost operand.

The next _event _a operator is a weak operator, thus it does not specify that there are j occurrences of the left-
most operand.

Restrictions

Ifanext _event _aornext_event _a! property contains a Range, then the Range shall be a finite, positive
Range, each bound of the Range shall be statically computable, and the left bound of the Range shall be less than
or equal to the right bound of the Range

Informal semantics

— A next_event_al[i..]j] property holds in the current cycle of a given path iff:

1) the Boolean expression that is the operand holds at least j times, starting at the current cycle, and
2) the FL property that is the operand holds at the ith through /™ occurrences, inclusive, of the Boolean
expression.

— A next_event_a[i..]j] propertyholds in a given cycle of a given path iff the FL property that is
the operand holds at the ith through /™ occurrences, inclusive, of the Boolean expression, starting at the
current cycle. If there are less than j occurrences of the Boolean expression, then the FL property that is
the operand holds on all of them, starting from the i occurrence.

6.2.1.4.5 next_event_e

The next _event _e family of operators, shown in Box 53, specify that an FL property holds at least once dur-
ing a range of next occurrences of a Boolean expression. The next occurrences of the Boolean expression
include an occurrence at the current cycle.

FL Property ::=
next_event_e! (Boolean) [finite_positive Range | (FL_Property)
| next_event_e (Boolean) [finite_positive_ Range | (FL_Property)

Box 53—next_event_e operators

64 Property Specification Language Reference Manual Version 1.1

Temporal layer

The rightmost operand of the next _event _e! or next _event _e operator is an FL Property that holds at
least once during the specified Range of next occurrences of the Boolean expression that is the leftmost oper-
and. The FL Property that is the rightmost operand holds on one of the ith through jth occurrences (inclusive) of
the Boolean expression, where i and ;j are the low and high bounds, respectively, of the Range.

The next _event _e! operator is a strong operator, thus it specifies that there are enough cycles so that the FL
Property has a chance to hold.

The next _event _e operator is a weak operator, thus it does not specify that there are enough cycles so that
the FL Property has a chance to hold.

Restrictions

Ifanext _event _e ornext _event _e! property contains a Range, then the Range shall be a finite, positive
Range, each bound of the Range shall be statically computable, and the left bound of the Range shall be less than
or equal to the right bound of the Range.

Informal semantics

— A next_event_e![i..]] property holds in the current cycle of a given path iff there is some cycle
during the ith through jth next occurrences of the Boolean expression at which the FL Property that is the
operand holds.

— A next_event_e[i..]] propertyholds in the current cycle of a given path iff:

1) there are less than j next occurrences of the Boolean expression or
2) there is some cycle during the ih through jth next occurrences of the Boolean expression at which
the FL Property that is the operand holds.

6.2.1.5 Compound FL properties
6.2.1.5.1 abort

The abor t operator, shown in Box 54, specifies a condition that removes any obligation for a given FL property
to hold.

FL_Property ::=
FL_Property abort Boolean

Box 54—abort operator

The left operand of the abor t operator is the FL Property to be aborted. The right operand of the abor t oper-
ator is the Boolean condition that causes the abort to occur.

Restrictions

None.

Version 1.1 Property Specification Language Reference Manual 65

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Temporal layer

Informal semantics
An abort property holds in the current cycle of a given path iff:
— the FL Property that is the left operand holds, or
— the series of cycles starting from the current cycle and ending with the cycle in which the Boolean condi-
tion that is the right operand holds does not contradict the FL Property that is the left operand.

Example

Using abort to model an asynchronous interrupt: “A request is always followed by an acknowledge, unless a
cancellation occurs.”

al ways ((req -> eventual ly! ack) abort cancel);
6.2.1.5.2 before

The bef or e family of operators, shown in Box 55, specify that one FL property holds before a second FL prop-
erty holds.

FL_Property ::=
FL Property before! FL Property
| FL_Property before! FL Property
| FL_Property before FL Property
| FL_Property before_FL Property

Box 55—before operators

The left operand of the bef or e family of operators is an FL Property that holds before the FL Property that is
the right operand holds.

The bef or e! and bef or e! _ operators are strong operators, thus they specify that the left FL Property eventu-
ally holds.

The bef or e and bef or e_ operators are weak operators, thus they do not specify that the left FL Property
eventually holds.

The bef ore! and bef or e operators are non-inclusive operators, that is, they specify that the left operand
holds strictly before the right operand holds.

The bef or e! _ and bef or e_ operators are inclusive operators, that is, they specify that the left operand holds
before or at the same cycle as the right operand holds.

Restrictions

Within the simple subset (see section 4.4.4), each operand of a bef or e property is restricted to be a Boolean
expression.

66 Property Specification Language Reference Manual Version 1.1

Temporal layer

Informal semantics

— A before! property holds in the current cycle of a given path iff:
1) the FL Property that is the left operand holds at the current cycle or at some future cycle and
2) the FL Property that is the left operand holds strictly before the FL Property that is the right operand
holds, or the right operand never holds.
— A before! _ property holds in the current cycle of a given path iff:
1) the FL Property that is the left operand holds at the current cycle or at some future cycle and
2) the FL Property that is the left operand holds before or at the same cycle as the FL Property that is
the right operand, or the right operand never holds.
— A before property holds in the current cycle of a given path iff:
1) neither the FL Property that is the left operand nor the FL Property that is the right operand ever
hold in any future cycle; or
2) the FL Property that is the left operand holds strictly before the FL Property that is the right operand
holds.
— A before_ property holds in the current cycle of a given path iff:
1) neither the FL Property that is the left operand nor the FL Property that is the right operand ever
hold in any future cycle; or
2) the FL Property that is the left operand holds before or at the same cycle as the FL Property that is
the right operand.

6.2.1.5.3 until

The unt i | family of operators, shown in Box 56, specify that one FL property holds until a second FL property
holds.

FL_Property ::=
FL Property until! FL_Property
| FL_Property until!_ FL_Property
| FL_Property until FL_Property
| FL_Property until _FL Property

Box 56—until operators

The left operand of the unt i | family of operators is an FL Property that holds until the FL Property that is the
right operand holds. The right operand is called the “terminating property”.

Theuntil! anduntil! _ operators are strong operators, thus they specify that the terminating property even-
tually holds.
The unti| and unti | _ operators are weak operators, thus they do not specify that the terminating property

eventually holds (and if it does not eventually hold, then the FL Property that is the left operand holds forever).

Theuntil! and unti | operators are non-inclusive operators, that is, they specify that the left operand holds
up to, but not necessarily including, the cycle in which the right operand holds.

Theuntil! _andunti| _ operators are inclusive operators, that is, they specify that the left operand holds up
to and including the cycle in which the right operand holds.

Version 1.1 Property Specification Language Reference Manual 67

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Temporal layer

Restrictions
Within the simple subset (see section 4.4.4), the right operand of an unt i | ! orunti | property is restricted to
be a Boolean expression, and both the left and right operands of anunt i | ! _ orunti | _ property are restricted

to be a Boolean expression.
Informal semantics

— An until! property holds in the current cycle of a given path iff:
1) the FL Property that is the right operand holds at the current cycle or at some future cycle; and
2) the FL Property that is the left operand holds at all cycles up to, but not necessarily including, the
earliest cycle at which the FL Property that is the right operand holds.
— An until!_ property holds in the current cycle of a given path iff:
1) the FL Property that is the right operand holds at the current cycle or at some future cycle and
2) the FL Property that is the left operand holds at all cycles up to and including the earliest cycle at
which the FL Property that is the right operand holds.
— An until property holds in the current cycle of a given path iff:
1) the FL Property that is the left operand holds forever; or
2) the FL Property that is the right operand holds at the current cycle or at some future cycle, and the
FL Property that is the left operand holds at all cycles up to, but not necessarily including, the earli-
est cycle at which the FL Property that is the right operand holds.
— An until _ property holds in the current cycle of a given path iff:
1) the FL Property that is the left operand holds forever or
2) the FL Property that is the right operand holds at the current cycle or at some future cycle, and the
FL Property that is the left operand holds at all cycles up to and including the earliest cycle at which
the FL Property that is the right operand holds.

6.2.1.6 Sequence-based FL properties
6.2.1.6.1 Suffix implication

The suffix implication family of operators, shown in Box 57, specify that an FL property or sequence holds if
some pre-requisite sequence holds.

FL_Property ::==
{ Sequence } (FL_Property)
| Sequence |-> FL_Property
| Sequence |=> FL_Property

Box 57—Suffix implication operators

The right operand of the operators is an FL property that is specified to hold if the Sequence that is the left oper-
and holds.

Restrictions

None.

68 Property Specification Language Reference Manual Version 1.1

Temporal layer

Informal semantics

— A Sequence |-> FL_Property holds in a given cycle of a given path iff:
1) the Sequence that is the left operand does not hold at the give cycle; or
2) the FL Property that is the right operand holds in any cycle C such that the Sequence that is the left
operand holds tightly from the given cycle to C.
— A Sequence |=> FL_Property holds in a given cycle of a given path iff:
1) the Sequence that is the left operand does not hold at the given cycle; or
2) the FL Property that is the right operand holds in the cycle immeditately after any cycle C such that
the Sequence that is the left operand holds tightly from the given cycle to C.

NOTE—A {Sequence}(FL_Property) FL property has the same semantics as Sequence |-> FL_Property.

6.2.1.7 Logical FL properties
6.2.1.7.1 Logical implication

The logical implication operator (->), shown in Box 58, is used to specify logical implication.

FL Property ::==
FL Property ->FL Property

Box 58—Logical implication operator

The right operand of the logical implication operator is an FL Property that is specified to hold if the FL Property
that is the left operand holds.

Restrictions

Within the simple subset (see section 4.4.4), the left operand of a logical implication property is restricted to be a
Boolean expression.

Informal semantics
A logical implication property holds in a given cycle of a given path iff:

— the FL Property that is the left operand does not hold at the given cycle or
— the FL Property that is the right operand does hold at the given cycle.

6.2.1.7.2 Logical iff

The logical iff operator (<- >), shown in Box 59, is used to specify the iff (if and only if) relation between two
properties.

Box 59—Logical iff operator

The two operands of the logical iff operator are FL Properties. The logical iff operator specifies that either both
operands hold, or neither operand holds.

Version 1.1 Property Specification Language Reference Manual 69

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Temporal layer

FL_Property ::=
FL_Property <- > FL_Property

Restrictions

Within the simple subset (see section 4.4.4), both operands of a logical iff property are restricted to be a Boolean
expression.

Informal semantics
A logical iff property holds in a given cycle of a given path iff:

— both FL Properties that are operands hold at the given cycle or
— neither of the FL Properties that are operands holds at the given cycle.

6.2.1.7.3 Logical and

The logical and operator, shown in Box 60, is used to specify logical and.

FL Property ::==
FL Property AND_OP FL_Property

Box 60—Logical and operator

The operands of the logical and operator are two FL Properties that are both specified to hold.
Restrictions

Within the simple subset (see section 4.4.4), the left operand of a logical and property is restricted to be a Bool-
ean expression.

Informal semantics

A logical and property holds in a given cycle of a given path iff the FL Properties that are the operands both hold
at the given cycle.

6.2.1.7.4 Logical or

The logical or operator, shown in Box 61, is used to specify logical or.

FL_Property ::=
FL Property OR_OP FL_Property

Box 61—Logical or operator

70 Property Specification Language Reference Manual Version 1.1

Temporal layer

The operands of the logical or operator are two FL Properties, at least one of which is specified to hold.
Restrictions

Within the simple subset (see section 4.4.4), the left operand of a logical or property is restricted to be a Boolean
expression.

Informal semantics

A logical or property holds in a given cycle of a given path iff at least one of the FL Properties that are the oper-
ands holds at the given cycle.

6.2.1.7.5 Logical not

The logical not operator, shown in Box 62, is used to specify logical negation.

FL_Property ::=
NOT_OP FL_Property

Box 62—Logical not operator

The operand of the logical not operator is an FL Property that is specified to not hold.
Restrictions

Within the simple subset (see section 4.4.4), the operand of a logical not property is restricted to be a Boolean
expression.

Informal semantics

A logical not property holds in a given cycle of a given path iff the FL Property that is the operand does not hold
at the given cycle.

6.2.1.8 LTL operators

The LTL operators, shown in Box 63, provide standard LTL syntax for other PSL operators.

FL Property ::=
X FL Property
| X! FL_Property
| F FL_Property
| G FL_Property
| [FL_Property U FL_Property |
| [FL_Property W FL_Property |

Box 63—LTL operators

Version 1.1 Property Specification Language Reference Manual 71

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Temporal layer

The standard LTL operators are alternate syntax for the equivalent PSL operators, as shown in Table 4.

Table 4—PSL equivalents

Standard LTL Equivalent PSL
operator operator

X next

X! next!

F eventual | y!

G al ways

U until!

w unti |

Restrictions

The restrictions that apply to each equivalent PSL operator also apply to the corresponding standard LTL opera-
tor.

6.2.2 Optional Branching Extension (OBE) properties

Properties of the Optional Branching Extension (OBE), shown in Box 64, are interpreted over trees of states as
opposed to properties of the Foundation Language (FL), which are interpreted over sequences of states. A free of
states is obtained from the model by unwrapping, where each path in the tree corresponds to some computation
path of the model. A node in the tree branches to several nodes as a result of non-determinism in the model. A
completely deterministic model unwraps to a tree of exactly one path, i.e., to a sequence of states. An OBE prop-
erty holds or does not hold for a specific state of the tree.

OBE_Property ::=
Boolean
| (OBE_Property)

Box 64—OBE properties

The most basic OBE Property is a Boolean expression. An OBE Property enclosed in parentheses is also an OBE
Property.

72 Property Specification Language Reference Manual Version 1.1

Temporal layer

6.2.2.1 Universal OBE properties
6.2.2.1.1 AX operator

The AX operator, shown in Box 65, specifies that an OBE property holds at all next states of the given state.

OBE_Property ::=
AX OBE _Property

Box 65—AX operator

The operand of AX is an OBE Property that is specified to hold at all next states of the given state.
Restrictions

None.

Informal semantics

An AX property holds at a given state iff, for all paths beginning at the given state, the OBE Property that is the
operand holds at the next state.

6.2.2.1.2 AG operator

The AGoperator, shown in Box 66, specifies that an OBE property holds at the given state and at all future states.

OBE_Property ::=
AG OBE_Property

Box 66—AG operator

The operand of AGis an OBE Property that is specified to hold at the given state and at all future states.
Restrictions

None.

Informal semantics

An AG property holds at a given state iff, for all paths beginning at the given state, the OBE Property that is the
operand holds at the given state and at all future states.

Version 1.1 Property Specification Language Reference Manual 73

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Temporal layer

6.2.2.1.3 AF operator

The AF operator, shown in Box 67, specifies that an OBE property holds now or at some future state, for all paths
beginning at the current state.

OBE_Property ::=
AF OBE_Property

Box 67—AF operator

The operand of AF is an OBE Property that is specified to hold now or at some future state, for all paths begin-
ning at the current state.

Restrictions
None.
Informal semantics

An AF property holds at a given state iff, for all paths beginning at the given state, the OBE Property that is the
operand holds at the first state or at some future state.

6.2.2.1.4 AU operator

The AU operator, shown in Box 68, specifies that an OBE property holds until a specified terminating property
holds, for all paths beginning at the given state.

OBE_Property ::=
A [OBE Property U OBE_ Property |

Box 686—AU operator

The first operand of AU is an OBE Property that is specified to hold until the OBE Property that is the second
operand holds along all paths starting at the given state.

Restrictions
None.
Informal semantics
An AU property holds at a given state iff, for all paths beginning at the given state:
— the OBE Property that is the right operand holds at the current state or at some future state; and

— the OBE Property that is the left operand holds at all states, up to but not necessarily including, the state
in which the OBE Property that is the right operand holds.

74 Property Specification Language Reference Manual Version 1.1

Temporal layer

6.2.2.2 Existential OBE properties
6.2.2.2.1 EX operator
The EX operator, shown in Box 69, specifies that an OBE property holds at some next state.

The operand of EX is an OBE property that is specified to hold at some next state of the given state.

OBE_Property ::=
EX OBE_Property

Box 69—EX operator

Restrictions
None.
Informal semantics

An EX property holds at a given state iff there exists a path beginning at the given state, such that the OBE Prop-
erty that is the operand holds at the next state.

6.2.2.2.2 EG operator

The EG operator, shown in Box 70, specifies that an OBE property holds at the current state and at all future
states of some path beginning at the current state.

OBE_Property ::=
EG OBE Property

Box 70—EG operator

The operand of EGis an OBE Property that is specified to hold at the current state and at all future states of some
path beginning at the given state.

Restrictions
None.
Informal semantics

An EGproperty holds at a given state iff there exists a path beginning at the given state, such that the OBE Prop-
erty that is the operand holds at the given state and at all future states.

Version 1.1 Property Specification Language Reference Manual 75

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Temporal layer

6.2.2.2.3 EF operator

The EF operator, shown in Box 71, specifies that an OBE property holds now or at some future state of some
path beginning at the given state.

OBE_Property ::=
EF OBE_Property

Box 71—EF operator

The operand of EF is an OBE Property that is specified to hold now or at some future state of some path begin-
ning at the given state.

Restrictions
None.
Informal semantics

An EF property holds at a given state iff there exists a path beginning at the given state, such that the OBE Prop-
erty that is the operand holds at the current state or at some future state.

6.2.2.2.4 EU operator

The EU operator, shown in Box 72, specifies that an OBE property holds until a specified terminating property
holds, for some path beginning at the given state.

OBE_Property ::=
E [OBE Property U OBE_Property |

Box 72—EU operator

The first operand of EU is an OBE Property that is specified to hold until the OBE Property that is the second
operand holds for some path beginning at the given state.

Restrictions
None.
Informal semantics
An EU property holds at a given state iff there exists a path beginning at the given state, such that:
— the OBE Property that is the right operand holds at the current state or at some future state; and

— the OBE Property that is the left operand holds at all states, up to but not necessarily including, the state
in which the OBE Property that is the right operand holds.

76 Property Specification Language Reference Manual Version 1.1

Temporal layer

6.2.2.3 Logical OBE properties
6.2.2.3.1 OBE implication

The OBE implication operator (- >), shown in Box 73, is used to specify logical implication.

OBE_Property ::=
OBE_Property - > OBE_Property

Box 73—OBE implication operator

The right operand of the OBE implication operator is an OBE Property that is specified to hold if the OBE Prop-
erty that is the left operand holds.

Restrictions

None.

Informal semantics

An OBE implication property holds in a given state iff:

— the OBE property that is the left operand does not hold at the given state or
— the OBE property that is the right operand does hold at the given state.

6.2.2.3.2 OBE iff

The OBE iff operator (<- >), shown in Box 74, is used to specify the iff (if and only if) relation between two
properties.

OBE_Property ::=
OBE Property <-> OBE Property

Box 74—OBE iff operator

The two operands of the OBE iff operator are OBE Properties. The OBE iff operator specifies that either both
operands hold or neither operand holds.

Restrictions

None.

Informal semantics

An OBE iff property holds in a given state iff:

— both OBE Properties that are operands hold at the given state or
— neither of the OBE Properties that are operands hold at the given state.

Version 1.1 Property Specification Language Reference Manual 77

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Temporal layer

6.2.2.3.3 OBE and

The OBE and operator, shown in Box 75, is used to specify logical and.

OBE_Property ::=
OBE Property AND OP OBE_Property

Box 75—OBE and operator

The operands of the OBE and operator are two OBE Properties that are both specified to hold.
Restrictions

None.

Informal semantics

An OBE and property holds in a given state iff the OBE Properties that are the operands both hold at the given
state.

6.2.2.3.4 OBE or

The OBE or operator, shown in Box 76, is used to specify logical or.

OBE_Property ::=
OBE Property OR_OP OBE_Property

Box 76—OBE or operator

The operands of the OBE or operator are two OBE Properties, at least one of which is specified to hold.
Restrictions

None.

Informal semantics

A OBE or property holds in a given state iff at least one of the OBE Properties that are the operands holds at the
given state.

78 Property Specification Language Reference Manual Version 1.1

Temporal layer

6.2.2.3.5 OBE not

The OBE not operator, shown in Box 77, is used to specify logical negation.

OBE_Property ::=
NOT_OP OBE_Property

Box 77—OBE not operator

The operand of the OBE not operator is an OBE Property that is specified to not hold.
Restrictions

None.

Informal semantics

An OBE not property holds in a given state iff the OBE Property that is the operand does not hold at the given
state.

6.2.3 Replicated properties

Replicated properties are specified using the operator f or al | , as shown in Box 78. The first operand of the
replicated property is a Repl i cat or and the second operand is a parameterized property.

Property ::=
Replicator Property
Replicator ::=
forall PSL_Identifier [Index Range] in Value Set :
Index Range ::=
LEFT_SYM finite Range RIGHT SYM
Flavor Macro LEFT SYM =
Verilog: [/ VHDL: (/ GDL: (
Flavor Macro RIGHT SYM =
Verilog: | / VHDL:) / GDL:)
Value Set ::==
{ Value Range {, Value Range } }
| boolean
Value Range ::=
Value
| finite_Range
Range ::==
Low_Bound RANGE SYM High Bound

Box 78—Replicating properties

The PSL Identifier in the replicator is the name of the parameter in the parameterized property. This parameter
can be an array. The Value Set defines the set of values over which replication occurs.

1) If the parameter is not an array, then the property is replicated once for each value in the set of val-

ues, with that value substituted for the parameter. The total number of replications is equal to the
size of the set of values.

Version 1.1 Property Specification Language Reference Manual 79

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Temporal layer

2) If'the parameter is an array of size N, then the property is replicated once for each possible combina-
tion of N (not necessarily distinct) values from the set of values, with those values substituted for
the N elements of the array parameter. If the set of values has size K, then the total number of repli-
cations is equal to K"'N.

The set of values can be specified in three different ways

— The keyword boolean specifies the set of values {True, False}.
— A Val ue Range specifies the set of all values within the given range.
— The comma (,) between Value Ranges indicates the union of the obtained sets.

Restrictions

If the parameter name has an associated Index Range, the Index Range shall be specified as a finite Range, each
bound of the Range shall be statically computable, and the left bound of the Range shall be less than or equal to
the right bound of the Range.

If a Value is used to specify a Value Range, the Value shall be statically computable.

If a Range is used to specify a Value Range, the Range shall be a finite Range, each bound of the Range shall be
statically computable, and the left bound of the Range shall be less than or equal to the right bound of the Range.

The parameter name shall be used in one or more expressions in the Property, or as an actual parameter in the
instantiation of a parameterized Property, so that each of the replicated instances of the Property corresponds to a
unique value of the parameter name.

An implementation may impose restrictions on the use of a replication parameter name defined by a Replicator.
However, an implementation shall support at least comparison (equality, inequality) between the parameter name
and an expression, and use of the parameter name as an index or repetition count.

A replicator may appear in the declaration of a named property, provided that instantiations of the named prop-
erty do not violate the above restriction. This means that the replicator must be at the top level of the named prop-
erty declaration, and the named property's instantiations must not appear inside non-replicated properties.

Note—The parameter defined by a replicator is considered a static variable, and therefore the parameter name can be used in
a static expression, such as that required by a repetition count.

Informal semantics

— Aforall i inbool ean: f (i) property is replicated to define two instances
of the property f (i) :

f(true)
f(fal se)

— Aforall i in {j:k} : f(i) property is replicated to define k-j+1 instances
of the property f (i) :

F(i)
f(j+1)
f(j+2)

f (k)

80 Property Specification Language Reference Manual Version 1.1

— Aforall

i in{j,1}

of the property f (i) :

f (i) property is replicated to define two instances

Temporal layer

f(J)
f(l)
— Aforall i[0:1] in boolean : f(i) property isreplicated to define four instances
of the property f (i) :
f({fal se, fal se})
f({fal se,true})
f({true, fal se})
f({true,true})
— Aforall i[0:2] in {4,5} f (i) property is replicated to define eight instances of the prop-
erty f (1) :
f({4,4,4})
f({4,4,5})
f({4,5,4})
f({4,5,5})
f({5,4,4})
f({5,4,5})
f({5,5,4})
f({5,5,5})
Examples
Legal:
forall i[0:3] in bool ean:
request && (data_in ==1i) -> next(data_out == i)
forall i in boolean:
forall j in {0:7}:
forall k in {0:3}:
f(i,j,k)
legal:

al ways (request ->

forall i in boolean: next_e[1l:10](response[i]))
forall j in {0:7}:
forall k in {0:j}:
f(j. k)
Version 1.1 Property Specification Language Reference Manual

81

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Temporal layer

6.2.4 Named properties

A given property may be applicable in more than one part of the design. In such a case, it is convenient to be able
to define the property once and refer to the single definition wherever the property applies. Declaration and
instantiation of named properties provide this capability.

6.2.4.1 Property declaration

A property declaration, shown in Box 79, defines a property and gives it a name. A property declaration can also
specify a list of formal parameters that can be referenced within the property.

PSL_Declaration ::=
Property Declaration
Property Declaration ::=
property PSL_Identifier [(Formal Parameter List) | DEF_SYM Property ;
Formal Parameter List ::=
Formal Parameter { ; Formal Parameter }
Formal Parameter ::=
Param_Type PSL_Identifier { , PSL_Identifier }
Param_Type ::=
const | boolean | property | sequence

Box 79—Property declaration

Restrictions

The name of a declared endpoint shall not be the same as the name of any other PSL declaration in the same ver-
ification unit.

Informal Semantics

The PSL identifier following the keyword pr oper ty in the property declaration is the name of the property.
The PSL identifiers given in the formal parameter list are the names of the formal parameters of the named prop-
erty.

Example

property Resul t AfterN (bool ean start; property result; const n; bool ean stop) =
always ((start -> next[n] (result)) @ (posedge clk) abort stop);

This property could also be declared as follows:

property ResultAfterN (bool ean start, stop; property result; const n) =
always ((start -> next[n] (result)) @ (posedge clk) abort stop);

The two declarations have slightly different interfaces (i.e., different formal parameter orders), but they both
declare the same property Resul t Af t er N. This property describes behavior in which a specified result (a
property) occurs n cycles after an enabling condition (parameter start) occurs, with cycles defined by rising edges
of signal clk, unless an (asynchronous) abort condition (parameter stop) occurs.

NOTE—There is no requirement to use formal parameters in a property declaration. A declared property may refer directly to
signals in the design as well as to formal parameters.

82 Property Specification Language Reference Manual Version 1.1

Temporal layer

6.2.4.2 Property instantiation

A property instantiation, shown in Box 80, creates an instance of a named property and provides actual parame-
ters for formal parameters (if any) of the named property.

FL Property ::=

property Name [(Actual Parameter List) |
Actual Parameter List ::=

Actual Parameter {, Actual Parameter }
Actual Parameter ::=

Number | Boolean | Property | Sequence

Box 80—Property instantiation

Restrictions
For each formal parameter of the named property, the property instantiation shall provide a corresponding actual
parameter. For a const formal parameter, the actual parameter shall be a statically evaluable integer expression.
For a bool ean formal parameter, the actual parameter shall be a Boolean expression. For a pr oper t y formal
parameter, the actual parameter shall be an FL Property. For a sequence formal parameter, the actual parame-
ter shall be a Sequence.
Informal semantics
An instance of a named property holds at a given evaluation cycle if and only if the named property, modified by
replacing each formal parameter in the property declaration with the corresponding actual parameter in the prop-
erty instantiation, holds in that evaluation cycle.
Example
Given the first declaration for the property Resul t Aft er Nin 6.2.4.1,

Resul t AfterN (wite_req, eventually! ack, 3, cancel)

Result AfterN (read_req, eventually! (ack | retry), 5,

(cancel | wite_ req))

is equivalent to

always ((wite req -> next[3] (eventually! ack)) @ (posedge cl k) abort

cancel)
al ways ((read_req -> next[5] (eventually! (ack | retry))) @(posedge cl k)
abort (cancel | wite_req))

Version 1.1 Property Specification Language Reference Manual 83

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Temporal layer

84

Property Specification Language Reference Manual

Version 1.1

7. Verification layer

The verification layer provides directives that tell a verification tool what to do with specified sequences and
properties. The verification layer also provides constructs that group related directives and other PSL statements.

7.1 Verification directives

Verification directives give directions to verification tools.

PSL Directive ::=
[Label :] Verification Directive

Verification_Directive ::=

Assert_Directive

| Assume_Directive

| Assume Guarantee Directive

| Restrict Directive

| Restrict_Guarantee Directive

| Cover Directive

| Fairness_Statement

Box 81—7Verification Directives

A verification directive may be preceded by a label. If present, the label must not be the same as any other label
in the same verification unit.

Labels enable construction of a unique name for any instance of that directive. Such unique names can be used
by a tool for selective control and reporting of results.

Label ::=
PSL Identifier

Box 82—Labels

NOTE—Labels cannot be referenced from other PSL constructs. They are provided only to enable unique identification of
PSL directives within tool graphical interfaces and textual reports.

7.1.1 assert

The verification directive assert, shown in Box 83, instructs the verification tool to verify that a property
holds.

Assert_Directive ::=
assert Property [report String] ;

Box 83—Assert statement

An assert directive may optionally include a character string containing a message to report when the property
fails to hold.

Version 1.1 Property Specification Language Reference Manual 85

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Verification layer

Example
The directive

assert always (ack -> next (!ack until req))
report “A second ack occurred before the next req”

instructs the verification tool to verify that the property
al ways (ack -> next (l'ack until req))

holds in the design. If the verification tool discovers a situation in which this property does not hold, it should
display the message:

A second ack occurred before the next req
7.1.2 assume

The verification directive assune, shown in Box 84, instructs the verification tool to constrain the verification
(e.g., the behavior of the input signals) so that a property holds.

Assume_Directive ::=
assume Property ;

Box 84—Assume statement

Restrictions
The Property that is the operand of an assune directive must be an FL Property or replicated FL Property.
Example
The directive
assune always (ack -> next !ack);

instructs the verification tool to constrain the verification (e.g., the behavior of the input signals) so that the prop-
erty

al ways (ack -> next !ack)
holds in the design.
Assumptions are often used to specify the operating conditions of a design property by constraining the behavior
of the design inputs. In other words, an asserted property is required to hold only along those paths that obey the

assumption.

NOTE—Verification tools are not obligated to verify the assumed property.

86 Property Specification Language Reference Manual Version 1.1

Verification layer

7.1.3 assume_guarantee

The assunme_guar ant ee directive, shown in Box 85, instructs the verification tool to constrain the verifica-
tion (e.g., the behavior of the input signals) so that a property holds and also to verify that the assumed property
holds.

Assume_Guarantee_Directive ::=
assume_guarantee Property [report String] ;

Box 85—Assume_guarantee statement

An assume_guarantee directive may optionally include a character string containing a message to report when
the property fails to hold.

Restrictions

The Property that is the operand of an assume_guar ant ee directive must be an FL Property or replicated FL
Property.

Example
The directive

assune_guar antee al ways (ack -> next !ack);
instructs the tool to assume that whenever signal ack is asserted, it is not asserted at the next cycle, while also
verifying that the property holds. To illustrate how this verification directive is used, imagine two design blocks,
Aand B, and the signal ack as an output from block B and an input to block A. The property

assune_guar antee al ways (ack -> next !ack);

can be assumed to verify some other properties related to block A. However, verification tools shall also indicate
the proof obligation of this property when block B is present. How this information is used is tool-dependent.

NOTE—The optional character string has no effect when an assume_guarantee directive is being used only to indicate an
assumption. The character string can be provided so that it can be reported when the property fails to verify in another con-
text.

7.1.4 restrict

The verification directive restrict, shown in Box 86, is a way to constrain the design inputs using sequences.

Restrict Directive ::=
restrict Sequence ;

Box 86—Restrict statement

A restrict directive can be used to initialize the design to get to a specific state before checking assertions.

NOTE—Verification tools are not obligated to verify that the restricted sequence holds.

Version 1.1 Property Specification Language Reference Manual 87

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Verification layer

Example
The directive
restrict {!rst;rst[*3];!rst[*]};

is a constraint that every execution trace begins with one cycle of rst low, followed by three cycles of rst high,
followed by rst being low forever.

7.1.5 restrict_guarantee

The directive restrict_guarantee, shown in Box 87, instructs the verification tool to constrain the design inputs so
that a sequence holds and also to verify that the restrict sequence holds.

Restrict_Directive ::=
restrict_guarantee Sequence [report String] ;

Box 87—Restrict_guarantee statement

A restrict_guarantee directive may optionally include a character string containing a message to report when the
sequence fails to hold.

Example
The directive
restrict_guarantee {!rst;rst[*3];!rst[*]};
is a constraint that every execution trace begins with one cycle of r st low, followed by three cycles of r st high,
followed by r st being low forever, while also verifying that the constraint holds. How this information is used is

tool-dependent.

NOTE—The optional character string has no effect when a restrict_guarantee directive is being used only to indicate a
restriction. The character string can be provided so that it can be reported when an attempt to verify that the sequence holds.

7.1.6 cover

The verification directive cover, shown in Box 88, directs the verification tool to check if a certain path was
covered by the verification space based on a simulation test suite or a set of given constraints.

Cover Directive ::=
cover Sequence [report String] ;

Box 88—Cover statement

A cover directive may optionally include a character string containing a message to report when the specified
sequence occurs.

88 Property Specification Language Reference Manual Version 1.1

Verification layer

Example
The directive

cover {start_trans;!end _trans[*];start_trans & end_trans}
report “Transactions overl appi ng by one cycle covered” ;

instructs the verification tool to check if there is at least one case in which a transaction starts and then another
one starts the same cycle that the previous one completed.

Note that cover {r} is semantically equivalent to cover {[*];r}. That is, there is an implicit [*] starting the
sequence.

7.1.7 fairness and strong fairness

The directives f ai r ness and st rong f ai r ness, shown in Box 89, are special kinds of assumptions that
correspond to liveness properties.

Fairness_Statement ::=
fairness Boolean ;
| strong fairness Boolean , Boolean ;

Box 89—Fairness statement

If the fairness constraint includes the keyword St r ong, then it is a strong fairness constraint; otherwise it is a
simple fairness constraint.

Fairness constraints can be used to filter out certain behaviors. For example, they can be used to filter out a
repeated occurrence of an event that blocks another event forever. Fairness constraints guide the verification tool
to verify the property only over fair paths. A path is fair if every fairness constraint holds along the path. A sim-
ple fairness constraint holds along a path if the given Boolean expression occurs infinitely many times along the
path. A strong fairness constraint holds along the path if a given Boolean expression does not occur infinitely
many times along the path or if another given Boolean expression occurs infinitely many times along the path.
Examples

The directive

fairness p;

instructs the verification tool to verify the formula only over paths in which the Boolean expression p occurs infi-
nitely often. Semantically it is equivalent to the assumption

assunme G F p;
The directive

strong fairness p,Qq;

Version 1.1 Property Specification Language Reference Manual 89

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Verification layer

instructs the verification tool to verify the formula only over paths in which either the Boolean expression p does
not occur infinitely often or the Boolean expression q occurs infinitely often. Semantically it is equivalent to the

assumption

assumre (GF p) -> (GF q);

7.2 Verification units

A verification unit, shown in Box 90, is used to group verification directives and other PSL statements.

Verification Unit ::=
Vunit Type PSL Identifier [(Hierarchical HDL Name)] {
{ Inherit_Spec }
{ VUnit_Item }
}
Vunit_Type ::=
vunit | vprop | vimode
Hierarchical HDL Name ::=
HDL MOD NAME { Path Separator instance Name }

HDL_MOD NAME =
SystemVerilog: module Name
/ Verilog: module Name
/ VHDL: entity_aspect
/ GDL: module Name

Path_Separator ::=
S
Name ::=
HDL or PSL Identifier
Inherit_Spec ::=
inherit vunit Name {, vunit Name } ;
VUnit_Item ::=
HDL_DECL
| HDL_STMT
| PSL_Declaration
| PSL_Directive

Box 90—Verification unit

The PSL Identifier following the keyword vuni t is the name by which this verification unit is known to the

verification tools.

If the Hierarchical HDL Name is present, then the verification unit is explicitly bound to the specified design
module or module instance. If the Hierarchical HDL Name is not present, then the verification unit is not explic-

itly bound. See 7.2.1 for a discussion of binding.

An Inherit Spec indicates another verification unit from which this verification unit inherits contents. See 7.2.2

for a discussion of inheritance.
A VUnit Item can be any of the following:
a) Any modeling layer statement or declaration.

b) A property, endpoint, sequence, or default clock declaration.
¢) Any verification directive.

90 Property Specification Language Reference Manual

Version 1.1

Verification layer

The Vunit Type specifies the type of the Verification Unit. Verification unit types vpr op and virode enable sep-
arate definition of assertions to verify and constraints (i.e., assumptions or restrictions) to be considered in
attempting to verify those assertions. Various vVpr op verification units can be created containing different sets of
assertions to verify and various vode verification units containing different sets of constraints can be created to
represent the different conditions under which verification should take place. By combining one or more vpr op
verification units with one or more vimode verification units, the user can easily compose different verification
tasks.

Verification unit type vuni t enables a combined approach in which both assertions to verify and applicable
constraints, if any, can be defined together. All three types of verification units can be used together in a single
verification run.

The default verification unit (i.e., one named def aul t) can be used to define constraints that are common to all
verification environments, or defaults that can be overridden in other verification units. For example, the default

verification unit might include a default clock declaration or a sequence declaration for the most common reset
sequence.

Restrictions

A Verification Unit of type vmode shall not contain an assert directive.

A Verification Unit of type vprop shall not contain a directive that is not an assert directive.
A Verification Unit of type vprop shall not inherit a Verification Unit of type vunit or vmode.
A Verification Unit of type vmode shall not inherit a Verification Unit of type vunit or vprop.

A default Verification Unit, if it exists, shall be of type vmode. The default vmode shall not inherit other verifica-
tion units of any type.

7.2.1 Verification unit binding

The connection between signals referred to in a verification unit and signals of the design under verification is by
name, relative to the module or module instance to which the verification unit is bound.

If the verification unit is explicitly bound to an instance, then that instance is the context used to interpret HDL
names and operator symbols, as defined in section Section 5.2.1, HDL expressions.

If the verification unit is explicitly bound to a module, then this is equivalent to duplicating the contents of the
verification unit and binding each duplication to one instance.

If the verification unit is not explicitly bound, then a verification tool may allow the user to specify the binding of
the verification unit separate from the verification unit. A verification unit that is not explicitly bound can also be
used to group together commonly used PSL declarations so they can be inherited for use in other PSL verifica-
tion units.

Examples

vunit exla(top_block.il.i2) {
Al: assert never (ena && enb);

}

Version 1.1 Property Specification Language Reference Manual 91

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Verification layer

vuni t exla is bound to instance t op_bl ock. i 1. i 2. This causes assertion Al to apply to signals ena and
enb in top_block.il.i2.

As a second example, consider:

vunit ex2a(rmodl) {
A2: assert never (ena && enb);

}

The verification unit is bound to module nod1l. If this module is instantiated twice in the design, once as
top_block.i1l.i2andonceast op_bl ock.i 1.i 3, thenvunit ex2a is equivalent to the following pair
of vunits:

vunit ex2b(top_block.il.i2) {
A2: assert never(ena && enb);

}
vunit ex2c(top_block.il.i3) {

A2: assert never(ena && enb);

}

As a third example, consider:

vunit ex3 {
A3: assert never (ena && enb);

}

This verification unit is not explicitly bound, so there is no context in which to interpret references to ‘ena’ and
‘enb’. In this case, the verification tool may determine the binding.

Finally, consider:

vunit ex4 {
property nmutex (boolean bl, b2) = never (bl && b2);

}

This verification unit is not explicitly bound, however it contains no HDL expressions that require interpretation,
so no binding is necessary. This illustrates use of an unbound verification unit for commonly used PSL declara-
tions that can be inherited into other verification units.

7.2.2 Verification unit inheritance

One verification unit may inherit one or more other verification units, each of which may inherit other verifica-
tion units, and so on. Inheritance is transitive.

For a verification unit that inherits one or more other units, its inherited context is the set of verification units in
the transitive closure with respect to inheritance. A verification unit must not be contained in its own inherited
context.

Inheritance has two effects:

a) Asaconsequence of the rules for determining the meaning of names (in Section 5.2.1), any PSL declara-
tions in a given verification unit’s inherited context can be referenced in that verification unit.

92 Property Specification Language Reference Manual Version 1.1

Verification layer

b) When a given verification unit is considered by a verification tool, the contents of that verification unit
and its inherited context are taken together to define the environment in which verification is to take
place, and the set of directives to consider during verification.

Examples

Assume there are two blocks, A and B, which are mutually dependent—the outputs of A (Aout 1, Aout 2) are
inputs of B (Bi n1, Bi n2), and vice versa. The following verification units might describe the interactions
between the two blocks:

vimode Conmon {
property nutex (boolean bl, b2) = never bl && b2
property one_hot (bool ean bl, b2) =
al ways ((bl &&!' b2) || (b2 && !bl));

}

Verification unit Common is not explicitly bound. It contains commonly used property definitions. It is declared
as a “‘vmode’ so it can be inherited by other vmode units.

viode Anode (bl ockA) {
i nherit Comon;
assune mut ex(Aout 1, Aout?2);
}
vrode Brode (bl ockB) {
i nherit Comon;
assune one_hot (Bout 1, Bout2);

}

Verification units Amode and Brrode contain assumptions about these blocks to be made when verifying proper-
ties in other blocks. They are both explicitly bound, so that the HDL name references they contain have meaning.
They both inherit the Common vmode in order to make use of the property declarations it contains.

vunit Aprops (bl ockA) {
i nherit Comon, Bnode;
assert mutex(Aoutl, Aout?2);
}
vunit Bprops (bl ockB) {
i nherit Comon, Anpde;
assert one_hot (Boutl, Bout2);

}

Verification units Apr ops and Bpr ops contain assertions to verify about the respective blocks. They are both
explicitly bound, so that the HDL name references they contain have meaning. They both inherit the Common
vmode in order to make use of its property declarations. The vunit Apr ops inherits vmode Bnpde so that
assumptions about the outputs of B can be considered when verifying the behavior of block A. The vunit Bpr ops
inherits vmode Anpde so that assumptions about the outputs of A can be considered when verifying the behavior
of block B.

7.2.3 Verification unit scoping rules

If a verification unit that is bound to a given HDL instance contains a modeling layer declaration, then that veri-
fication unit’s declaration takes precedence over any other declaration of the same name, either in a verification

Version 1.1 Property Specification Language Reference Manual 93

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Verification layer

unit bound to the same HDL instance in its inherited context, or in the HDL instance itself. This allows a verifi-
cation unit to redeclare and/or give new behavior to a signal in the design under verification.

Example
Consider the following verification unit:

vunit ex5a(top_block.il) {
wre tenp;
assign tenp = ackl || ackz;
A5: assert always (reqga -> next tenp);

}

The vunit ex5a declares wire temp and assigns it a value. This could be just an auxiliary statement to facilitate
specification of property A5. However, if instance t op_bl ock. i 1 also contains a declaration of a signal named
‘t enp’, then the declaration in ex5a would override the declaration in the design, and the assignment to ‘t enp’
in vunit ex5a would override the driving logic for signal ‘t enp’ in the design.

Now consider the following verification unit:

vunit ex5b(top_block.il) {
i nherit exba;
wre tenp;
assign tenp = ackl || ack2 || acks3;
A6: assert always (regb -> next tenp);

}

Verification unit ex5b inherits ex5a. Both verification units are bound to the same instance and both declare
wires named temp. The declaration of temp in the inheriting verification unit takes precedence, so the declara-
tion of (and assignment to) temp in ex5b takes precedence when verifying ex5b, and the declaration of (and
assignment to) temp in both the design and vunit ex5a are ignored.

94 Property Specification Language Reference Manual Version 1.1

8. Modeling layer

The modeling layer provides a means to model behavior of design inputs (for tools such as formal verification
tools in which the behavior is not otherwise specified), and to declare and give behavior to auxiliary signals and
variables. The modeling layer comes in four flavors, corresponding to SystemVerilog, Verilog, VHDL, and
GDL.

The SystemVerilog flavor of the modeling layer will consist of the synthesizable subset of SystemVerilog, which
is not yet defined. The SystemVerilog flavor of the modeling layer extends SystemVerilog to include integer
range declarations, as defined in section 8.1.

The Verilog flavor of the modeling layer consists of the synthesizable subset of Verilog, defined by IEEE stan-
dard 1364.1-2002, Standard for Verilog Register Transfer Level Synthesis. The Verilog flavor of the modeling
layer extends Verilog to include integer range declarations, as defined in section 8.1, and struct declarations, as
defined in section 8.2.

The VHDL flavor of the modeling layer consists of the synthesizable subset of VHDL, defined by IEEE Std
1076.6-1999, IEEE Standard for VHDL Register Transfer Level (RTL) Synthesis.

The GDL flavor of the modeling layer consists of all of GDL.

In each flavor of the modeling layer, at any place where an HDL expression may appear, the modeling layer is
extended to allow any form of HDL or PSL expression, as defined in section 5, Boolean Layer. Thus HDL
expressions, PSL expressions, built-in functions, endpoints, and union expressions may all be used as expres-
sions within the modeling layer.

Each flavor of the modeling layer supports the comment constructs of the corresponding hardware description
language.

8.1 Integer ranges

The SystemVerilog and Verilog flavors of the modeling layer are extended to include declaration of a finite inte-
ger type, shown in Box 91, where the range of values that the variable can take on is indicated by the declara-
tion.

Finite Integer Type Declaration ::=

integer Integer Range list of variable identifiers
Integer Range ::=

(constant_expression : constant_expression)

Box 91—integer range declaration

The nonterminals list of variable identifiers and constant_expression are defined in the syntax for IEEE 1364-
2001 Verilog and in the syntax for Accellera SystemVerilog 3.1a..

Example
i nteger (1:5) a, b[1:20];

This declares an integer variable a, which can take on values between 1 and 5, inclusive, and an integer array b,
each of whose twenty entries can take on values between 1 and 5, inclusive.

Version 1.1 Property Specification Language Reference Manual 95

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Modeling layer

8.2 Structures

The Verilog flavor of the modeling layer also extends the Verilog data types to allow declaration of C-like struc-
tures, as shown in Box 92.

Structure Type Declaration ::=

struct { Declaration_List } list_of variable_identifiers
Declaration_List ::=

HDL_Variable or Net Declaration { HDL Variable or Net Declaration }
HDL _Variable or Net Declaration ::=

net_declaration
| reg_declaration
| integer_declaration

Box 92—Structure declaration

The nonterminals list of variable identifiers, net declaration, reg declaration, and integer declaration are
defined in the syntax for IEEE 1364-2001 Verilog.

Example

struct {
wre wl, w2
reg r;
integer(0..7) i;

} s1,

s2;

which declares two structures, S1 and s2, each with four fields, w1, W2, r, and i . Structure fields are accessed
assl.wl,sl. W2, etc.

96

Property Specification Language Reference Manual

Version 1.1

Appendix A

(normative)

Syntax rule summary

The appendix summarizes the syntax.

A.1 Meta-syntax

The formal syntax described in this standard uses the following extended Backus-Naur Form (BNF).

a)

b)

d)

2

The initial character of each word in a nonterminal is capitalized. For example:
PSL_Statement

A nonterminal can be either a single word or multiple words separated by underscores. When a multiple-
word nonterminal containing underscores is referenced within the text (e.g., in a statement that describes
the semantics of the corresponding syntax), the underscores are replaced with spaces.

Boldface words are used to denote reserved keywords, operators, and punctuation marks as a required
part of the syntax. For example:
vunit (;

The : : = operator separates the two parts of a BNF syntax definition. The syntax category appears to the
left of this operator and the syntax description appears to the right of the operator. For example, item d)
shows three options for a Vunit Type.

A vertical bar separates alternative items (use one only) unless it appears in boldface, in which case it
stands for itself. For example:
Vunit_Type ::= vunit | vprop | vmode

Square brackets enclose optional items unless it appears in boldface, in which case it stands for itself. For
example:

Sequence Declaration ::=
sequence Name [(Formal Parameter List)] DEF_SYM Sequence ;

indicates Formal Parameter List is an optional syntax item for Sequence Declaration, whereas
| Sequence [* [Range] |

indicates that (the outer) square brackets are part of the syntax, while Range is optional.

Braces enclose a repeated item unless it appears in boldface, in which case it stands for itself. A repeated
item may appear zero or more times; the repetitions occur from left to right as with an equivalent left-
recursive rule. Thus, the following two rules are equivalent:

Formal Parameter List ::= Formal Parameter { ; Formal Parameter }
Formal Parameter List ::= Formal Parameter | Formal Parameter List ; Formal Parameter

A comment in a production is preceded by a colon (:) unless it appears in boldface, in which case it
stands for itself.

Version 1.1 Property Specification Language Reference Manual 97

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Syntax rule summary

h) Ifthe name of any category starts with an italicized part, it is equivalent to the category name without the
italicized part. The italicized part is intended to convey some semantic information. For example,
vunit Name is equivalent to Name.

i) Flavor macros, containing embedded underscores, are shown in uppercase. These reflect the various
HDLs that can be used within the PSL syntax and show the definition for each HDL. The general format
is the term Fl avor Macr 0, then the actual macro name, followed by the = operator, and, finally, the
definition for each of the HDLs. For example:

Flavor Macro RANGE SYM =
SystemVerilog: : / Verilog: : / VHDL: to / GDL: /..

shows the range symbol macro (RANGE SYM). See 4.3.2 for further details about flavor macros.
The main text uses italicized type when a term is being defined, and nonospace font for examples and refer-

ences to constants such as 0, 1, or X values.

A.2 Tokens

PSL syntax is defined in terms of primitive fokens, which are character sequences that act as distinct symbols in
the language.

Each PSL keyword is a single token. Some keywords end in one or two non-alphabetic characters (‘! or * * or
both). Those characters are part of the keyword, not separate tokens.

Each of the following character sequences is also a token:

&& & | | !

$ @ . /

Finally, for a given flavor, the tokens of the corresponding HDL are tokens of PSL.

A.3 HDL Dependencies

PSL depends upon the syntax and semantics of an underlying hardware description language. In particular, PSL
syntax includes productions that refer to nonterminals in SystemVerilog, Verilog, VHDL, or GDL. PSL syntax
also includes Flavor Macros that cause each flavor of PSL to match that of the underlying HDL for that flavor.

For SystemVerilog, the PSL syntax refers to the following nonterminals in the Accellera SystemVerilog version
3.1a syntax:

98 Property Specification Language Reference Manual Version 1.1

Syntax rule summary

— module or_generate item_declaration
— module or_generate_item

— list_of variable_identifiers

— identifier

— expression

— constant_expression

For Verilog, the PSL syntax refers to the following nonterminals in the IEEE 1364-2001 Verilog syntax:

— module or generate item_declaration
— module or_generate item

— list_of variable_identifiers

— identifier

— expression

— constant_expression

— net_declaration

— reg_declaration

— integer_declaration

For VHDL, the PSL syntax refers to the following nonterminals in the IEEE 1076-1993 VHDL syntax:

— block declarative item
— concurrent_statement
— design_unit

— identifer

— expression

— entity_aspect

For GDL, the PSL syntax refers to the following nonterminals in the GDL syntax:

— module item_declaration
— module _item

— module_declaration

— identifer

— expression

A.3.1 Verilog Extensions

For the Verilog flavor, PSL extends the forms of declaration that can be used in the modeling layer by defining
two additional forms of type declaration. PSL also adds an additional form of expression for both Verilog and
VHDL flavors.

Extended Verilog Declaration ::=
Verilog module or generate item declaration
| Extended Verilog Type Declaration

Extended Verilog Type Declaration ::=
integer Integer Range list of variable identifiers ;
| struct { Declaration_List } list_of variable identifiers ;

Integer Range ::=
(constant_expression : constant_expression)

Version 1.1 Property Specification Language Reference Manual 99

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Syntax rule summary

Declaration_List ::=
HDL Variable or Net Declaration { HDL Variable or Net Declaration }

HDL Variable or Net Declaration ::=
net_declaration
| reg_declaration
| integer declaration

A.3.2 Flavor macros

Flavor Macro DEF_SYM =
SystemVerilog: =/ Verilog: =/ VHDL: is / GDL: :=

Flavor Macro RANGE _SYM =
SystemVerilog: : / Verilog: : / VHDL: to / GDL: ..

Flavor Macro AND OP =
SystemVerilog: && / Verilog: && / VHDL: and / GDL: &

Flavor Macro OR_OP =
SystemVerilog: || / Verilog: ||/ VHDL: or / GDL: |

Flavor Macro NOT OP =
SystemVerilog: ! / Verilog: ! / VHDL: not / GDL: !

Flavor Macro MIN VAL =
SystemVerilog: 0 / Verilog: 0 / VHDL: 0 / GDL: null

Flavor Macro MAX VAL =
SystemVerilog: $ / Verilog: inf/ VHDL: inf/ GDL: null

Flavor Macro HDL_EXPR =
SystemVerilog: SystemVerilog Expression
/ Verilog: Verilog_ Expression
/ VHDL: Extended VHDL _Expression
/ GDL: GDL_Expression

Flavor Macro HDL_ CLK_EXPR =
SystemVerilog: SystemVerilog Event Expression
/ Verilog: Verilog Event Expression
/ VHDL: VHDL _Expression
/ GDL: GDL_Expression

Flavor Macro HDL_UNIT =
SystemVerilog: SystemVerilog_module declaration
/ Verilog: Verilog module_declaration
/ VHDL: VHDL design_unit
/ GDL: GDL _module declaration

Flavor Macro HDL MOD_ NAME =
SystemVerilog: module Name
/ Verilog: module Name
/ VHDL.: entity aspect
/ GDL: module Name

100 Property Specification Language Reference Manual

Version 1.1

Flavor Macro HDL_DECL =
SystemVerilog: SystemVerilog module or generate item_declaration
/ Verilog: Extended Verilog Declaration
/ VHDL: VHDL block declarative item
/ GDL: GDL module item_declaration

Flavor Macro HDL_STMT =
SystemVerilog: SystemVerilog module or generate_item
/ Verilog: Verilog module or generate item
/ VHDL: VHDL concurrent statement
/ GDL: GDL_module_item

Flavor Macro HDL. RANGE =
VHDL: range attribute name

Flavor Macro LEFT SYM =
SystemVerilog: [/ Verilog: [/ VHDL: (/ GDL: (

Flavor Macro RIGHT SYM =
SystemVerilog: | / Verilog: | / VHDL:) /GDL:)
A.4 Syntax productions

The rest of this section defines the PSL syntax.

A.4.1 Verification units

PSL_Specification ::=
{ Verification_Item }

Verification Item ::==
HDL_ UNIT | Verification Unit

Verification Unit ::==
Vunit_Type PSL_Identifier [(Hierarchical HDL Name)] {
{ Inherit_Spec }
{ VUnit_Item }
}

Vunit Type ::=
vunit | vprop | vimode

Name ::=
HDL or PSL Identifier

Hierarchical HDL Name ::=
HDL MOD_NAME { Path_Separator instance_Name }

Path_Separator ::=
S

Version 1.1 Property Specification Language Reference Manual

Syntax rule summary

101

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Syntax rule summary

Inherit_Spec ::=
inherit vunit Name { , vunit Name } ;

VUnit Item ::=
HDL DECL
| HDL_STMT
| PSL_Declaration
| PSL_Directive

A.4.2 PSL declarations

PSL Declaration ::=
Property Declaration
| Sequence Declaration
| Endpoint_Declaration
| Clock Declaration

Property Declaration ::=
property PSL Identifier [(Formal Parameter List) | DEF_SYM Property ;

Formal Parameter List ::=
Formal Parameter { ; Formal Parameter }

Formal Parameter ::=
Param_ Type PSL Identifier {, PSL Identifier }

Param Type ::=
const | boolean | property | sequence

Sequence Declaration ::=
sequence PSL Identifier [(Formal Parameter List)] DEF _SYM Sequence ;

Endpoint Declaration ::=
endpoint PSL Identifier [(Formal Parameter List) | DEF_SYM Sequence ;

Clock Declaration ::=
default clock DEF_SYM Clock Expression ;

Clock Expression ::=
boolean Name
| boolean_Built_In_Function_Call
| Endpoint_Instance
| (Boolean)
| (HDL_CLK_EXPR)

Actual Parameter List ::=
Actual Parameter {, Actual Parameter }

Actual Parameter ::=

(see A.4.2)
(see A.4.3)

(see A.4.6)

(see A.4.6)

(see A.4.7)

Number | Boolean | Property | Sequence (see A.4.7) (see A.4.7) (see A.4.4) (see A.4.6)

102 Property Specification Language Reference Manual

Version 1.1

A.4.3 PSL directives

PSL Directive ::==
[Label ¢] Verification Directive

Label ::=
PSL Identifier

HDL or PSL Identifier ::=
SystemVerilog ldentifier
| Verilog Identifier
| VHDL ldentifier
| GDL Identifier
| PSL Identifier

Verification Directive ::=
Assert_Directive

| Assume_Directive
| Assume Guarantee Directive
| Restrict_Directive
| Restrict_Guarantee Directive
| Cover Directive
| Fairness_Statement

Assert_Directive ::=
assert Property [report String | ;

Assume_Directive ::=
assume Property ;

Assume_Guarantee Directive ::=
assume_guarantee Property [report String | ;

Restrict Directive ::=
restrict Sequence ;

Restrict Guarantee Directive ::=
restrict_guarantee Sequence [report String] ;

Cover_Directive ::=
cover Sequence [report String | ;

Fairness_Statement ::=
fairness Boolean ;
| strong fairness Boolean , Boolean ;

A.4.4 PSL properties

Property ::=
Replicator Property
| FL_Property
| OBE_Property

Version 1.1 Property Specification Language Reference Manual

Syntax rule summary

(see A.4.4)

(see A.4.4)

(see A.4.4)

(see A.4.6)

(see A.4.6)

(see A.4.6)

(see A.4.7)

103

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Syntax rule summary

Replicator ::=
forall PSL Identifier [Index Range] in Value Set:

Index Range ::=
LEFT SYM finite Range RIGHT SYM
| (HDL_RANGE)

Value Set ::=
{ Value_Range {, Value Range } }
| boolean

Value Range ::=
Value
| FiniteRange

Value ::=
Boolean
| Number

FL Property ::=
Boolean
| (FL_Property)
| Sequence [!]
| property Name [(Actual Parameter List)]
| FL_ Property @ Clock Expression
| FL_Property abort Boolean
: Logical Operators :
| NOT_OP FL_Property
| FL_Property AND OP FL_Property
| FL_Property OR_OP FL Property

| FL_Property -> FL_Property

| FL_Property <-> FL_Property
: Primitive LTL Operators :

| X FL_Property

| X! FL_Property

| F FL_Property

| G FL_Property

| [FL Property U FL_Property |

| [FL_Property W FL_Property |
: Simple Temporal Operators :

| always FL_Property

| never FL_Property

| next FL_Property

| next! FL. Property

| eventually! FL. Property

| FL Property until! FL_Property

| FL_Property until FL_Property

| FL_Property until!_ FL. Property
| FL_Property until_ FL_Property

| FL_Property before! FL_Property

| FL_Property before FL._Property

| FL_Property before! FL Property
| FL_Property before_FL Property

104 Property Specification Language Reference Manual

(see A.4.7)

(see A.4.6)

(see A.4.7)

Version 1.1

: Extended Next (Event) Operators :

| X [Number | (FL_Property)

| X! [Number | (FL_Property)

| next [Number | (FL_Property)
| next! [Number | (FL_Property)

| next_a [finite Range | (FL_Property)
| next_a! [finite Range | (FL_Property)
| next_e [finite Range | (FL_Property)
| next_e! [finite Range | (FL_Property)

| next_event! (Boolean) (FL_Property)

| next_event (Boolean) (FL_Property)

| next_event! (Boolean) [positive Number | (FL_Property)
| next_event (Boolean) [positive Number | (FL_Property)

| next_event_a! (Boolean) [finite_positive Range | (FL_Property)
| next_event_a (Boolean) [finite_positive Range | (FL_Property)
| next_event_e! (Boolean) [finite_positive_ Range | (FL_Property)
| next_event_e (Boolean) [finite positive Range | (FL_Property)

: Operators on SEREs :

| { Sequence } (FL_Property)
| Sequence |-> FL_Property
| Sequence |=> FL_Property

A.4.5 Sequential Extended Regular Expressions (SEREs)

SERE ::=

Boolean
| Sequence
| Sequence Instance
| SERE ; SERE
| SERE : SERE
| Compound SERE

Compound_SERE ::=

Repeated SERE
| Braced SERE
| Clocked SERE
| Compound SERE | Compound SERE
| Compound SERE & Compound SERE
| Compound SERE && Compound SERE
| Compound SERE within Compound SERE

A.4.6 Sequences

Sequence ::=

Sequence_Instance
| Repeated SERE
| Braced SERE
| Clocked SERE

Version 1.1 Property Specification Language Reference Manual

Syntax rule summary

(see A.4.7)

(see A.4.6)

(see A.4.6)

105

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Syntax rule summary

Repeated SERE ::=
Boolean [* [Count]
| Sequence [* [Count
| [* [Count]]
| Boolean [+]
| Sequence [+]
| [+]
| Boolean [= Count]
| Boolean [-> [positive Count] |

|
1]

Braced SERE ::=
{ SERE }

Sequence_Instance ::=
sequence_Name [(Actual Parameter List)]

Clocked SERE ::=
Braced_SERE @ Clock_Expression

Count ::=
Number
| Range

Range ::=
Low_Bound RANGE SYM High Bound

Low_Bound ::=
Number
| MIN_VAL

High Bound ::=
Number
| MAX VAL

A.4.7 Forms of expression

Any Type ::=
HDL or PSL Expression

Bit =
bit HDL _or PSL_Expression

Boolean ::=
boolean HDL or PSL_Expression

BitVector ::=
bitvector HDL _or PSL Expression

Number ::=
numeric HDL_or PSL_Expression

106 Property Specification Language Reference Manual

Version 1.1

String ::=
string HDL or PSL Expression

HDL or PSL Expression ::=
HDL _Expression
| PSL_Expression
| Built In Function Call
| Union_Expression
| Endpoint_Instance

HDL Expression ::=
HDL EXPR

PSL_Expression ::=
Boolean - > Boolean
| Boolean <- > Boolean

Built In Function Call ::=
prev (Any Type [, Number])
| next (Any_Type)
| stable (Any Type)
| rose (Bit)
| fell (Bit)
| isunknown (BitVector)
| countones (BitVector)
| onehot (BitVector)
| onehot0 (BitVector)

Union_Expression ::=
Any Type union Any Type

Endpoint Instance ::=
endpoint Name [(Actual_Parameter List)]

A.4.8 Optional branching extension

OBE_Property ::=
Boolean
| (OBE_Property)
| property Name [(Actual Parameter List)]

: Logical Operators :
| NOT_OP OBE_Property
| OBE_Property AND_OP OBE_Property
| OBE_Property OR_OP OBE Property
| OBE_Property -> OBE_Property
| OBE Property <-> OBE_Property

: Universal Operators :
| AX OBE_Property
| AG OBE_Property
| AF OBE Property
| A [OBE_Property U OBE_Property |

Version 1.1 Property Specification Language Reference Manual

Syntax rule summary

107

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Syntax rule summary

: Existential Operators :
| EX OBE_Property
| EG OBE_Property
| EF OBE_Property

| E [OBE Property U OBE Property]

108

Property Specification Language Reference Manual

Version 1.1

Appendix B

(informative)

Formal Syntax and Semantics of Accellera PSL

This appendix formally describes the svotax and semantics of the temporal laver.

B.1 Typed-text representation of symbuols

Talble 1 shows the mapping of various svmbols used in this delinition to the corresponding
Ly o] Lt Sugar representalion.

Venlog| Y HDL [EDL
= | == | 1-x | 1-3
= | = |l | =2

=¥ - =
R
[nat ;
A kk and k
W |1 or |
2 to

] [() (cd

Table 1. Typed-text svmbols in the Venlag, VHDL, and EDL Havors

Mote:

For ressons of simplicity, the syotax given herein is more fexible than the one defined
v the extended BNF {given in Appendix A). That is, some of the expressions which are
legal here are not legal under the BRNEF Grammar. Users should use the stricter synbax,
as defined by the BNF grammar in Appemndis AL

B.2 Syntax

The logie Accellera PSL s defined with respect to a non-emply et of atomic propositions
7 awd A given set of boolean expressions & over 0 We assume two designated boolean
excpression froe amd fadse belong to &

Definition 1 {Sequential Extended Regular Expressions (SEREs)).
— Every boolean expression b € B w1 a SERE.

Version 1.1 Property Specification Language Reference Manual 109

Formal syntax and semantics of the temporal layer

— I v, vy, and vy are SEREs, and ¢ s o beolean expression, then the following are

SEREs:
.) . 7Ty Ty sy |
LR G e [+1] e r[¥] il

Definition 2 {Formulas of the Foundation Language (FL formulas)).

— Il is a boolean cxpression then both b and B are FL formuolas'

— I @ and ¢ are FL formulas, v, vy are SEREs, and b o beolean expression, then the
Jollowirg ave FL formadas:
ll::_I:] . =i l;'-;.-“'._.:" = 7 .7
o X! o [0 L0 o o aborth eri—p o @

Definition 3 {Formulas of the Optional Branching Extension (OBE)).

— Every boolean expression is an OBE formula

— I, N, and f3oare OBE Jovmodas, en so are the followng:
(f)

f

hatz

EXT

Elh U fq]

Ecf

Aclditional OBE operators arve derived from these as follows:

o o =-0fi s fa)

Si=fa==fivfe

N fo=(h— L) Alfs = N)

EFf = Eltrue 7 f]

AXJ = =EX~f

AU fi] = ~(E[~fa U (=fi A= f2)] v EG-fa)
AGf = =~ Eftrue U = f]

— AFJ = Altrue U7 f]

Definition 4 {Accellera PSL Formulas).

— Every FL formuda is an Aceellera PS5 formala.
— Every O8E formule is an Aceellera PSL formoudo.

In Section B.3, we show additional operators which provide syntactic sugaring to the
ones alwove.

U W define formal semantics for both strong and weak booleans [2]. However, strong bocleans are not accessible
to the user

110 Property Specification Language Reference Manual Version 1.1

Formal syntax and semantics of the temporal layer

B.3 Semantics

B.3.1 Semantics of FL formulas

The somantics of FL s delined with respect to finite and infinite wonds over A7 = 2aF g
{T.L}. We denote a letter from X by € and an empty, finite, or infinite word from X by
u, v, or w (passibly with subscripts). We denote the length of word v as |v|. An empty
word v = e has length 0 a linite word o = (£ - £) has length w4 1, and an inlinite
word has length oo, We use 4, . and & to denote non-negative integers. We denote the i
letter of v by o' ~! [since counting of letters starts at zero). We denote by o the suffi

ol v starting at +°. That is, for every i < |v|, v" = v'e" Loog®

™ or ot = o't We
denote by v*¥ the fnite sequence of letters starting from o' and ending in +. That is, for
ocop and for § o< 4 ot = e, We use £ to denote an infinite-length

word, each letter of which s £

iz, vt =o'y

We use ¥ Lo denote the word obtained by replacing every T with a L and vice versa.
We call v the complement of v

The semantics of FL formules over words 15 delined inductively, using as the base
case Lhe somantics of boolean expressions over letlers in X, The semantics of boolean
expression i asswmed to be given as g orelation = © 2« 8 relating letters in X with
boolean expressions in B, If {£.6) € & we say that the letter § satisfies the boolean
expression b oand denote 6 FEb We assume the two special letters T oand 1 behave
as follows: for every boolean expression b, TEE and L6 We assume that otherwise
the boolean relation F behaves in the usoal manner. In particular, that for every lebter
f € 2F atomic proposition p € P and boolean expressions boby by € B (i) fEp il p e I,
(i) £ =b £ b, and (1) £F troe and 0% false. Finally, we assume that for every letter

fe X, Feb Al il fEb and £ by,

B.3.1.1 Uneclocked Semantics

B.3.1.1.1 Semantics of unclocked SEREs

Unelocked SEREs are defined over lnite words [rom the alphabet X The notation « Er,
where ¢ s a SERE and » a finite word means that v maodels Sigfily v, The semantics of
unclocked SEREs are defined as follows, where b denotes a boolean expression., and r, rq,
and ro denote unelocked SEREs.

—vE{r}e=vE"r

—vEb+e= v| =1 and " b

— v [Er ; ry = Ju e sbov = vy, v By, and v Erg

—w[Er g = oy g, and st v =opleg, o f Erp, and fog; Erg

—vEn e v Enore Ery

—vEr &k ry = v Er and v Er,y

—vE[M] = ="t

— v Er|+] <= either v E[+0] or Juy, ve st vy #F 6, v = vy, v Ev and 1y Er(+

Version 1.1 Property Specification Language Reference Manual 111

Formal syntax and semantics of the temporal layer

B.3.1.1.2 Semantica of unclocked FL

We refer to a formula of FL with no @ operator as an unclecked formula. Let v be a finite
or infinite word, b be a boolean expression, v,y e unclocked SEREs, and ¢, 1 unelocked
FL formulas. We use |= to define the semantics of unclocked FL formulas: If v e we
say that v madels (or salisfies) o

LoE(p)e=vEe

2 vErp = TRy

L vEpAd e vEpand v =t

4. v = |v| = 0 and o &b

vl |v| =00 v"Fh

Pl = 35 < |v| st T Er

vEr <= ¥ < ||, v"IT 2

vEX! = |v| =1 and v ¢

v =[] = 3k < |v| st oF v, and Wi < ko

=
-

e m

10. v |z abort b <= either v |Ep or 3§ < [v] 5.t o' ED and e =
ll.vEr—mp«=¥i<|v|st. ™/ Er, v g

112

Motes:

L. The semantics given here for the LT operator and the abort operator is equivalent
to the truncated semantics given in [1] which is interpreted over 2" rather than over
af [T.L}. Using [z [or the semantics in [1] the following proposition states the
equivalence: Let w be a finite word over 2" and let w be a formula of LT"™™, Then
the three [ollowing equivalences hold:

w Fep = wT" =i
e = w g
w Ea.p = wl"

2. Using [=o as in the note 1 above, we use holds strongly for E., holds for =, and
holds weakly lor =, The remaining terminology of Section 4.4.6 is lormally defined
as Lallows:

— @ iIs pending on word w il w =0 and w e
— @ fails on word w il w e

3. There is a subtle difference between boolean negation and formula nesation. For
instance, consider the fommuala =6, I = s boolean negation, then —b holds on an empty
path. If = is lormula negation, then =& does not hold on an empty path. Rather than
introduce distinet operators for boolean and formula negation, we instead adopt the
comvention Lhat negation applied to a boolean expression s boolean negation. This
does not restrict expressivity, as formula negation of & can be expressed as [—b)).

Property Specification Language Reference Manual Version 1.1

Formal syntax and semantics of the temporal layer

B.3.1.2 Clocked Semantics

We say that finite word v is a clock tick of ¢ iff [1] = 0 aml e e ¢ and for every natural
number £ < Juo| = 1, v'E =

B.3.1.2.1 Semantics of clocked SEREs

Clocked SEREs are defined over finite wornds from the alphabet X and a boolean expres-
sion that serves as the clock context. The notation v Er, where r is a SERE amd ¢ is a
boolean expression, means that o medels Lghtly @ i contert of clock o, The ssmantics of
clocked SEREs are defined as follows, where b, o, and o) denote boolean expressions, r,

ry. and vy denote clocked SEREs.

—vE{r}e=vEr

— v Eb+= v is a clock tick of ¢ and v te b

— v Er vy = s st v = gy, vy By, and vy Er

— v Ery vy = oy, and st v = vpleg, v f Ery, and foy, Ery

—vEr [v Erore Ery

—vEr Lk vy = v Er and v Ery

— v = uv=c¢

— v Er]#] <= either v E[w0] or Juy, oe st vy # 6, v = v, v) Er and 15 Ers]
— v Erle = v Er

B.3.1.2.2 Semantics of clocked FL

The semantics of [clocked} FL formulas i defined with respeet to finite/infinite words
over X and a boolean expression o which serves as the clock context. Let o be a lnite or
infinite wond, &, e,) boolean expressions, r, vy, r3 SEREs, and ¢ o FL lormulas. We use
E to define the semanties of FL formulas. I v = we say that v models {or salisfies)
et the condext of clock o

V() = g

v s = Ty

'Ep At = v Eyw and v [Ey

v EN = 3j < |v] st 0™ s a clock tick of ¢ and v'ED
vl = ¥ < || st T 05 a clock tick of &, vlE b

I
-

6. v Er! e=s 3j < |u| st o™ Er

T. v er =i < |y, p0 I T gl

B.v X! fe=3j < k< |v|st. o™ and v are clock ticks of ¢ and v* Ef
9. v E[plly] <= 3k < |v| st. v E e, vh Eu, and ¥ < kst o'ke, ot Ep

—
—
—
=

e abort b o= either v By or 37 < |v] 5.0 o7 E b and o™ T R
¥ ¢

Version 1.1 Property Specification Language Reference Manual 113

Formal syntax and semantics of the temporal layer

1L v Erisp <= ¥ < |v| s.t. T Er, o2 By
12, v Ep@e) = v By

Mote:
The clocked semantics for the LTL subset [ollows the clocks paper [2], with the exception
that strength is applied at the boolean level rather than at the propositional level.

B.2.2 Semantics of OBE formulas

The semantics of OBE formulas are delinsd over states in the model, rather than linite
or infinite words, A model is a quintuple (5, So. 8, P, L}, where 5 is a linite set of states,
So € 8 is aset of initial states, B € 5 = 5 is the transition relation, £ is a non-empty set
of atomic propositions, and L is the valuation, a function L : 5 — 27, mapping each
state with a set of atomic propositions valid in that state

A path # is a finite {or infinite) sequence of states 7 = (wp 7, T2, a) (or © =
(g, Ty ®g. o)) A computation path 7 of a model M is a finite (or infinite) path =
such that for every i < n, Rz, 7} and for no s, Rz, s) (or such that [or every i,

A(mi wipr)} Given a finite (or infinite} path «, we deline L, an extension of the valuation
function L from states to paths as follows: L{n} = L{m)L{m)... Lim,) (or Lix)} =
Limg)L{m1} ...). Thus we have a mapping [rom states in M to letters of 2P and from
fimite (or infinite) sequences of states in M to finite {or infinite) words over 27,

The semantics of OBE lormulas are defined indactively, using as the base case the
semantics of boelean erpressions over leflers in 2P The semantics of boolean ERpression
is assumed to be given as a relation B € 27 x B relating letters in 27 with boolean
expressions in 5. I (.6} € B we say that the letter £ satisfies the boolean expression b
and denote it £ b We assume that the boolean relation = behaves in the usual manner. 1o
particular, that for every letber £ € 2P atomic proposition p € 0 awd boolean expressions
bl bz e B{i)fepill pe £, (3} £6 -5 EE b, (10E) £E by Abe i £ b and £E by, and (iv)
fE true and F¥ false.

The notation M, s | [means that formula [holds in state s of model M. The
notation W |= [is equivalent to Vs € Sy - M, s = . In other words, [is valid for every
initial state of M. The semantics of an OBE formula are defined as follows®, where b
denotes a boolean expression and F L and f2 denote OBE Tormolas.

M, s | be Lis)Eb

- MsE(fle=MsESf

-~ MsE~f+= MspES

- MsEAfae—=MsE fand M s = fi

— M. s | EX [« there exists a computation path 7 of M such that || > 1. m, = &,
and M.z = f

* The semantics are those of standard CTL.

114 Property Specification Language Reference Manual Version 1.1

Formal syntax and semantics of the temporal layer

— M. s |= E[f; U [fi] + there exists a computation path 7 of M such that =y, = s and
there exists k < |7| such that M, =, | [y and for every 7 such that § < &k M, ™ E

— M, s | EG [= there exists a computation path = of M such that mp = 5 and [or
every j such that 0 < j < |7 M, x; = f

B.4 Syntactic Sugaring

The remainder ol the temporal laver is syntactic sugar. In other words, it doss pot add
expressive power, and every plece of syntactic sugar can be defined in terms of the basic
L operators presented above, The svotactic sugar is delined below.

Note: the definitions given here do not necessarily represent the most elficient imple-
mentation. In some cases, Lhere 15 an equivalent syvotactic sugaring, or a divect imple-
mentation, that is more eflicient.

B.3.1 Additional SERE operators

If i, 5. &, and ! oare integer constants such that ¢ >0, 3 = ¢ & > 1 and { > & then
additional SERE operators can be viewed as abbreviations of the basic SERE operators
defined above, as follows, where b denotes a boolean expression, and » denotes a SERE.

- :I"[I] r';r'[r]
— r[+0)] ' [e0]

k trmea

def

— rfwi.g] = rfei] | . | rlei]
ié r[#i]; r[#]
F[#0] | ... | #[+]
—r[w.] = r[#0.
- [[I]]rlér !a'rz[rL[r']
- [-] 'y [!'Ij'l"[-].
— [#i] = true|#i|
— [#i.-f] = true[si..j]
g A
— [#i.] o Lrue[+i. |
— [0.d] = true[s._i
- {-] et lrm.‘[E..]]
— bl=d] = {=b[s];b}[#i]; ~b[+]
el L
—b[=i.g] = b= |..|8=j]
—b[=i.] Y b[=i]:[+]

Version 1.1 Property Specification Language Reference Manual 115

Formal syntax and semantics of the temporal layer

— b= i] ¥ b=0]]| . | b[=]

— b= .] = b= 0..]

— B[] = b+ b

— s k] = {~b[a]; B} [ek]

— bkl d] E bW k] | .. | B]

— b k] % B[K] | {B]— K]:[+]: 0]}

— b k] B[1] | ... | b K]

— b=] E b 1.]

-1 &1y o {{r1} && {re true[«]}} | {{r1; truels|} && {rz})

e

— vy within rg = {[+]; r; [#]} && {rz}

B.3.2 Additional FL sperators

If i, 7. & and § are integers such that « = 0, ¢ 2 @, & = 0 and T > & then additional
operators can be viewed as abbreviations of the basic operators defined above, as Tollows,
where b denotes a boolean expression, r, v, and ry denote SEREs, and ¢, o). and o
denote FL formulas,

= Tlw Ao
— @1 = g3 f 2 W i
—w= e = (=) Al — o)

— W e

X
—nerd g = X
@

— evertlualliy!

. ded . .
— g undil! pa = [U o)
. e "
— g undil g3 = [W o]

. el ; .
— gy undill_ e = [U g Aol

116 Property Specification Language Reference Manual Version 1.1

Formal syntax and semantics of the temporal layer

. il »
— gy until_gr = [Wop Al

| <8

Y clef p
— iy befare! gy dér [ge U 2y A =g
— o before g =I {[wor W A i)
— iy beforell :ir [y U]

— g befare_ g = [~ee Wos]
b LEfes

P e
X1 X! X!

1 hrmes

— XV il =
~Xlilp T XXX

— next![i] ¢ = X! [i] &

— nexdfi] @ = Xi] w

— next alli.jly o (XNile) A A X))
— next_afi. e oef (XT[ilw) A .. A (X])
— next elfijly -4 (XY} v .. v (X![{]v)
— next eli. flg o (X[ie) v .. v {X[i]w)
— nexd _event! (b)) et [=b LT b oA

— next _event{b)[g) £ [=h W by

k=1 hmes

— nextevent! (D[]} -] next-event!(k) T."L'! m.'r!-1r.:"ri.u!]!|:h}|...[."f! m.'..'.'!4.*.:‘;:1:!![@[&}}...]I
:—1 times

— next event{b}[k] () e next event(h) E.J[nr:..'.'! everd (b)..(Xrnert er.:‘-r:rt![hi[:,:“}}...}

— nexd _evend_al(b)[k.1){z) = et everd B [K]{g) A . A nexl_evend (B [1] ()

— nexd _event_a(b)[k. 1](g) o next_event[B)[K](w) A ... A nect_event(B)]{z)

— next event el (B[k. (g} 2 next_eventNBY[K(2) v ... v next_event! (B)[{](2)

— next _event_e(B)[k.1){g) Y nexl_event (W [E] (@) v o next _evend (B)[1]{2)

—rlp) = rep

—ri=p = {r;lrue}i—y

B.3.4 Forall

If fis an Accellera PSL formula, vy, vy, -+ .y, are constants, aned 3, &, 0 and moare integers,
then the ollowing are Accellera PSL lormulas:

— Jorall idn {ug, v, 00} o f

Version 1.1 Property Specification Language Reference Manual 117

Formal syntax and semantics of the temporal layer

— Jorall i in 5.k

— Jorall © an boolean - [

— Jorall ifl.m) in {eg, vy, g} o f
— forall ill.m) in j. k- f

— Jorall ifl_m) in boolean @ |

Forall does not add expressive power. Rather, it can be viewed as additional syotactic
sugar, as Iollows:

— forall i dn {ug, v va) o f -4 ’JI'.\L fi +~— u]

WE Vg i

J'.
Jorall ¢ an g0k | ! ';f.'l\ J[i = 4

w=73

1
— Jorall i in boolean - T oef ',f"l.. Ji = 1]
il
— forall il myin {wa, v va) o f) ,lh\ f.'l.. STl nd — (wy. m)]
EI ol TR CIREEN T T o [T T

k k

— Jorall ifl.m) in j. k- f e f'l.. o f'l.. Fliflome) — {up.aem)]
=3 Wy =3
1 1
. . \Il:r .
— Jorall il m) in boolean : [= f'l.. o STy = {uy g, b]
i m=i]] 1 gy =1

where f[i « u] is the formula obtained from [by replacing every oceurrence of ¢ by u

and [l m) — (w.um)] i the formula obtained from [by replacing every occurrence
ol &y with .

B.5 Rewriting rules for clocks

In Section B.2.2 we gave the semantics of clocked FL formulas divectly. There is an equiv-
alent definition in terms of unclocked FL formulas, as follows: Starting from the outer-
mast clock, use the ollowing rles to translate clocked SEREs into unclocked SEREs,
and clocked FL formulas into unelocked FL lormulas.

The rewrite rules for SEREs are:
L R({r) = R°C7)

2. R(b) = ~c[s];enb

3R) = R R ()

118 Property Specification Language Reference Manual Version 1.1

2 m N

Re(ry vy Rerd} - R ra)}
Ro(ra [ra) = {R(r)} | {R(r2)}
Re(ry &ede rg) = (R} } L& (R (ra)}
RE([+0]) = [+0]

Re(r[#]) = {R(r)}[+]

Re(r@e,) = R (r)

) =1
)=1

The rewrite rules for FL formulas are:

T

=

o0 =1

- FlR) = (F e

CF) = [e U (e b
CF) = [W (e A b))
Foe) =)

C Filend) = (Fle)n F(u]
FlXl)=[=el [eA X! [U (e nF (]
CF e 4} = [(e — F)) U7 (e F (1))

. F{yp abort b) = F(z) abort &
L
L1
11.
12.

F(er) = ()
Fi(r¢) = REr) - ()
Fro(el) = R°(#)

Frr) = Rir)

Formal syntax and semantics of the temporal layer

NOTE: The v1.1 formal semantics presented bere correct the three anomalies de-
scribed in Section B.6 of the LEM v1.0. An additional anomaly, since discovered, is not
wvelb corrected. I s as follows: the legionl contradiction false is considerad Lo be weakly sat-
isfable, but the structural confradiction { {a}l&{a; a}} is not. For instance, the property
Flalse holds weakly on a finite path, but the property F{{a}&{a:a}} does not. This
issne will be addressed in the next version of the formal semantios. From the user's point
of view, this will have minimal effect, sinee 11 15 a corner case resulting from the use ol a4
non-satisfiable SERE. From a tool builder's point of view, this will have minimal effect
since the change involves removing one step in the algorithm that builds the automaton
for a given SERE {the step that removes states from which there is no accepling run).

References

1. . Eizner, I, Fisman, J. Havlicek, % Lostig, A, Melsane, and D). Van Campenhout. Reasoning with temporal
logic an truncated paths. In The T5h niemational Conference or Compuler Aided Vergfication (CALV 0T,
LNCS 2725, pages 27-40, Banlder, OO0, USA, July 2008, Springer=Yerlag

2.0 Bismer, D). Fisman. 1. Havlicek, A Melsaac, and I Van Campenhont. The definition of a temporal cleck
aperatar. In Proc. 5060 Ini. Collog. Aui. Lang. Prog. [TOALPRS), LNOS 3719, pages B5T-870. Springer- Verlag,

Version 1.1

Jurne I00E.

Property Specification Language Reference Manual 119

Formal syntax and semantics of the temporal layer

120 Property Specification Language Reference Manual Version 1.1

A
abort 65
AF 74
AG73
always 58
and
length-matching 45
non-length-matching 44
assert 85
assertion 2, 7
assume 86
assume_guarantee 87
assumption 7
assumptions 2
AU 74
AX 73
B
before 66
behavior 7
Boolean 7
Boolean expression 2, 7, 11
Boolean layer 11, 29
branching semantics 25
C
checker 7
clock 50, 56
clock expression 14, 24, 38
clocked
property 24
comments 19
completes 7
computation path 7
concatenation 42
consecutive repetition 46
constraint 7
count 7
cover 88
coverage 7
CTL 4
cycle 7
D
default clock declaration 39
describes 7
design 7
design behavior 7
directives 85

Version 1.1

dynamic verification 8
E
EF 76
EG 75
endpoint 53
declaration 53
instantiation 54
EU 76
evaluation 8
evaluation cycle 8
eventually! 59
EX 75
extension 8
F
fair 89
fairness 89
fairness constraints 89
False 8
family of operators 55
finite range 8
FL operators 13
FL properties 55
flavor 11, 19
EDL 12
Verilog 12
VHDL 12
flavor macro 21
forall 79
form
strong 26
weak 26
formal verification 8
Foundation Language 13
fusion 43
G
goto repetition 49
H
holds &, 24
holds tightly 8
I
iff 10
K
keywords 12
L
layers 11
length-matching and 45

Property Specification Language Reference Manual 121

linear semantics 25
liveness property 8, 25
logic type 8
logical
and 70
iff 69
implication 69
not 71
or 70
logical operators 13
logical value 8
LTL 4
LTL operators 71
M
model checking 8
modeling layer 11
multi-cycle behavior 2, 42, 55
N
named properties 82
named sequences 51
never 59
next 60
next a 61
next e 62
next_event 62
next_event a 63
next_event e 64
non-consecutive repetition 48
non-length-matching and 44
number 9
O
OBE 17, 72
and 78
iff 77
implication 77
not 79
or 78
occurrence 9
occurs 9
operator
clock 50, 56
HDL 13
LTL 71
OBE 17
strong 26
temporal 2

122

weak 26
operators 55

Optional Branching Extension 17, 72

or 44

overlap 43

P

path 9

positive count 9

positive number 9

positive range 9

prefix 9

properties 55, 72

property 2,9, 17, 41
clocked 24
declaration 82
instantiation 83
liveness 8, 25
safety 24
unclocked 24

R

range 9

repetition
consecutive 46
goto 49
non-consecutive 48

replicated properties 79

required 9

restriction 9

S

safety property 9, 24

satellite 4

sequence 9
declaration 52
instantiation 52

sequential expression 9

sequential expressions 2

Sequential Extended Regular Expression 14,

42

SERE 9, 14, 42

simple subset 3, 25
simulation 9

simulation checker 2
standard temporal logics 4
starts 9

strictly before 9

strong

Property Specification Language Reference Manual

Version 1.1

form 26

operator 10
strong fairness 89
struct 96
structure 96
suffix implication 68
T
temporal layer 11
temporal operators 2
terminating condition 10, 26
terminating property 10
tree of states 72
True 10
U
unclocked

property 24
until 67
v
verification 10
verification layer 11
verification unit 90

binding 91
W
weak

form 26

operator 10

Version 1.1 Property Specification Language Reference Manual 123

	1. Overview
	1.1 Scope
	1.2 Purpose
	1.2.1 Motivation
	1.2.2 Goals

	1.3 Usage
	1.3.1 Functional specification
	1.3.2 Functional verification

	1.4 Contents of this standard

	2. References
	3. Definitions
	3.1 Terminology
	3.2 Acronyms and abbreviations

	4. Organization
	4.1 Abstract structure
	4.1.1 Layers
	4.1.2 Flavors

	4.2 Lexical structure
	4.2.1 Identifiers
	4.2.2 Keywords
	4.2.3 Operators
	4.2.4 Macros
	4.2.5 Comments

	4.3 Syntax
	4.3.1 Conventions
	4.3.2 HDL dependencies

	4.4 Semantics
	4.4.1 Clocked vs. unclocked evaluation
	4.4.2 Safety vs. liveness properties
	4.4.3 Linear vs. branching logic
	4.4.4 Simple subset
	4.4.5 Finite-length versus infinite-length behavior
	4.4.6 The concept of strength

	5. Boolean layer
	5.1 Expression Type Classes
	5.1.1 Bit expressions
	5.1.2 Boolean expressions
	5.1.3 BitVector expressions
	5.1.4 Numeric expressions
	5.1.5 String expressions

	5.2 Expression forms
	5.2.1 HDL expressions
	5.2.2 PSL expressions
	5.2.3 Built-in functions
	5.2.4 Union expressions

	5.3 Clock expressions
	5.4 Default clock declaration

	6. Temporal layer
	6.1 Sequential expressions
	6.1.1 Sequential Extended Regular Expressions (SEREs)
	6.1.2 Sequences
	6.1.3 Named sequences
	6.1.4 Named endpoints

	6.2 Properties
	6.2.1 FL properties
	6.2.2 Optional Branching Extension (OBE) properties
	6.2.3 Replicated properties
	6.2.4 Named properties

	7. Verification layer
	7.1 Verification directives
	7.1.1 assert
	7.1.2 assume
	7.1.3 assume_guarantee
	7.1.4 restrict
	7.1.5 restrict_guarantee
	7.1.6 cover
	7.1.7 fairness and strong fairness

	7.2 Verification units
	7.2.1 Verification unit binding
	7.2.2 Verification unit inheritance
	7.2.3 Verification unit scoping rules

	8. Modeling layer
	8.1 Integer ranges
	8.2 Structures

	Syntax rule summary
	A.1 Meta-syntax
	A.2 Tokens
	A.3 HDL Dependencies
	A.4 Syntax productions

