
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 12, DECEMBER 2000 1523

System-Level Design: Orthogonalization of Concerns
and Platform-Based Design

Kurt Keutzer, Fellow, IEEE, Sharad Malik, Senior Member, IEEE, A. Richard Newton, Fellow, IEEE,
Jan M. Rabaey, Fellow, IEEE,, and A. Sangiovanni-Vincentelli, Fellow, IEEE,

Abstract—System-level design issues become critical as imple-
mentation technology evolves toward increasingly complex inte-
grated circuits and the time-to-market pressure continues relent-
lessly. To cope with these issues, new methodologies that empha-
size re-use at all levels of abstraction are a “must”, and this is a
major focus of our work in the Gigascale Silicon Research Center.
We present some important concepts for system design that are
likely to provide at least some of the gains in productivity postu-
lated above. In particular, we focus on a method that separates
parts of the design process and makes them nearly independent
so that complexity could be mastered. In this domain, architec-
ture-function co-design and communication-based design are in-
troduced and motivated. Platforms are essential elements of this
design paradigm. We define system platforms and we argue about
their use and relevance. Then we present an application of the
design methodology to the design of wireless systems. Finally, we
present a new approach to platform-based design called modern
embedded systems, compilers, architectures and languages, based
on highly concurrent and software-programmable architectures
and associated design tools.

Index Terms—Design automation, design methodology, digital
systems, multiprocessor interconnection.

I. INTRODUCTION

B Y the year 2002, it is estimated that more information
appliances will be sold to consumers than PCs (Business

Week, Mar. 1999). This new market includes small, mobile, and
ergonomic devices that provide information, entertainment,
and communications capabilities to consumer electronics,
industrial automation, retail automation, and medical markets.
These devices require complex electronic design and system
integration, delivered in the short time frames of consumer
electronics. The system design challenge of the next decades is
the dramatic expansion of this spectrum of diversity. The intro-
duction of small, low-power,embeddeddevices will accelerate,
as microelectronic mechanical system (MEMS) technology
becomes available. Microscopic devices, powered by ambient
energy in their environment, will be able to sense numerous
fields, position, velocity, and acceleration, and communicate
with substantial bandwidth in the near area. Larger, more
powerful systems within the infrastructure will be driven by the
continued improvements in storage density, memory density,

Manuscript received May 24, 2000. This paper was recommended by Asso-
ciate Editor R. Camposano.

K. Keutzer, A. R. Newton, J. M. Rabaey, and A. Sangiovanni-Vincentelli are
with the Department of EECS, University of California at Berkeley, Berkeley,
CA 94720 USA.

S. Malik is with the Department of Electrical Engineering, Princeton Univer-
sity, Princeton, NJ 08540 USA.

Publisher Item Identifier S 0278-0070(00)10454-3.

processing capability, and system-area interconnects as single
board systems are eclipsed by complete systems-on-a-chip.

Data movement and transformation is of central importance
in such applications. Future devices will be network-connected,
channeling streams of data into the infrastructure, with mod-
erate processing on the fly. Others will have narrow, applica-
tion-specific user interfaces. They will be highly adaptable and
configured automatically, and yet provide strong guarantees of
availability and performance. Applications will not be centered
within a single device, but stretched over several, forming a path
through the infrastructure. In such applications, the ability of the
system designer to specify, manage, and verify the functionality
and performance of concurrent behaviors, is essential.

The overall goal of electronic embedded system design is
to balanceproduction costs with development time and cost in
view of performance and functionality considerations. Manu-
facturing cost depends mainly on the hardware(HW) compo-
nents of the product. Minimizing production cost is the result
of a balance between competing criteria. If one considers an
integrated circuit (IC) implementation, the size of the chip is
an important factor in determining production cost. Minimizing
the size of the chip implies tailoring the HW architecture to the
functionality of the product.

The nonrecurring engineering (NRE) costs associated
with the design and tooling of complex chips are growing
rapidly. The International Technology Roadmap for Semicon-
ductors (ITRS) predicts that while manufacturing complex
System-on-Chip designs will be practical, at least down to
50-nm minimum feature sizes,the production of practical
masks and exposure systemswill likely be a major bottleneck
for the development of such chips. That is, thecost of masks
will grow even more rapidly for these fine geometries, adding
even more to the up-front NRE for a new design. A single mask
set and probe card cost for a state-of-the-art chip is over $.5 M
for a complex part today [1], up from less than $100 K a decade
ago (note: this does not include the design cost). At 0.15- m
technology SEMATECH estimates we will be entering the
regime of the “million dollar mask set.” In addition, the cost
of developing and implementing a comprehensive test set for
such complex designs will continue to represent an increasing
fraction of a total design cost unless new approaches are
developed. These increasing costs are strongly prejudicing
manufacturers towardparts that have guaranteed high-volume
production form a single mask set(or that are likely to have
high volume production, if successful). Such parts also translate
to better response time and higher priorities at times when
global manufacturing resources are in short supply.

0278–0070/00$10.00 © 2000 IEEE

1524 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 12, DECEMBER 2000

As a consequence of this evolution of the IC world, if one
could determine a common “hardware” denominator (which we
refer to as ahardware platform) that could be shared across
multiple applications in a given application domain, production
volume increases and overall costs may eventually be (much)
lower than in the case when the chip is customized for the ap-
plication.

Of course, while production volume will drive overall cost
down by amortizing NRE, it is important to consider the final
size of the implementation as well, since a platform that can sup-
port the functionality and performance required for a “high-end”
product may end up being too expensive for other lower-com-
plexity products. Today, the choice of a platform architecture
and implementation is much more an art than a science.We be-
lieve that a next-generation, successful system design method-
ology must assist designers in the process of designing, evalu-
ating, and programming such platform architectures, with met-
rics and with early assessments of the capability of a given plat-
form to meet design constraints.

As the complexity of the products under design increases, the
development efforts increase dramatically. At the same time, the
market dynamics for electronics systems push for shorter and
shorter development times. It will be soon imperative to keep to
a strict design time budget, no matter how complex the design
problem, with as little as six months from initial specification
to a final and correct implementation. To keep these efforts in
check and at the same time meet the design time requirements,
a design methodology that favors reuse and early error detec-
tion is essential. The use of programmability as a mechanism
for making low-cost, in situ design iterations is also very im-
portant in these situations. In this regard, we expect the majority
of high-volume platforms developed to be programmable, either
at the logic/interconnect level [e.g., via field-programmable gate
array (FPGA)] or at the instruction level. However, as explained
in more detail later, conventional uni-processor Von Neumann
architectures are unlikely to be sufficient to meet the power, per-
formance and cost targets of this next generation of electronic
systems.Fundamental, new approaches to the programming of
silicon-based systems must be developed and deployed.

Both reuse and early error detection imply that the design ac-
tivity must be defined rigorously, so that all phases are clearly
identified and appropriate checks are enforced. To be effective, a
design methodology that addresses complex systems must start
at high levels of abstraction. In most of the embedded system de-
sign companies as well as IC design companies, designers are
familiar with working at levels of abstraction that are too close
to implementation so that sharing design components and ver-
ifying designs before prototypes are built is nearly impossible.
Today, most IC designers think of the highest level of abstraction
for their design as an register transfer level (RTL) language de-
scription. For embedded system designers, assembly language
or at best C language is the way to capture and to implement the
design. These levels are clearly too low for complex system de-
sign. The productivity offered by the expressive power of RTL
languages is way below critical, lacking a support for software
(SW) implementations.In particular, we believe that the lack of
appropriate methodology and tool support for modeling of con-
currency in its various forms is an essential limiting factor in the

use of both RTL and commonly used programming languages to
express design complexity.

Design reuse is most effective in reducing cost and develop-
ment time when the components to be shared are close to the
final implementation. On the other hand, it is not always pos-
sible or desirable to share designs at this level, since minimal
variations in specification can result in different, albeit similar,
implementations. However, moving higher in abstraction can
eliminate the differences among designs, so that the higher level
of abstraction can be shared and only a minimal amount of work
needs to be carried out to achieve final implementation. The ul-
timate goal in this regard is to create a library of functions, along
with associated HW and SW implementations, that can be used
for all new designs. It is important to have a multiple levels of
functionality supported in such a library, since it is often the case
that the lower levels that are closer to the physical implementa-
tion change because of the advances in technology, while the
higher levels tend to be stable across product versions.

We believe that it is most likely that the preferred approaches
to the implementation of complex embedded systems will in-
clude the following aspects.

• Design time and cost are likely to dominate the decision-
making process for system designers. Therefore, design
reuse in all its shapes and forms, as well as just-in-time,
low-cost design-debug techniques, will be of paramount
importance. Flexibility is essential to be able to map an
ever-growing functionality onto a continuously evolving
problem domain and set of associated HW implementation
options.

• Designs must be captured at the highest level of abstrac-
tion to be able to exploit all the degrees of freedom that are
available. Such a level of abstraction should not make any
distinction between HW and SW, since such a distinction
is the consequence of a design decision.

• The implementation of efficient, reliable, and robust ap-
proaches to the design, implementation, and programming
of concurrent systems is essential. In essence, whether the
silicon is implemented as a single, large chip or as a col-
lection of smaller chips interacting across a distance, the
problems associated with concurrent processing and con-
current communication must be dealt with in a uniform
and scaleable manner. In any large-scale embedded sys-
tems program, concurrency must be considered as a first
class citizen at all levels of abstraction and in both HW
and SW.

• Concurrency implies communication among components
of the design. Communication is too often intertwined
with the behavior of the components of the design so that
it is very difficult to separate out the two domains. Sep-
arating communication and behavior is essential to dom-
inate system design complexity. In particular, if in a de-
sign component behaviors and communications are inter-
twined, it is very difficult to re-use components since their
behavior is tightly dependent on the communication with
other components of the original design. In addition, com-
munication can be described at various levels of abstrac-
tion, thus exposing the potential of implementing commu-
nication behavior in many different forms according to the

KEUTZER et al.: SYSTEM-LEVEL DESIGN: ORTHOGONALIZATION OF CONCERNS AND PLATFORM-BASED DESIGN 1525

available resources. Today, this freedom is often not ex-
ploited.

• Next-generation systems will most likely use a few highly
complex (Moore’s Law Limited) part-types, but many
more energy/power-cost-efficient, medium-complexity
(O(10 M–100 M) gates in 50-nm technology) chips,
working concurrently to implement solutions to complex
sensing, computing, and signaling/actuating problems.

• These chips will most likely be developed as an instance
of a particular platform. That is, rather than being assem-
bled from a collection of independently developed blocks
of silicon functionality, they will be derived from a specific
“family” of micro-architectures, possibly oriented toward
a particular class of problems, that can be modified (ex-
tended or reduced) by the system developer. These plat-
forms will be extended mostly through the use of large
blocks of functionality (for example, in the form of co-pro-
cessors), but they will also likely support extensibility in
the memory/communication architecture as well. When
selecting a platform, cost, size, energy consumption, flex-
ibility must be taken into account. Since a platform has
much wider applicability than application-specific inte-
grated circuits (ASICs), design decisions are crucial. A
less than excellent choice may result in economicdebacle.
Hence, design methods and tools that optimize the plat-
form-selection process are very important.

These platforms will be highly programmable, at a va-
riety of levels of granularity. Because of this feature, map-
ping an application into a platform efficiently will require
a set of tools for SW design that resemble more and more
logic synthesis tools. We believe this to be a very fruitful
research area.

The perspective outlined above has evolved to form one of the
major emphases in the research agenda of the DARPA/MARCO
Gigascale Silicon Research Center (GSRC) [2]. In this paper, we
first present the basic tenet of a high-level design methodology
based on separation ororthogonalization of concerns(Section
II). Then, in Section III, we introduce the concept of platform-
based design. In Section IV, we show applications of the system
design ideas presented in the previous sections, and, in partic-
ular, we demonstrate how the methodology can be used to select
a platform for next generation radios. In Section V, a particular
approach to platform-based design being developed within the
GSRC [the modern embedded systems, compilers, architectures
and languages (MESCAL) approach] is presented in detail. The
MESCAL project aims at defining a system platform and the
related tools and methodologies based on a configurable highly
concurrent, platform architecture. Finally, concluding remarks
and future work are described.

II. SYSTEM DESIGN METHODOLOGY

An essential component of a new system design paradigm is
the orthogonalization1 of concerns, i.e., the separation of the

1We refer toorthogonalization(see orthogonal bases in mathematics) versus
separation to stress the independence of the axes along which we perform the
“decomposition”.

various aspects of design to allow more effective exploration of
alternative solutions. An example of this paradigm is the orthog-
onalization between functionality and timing exploited in the
synchronous design methodology that has been so successful in
digital design. In this case, provided that the signal propagation
delays in combinational blocks are all within the clock cycle,
verifying the correct behavior of the design is restricted to the
functionality of the combinational blocks thus achieving a major
design speed-up factor versus the more liberal asynchronous de-
sign methodology. Other more powerful paradigms must be ap-
plied to system design to make the problem solvable, let alone
efficiently so. One pillar of a design methodology that we have
proposed over the years [3]–[5] is the separation between:

• function (what the system is supposed to do) and architec-
ture (how it does it);

• communication and computation.

The mapping of function to architecture is an essential step
from conception to implementation. In the recent past, there
has been a significant attention in the research and industrial
community to the topic of Hardware-Software Co-design. The
problem to be solved here is coordinating the design of the
parts of the system to be implemented as SW and the parts to
be implemented as HW blocks, avoiding the HW/SW integra-
tion problem that has marred the electronics system industry
for so long. We actually believe that worrying about HW-SW
boundaries without considering higher levels of abstraction is
the wrong approach. HW/SW design and verification happens
after some essential decisions have been already made, and this
is what makes the verification and the synthesis problem hard.
SW is really the form that a behavior is taking if it is “mapped”
into a programmable microprocessor or DSP. The motivations
behind this choice can be performance of the application on this
particular processor, or the need for flexibility and adaptivity.
The origin of HW and SW is in behavior that the system must
implement. The choice of an “architecture”, i.e., of a collection
of components that can be either SW programmable, re-config-
urable or customized, is the other important step in design. We
recall the basic tenet of our proposed design methodology as
shown in Fig. 1.

A. Function and Communication-Based Design

We say that a system implements a set of functions, where a
function is an abstract view of the behavior of an aspect of the
system. This set of functions is the input/output characterization
of the system with respect to its environment. It has no notion
of implementation associated with it. For example, “when the
engine of a car starts (input), the display of the number of rev-
olutions per minute of the engine (output)” is a function, while
“when the engine starts, the display in digital form of the number
of revolutions per minute on the LCD panel” is not a function.
In this case, we already decided that the display device is an
LCD and that the format of the data is digital. Similarly, “when
the driver moves the direction indicator (input), the display of a
sign that the direction indicator is used until it is returned in its
base position” is a function, while “when the driver moves the
direction indicator, the emission of an intermittent sound until
it is returned to its base position” is not a function.

1526 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 12, DECEMBER 2000

Fig. 1. Overall organization of the methodology.

The notion of function depends very much on the level of ab-
straction at which the design is entered. For example, the deci-
sion whether to use sound or some other visual indication about
the direction indicator may not be a free parameter of the design.
Consequently, the second description of the example is indeed
a function since the specification is in terms of sound. However,
even in this case, it is important to realize that there is a higher
level of abstraction where the decision about the type of signal
is made. This may uncover new designs that were not even con-
sidered because of the entry level of the design. Our point is
that no design decision should ever be made implicitly and that
capturing the design at higher levels of abstraction yields better
designs in the end.

The functions to be included in a product may be left to the
decision of the designer or may be imposed by the customer.
If there are design decisions involved, then the decisions are
grouped in a design phase calledfunction(or sometimes feature)
design. The decisions may be limited or range quite widely.

The description of the function the system has to implement
is captured using a particular language that may or may not be
formal. In the past, natural language was the most used form
of design capture. The language used for capturing functional
specifications is often application dependent. For example, for
control applications, Matlab is used to capture algorithms. For
several applications, computer languages such as C are used.
However, these languages often lack the semantic constructs to
be able to specify concurrency. We believe that the most impor-
tant point for functional specification is the underlying mathe-
matical model, often called model of computation.

As opposed to the informal nature of component-based de-
sign often used to design SW today [6], we promote the use
of formal models and transformations in system design so that
verification and synthesis can be applied to advantage in the
design methodology. In fact, verification is effective if com-
plexity is handled by formalization, abstraction and decompo-
sition [7]. Further, the concept of synthesis itself can be applied

only if the precise mathematical meaning of a description of
the design is applied. It is then important to start the design
process from a high-level abstraction that can be implemented
in a wide variety of ways. The implementation process is a se-
quence of steps that remove choice from the formal model. In
other words, the abstract representation of the design should
“contain” all the correct implementations in the sense that the
behavior of the implementation should be consistent with the
abstract model behavior. Whenever a behavior is not specified
in the abstract model, the implicit assumption is that such be-
havior is a “don’t-care” in the implementation space. In the im-
plementation domain, the abstract model is source of nondeter-
ministic behavior. The implementation process progresses to-
ward a deterministic system. It is important to underline that
way too often system design starts with a system specification
that is burdened by unnecessary references to implementations
resulting in over-determined representations with respect to de-
signer intent that obviously yield under-optimized designs.

In the domain of formal model of system behavior, it is
common to find the term “Model of Computation”, a concept
that has its roots in language theory. This term refers more ap-
propriately to mathematical models that specify the semantics
of computation and of concurrency. In fact, concurrency models
are the most important differentiating factors among models of
computation. Edward Lee has correctly stressed the importance
of allowing the designer to express designs making use of
any such models of computation, or at least of the principal
ones, thus yielding a so-called heterogeneous environment for
system design. In his approach to simulation and verification,
assembling a system description out of modules represented
in different models of computation yields the problem of
arbitrating communication among the different models. The
concept of communication among different models of compu-
tation must be carefully explored and understood [8] and this is
a central aspect of our research program in the GSRC.

This difficulty has actually motivated our approach to
communication-based design, where communication takes
the driver’s seat in the overall system design methodology.
In this approach, communication can be specified somewhat
independently of the modules that compose the design. In
fact, two approaches can be applied here. In the first case, we
are interested in communication mechanisms that “work” in
any environment, i.e., independent of the formal models and
specifications of the behavior of the components. This is a
very appealing approach if one emphasizes ease of component
assembly. However, it is rather obvious that the designer
may end up with an implementation that is quite inefficient,
especially for high-volume embedded systems applications
where production cost is very important. The other approach is
to specify the communication behavior and then to use a suc-
cessive refinement process for optimizing the communication,
where the refinement process can leverage all that is known
about the modules to interconnect. In this case, the correctness
of the overall behavior is not insured by the communication
mechanism but by the design process of the communication
itself. In this case, a synthesis approach is most appealing since
it reduces the risk of making mistakes and it may use powerful
optimization techniques to reduce design cost and time.

KEUTZER et al.: SYSTEM-LEVEL DESIGN: ORTHOGONALIZATION OF CONCERNS AND PLATFORM-BASED DESIGN 1527

The most important models of computation that have been
proposed to date are based on three basic models: finite
state machines (FSMs), data flow and discrete event [8]. All
models have their strengths and weaknesses. It is an important
differentiating factor to be able to use these models at their
best. Note that each model is composable (can be assembled)
in a particular way that guarantees that some properties of
the single components are maintained in the overall system.
Communication and time representation in each model of
computation are strictly intertwined. In fact, in a synchronous
system, communication can take place only at precise “instants
of time” thus reducing the risk of unpredictable behavior.
Synchronous systems are notoriously more expensive to
implement and often less performing thus opening the door
to asynchronous implementations. In this latter case, that is
often the choice for large system design, particular care has
to be exercised to avoid undesired and unexpected behaviors.
The balance between synchronous and asynchronous imple-
mentations is possibly the most challenging aspect of system
design. Globally-asynchronous-locally-synchronous (GALS)
communication mechanisms are probably a good compromise
in the implementation space [3].

The view of communication in these models of computa-
tion is sometimes at a level of abstraction that is too low. We
would like to be able to specify abstract communication pat-
terns with high-level constraints that are not implying yet a par-
ticular model of communication. For example, it is our opinion
that an essential aspect of communication is losslessness. We
argue that there must exist a level of abstraction that is high
enough to require that communication take place with no losses.
The synchronous-asynchronous mechanism, the protocols used
and so on, are just implementation choices that either guar-
antee losslessness or that have a good chance of ensuring that
no data is lost where it matters but that needs extensive veri-
fication to make sure that this is indeed the case. For example,
Kahn process networks [8] are important Data Flow models that
guarantee lossless communication at the highest level of ab-
straction by assuming an ideal buffering scheme that has un-
bounded buffer size. Clearly, the unbounded buffer size is a
“nonimplementable” way of guaranteeing losslessness. When
moving toward implementable designs, this assumption has to
be removed. A buffer can be provided to store temporarily data
that are exchanged among processes but it must be of finite size.
The choice of the size of the buffer is crucial. Unfortunately de-
ciding whether a finite buffer implementation exists that guar-
antees losslessness is not theoretically feasible in the general
case, but there are cases for which the optimal buffer size can
be found. In others, one has to hope for the best for buffer over-
write not to occur or has to provide additional mechanism that
composed with the finite buffer implementation still guarantees
that no loss takes place. For example, a send-receive protocol
can be put in place to prevent buffer over-write to occur. Note
that in this case the refinement process is quite complex and in-
volves the use of composite processes. Today, there is little that
is known about a general approach to communication design
that has some of the feature that we have exposed, even though
we have proposed a family of models that are related to each
other as successive refinements [9].

Approaches to the isolation of communication and compu-
tation, and how to refine the communication specification to-
ward an implementation [10] have been presented elsewhere.
In some cases, we have been able to determine a synthesis pro-
cedure for the communication that guarantees some properties.
In our opinion, this formalism and the successive refinement
process opens a very appealing window to system design with
unexplored avenues in component-based SW design. It is our
opinion that the latest advances in component-based SW design
and in SW engineering are converging, albeit slowly and prob-
ably unconsciously toward a more formal model of communi-
cation among modules.

B. Micro-Architecture

In most design approaches, the next stage of the design
process involves the evaluation of tradeoffs across what we
refer to as the architecture/micro-architecture boundary, and at
this point in our presentation, the class of structural compo-
sitions that implement the architecture is of primary concern.
While the word architecture is used in many meanings and
contexts, we adhere to the definitions put forward in [11]: the
architecturedefines an interface specification that describes the
functionality of an implementation, while being independent
of the actual implementation. Themicro-architecture, on the
other hand, defines how this functionality is actually realized
as a composition of modules and components, along with their
associated SW.

The instruction-set architecture of a microprocessor is a good
example of an architecture: it defines what functions the pro-
cessor supports, without defining how these functions are ac-
tually realized. The micro-architecture of the processor is de-
fined by the “organization” and the “hardware” of the processor.
These terms can easily be extended to cover a much wider range
of implementation options. At this point, the design decisions
are made concerning what will eventually be implemented as
SW or as HW.

Consistent with the above definitions, in our work we
describe a micro-architecture as a set of interconnected com-
ponents (either abstract or with a physical dimension) that
is used to implement a function. For example, an LCD, a
physical component of a micro-architecture, can be used to
display the number of revolutions per minute of an automotive
engine. In this case, the component has a concrete, physical
representation. In other cases, it may have a more abstract
representation. In general, a component is an element with
specified interfaces and explicit context dependency. The
micro-architecture determines the final HW implementation
and, hence, it is strictly related to the concept of platform [12],
[13] that will be presented in greater detail later on.

The most important micro-architecture for the majority of
embedded designs consists of microprocessors, peripherals,
dedicated logic blocks and memories. For some products,
this micro-architecture is completely or in part fixed. In the
case of automotive body electronics, the actual placement
of the electronic components inside the body of the car and
their interconnections is kept mostly fixed, while the single
components, i.e., the processors, may vary to a certain extent.

1528 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 12, DECEMBER 2000

A fixed micro-architecture simplifies the design problem a
great deal—especially the SW part today—but limits design
optimality. The tradeoff is not easy to achieve.

In addition, the communication among micro-architecture
blocks must be handled with great care. Its characteristics
make the composition of blocks easy or difficult to achieve.
Standards are useful to achieve component re-use. Busses are
typical interconnection structures intended to favor re-use.
Unfortunately, the specification of standard busses such as the
Peripheral Component Interconnect (PCI) bus is hardly formal.
This makes the design of the interfaces at best haphazard. In
our GSRC activities [14], we have a strong research program
in formal methods to specify and verify such interfaces.
Ultimately, we believe the verification of such interconnection
interfaces will be the limiting factor in design productivity.
In addition, we are experimenting with different interconnect
structures such as on-chip networks [15].

C. Mapping

The essential design step that allows moving down the levels
of the design flow is the mapping process, where the functions to
be implemented are assigned (mapped) to the components of the
micro-architecture. For example, the computations needed to
display a set of signals may all be mapped to the same processor
or to two different components of the micro-architecture (e.g.,
a microprocessor and a DSP). The mapping process determines
the performance and the cost of the design. To measure exactly
the performance of the design and its cost in terms of used re-
sources, it is often necessary to complete the design, leading to
a number of time-consuming design cycles. This is a motivation
for using a more rigorous design methodology. When the map-
ping step is carried out, our choice is dictated byestimatesof
the performance of the implementation of that function (or part
of it) onto the micro-architecture component. Estimates can be
provided either by the manufacturers of the components (e.g.,
IC manufacturers) or by system designers. Designers use their
experience and some analysis to develop estimation models that
can be easily evaluated to allow for fast design exploration and
yet are accurate enough to choose a good micro-architecture.
Given the importance of this step in any application domain, au-
tomated tools and environments should support effectively the
mapping of functions to micro-architectures.

The mapping process is best carried out interactively in the
design environment. The output of the process is one of the fol-
lowing.

• A mapped micro-architecture iteratively refined toward
the final implementation with a set of constraints on each
mapped component (derived from the top-level design
constraints).

• A set of diagnostics to the micro-architecture and function
selection phase in case the estimation process signals that
design constraints may not be met with the present micro-
architecture and function set. In this case, if possible, an
alternative micro-architecture is selected. Otherwise, we
have to work in the function space by either reducing the
number of functions to be supported or their demands in
terms of performance.

D. Link to Implementation

This phase is entered once the mapped micro-architecture has
been estimated as capable of meeting the design constraints. The
next major issue to be tackled is implementing the components
of the micro-architecture. This requires the development of an
appropriate HW block or of the SW needed to make the pro-
grammable components perform the appropriate computations.
This step brings the design to the final implementation stage.
The HW block may be found in an existing library or may need a
special purpose implementation as dedicated logic. In this case,
it may be further decomposed into subblocks until either we
find what we need in a library or we decide to implement it by
“custom” design. The SW components may exist already in an
appropriate library or may need further decomposition into a
set of subcomponents, thus exposing what we call thefractal
(self-similar) nature of design, i.e., the design problem repeats
itself at every level of the design hierarchy into a sequence of
nested function-(architecture)-micro-architecture-mapping pro-
cesses.

III. PLATFORM-BASED DESIGN [12]

When mapping the functionality of the system to an IC, the
economics of chip design and manufacturing are essential to de-
termine the quality and the cost of the system. Since the mask
set and design cost for deep submicrometer implementations is
predicted to be overwhelming, it is important to find common
architectures that can support a variety of applications as well as
the future evolutions of a given application2 . To reduce design
costs, re-use is a must. In particular, since system designers will
use more and more frequently SW to implement their products,
there is a need for design methodologies that allow the substan-
tial re-use of SW. This implies that the basic micro-architecture
of the implementation is essentially “fixed,” i.e., the principal
components should remain the same within a certain degree
of parameterization. For embedded systems, which we believe
are going to be the dominant share of the electronics market,
the “basic” micro-architecture consists of programmable cores,
input-output (I/O) subsystem and memories. A family of micro-
architectures that allow substantial re-use of SW is what we call
ahardware platform . We believe that HW platforms will take
the lion’s share of the IC market. However, the concept of HW
platform by itself is not enough to achieve the level of applica-
tion SW re-use we are looking for. To be useful, the HW plat-
form has to be abstracted at a level where the application SW
sees a high-level interface to the HW that we callApplication
Program Interface (API). There is a SW layer that is used to
perform this abstraction. This layer wraps the different parts of
the HW platform: the programmable cores and the memory sub-
system via a real-time operating system (RTOS), the I/O sub-
system via the Device Drivers, and the network connection via

2It is important to stress that future evolutions of a given application are very
important. If indeed there is enough capacity in the platform, then adding or
modifying the functionality of a product requires only a minor effort as com-
pared to a totally new implementation. This points to the importance of selecting
the “right” platform. A platform with limited spare capability may be a bad
choice even though its manufacturing cost for the present version of the product
may be better than one with more room to spare.

KEUTZER et al.: SYSTEM-LEVEL DESIGN: ORTHOGONALIZATION OF CONCERNS AND PLATFORM-BASED DESIGN 1529

the network communication subsystem. This layer is called the
software platform. The combination of the HW and the SW
platforms is called thesystem platform.

A. Hardware Platforms

Seen from the application domain, the constraints that deter-
mine the HW platform are often given in terms of performance
and “size.” To sustain a set of functions for a particular appli-
cation, a CPU should be able to run at least at a given speed
and the memory system should be of at least a given number
of bytes. Since each product is characterized by a different set
of functions, the constraints identify different HW platforms
where more complex applications yield stronger architectural
constraints. Coming from the HW space, production and design
costs imply adding HW platform constraints and, consequently,
reducing the number of choices. The intersection of the two sets
of constraints defines the HW platforms that can be used for the
final product. Note that, as a result of this process, we may have a
HW platform instance that is over-designed for a given product,
that is, some of the power of the micro-architecture is not used
to implement the functionality of that product. Over-design is
very common for the PC platform. In several applications, the
over-designed micro-architecture has been a perfect vehicle to
deliver new SW products and extend the application space. We
believe that some degree of over-design will be soon accepted in
the embedded system community to improve design costs and
time-to-market. Hence, the “design” of a HW platform is the re-
sult of a tradeoff in a complex space that includes the following.

• The size of the application space that can be supported
by the micro-architectures belonging to the HW platform.
This represents the flexibility of the HW platform;

• The size of the micro-architecture space that satisfies the
constraints embodied in the HW platform definition. This
represents the degrees of freedom that micro-architecture
providers have in designing their HW platform instances.

Once a HW platform has been selected, then the design
process consists of exploring the remaining design space with
the constraints set by the HW platform. These constraints
cannot only be on the components themselves but also on
their communication mechanism. When we march toward
implementation by selecting components that satisfy the
architectural constraints defining a platform, we perform a
successive refinement process where details are added in a
disciplined way to produce a HW platform instance.

Ideally the design process in this framework starts with the
determination of the set of constraints that defines the HW
platform for a given application. In the case of a particular
product, we advocate to start the design process before splitting
the market into high-end and low-end products. The platform
thus identified can then be refined toward implementation by
adding the missing information about components and com-
munication schemes. If indeed we keep the platform unique
at all levels, we may find that the cost for the low-end market
is too high. At this point then we may decide to introduce
two platform instances differentiated in terms of peripherals,
memory size and CPU power for the two market segments. On

Fig. 2. Top-down and bottom-up approaches to platform specification.

the other hand, by defining the necessary constraints in view
of our approach, we may find that a platform exists that covers
both the low-end and the high-end market with great design
cost and time-to-market improvements.

Hardware platform-based design optimizes globally the
various design parameters including, as a measure of opti-
mality, NRE costs in both production and design. Hardware
platform-based design is neither a top-down nor a bottom-up
design methodology. Rather, it is a “meet-in-the-middle”
approach. In a pure top-down design process, application
specification is the starting point for the design process. The
sequence of design decisions drives the designer toward a so-
lution that minimizes the cost of the micro-architecture. Fig. 2
shows the single application approach, the bottom of the figure
shows the set of micro-architectures that could implement
that application. The design process selects the most attractive
solution as defined by a cost function. In a bottom-up approach,
a given micro-architecture (instance of the architectural space)
is designed to support a set of different applications that are
often vaguely defined and is in general much based on designer
intuition and marketing inputs. In general, this is the approach
taken by IC companies that try to maximize the number of
applications (hence, the production volume) of their platforms.

B. Software Platform

The concept of HW platform by itself is not enough to achieve
the level of application SW re-use we are looking for. To be
useful, the HW platform has to be abstracted at a level where
the application SW “sees” a high-level interface to the HW that
we call API or Programmers Model. There is a SW layer that is
used to perform this abstraction (Fig. 3). This layer wraps the
essential parts of the HW platform.

• the programmable cores and the memory subsystem via a
real time operating system (RTOS);

• the I/O subsystem via the device drivers;

1530 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 12, DECEMBER 2000

Fig. 3. Layered SW structure.

• the network connection via the network communication
subsystem.3

This layer is called the SW platform.
In our conceptual framework, the programming language is

the abstraction of the Instruction Set Architecture (ISA), while
the API is the abstraction of a multiplicity of computational re-
sources (concurrency model provided by the RTOS) and avail-
able peripherals (device drivers).4 There are different efforts that
try to standardize the API or Programmers Model. In our frame-
work, the API or Programmers Model is a unique abstract rep-
resentation of the HW platform. With an API so defined, the
application SW can be re-used for every platform instance.

Of course, the higher the abstraction layer at which a plat-
form is defined, the more instances it contains. For example, to
share source code, we need to have the same operating system
(OS) but not necessarily the same instruction set, while to share
binary code, we need to add the architectural constraints that
force to use the same ISA, thus greatly restricting the range of
architectural choices.

In our framework, the RTOS is responsible for the scheduling
of the available computing resources and of the communication
between them and the memory subsystem. Note that in most of
the current embedded system applications, the available com-
puting resources consist of a single microprocessor. However,
in general, we need to consider a multiple core HW platform
where the RTOS schedules SW processes across different com-
puting engines.

3In some cases, the entire SW layer, including the Device Drivers and the
network communication subsystem is called RTOS.

4There are several languages that abstract or embed the concurrency model
directly, avoiding the RTOS abstraction.

There is a battle that is taking place in this domain to establish
a standard RTOS for embedded applications. For example, tra-
ditional embedded SW vendors such as ISI and WindRiver are
now competing with Microsoft that is trying to enter this domain
by offering Windows CE, a stripped down version of the API of
its Windows OS. In our opinion, if the conceptual framework we
offer here is accepted, the precise definition of the HW platform
and that of the API should allow us to synthesize automatically
and in an optimal way most of the SW layer. This is a radical de-
parture from the standard models borrowed from the PC world.
Software re-use, i.e.,platform re-targetability, can be extended
to these layers (middle-ware) hopefully providing higher levels
of compatibility than binary compatibility. This aspect is fur-
ther highlighted in the MESCAL approach described in Section
IV-D.

C. System Platforms

In summary, the development of programmable solution in-
volves understanding the application domain, developing an ar-
chitecture and micro-architecture that is specialized to that ap-
plication domain, as well as the development of SW develop-
ment tools to program the specialized architecture.

One of the major challenges in this regard is developing an
understanding of what it means to program a complex system
efficiently. The central question to be addressed here is: “What
is the programmers’ model?” Or “How should the programmer
view the underlying HW and input/output systems?” On the
one hand we want to hide as many of the details of the under-
lying implementation as possible, while on the other we want
to make visible a sufficient level of control that the application
programmer can develop an efficient solution—in terms of per-
formance, power, and reliable functionality.

The basic ideas of system platform and platform-based de-
sign are captured in Fig. 4. The vertex of the two cones repre-
sents the API or Programmers’ Model, i.e., the abstraction of the
HW platform. A system designer maps its application into the
abstract representation that “includes” a family of micro-archi-
tectures that can be chosen to optimize cost, efficiency, energy
consumption and flexibility. The mapping of the application into
the actual architecture in the family specified by the Program-
mers’ Model or API can be carried out, at least in part, auto-
matically if a set of appropriate SW tools (e.g., SW synthesis,
RTOS synthesis, device-driver synthesis) is available. It is clear
that the synthesis tools have to be aware of the architecture fea-
tures as well as of the API.

In the design space, there is an obvious tradeoff between the
level of abstraction of the Programmers’ Model and the number
and diversity of the platform instances covered. The more ab-
stract the Programmers’ Model the richer is the set of platform
instances but the more difficult it is to choose the “optimal” plat-
form instance and map automatically into it. Hence we envision
a number of system platforms that will be handled with some-
what different abstractions and tools. For example, more tradi-
tional platforms that include a small number of standard compo-
nents such as microprocessors and DSPs will have an API that is
simpler to handle than reconfigurable architectures. In the next
section, we will show examples of application of the concepts
exposed so far. One is related to the design of next generation

KEUTZER et al.: SYSTEM-LEVEL DESIGN: ORTHOGONALIZATION OF CONCERNS AND PLATFORM-BASED DESIGN 1531

Fig. 4. Platform abstraction and design flow.

wireless systems; the other to a class of reconfigurable architec-
tures, their Programmers’ Model and tools to map applications
onto an architecture.

IV. CASE STUDIES

The system-design concepts introduced in the previous sec-
tions—orthogonalization of concerns, communication/compo-
nent and platform-based design—are best illustrated with the
aid of real-life case studies. In this section, we describe applica-
tions from industrial domains and from the Berkeley Wireless
Research Center. Of the two industrial applications, one is re-
lated to consumer electronics and the other to automotive elec-
tronics. The BWRC case is related to the design ofad-hocwire-
less networks.

A. Industrial Applications

The methodology presented in this paper is not “empty
rhetoric”, as often is the case of methodologies tested only
on paper, but it has been already tested in advanced industrial
environments. In particular, complex system designs have
been cast in this framework and implemented in the field of
automotive electronic subsystems [16], [17] and consumer
electronics [18]. Its basic aspects have been incorporated in
POLIS [3], Ptolemy [19], and in at least one industrial product
[4], [5], [20], [21], Virtual Component Composer, and we know
of other tools that are being developed based on these concepts.

1) Philips VideoTop:COSY is a European Community
project on system design and verification involving industry
(Cadence, Philips, Siemens) and academia (University of Paris
Marie-Curie, Politecnico di Torino, University of Tubingen)
[18]. The main goal was to apply the methodology outlined
above (and modifying it whenever necessary) to industrial
system design. The main driver was VideoTop, a subsystem that
incorporates the main functionality of a digital video broadcast
system.

The system receives an MPEG2 transport stream, where the
user selects the channels to be decoded. The associated video
streams are then unscrambled, de-multiplexed, and decoded.

The user may also define post-processing operations on the de-
coded streams, such as zooming and composition (picture-in-
picture). The functional specifications required the following
components:

• an MPEG2 (ISO/IEC 13 818-2) de-multiplexer;
• an MPEG2 parser;
• an MPEG2 decoder (H.262 compliant up to main profile

and high level);
• a video re-sizer with a zoom factor from 0.16 to 10. (con-

trolled by the user);
• a video mixer for a number of arbitrary sized video images

(positions controlled by the user);
• a user interface;

The functional specifications were captured using a formal
model of computation (YAPI [22]) derived from Kahn process
networks. The model consisted of:

• 62 processes;
• 206 communication arcs;
• 25 000 C/C++ lines.5

According to our methodology, the functional specifications
were analyzed and simulated executing the YAPI program. The
simulation time on a Linux Pentium 450 Mhz was about 80
times slower than real-time behavior. The micro-architecture
selection started with the following basic blocks: a MIPS
PR39K with one SRAM block and PSOS as RTOS. We tried a
full SW implementation and one with a number of functions
mapped in HW resulting in a system with four busses, 14
application-specific co-processors and 17 SW tasks running
on the microprocessor [23]. The all-SW solution had an
estimated running time, using the methods described above,
that was 160 times slower than the mixed HW-SW solution.
The most relevant HW blocks were identified by performance
analysis. Top of the list was the Frame-Buffer Memory-Man-
ager (T-memory). Some additional mappings are under study
now to see whether a different micro-architecture with fewer
co-processors could be safely used. Rather surprisingly, given
the complexity of the system, the estimation results obtained
with Virtual Component Composer of Cadence were within 5%
of the performance measurement obtained with a cycle accurate
simulator developed at Philips, TSS, thus demonstrating that
estimation is feasible and a real help in quick architectural
evaluations. The modeling of the micro-architecture and of the
functional part of the design kept the communication part of the
design separate from the computation part [24]. This resulted
in an accurate analysis of the communication performance of
the system. A major design effort at Philips is to apply the
principles of Platform-based design and rapid prototyping to
their most important new generation products.

2) Magneti–Marelli Automotive Engine Control:This de-
sign [16], [25], [26] had many different features than the pre-
vious one: it has a strong control component and tight safety
constraints. In addition, the application had a large part of legacy
design. The functionality of the engine-control automotive elec-
tronic subsystem consists of the following components:

5The number of lines of code in a functional specification corresponds in
general to MANY more lines of actual implementation code. This is a sizable
example!

1532 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 12, DECEMBER 2000

Fig. 5. The Dual Processor Architecture for Power Train Control.

• failure detection and recovery of input sensors;
• computation of engine phase, status and angle, crankshaft

revolution speed and acceleration;
• injection and ignition control law;
• injection and ignition actuation drivers;

The existing implementation had135 000 line of source C
code without comments. The first task was to extract the pre-
cise functionality from the implementation. This was done by
using a co-design FSM (CFSM)-based representation [3], [25]
resulting in 89 CFSMs and 56 timers. The behavior of the actu-
ators and of part of the sensors was completely re-written in the
formal model. For the ignition and injection control law, we en-
capsulated the legacy C code into 18 CFSMs representing con-
current processes.

The SW was re-designed using the architecture of Fig. 3 so
that the mapping into different micro-architecture could be done
with relative ease. In particular, we were able to test three dif-
ferent CPUs and, for each, two different SW partitions to verify
functionality and real-time behavior. In addition, we explored
three different architectures for the I/O subsystem: one with a
full SW implementation, one with the use of a particular pe-
ripheral for timing functions (provided by the CPU vendor) and
one with a highly optimized full HW peripheral of new design.

The performance estimation was carried out with VCC and
resulted in an error with respect to a prototype board with real
HW of only 11%. The implementation of the functionality on
the three platforms is under way. For two of them it is almost
completed resulting in SW re-usability of more than 86%.

We also used the functionality captured in semi-formal terms
to design a new dual processor architecture that is under de-
sign at ST Microelectronics [26]. This micro-architecture is pre-
sented in Fig. 5. We estimated with VCC that about 40% of
the compute power was still available after present direct in-
jection control algorithms and semi-automatic gearbox control
derived from the one available for Formula 1 racing car, were
included. Note that it was not clear that a single processor so-
lution would have been capable of supporting even this appli-

cation. One could argue the cost of the dual processor architec-
ture could be much higher than its single processor counter-part.
Not so! We were able to fit the additional processor and the cor-
responding communication HW utilizing only 4%–6% of the
total area of the chip that is dominated by the embedded flash
memory.

This project (still underway) was the result of a strong collab-
orative effort among companies and researchers of PARADES
(a European Group of Economic Interest funded by Cadence,
Magneti–Marelli, and ST Microelectronics, and partially sup-
ported by the Italian National Research Council). We expect the
prototype board to be ready by October 2000, first silicon by
first quarter 2001 and final system-product introduced by first
quarter 2003.

B. The Design of Wireless Systems at the Berkeley Wireless
Research Center

In-buildingwirelessnetworks that supportmedia communica-
tion as well as data messaging (for instance, for the distribution
of sensor, monitor, and control information) are rapidly making
inroads, and are predicted to become one of the largest growth
areas in the wireless field. Due to the distributed nature of these
networks and the multiplicity of the participating nodes, the en-
ergy efficiency of the wireless transceiver implementation is pre-
sumably the most important design metric,au parwith cost and
size. Performanceper seis not the real issue, as long as the real
time constraints are met. At the same time, the implementation
should support sufficientflexibility that the network node can
support various system configurations, communication require-
ments, and radio front ends. In this case study, we are exploring
the possible compositions of a platform that addresses these re-
quirements, as well as the design methodology that helps us to ef-
fectively select the most applicable platform. It, hence, serves as
anexample ofboth the system-designmethodology (presented in
Section II) and the platform-based design approach (presented in
Section III). The design was performed using both the method-

KEUTZER et al.: SYSTEM-LEVEL DESIGN: ORTHOGONALIZATION OF CONCERNS AND PLATFORM-BASED DESIGN 1533

ology described in this paper, and a traditional SW-inspired ap-
proach, revealing a remarkable difference in code density and ef-
ficiency (a factor of more than 20!) and performance in favor of
the paradigms exposed in this paper [10].

1) Ad-Hoc Wireless Networks:The main property of an
ad-hoc network is that its topology may vary rapidly and
unpredictably. This is in contrast with, for instance, cellular
wireless networks, where the topology is fixed and is the result
of careful mapping and optimization. The advantage of the
ad-hocapproach is that expensive and rigid infrastructure is
largely avoided. On the other hand, the network nodes have to
contain a sizable dynamic component, deciding how to route
and forward data grams, what physical channels to use, and
how to distribute communicate in time so that interference is
minimized. Optimizing all these issues such that the overall
system power consumption as well as the power consumption
of an individual network node is minimized (100 W) is the
focus of the PicoRadio project at UC Berkeley, which addresses
ubiquitous wireless sensor and monitor networks.

To study the desirable composition of an implementation plat-
form for PicoRadio and to understand the impact of the archi-
tectural tradeoffs, we have selected a somewhat simplified appli-
cation, the Intercom, for an initial case study. The Intercom is a
single-cell wireless network supporting full-duplex voice com-
munication among up to twenty mobile users located in a small
geographical area (100 m). The network includes a number
of units, calledremote terminalsthat operate in one of the fol-
lowing three modes:idle (the remote is switched on but has not
subscribed to the network and cannot participate to a conference
with other remotes),active(the remote has subscribed to the net-
work and is enabled to participate in a conference),communi-
cating(the remote is participating in a conference). Each remote
can request one of the following services: subscription to enter
active mode, un-subscription to return to idle mode, query of ac-
tive users, conference with one or multiple remotes, or broadcast
communication. The system specification includes also require-
ments on the performance of the transmission of voice sam-
ples, like max latency (below 100 ms) and min throughput (64
kb/s). Minimizing power consumption is a key requirement of
the system. At the same time, the design has to be such that
the HW should support different versions of the protocol stack
(physical, link, media-access, and transport), as well as the ap-
plication. For instance, the same node should be able to support
data communications instead of voice (application layer), or to
use collision-sense multiple access (CSMA) instead of time-di-
vision multiple access (TDMA) for the media-access scheme.

In the following sections, we will briefly describe the function
and micro-architecture description, the platform exploration,
and some results.

2) Protocol Design: When attempting to explore different
implementation platforms for a given set of applications, it is
instrumental that the functions are expressed using a clearly de-
fined model-of-computation. This not only enables the function-
micro-architecture mapping approach described in this paper,
but also opens the door for formal verification of the correct-
ness of the described protocol, which is a major challenge in
this world of concurrent, distributed and real-time fine state ma-
chines. Hence, rather than following the traditional approach of

describing the protocol in C, the function of the system was de-
scribed using CFSMs) [3], amended with a set of performance
constraints.

The protocol stack was designed by applying communication
refinement to the initial specifications, and involved four de-
signers, each of which focused on particular aspect of the stack.
Using this strategy, we identified the functionality of the layers,
defined the interfaces between layers, and derived constraints
for each layer in a top-down fashion from the system require-
ments. Due to the novelty of the CFSM model and the speci-
fication/analysis environment, it took these designers approxi-
mately 1 mo to derive a fully functional description with crisp
and well-defined interfaces between layers (Fig. 4).

The network topology includes a unit, calledbase-stationthat
coordinates the network operation. The base-station provides
control functionality only, while communication channels are
set up as peer-to-peer connections between remotes. This con-
figuration helps to reduce the overall bandwidth requirements,
compared to the star-connected network configuration typical in
cellular environments. The base-station keeps track of the evo-
lution of the network configuration using an internal database
that stores information about the active users and the IDs of the
physical channels. In general, all Intercom units have identical
capabilities, i.e., each unit can take on the function of base-sta-
tion (on top of being a remote) (the mode of a unit is set on
power-on). This design choice makes the protocol more robust
in case of failures, as it enables active reconfiguration should
the base-station fail.

The protocol stack has two interfaces with the external
world: one with the user, providing a voice channel and service
requests (e.g.,Subscribe, StartConference, EndConference),
and one with the radio that forms the RF link. Fig. 6 shows
the structure of the protocol stack, which is composed of the
following layers: the User-Interface Layer, Transport Layer,
Mac Layer, Data Link Layer (supporting Error Control and
Synchronization) and the Physical Layer. While a crisp defini-
tion of these layers is advantageous from a design verification
process, and enables a clear decomposition of design con-
straints, it also forms a logical basis for the design partitioning
process that will take place during the architecture mapping
process. It furthermore enables the adaptation of the protocol to
different radio-front ends (by just replacing the physical layer),
different media access approaches (CSMA versus TDMA), and
applications (data versus voice).

An idea of the complexity of each of the layers can be ob-
tained from Table I. The leaf nodes of the CFSM description of
the algorithm (consisting of 46 modules) are either state-tran-
sition diagrams, or analyzable C-code modules (coded in FSM
style). Observe that the execution rates of the different layers
differ dramatically: from below 1 Hz for the User Interface, 8
kHZ for the law coder, up to 1.2 MHz for the physical layer. An
application-specific “small-footprint” RTOS of approximately
200 lines of C-code has to be added to the total code tally.

It is interesting to observe that the implementation of the same
protocol on a traditional commercial of-the-shelf Strong-Arm
microprocessor, combined with a Xilinx 4013 FPGA (for proto-
typing purposes) required about 15 000 lines of C-code (for the
Strong-Arm), not including the code for the Angel RTOS run-

1534 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 12, DECEMBER 2000

Fig. 6. The intercom protocol stack.

TABLE I
COMPLEXITY OF THE INTERCOM

SPECIFICATIONS(USING CFSMS)

ning on the Strong-Arm (which is about 13 000 lines of code),
nor the VHDL code for the Xilinx part (which was fully uti-
lized). The dramatic difference in code size of almost a factor
25 is mainly due to two reasons. First of all, the traditional SW
layering and generic library-based approach, applied in gen-
eral-purpose processor programming and advocated in SW en-
gineering, tend to result in huge description overheads. More
importantly however, the well-defined model of computation of
the CFSM description with its clear semantics eliminates most
of the communication and synchronization code, which has to
be explicitly provided in the C-VHDL code, leading to far more
efficient implementation.

C. Platform Definition and Modeling

To enable the platform mapping and exploration strategy de-
tailed in Fig. 1, a description of the micro-architecture of the

candidate platforms is constructed. The micro-architecture de-
fines the platform as a composition of modules and compo-
nents, along with their associated SW, and the inter-module
communication protocols. Furthermore, performance models of
both the computation and communication modules have to be
available (in terms of throughput, latency, and energy consump-
tion). To ensure that the implementation meets the necessary
performance and energy constraints, while at the same time pro-
viding sufficient flexibility to support not only the mentioned
protocol but related applications as well, we choose implemen-
tation platforms that combine different levels of data granularity
(word-versus bit-oriented), computation rates (in terms of clock
frequencies), and flexibility (programmable processor, config-
urable logic, and hardwired). As we found out later, such a com-
bination is a necessity to address the variation in data rates (from

Hz to MHz) and granularities (from bit to data stream
and data-gram) that is typical in (wireless) communication pro-
tocols. The modules are connected by a versatile, parameteri-
zable communication backplane that supports a variety of re-
source arbitration and reservation schemes.

An overview of the overall micro-architecture of the plat-
forms is given in Fig. 7. The platforms differ from each other
in terms of processor choice, clock speeds, and the amounts of
FPGA, fixed logic, and memory. Each architectural module is
represented by a functional model, as well as by first-order per-
formance, energy, and area estimation models. This architecture
consists of the following blocks (for the sake of simplicity, we
have ignored the configurable base-band processor, which per-
forms signal processing functions such as (de) correlation and
timing recovery, in this analysis).

KEUTZER et al.: SYSTEM-LEVEL DESIGN: ORTHOGONALIZATION OF CONCERNS AND PLATFORM-BASED DESIGN 1535

Fig. 7. Generic intercom platform.

• An embedded SW processor (in this particular case, an
ARM or Tensilica Xtensa [27] processor), which is pa-
rameterized by the clock speed.

• An RTOS scheduler (Cyclo Static, Static Priority, Round
Robin, and some more), which is parameterized with con-
text switch overheads.

• An ASIC module with associated delay model (ns).
• An FPGA module with associated delay model (ns). The

FPGA estimator is based on a modular low-energy FPGA
developed in Berkeley.

• A communication backplane, with the network bandwidth
(operating frequency and word length) and operating
policy [first-in–first-out, Time Sliced, etc.) as parameters.
For this study, we have selected the “Silicon Backplane”
from Sonics, Inc [28] as the interconnect medium of
choice, as it supports closely the communication-based
design paradigm advocated in this paper. The commu-
nication backplane model dynamically estimates the
number of clock cycles/communication, given the amount
of pipelining and the arbitration mechanism chosen.

Fig. 8 shows an example of the model used to estimate the
performance of the embedded processors. The processor is mod-
eled by a “fuzzy” instruction set with a statistical estimate of the
cycles/instruction for each instruction. Combining this informa-
tion with analysis of the CFSM-specification, and the profiling
data leads to estimations that are within 15% accuracy.

D. Design Exploration and Architecture Mapping

The design exploration and platform selection process com-
bines the function of the application and its variants with the
platform definitions, and defines the mapping between the two
such that the performance and/or energy requirements are met.
The crisp layering of the protocol specification simplifies the
exploration process, as it exposes the rate differences between
the different elements and provides well-defined interfaces. This
case study employs a combination of the Cadence VCC [4], [20]
and the UC Berkeley Polis [3] tools to perform the design ex-
ploration.

A number of mappings of the functionality onto the param-
eterized architecture platform have been made. Fig. 9 presents
six possible mappings using either an ARM or Xtensa processor
running at different clock speeds, a preemptive RTOS (tasks at
higher levels of the protocol were assigned lower priorities), an
RTOS overhead of 200 cycles, and an ASIC/FPGA delay of 10
ns for each HW module. For each mapping, the processor uti-

lization and the RTOS overhead are shown. Note, that for slower
clock speed, fewer modules have been mapped into the SW pro-
cessor (based on the required peak performance). The design
methodology adopted allowed us to perform dozens of different
performance simulations in a few weeks, mapping each of the
46 functional blocks either into HW, configurable, or SW and
also by changing a wide range of parameters in the platform
model.

The process led to some nonintuitive and surprising results.
For instance, merging the Mulaw computation with the trans-
port and user interface functions on the SW processor leads to a
dramatic RTOS overhead due to the excessive context switches
triggered by the rate mismatch between the functions (processor
running at 11 MHz). Also observe that even when running the
processor at 200 MHz (and expending dramatic levels of power
dissipation), a pure SW solution is not feasible, as the physical
layers of the protocol cannot be accommodated. This clearly
demonstrates the large disparity in timing granularity between
the different layers of the protocol stack. Also, observe the low
processor utilization for each of the mappings (the clock speed is
determined by the peak computational requirements), caused by
the bursty nature of the protocol processor. This clearly opens
the door for dramatic energy reductions through power-down
and dynamic voltage scaling.

Based on this exploration process, we have finally selected
the following platform for the first-generation PicoRadios: an
Xtensa processor running at 11 MHz (30 000 gates), 50 kByte of
SRAM, 10 000 equivalent FPGA gates, and an ASIC block of at
most 10 000 gates, which represents the invariant function of the
physical layer. The estimated power dissipation is around 5 mW.
The chip is currently under design and expected to go in fabrica-
tion by fall 2000. Observe that due to the built-in flexibility, this
platform can support a wide range of functional options with re-
gards to physical layer, media access, transport, and applications
and, hence, can be dubbed a true platform. The development and
parameterization of this platform using traditional means would
have required multiple rewrites and multiple runs through the
complete physical design process, making it impossible to ac-
complish this task in the few months it took us, and potentially
with far less efficiency. As a point of reference, the off-the shelf
StrongArm/Xilinx solution consumes approximately 720 mW
with the Strong-Arm running at 200 MHz under a 2% utiliza-
tion.

1) Case Study Summary:This case study clearly demon-
strated how the orthogonalization of concerns (communication
versus computation, function versus architecture) enables effec-
tive design exploration, results in solutions that are dramatically
more efficient in terms of energy dissipation and design com-
plexity than those obtained with traditional SW-engineering in-
spired techniques, and can lead to the development of design
platforms, that are ideally suited for a given application range.

V. THE MESCAL APPROACH TODOMAIN SPECIFIC

PLATFORM-BASED DESIGN

A. Introduction

Another initiative within the GSRC that is tackling the plat-
form-based design problem is the MESCAL project. The goal of

1536 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 12, DECEMBER 2000

Fig. 8. Performance modeling of the Xtensa processor.

Fig. 9. Platform exploration and partitioning results.

this project is to develop the methodologies, tools, and appro-
priate algorithms to support the efficient development of fully
programmable, platform-based designs forspecific application
domains. The emphasis here is on efficient implementations,
with initial emphasis on performance, for complex, data-cen-
tric applications that present significant opportunities and chal-
lenges in the areas of programmability and concurrency.

The angle taken in the MESCAL project is that general-pur-
pose programmable solutions are not likely to be able to meet
aggressive performance and power constraints. MESCAL is
based on the assumption that domain-specific programmable
solutions are required to deliver the benefits of programma-
bility while still delivering acceptable performance. We are
already seeing examples of this in the form of specialized
video processors [29] as well as network processors [30].
Thus, MESCAL seeks to develop platform-based solutions
for specific high volume application domains by providing
programmable solutions that can be used across multiple appli-
cations in that domain. As is clear from the previous sections
any successful solution to this problem must comprehend the
issue of concurrency at all levels. This includes fine grained
operation concurrency displayed in the form of instruction-level
parallelism (ILP) in programmable systems, as well as coarser
levels of concurrency at the thread/process level.

The major aspects of this problem are illustrated in Fig. 10.
To gain the maximum benefit from the final silicon, we be-
lieve our research agenda must break down the conventional
HW/SW boundary and explore more thoroughly the possible
advantages available by exploring architecture and micro-ar-
chitectural tradeoffs in conjunction with programming models,
SW, and compilation. As articulated in the previous sections,
due to our need to deal with concurrency explicitly and effi-
ciently, this work must also transcend aspects of the conven-
tional OS boundary as well, to include the automatic generation
of efficient run-time systems as part of the SW development
tools. The following sections deal with the individual aspects

Fig. 10. Major aspects of a platform-based programmable solution.

of the proposed approach. Since this project is relatively new,
many aspects of the research are fairly open. Thus a large part
of the exposition in the following sections will point to tasks that
still need to be done in the future.

B. Architecture

The design of the application domain specific architectures
and micro-architectures reduces to answering the question:
What is the best use of transistors for this particular application
domain? Since our goal is to develop a methodology that is
capable of efficiently exploiting silicon resources across mul-
tiple domains, we need to develop support for the fundamental
elements of these specialized architectures. These can then
be used in different ways for different domains. Support for
specialized functional units and specialized concurrent archi-
tectures forms the core of our reusable architectural family. We
now examine each of these issues individually.

1) Specialized Functional Units:Designs using config-
urable processors with specialized functional units have shown
orders of magnitude performance improvements over com-
modity processors. A commercial vendor [31], for example,
has shown that they can achieve up to 74performance im-
provements over their base configuration when they allow the
designer to create specialized functional units and to configure
memory parameters. For example, a JPEG processor, as shown
in Fig. 11, might add multiple functional units including a dis-
crete cosine transform and Huffman block in order to accelerate
JPEG. Software development tools, including an instruction
set simulator, a compiler, and a debugger, are customized for
a specific configuration.

An individual processing element in MESCAL belongs to the
IMPACT [32] EPIC architecture class. Unlike Tensilica [31] and
Raw [33], MESCAL chose an architecture that can better ex-
ploit ILP. We believe that this is a powerful mechanism to ex-

KEUTZER et al.: SYSTEM-LEVEL DESIGN: ORTHOGONALIZATION OF CONCERNS AND PLATFORM-BASED DESIGN 1537

Fig. 11. JPEG processor with specialized functional units.

ploit fine-grained concurrency in a retargetable manner. This
is crucial for us to enable the use of the same template across
multiple application domains. One of the factors in selecting
EPIC architectures is the availability of SW tools for this class
of processors and the ability to tailor these tools for specific con-
figurations of memories and functional units. Within IMPACT,
an EPIC compiler and simulator can be retargeted for certain
configurable aspects of the architecture including memory char-
acteristics, register file sizes, number of functional units, ma-
chine latencies, and specialized functional units. The special-
ized functional units allow the user to configure functional units,
including possibly at the bit level.

2) Multiple Levels of Concurrency:Traditional unipro-
cessor Von Neumann architectures are limited in their use of the
concurrency available in the underlying silicon fabric. Tradi-
tional multiprocessors do offer concurrency, but their general-
purpose focus forces this to be homogeneous. Heterogeneous
configurations need to be made possible to efficiently support
the heterogeneous components of an application. The MESCAL
architecture supports concurrency at multiple levels as shown in
Fig. 12. ILP is exploited through an explicitly parallel (EPIC)
architecture. However, ILP is limited in terms of the performance
speedups made available by it. Thread/process-level parallelism
through heterogeneous processing and networking is the next
step in exploiting concurrency. The creation of SW development
tools which support each of these new configuration options are
required in order to enable design productivity in developing
applications on these configurable architectures.

3) Architecture Template and Design Method-
ology: MESCAL provides for a prototyping template that
allows for the development of networks of processing elements.
Both the network and the processing elements are configured
for efficient computation and communication for a given
application domain. A possible configuration scenario is shown
in Fig. 13. Fig. 14 demonstrates the methodological flow of
the prototyping template. This is a classic measurement-based
feedback design loop. The designer describes an initial
micro-architecture. A compiler and simulator are then
retargeted to this architecture. This permits implementation
of the applications representative of the domain, which are
specified in the programmer’s model. After compilation and
simulation, estimations of performance are reported to the
designer. The designer can then refine the architecture based on
the feedback from the estimators. The process is iterated until
the designer is satisfied with the system performance reported
by the estimators. A wide range of possible architectures can
be realized within the template given; each coupled with the
mostly-automatic development of SW development tools.

C. Programmer’s Model

The programmer’s model affects most of the major research
areas of the MESCAL project. As presented in Section III-C,
this model defines an abstraction of the architecture that the
programmer uses to describe applications to the compiler.
Silicon integration is allowing for high micro-architectural
complexity on a die and as evidenced by some recent ap-
plication-specific instruction processors (ASIPs) (e.g., Intel
IXP1200, TI TMS320C6X), and circuit architects are taking
advantage of this in creative ways. It is not uncommon for new
ASIPs to have multiple processors and specialized execution
units, among other features. For example, the Intel IXP1200
network processor has seven processors—six micro-engines a
controlled by an ARM. Each micro-engine supports up to four
threads. In addition, it has support for zero-overhead context
swapping and specialized execution units for hashing and other
common network processing functions [30]. At the same time,
applications for ASIPs have become more complex, and the
current practice of assembly coding them for nonconventional
architectures, does not scale. Therefore, it is necessary to raise
the programmer’s level of abstraction in dealing with archi-
tectures and micro-architectures, without sacrificing design
efficiency. The goal of the MESCAL programmer’s model is to
present the programmer with an abstraction of the architecture
while helping the compiler generate efficient code for new
architectural platforms.

Our approach to the programmer’s model is to combine the
bottom-up and top-down views. The bottom-up view exposes
only the relevant features of the architecture and hides the
details. From the top-down, our model should be expressive
enough for the programmer to relay all the information he/she
knows about the program to the compiler. This combination
of views is in sharp contrast to existing parallel programming
models. Most parallel languages only embody the top down
view. Often, the target architecture for these languages is a
network of general-purpose processors. As a result, they are
often concerned with general-purpose usage and portability.
Thus, the compiler and OS perform a majority of the work.
In addition, high inter-process communication cost often
forces the application to be programmed in a very decoupled
fashion. Until recently, a majority of the applications that run
on multiprocessor frameworks have relatively similar types
of computation on large input data sets, e.g., adaptive mesh
refinement, matrix multiply, analysis of large graphs, fast
Fourier transform. Like compilation for general-purpose single
processors, the goal of general-purpose multiprocessor systems
is only performance averaged over a set of benchmarks. In
contrast, our target applications have heterogeneous, often
complex computation, on a streaming data set. The only
performance that matters, is the performance of the specific
applications in the application domain that is was designed for.

1) Bottom Up View:The goal of the bottom up view is to
provide the programmer with a powerful abstraction of the ar-
chitecture. Our target programmers will be aware of the under-
lying architecture while coding the application. It will be diffi-
cult for a compiler to automatically make use of user designed
architectural features without help from the programmer. The

1538 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 12, DECEMBER 2000

Fig. 12. Levels of concurrency in specialized architectures.

Fig. 13. Configuration of a specific architecture/micro-architecture from the template.

Fig. 14. MESCAL design methodology.

bottom up view of the programming model provides this assis-
tance by presenting an abstraction of the architecture that ex-
poses only the relevant features, while hiding the details.

Clearly, there is a spectrum of how much of the architecture
to expose to the programmer. Assembly language is the least ab-
stract view of a processor since it exposes every way the SW in-
teracts with the physical resources of the architecture. The C lan-
guage, for example, provides a little higher abstraction of a pro-
cessor. While registers and memory locations are merged into
the concept of a variable for ease of programming, the concept
of a pointer and the register keyword provide the programmer
with facilities to break this abstraction. This allows program-
mers to describe their application at a higher level, yet retain
their ability to “tweak” their code for higher performance. Java
can be viewed as an even higher abstraction of the underlying
machine. In fact, this abstraction is specified in great detail via
the Java Virtual Machine.

Since the MESCAL target architecture has not yet been com-
pletely defined, the first step in specifying the bottom up view is
to define the HW/SW interface of elements of MESCAL’s archi-
tectural platforms. This will define the entire set of architecture
features thatcanbe accessed in the programmer’s model. The
next step will be to choose a subset of these features that pro-
vide the programmer with a powerful abstraction of the archi-
tecture. The three main elements of the architecture we will ab-
stract are the communication architecture, computing resources,
and memory.

2) Top-Down View:From the top-down, the model should
be expressive enough for the programmer to relay all the infor-
mation he/she knows about the program to the compiler. In ad-
dition, the model should not require the programmer to specify
what the compiler can already effectively compute. One key to
generating efficient code is exploiting concurrency at multiple
levels. Since VLIW compilers tackle the problem of ILP, our
model requires the programmer to specify concurrency at the
task and bit level. To define tasks, we use a single program mul-
tiple data specification, as is commonly used in message passing
systems. We are currently in the process of determining how to
specify bit-level parallelism within our existing model.

In multiprocessor systems, the OS often plays a crucial role in
overall system performance. While the compiler largely affects
performance, all of its analyses are static. The dynamic behavior
of the OS allows it to perform task level scheduling, binding,
and synchronization. Often, the programmer knows how to best

KEUTZER et al.: SYSTEM-LEVEL DESIGN: ORTHOGONALIZATION OF CONCERNS AND PLATFORM-BASED DESIGN 1539

implement these features. We need to provide language features
for the programmer to specify how to carry out these capabil-
ities. This will require compiling part of the OS based on the
programmer’s hints. For example, the Intel IXP1200 provides
an instruction to perform a zero-overhead context swap [30].
Examining the real time behavior of our target programs on our
architectural platforms will expose those OS functions that will
benefit from programmer guidance.

D. MESCAL Compiler

Given the tremendous amount of available concurrency
afforded by the multiple PEs and FUs in the target micro-ar-
chitecture, it is unreasonable to expect that such a machine
can be optimally hand-programmed in assembly language by
a group of programmers. Such a process will surely be very
time-consuming and highly error-prone. In order to increase
productivity and satisfy time-to-market pressures, a compila-
tion process must be utilized in order to automate the mapping
of applications to such a complex machine.

The goal of the MESCAL compiler project is to perform this
automation. Specifically, the objective is to develop a highly
optimizing, retargetable compiler infrastructure that enables a
set of interesting source applications to be efficiently mapped
onto a family of fully programmable architectures and micro-
architectures, in particular the one that we have described in this
document. Before delving into the details of what we need to do
to compile for MESCAL architectures, it is useful to compare
what we want in a compiler for our embedded applications and
architecture versus what is traditionally done in general-purpose
compilation and SW development.

Since computer performance is difficult to gauge in the ab-
sence of the particular program of interest, benchmarks are usu-
ally used to give users an idea of how fast a processor runs. As a
result, optimizing compiler developers aim to improve the per-
formance of a suite of benchmarks, with the idea that improved
performance for these benchmarks will yield improved perfor-
mance for most applications. While this notion usually holds
true, the final performance numbers are usually some type of av-
erage across the set of programs in the benchmark. This means
that compiler writers will sacrifice performance of one bench-
mark application if it yields significant speedups for others, such
that the overall performance number increases. When devel-
oping embedded systems, cost and performance constraints are
often so tight that such a compromise is undesirable. If the com-
piler isn’t aggressive enough, a more expensive processor may
be required, and in some cases, code may have to be written by
hand. It would be truly unfortunate to suffer increased system or
design costs simply because the compiler sacrificed our applica-
tions’ performance for the sake of some unrelated benchmark.
The MESCAL compiler should be able to adapt the optimiza-
tion parameters and be tuned to the application at hand. This
allows designers to take the best advantage of the HW without
resorting to tedious and error-prone design techniques such as
assembly language programming.

The MESCAL compiler needs to be easily retargetable to a
variety of PEs and yet preserve aggressive optimization. Gen-
eral-purpose compilers are tuned for a specificgeneral-purpose
microprocessor. This allows designers to aggressively optimize

optimization algorithms for the target micro-architecture. On
the other hand, the MESCAL compiler needs to be able to target
a family of architectures, in which each PE may be adifferent
application-specificprocessor and the network may be tuned to
the application domain as well. Of course, due to the cost and
performance constraints we still need to preserve aggressive op-
timization.In addition, the MESCAL compiler faces constraints
that are typically associated with embedded compilation, but not
general-purpose compilation. These include code density con-
straints, hard real-time constraints, and power dissipation con-
straints.

The traditional SW design methodology assumes a given set
of services offered by libraries and an OS. When designing em-
bedded systems, the designer often hand-selects general-pur-
pose OS components that are needed by the application. If a
new target architecture is used, the designer also hand-writes de-
vice driver and memory management routines, as well as other
code that is necessary to port the OS to the new architecture.
When compiling SW for an embedded system, the designer is
often aware of the entire set of code that needs to be executed. A
compiler armed with this knowledge and sophisticated analysis
capability can automatically select real-time OS (RTOS) com-
ponents as well as synthesize custom components to improve
application performance and resource utilization as discussed in
Section III-B. These custom components can include a sched-
uler, as well as custom synchronization primitives. Finally, to
allow fully retargetable compilation for the family of MESCAL
architectures, we need to adapt the RTOS for the architecture
at hand. Thus, we would like the MESCAL compiler to synthe-
size the device drivers, memory management routines, and other
HW-specific code from a machine description.

The MESCAL compiler project presents many interesting
and challenging research issues. These research issues include:
the automatic synthesis of RTOS components within the com-
pilation framework, the ability to achieve automatically retar-
getable compilation while preserving optimization, the effective
partitioning of an application onto the multiple PEs and FUs of
the target architecture, and the development of effective visual-
ization tools for the family of MESCAL architectures.

Since the MESCAL compiler is focused on compiling em-
bedded applications for the target architecture, there are many
opportunities to optimize RTOS functionality based on the char-
acteristics of the application itself. Additionally, the tight in-
tegration of the RTOS with the application, together with an
on-chip low-latency network, will allow the MESCAL compiler
to exploit parallelism unavailable in the traditional parallel com-
puting community.

The compiler has much information about the communica-
tion that must occur between various threads of a process. The
compiler may also analyze multiple processes and extract inter-
process dependencies. Since the compiler is also responsible for
scheduling on a VLIW machine, the compiler also has knowl-
edge of the relative latencies between varioussendandreceive
operations. This information places the compiler in a nearly
ideal position to synthesize a schedule or scheduling hints for
the application being compiled.

Of course, in order to produce good schedules for the concur-
rent code in the application, the compiler needs to have a good

1540 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 12, DECEMBER 2000

model of the underlying communication network so it can gen-
erateschedules thatavoid networkcongestionandavoid resource
under-utilization due to network delay. Furthermore, very low-
latency networks may require static switch schedules, which the
compiler will need to generate. Efficient utilization of this type of
network will require additional compiler sophistication.

Unfortunately, a compiler cannot know all the dynamic char-
acteristics of an application, and the RTOS may still need to
manage portions of the application. On the other hand, the com-
piler does have enough information to guide the dynamic deci-
sions an RTOS makes. As a result, we need to develop an RTOS
that can be guided at run-time by code inserted into the applica-
tion by the compiler.

The compiler attributes of retargetability and optimization
generally do not go hand-in-hand. In particular, the enabling
of retargetability in a compiler usually involves a compromise
in the quality of generated code. Many research efforts have
been devoted to the development of a retargetable compiler
infrastructure that is still capable of aggressive optimization
[34]. Although several research efforts have resulted in com-
pilation infrastructures that are both retargetable and highly
optimizing, these infrastructures have not exhibitedautomatic
retargetability—an optimizing compiler is automatically re-
targetable if it has the ability to generate high-quality code
for a new architecture from a unified description of the target
machine. In particular, existing automatically retargetable
compilers lack the sophisticated machine-dependent code opti-
mization algorithms that are necessary to generate high-quality
code. Furthermore, existing highly optimizing retargetable
compilers possibly require the compiler developer to write a
significant amount of new source code; thus increasing the time
required generating a new compiler. Using the lessons learned
from previous research efforts in embedded compilation, the
MESCAL compiler project aims to fully understand what is
involved in developing an automatically retargetable compiler
that still preserves optimization.

In order to exploit the huge amounts of coarse-grained and
fine-grained parallelism offered by our family of architectures,
we will need to develop advanced visualization tools that en-
able us to determine how effectively the architectural resources
are utilized. These tools must be able to dynamically visualize
the current state of each PE, i.e., the status of each process/task
that has been bound to each PE, and the various inter-PE com-
munications that have completed or are in the process of being
performed.

E. Evaluation Strategy

Design-drivers serve both to focus our research efforts and
as a tool to quantitatively measure the effectiveness of our pro-
posed methodology. Given the importance of the driver to our
research goals, we have given substantial effort to choosing an
appropriate real-world application for MESCAL: the Virtual
Private Network. In this evaluation, we are quantifying where
the performance is coming from, either from micro-architectural
improvements or from SW technology. We also aim to precisely
measure aspects of the concurrency achieved via a variety of ap-
proaches so that we can answer the following basic questions
about concurrency across a system.

• Where is the concurrency available?
• How much can be achieved by exploiting ILP versus more

general concurrency?
• How much “rewriting” of the application is needed to ex-

tract it?
• How well were we able to predict the performance

achieveda priori?

F. Summary of the MESCAL Approach

Domain specific platforms are becoming an increasingly
important, and in many cases, the only practical way to meet the
performance requirements of compute intensive applications
with the flexibility of SW programmability. Currently the
design of such platforms requires significant engineering effort,
and even then the SW development tools for such platforms are
typically found lacking. The MESCAL project focuses on all
aspects of the design of these platforms and the associated SW
development tools. Concurrency at both the application and the
implementation level is the key focus of this approach—the
goal is to develop suitable platforms with concurrent com-
putation, and map concurrency in the computation to these
platforms.

The architecture exploits concurrency at all levels—bit
level concurrency implemented in specialized functional
units, ILP implemented through concurrent functional units
and thread/process level concurrency implemented through
multiple PEs. An important part of the architecture is the
development of the communication network tailored to the
application domain. As highlighted in Section III-A, there is a
clear distinction between the architecture and the micro-archi-
tecture, as well as a clear separation between the computation
and the communication aspects of the platform development.

Software development tools involve the compiler, simulator,
debugger and visualization aids. The compiler is the most
sophisticated of these—requiring retargetable capabilities for
compiling down to different PEs within the family, as well as
synthesizing the communication and synchronization code for
thread/process level concurrency. This aspect of the MESCAL
compiler blurs the boundary between traditional compilers and
RTOS. Again, the clean separation between computation and
communication is crucial in developing easy to manage code.

The programmer’s model exports the platform to the pro-
grammer. It serves the dual function of capturing enough of the
application domain to pass down to the compiler, as well as ex-
porting just enough of the architecture to enable the programmer
to efficiently program the HW platform.

VI. CONCLUSION

We have presented the basic tenets of a comprehensive de-
sign methodology for system design centered on the concepts
of orthogonalization of concerns, such as function and archi-
tecture, computation and communication, and platform-based
design. The methodology has been successfully tested on wire-
less system design and on some industrial applications including
automotive electronics and video processing. Our work is now
focused on the abstractions and the mathematical foundations
needed to deal with communication at all levels of the design

KEUTZER et al.: SYSTEM-LEVEL DESIGN: ORTHOGONALIZATION OF CONCERNS AND PLATFORM-BASED DESIGN 1541

process including network protocol design. In addition, we are
more and more concerned with the SW implementation aspects
since the viability of platform-based design impinges on the au-
tomatic generation of performing and error-free SW. In this ef-
fort, we are going to leverage our knowledge of mathematical
foundations, applications and novel SW design methods based
on the concept of components.

An important application of the methodology is the develop-
ment of a comprehensive approach to highly programmable and
configurable platform design. The MESCAL project is aimed at
the definition of this platform and at the development of tools for
the mapping of complex functionality onto the programmable ar-
chitecture fora givendomain. We believe that the development of
these platforms and the associated SW development tools is sig-
nificantly different from general-purpose solutions and have out-
lined the research problems associated with this development.

ACKNOWLEDGMENT

The authors would like to thank MARCO, DARPA, and
their respective constituents for supporting the development
of the unique research community that makes up the GSRC.
The ideas presented above are the result of many hours of
collaborative discussion within the GSRC, Berkeley Wireless
Research Center, PARADES (a European Group of Economic
Interest funded by Cadence, Magneti–Marelli and ST Micro-
electronics), Cadence Research Laboratories, the MADESS
research project of the Italian National Counci,l and all of the
people listed below, as well as the many students, postdoctoral
researchers, and industrial collaborators working within the
GSRC, share the credit for the ideas presented in this paper. In
particular, They would like to thank:

• Dr. A. Ferrari for his contributions to platform-based de-
sign and for the pivotal role in the design of the dual-pro-
cessor platform for automotive applications

• Dr. L. Lavagno and Dr. J. Rowson for their contributions
to the development of some of the system-level design
methodology components presented here.

• Prof. E. Lee for his many contributions to system-level
design;

• Dr. K. Vissers of Philips for his contributions to firming up
our design methodology and for the many discussions on
orthogonalization of concerns (he and his research team
came up with a notion of function-architecture co-design
called Y-chart [35];

• Dr. J. Y. Brunel of Philips National Research Lab for his
contributions to COSY and the design of the video appli-
cation;

• N. Shah, M. Shilman, M. Vachharajani, and S. Weber for
their input on the MESCAL project.

REFERENCES

[1] M. Pinto, “Feature System Design,” unpublished, June 1999.
[2] Giga Scale Research Center [Online]. Available: http://www.gigas-

cale.org
[3] F. Balarinet al., Hardware-Software Co-Design of Embedded Systems:

The POLIS Approach. Norwell, MA: Kluwer., 1998.
[4] J. Rowson and A. Sangiovanni-Vincentelli, “System level design,”EE

Times, 1996.

[5] , “Interface-based design,” inProc. 34th Design Automation Conf.
(DAC-97), Las Vegas, NV, June 1997, pp. 178–183.

[6] C. Szyperski,Component Software: Beyond Object-Oriented Soft-
ware. Reading, MA: ACM/Addison-Wesley, 1998.

[7] A. Sangiovanni-Vincentelli, R. McGeer, and A. Saldanha, “Verification
of integrated circuits and systems,” presented at the 1996 Design Au-
tomation Conf., Las Vegas, NV, June 1996.

[8] E. Lee and A. Sangiovanni-Vincentelli, “A unified framework for com-
paring models of computation,”IEEE Trans. Computer-Aided Design,
vol. 17, pp. 1217–1229, Dec. 1998.

[9] M. Sgroi, L. Lavagno, and A. Sangiovanni-Vincentelli, Formal models
for embedded system design, in IEEE Design Test Comput. (Special
Issue on System Design), 2000. to appear in.

[10] J. L. da Silva Jr., M. Sgroi, F. De Bernardinis, S. F. Li, A. Sangiovanni-
Vincentelli, and J. Rabaey, “Wireless protocols design: Challenges and
opportunities,” presented at the 8th Int. Workshop Hardware/Software
Co-Design Codes/CASHE’00, San Diego, CA, May 2000.

[11] C. G. Bell and A. Newell,Computer Structures: Readings and Exam-
ples. New York: McGraw-Hill, 1971.

[12] A. Ferrari and A. Sangiovanni-Vincentelli, “System design: Traditional
concepts and new paradigms,” presented at the 1999 Int. Conf. Computer
Design, Austin, TX, Oct. 1999.

[13] H. Changet al., Surviving the SOC Revolution: Platform-Based De-
sign. Norwell, MA: Kluwer Academic, 1999.

[14] R. Bryant, E. Clarke, and D. Dill, “GSRC formal verification effort,”
presented at the Annual GSRC Activities, San Jose, CA, Dec. 1999.

[15] B. Dally and J. Rabaey, “The future of on-chip interconnection net-
works,” presented at the GSRC quarterly meeting, Palo Alto, CA, Mar.
2000.

[16] G. Bombarda, G. Gaviani, and P. Marceca, “Power-train system design:
Functional and architectural specifications,” presented at the Conver-
gence 2000, Detroit, MI, Oct. 2000.

[17] A. Sangiovanni-Vincentelli, “Automotive electronics: Trends and chal-
lenges,” presented at the Convergence 2000, Detroit, MI, Oct. 2000.

[18] J. Y. Brunel, A. Sangiovanni-Vincentelli, and R. Kress, “COSY:
A methodology for system design based on reusable hardware &
software IP’s,” inTechnologies for the Information Society, J.-Y. Roger,
Ed. Singapore: IOS, June 1998, pp. 709–716.

[19] J. Davis II, M. Goel, C. Hylands, B. Kienhuis, E. A. Lee, J. Liu, X.
Liu, L. Muliadi, S. Neuendorffer, J. Reekie, N. Smyth, J. Tsay, and Y.
Xiong, “Overview of the Ptolemy Project,” Dept. EECS, Univ. Cali-
fornia, Berkeley, CA, ERL Tech. Rep. UCB/ERL no. M99/37, July 1999.

[20] J. Rowson and A. Sangiovanni-Vincentelli, “Felix initiative pursues new
co-design methodology,”Electron. Eng. Times, p. 50, 51, 74, June 15,
1998.

[21] VCC white papers. Cadence, San Jose, CA. [Online]. Available:
http://www.cadence.com/whitepapers/vcc.html

[22] E. A. de Kock, G. Essink, W. Smits, P. van der Wolf, J.-Y. Brunel, W.
Kruijtzer, P. Lieverse, and K. Vissers, “YAPI: Application modeling for
signal processing systems,” presented at the Design Automation Conf.
’2000, Los Angeles, CA, June 2000.

[23] H. Kenter, C. Passerone, W. Smits, Y. Watanabe, and A. Sangio-
vanni-Vincentelli, “Designing digital video systems: Modeling and
scheduling,” presented at the CODES’99, Rome, Italy, May 1999.

[24] J. Y. Brunel, W. Kruijtzer, H. Kenter, F. Pétrot, L. Pasquier, E. de Kock,
and W. Smits, “COSY communication IP’s,” presented at the Design
Automation Conf. 2000, Los Angeles, CA, June 2000.

[25] M. Baleani, A. Ferrari, A. Sangiovanni-Vincentelli, and C. Turchetti,
“Hardware-software co-design of an engine management system,” pre-
sented at the Design Automation and Test Europe Conf. 2000, France,
Mar. 2000.

[26] A. Ferrari, S. Garue, M. Peri, S. Pezzini, L. Valsecchi, F. Andretta, and
W. Nesci, “Design and implementation of a dual-processor platform for
power-train systems,” presented at the Convergence 2000, Detroit, MI,
Oct. 2000.

[27] The Xtensa Processor Generator. Tensilica, Santa Clara, CA. [Online].
Available: http://www.tensilica.com/technology.html

[28] The Silicon Backplane. Sonics, Inc., Mountain View, CA. [Online].
Available: http://www.sonicsinc.com

[29] Commercial Video Processors. Massachusetts Institute
of Technology, Cambridge, MA. [Online]. Available:
http://wad.www.media.mit.edu/people/wad/vsp/node1.html

[30] T. R. Halfhill, “Intel Network Processor Targets Routers,”, vol. 13, Mi-
croprocessor Rep., Sept. 13, 1999.

[31] “Hot Chips 99,” Semiconductor Research Corp., San Jose, CA.
[32] Univ. Illinois, The IMPACT Research Group., Urbana, IL. [Online].

Available: http://www.crhc.uiuc.edu/IMPACT

1542 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 12, DECEMBER 2000

[33] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim,
M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal,
“Baring it all to software: Raw machines,”IEEE Comput., pp. 86–93,
Sept. 1997.

[34] A. Sudarsanam, “Code Optimization Libraries for Retrgetable Com-
pilation for Embedded Digital Signal Processors,” Ph.D. dissertation,
Princeton Univ., Princeton, NJ, Nov. 1998.

[35] B. Kienhuis, E. Deprettere, K. Vissers, and P. van der Wolf, “An ap-
proach for quantitative analysis of application-specific dataflow archi-
tectures,” presented at the 11th Int. Conf. Application-Specific Systems,
Zurich, Switzerland, July 14–16, 1997.

Kurt Keutzer (S’83–M’84–SM’94–F’96) received
the B.S. degree in mathematics from Maharishi Inter-
national University, in 1978 and the M.S. and Ph.D.
degrees in computer science from Indiana University,
in 1981 and 1984, respectively.

In 1984, he joined AT&T Bell Laboratories
where he worked to apply various computer-science
disciplines to practical problems in computer-aided
design. In 1991, he joined Synopsys, Inc., Mountain
View, CA, where he continued his research in a
number of positions culminating in his position as

as Chief Technical Officer and Senior Vice-President of Research. He left
Synopsys in January 1998 to become Professor of Electrical Engineering and
Computer Science at the University of California at Berkeley where he serves
as Associate Director of the Gigascale Silicon Research Center. He co-authored
Logic Synthesis(New York: McGraw-Hill, 1994).

Dr. Keutzer has researched a wide number of areas related to synthesis and
high-level design and his research efforts have led to three Design Automation
Conference (DAC) Best Paper Awards, a Distinguished Paper Citation from
the International Conference on Computer-Aided Design (ICCAD), and a Best
Paper Award at the International Conference in Computer Design (ICCD).
From 1989–1995, he served as an Associate Editor of IEEE TRANSACTIONS

ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS and
he currently serves on the editorial boards of three journals:Integration—the
VLSI Journal; Design Automation of Embedded Systems, andFormal Methods
in System Design. He has served on the technical program committees of
DAC, ICCAD, and ICCD as well as the technical and executive committees of
numerous other conferences and workshops.

Sharad Malik (S’88–M’90–SM’98) received the B.
Tech. degree in electrical engineering from the Indian
Institute of Technology, New Delhi, India, in 1985
and the M.S. and Ph.D. degrees in computer science
from the University of California, Berkeley, in 1987
and 1990, respectively.

Currently he is Professor in the Department
of Electrical Engineering, Princeton University.
His current research interests are: design tools
for embedded computer systems, synthesis, and
verification of digital systems.

Dr. Malik has received the President of India’s Gold Medal for academic ex-
cellence (1985), the IBM Faculty Development Award (1991), an NSF Research
Initiation Award (1992), Princeton University Rheinstein Faculty Award (1994),
the National Science Foundation (NSF) Young Investigator Award (1994), Best
Paper Award at the IEEE International Conference on Computer Design (1992)
and at the ACM/IEEE Design Automation Conference (1996), the Walter C.
Johnson Prize for Teaching Excellence (1993) and the Princeton University
Engineering Council Excellence in Teaching Award (1993, 1994, 1995). He
serves/has served on the program committees of DAC, ICCAD and ICCD. He
is serving as the technical program co-chair for DAC in 2000 and 2001. He is
on the editorial boards of theJournal of VLSI Signal ProcessingandDesign
Automation for Embedded Systems.

A. Richard Newton (S’73–M’78–SM’86–F’88) re-
ceived the B. Eng. and M.Eng.Sci degrees from the
University of Melbourne, Melbourne, Australia, in
1973 and 1975, respectively. He received the Ph.D.
degree from the University of California at Berkeley
in 1978.

He is currently Dean of Engineering at the Univer-
sity of California, Berkeley. Since 1979, he has been
actively involved as a researcher and teacher in the
areas of design technology, electronic system archi-
tecture, and integrated circuit design. Since 1998, he

has also been the Director of the MARCO/DDR&E Gigascale Silicon Research
Center.

Dr. Newton was an Associate Editor of the IEEE TRANSACTIONS ON

COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS from
1984–1988 and a member of the Administrative Committee of the IEEE
Circuits and Systems Society 1985–1988. He was Technical Program Chair of
the 1988 and 1989 ACM/IEEE Design Automation Conferences, Vice Chair of
the 1990 Conference and was General Chair of the Conference in 1991. He has
received a number of awards for his teaching and research, including Best Paper
Awards at the 1987 and 1989 ACM/IEEE Design Automation Conferences,
and the International Conference on Computer Design, and he was selected in
1987 as the national recipient of the C. Holmes McDonald Outstanding Young
Professor Award of the Eta-Kappa-Nu Engineering Honor Society. In 1989
he was co-recipient of a Best Paper Award for the IEEE TRANSACTIONS ON

COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS. He was
a Founding Member of both the EDIF technical and steering committees, an
advisor to the CAD Framework Initiative, and was also a Founding Member
of EDAC.

Jan M. Rabaey (S’80–M’83–SM’92–F’95) re-
ceived the E.E. and Ph.D degrees in applied sciences
from the Katholieke Universiteit Leuven, Leuven,
Belgium, respectively, in 1978 and 1983.

From 1983 till 1985, he was a Visiting Research
Engineer with the University of California, Berkeley.
From 1985 till 1987, he was a Research Manager at
IMEC, Belgium, and in 1987, he joined the faculty of
the Electrical Engineering and Computer Science de-
partement of the University of California, Berkeley,
where he is now a Professor. He has been a Visiting

Professor at the University of Pavia (Italy) and Waseda University (Japan).
He is currently the Associate Chair of the EECS Department at Berkeley, and
is also the Scientific co-director of the Berkeley Wireless Research Center
(BWRC). He authored or co-authored a wide range of papers in the area of
signal processing and design automation. His current research interests include
the conception and implementation of next-generation integrated wireless
systems. This includes the analysis and optimization of communication
algorithms and networking protocols, the study of low-energy implementation
architectures and circuits, and the supporting design automation environments.

Dr. Rabaey received numerous scientific awards, including the 1985 IEEE
TRANSACTIONS ONCOMPUTER-AIDED DESIGN Best Paper Award (Circuits and
Systems Society), the 1989 Presidential Young Investigator award, and the 1994
Signal Processing Society Senior Award. He is past chair of the VLSI Signal
Processing Technical Committee of the Signal Processing Society and is serving
on the executive committee of the Design Automation Conference in the func-
tion general chair. He chaired the International Symposium on Low Power Elec-
tronics and the IFIP Conference on Mobile Computing in 1996.

KEUTZER et al.: SYSTEM-LEVEL DESIGN: ORTHOGONALIZATION OF CONCERNS AND PLATFORM-BASED DESIGN 1543

A. Sangiovanni-Vincentelli (M’74–SM’81–F’83)
received the “Dottore in Ingegneria” degree in
electrical engineering and computer science,summa
cum laude, from the Politecnico di Milano, Milan,
Italy, in 1971.

He holds the Edgar L. and Harold H. Buttner Chair
of Electrical Engineering and Computer Sciences at
the University of California at Berkeley where he has
been on the Faculty since 1976. In 1980–1981, he
spent a year as a visiting Scientist at the Mathemat-
ical Sciences Department of the IBM T.J. Watson Re-

search Center, Yorktown Heights, NY. In 1987, he was a Visiting Professor at
Massachusetts Institute of Technology, Cambridge. He was a cofounder of Ca-
dence and Synopsys, the two leading companies in the area of electronic design
automation. He was a Director of ViewLogic and Pie Design System and Chair
of the Technical Advisory Board of Synopsys. He is the Chief Technology Ad-
visor of Cadence Design System. He is a member of the Board of Directors of
Cadence, Sonics Inc., and Accent. He is the founder of the Cadence Berkeley
Laboratories and of the Cadence European laboratories. He was the founder
of the Kawasaki Berkeley Concept Research Center, where he holds the title
of Chairman of the Board. He has consulted for a number of U.S. companies
including IBM, Intel, ATT, GTE, GE, Harris, Nynex, Teknekron, DEC, and
HP, Japanese companies including Kawasaki Steel, Fujitsu, Sony and Hitachi,
and European companies including SGS-Thomson Microelectronics, Alcatel,
Daimler-Benz, Magneti-Marelli, BMW, and Bull. He is the Scientific Director
of the Project on Advanced Research on Architectures and Design of Electronic
Systems (PARADES), a European Group of Economic Interest. He is on the
Advisory Board of the Lester Center of the Haas School of Business and of the
Center for Western European Studies and a member of the Berkeley Roundtable
of the International Economy (BRIE).

In 1981, Dr. Sangiovanni-Vincentelli received the Distinguished Teaching
Award of the University of California. He received the worldwide 1995
Graduate Teaching Award of the IEEE (a Technical Field award for “inspi-
rational teaching of graduate students”). He has received numerous awards
including the Guillemin-Cauer Award (1982–1983) and the Darlington Award
(1987–1988). He is an author of more than 480 papers and ten books in the area
of design methodologies, large-scale systems, embedded controllers, hybrid
systems and tools. He is a Member of the National Academy of Engineering.
He was the Technical Program Chairperson of the International Conference
on Computer—Aided Design and his General Chair. He was the Executive
Vice-President of the IEEE Circuits and Systems Society.

