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ABSTRACT 
Recently, the transaction-level modeling has been widely r e  
ferred to  in system-level design community. However, the 
transaction-level models(TLMs) are not well defined and the 
usage of TLMs in the existing design domains, namely mod- 
eling, validation, refinement, exploration, and synthesis, is 
not well coordinated. This paper introduces a TLM taxon- 
omy and compares the benefits of TLMs' use. 
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1. INTRODUCTION 
In order to handle the ever increasing complexity of system. 

on-chips (SoCs) and time-termarket pressures, the design 
abstraction has been raised to the system level in order to  
increase design productivity. This higher level of abstrac- 
tion generated large interest in transaction-level modeling, 
synthesis, and verification [ l O ] [ l Z ] .  

In a transaction-level model (TLM), the details of com- 
munication among computation components are separated 
from the details of computation components. Communica- 
tion is modeled by channels, while transaction requests take 
place by calling interface functions of these channel models. 
Unnecessary details of communication and computation are 
hidden in a TLM and may be added later. TLMs speed up 
simulation and allow exploring and validating design alter- 
natives at the higher level of abstraction. 

However, the definition of TLMs is not well understood. 
Without clear definition of TLMs, not only the predefined 
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Figure 1: System modeling graph 

TLMs cannot be easily reused, but also the usage of TLMs 
in the existing design domains, namely modeling, validation, 
refinement, exploration, and synthesis, cannot be systemat- 
ically developed. Consequently, the inherent advantages of 
TLMs don't effectively benefit designers. In order to  elim- 
inate some ambiguity of TLMs, this paper attempts to  ex- 
plicitly define several transaction-level models, each of which 
is adopted for different design purpose. It also explores the 
usage of defined TLMs under a general design flow and an- 
alyzes how the TLMs are used in the design domains. 

This paper is organized as follows: Section 2 reviews the 
related work; Section 3 defines four TLMs; Section 4 in- 
troduces the usage of TLMs in different design domains; 
Finally, the conclusion is given in section 5. 

2. RELATED WORK 
The concept of TLM first appears in system level lan- 

guage and modeling domain. [lo] defines the concept of 
a channel,  which enables separating communication from 
computation. It proposes four well-defined models at differ- 
ent abstraction levels in a top-down design flow. Some of 
these models can be classified as TLMs. However, the capa- 
bilities of TLMs are not explicitly emphasized. [ lZ]  broadly 
describes the TLM features based on the channel concept 
and presents some design examples. However, the TLMs 
are not well defined and the usage of TLMs in the existing 
design domains is not addressed. [lo] [12] also demonstrate 
that both SpecC [3] and SystemC [2] support transaction 
level modeling using the channel concept. 

The TLMs can be used in top-down approaches such as 
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proposed by SCE [6] that starts design from the system be- 
havior representing the design's functionality, generates a 
system architecture from the behavior, and gradually reaches 
the implementation model by adding implementation de- 
tails. In comparison to the topdown approaches, meet- 
in-the-middle approaches [13] map the system behavior to 
the predefined system architecture, rather than generating 
the architecture from the behavior. An example of meet- 
in-the-middle approach is VCC 151 for architecture estima- 
tion/exploration and N2C [l] for interface synthesis. Un- 
like above two approaches, bottom-up approaches assem- 
ble the existing computation components by inserting wrap- 
pers among them. Bottom-up approaches, such as proposed 
in [9], focus on component reuse and wrapper generation. 
All of above three design practices fully or partly cover the 
design from the system behavior to the detailed system im- 
plementation, which exhibits great potential of employing 
TLMs. 

Some other research groups have applied TLMs in the 
design. [14] adopts TLMs to ease the development of em- 
bedded software. [15] defines a TLM with certain proto- 
col details in a platform-based design, and uses it to inte- 
grate components a t  the transaction level. [ll] implements 
co-simulation across-abstraction level using channels, which 
implies the usage of TLM. Each of above research addresses 
only one limited aspect of TLMs. 

3. TRANSACTION LEVEL MODELS 
In order to simplify the design process, designers gener- 

ally use a number of intermediate models. The intermedi- 
ate models slice the entire design into several smaller design 
stages, each of which has a specific design objective. Since 
the models can be simulated and estimated, the result of 
each of these design stages can be independently validated. 

In order to relate different models, we introduce the sys- 
tem modeling graph (shown in Figure 1) 181. X-axis in the 
graph represents computation and y-axis represents com- 
munication. On each axis, we have three degrees of time 
accuracy: un-t,imed, approximate-timed. and cycle-timed. 
Un-timed computation/communication represents the pure 
functionality of the design without any implementation de- 
tails. Approximate-timed computation/communication con- 
tains system-level implementation details, such as the se- 
lected system architecture, the mapping relations between 
processes of the system specification and the processing el- 
ements of the system architecture. The execution time for 
approximate-timed computatiou/communicatiun is usually 
estimated a t  the system level without cycle-accurate RTL 
(register transfer level) /ISS (instruction set simulation) level 
evaluation (51. Cycle-timed computation/communication con- 
tains implementation details at both system level and the 
RTL/ISS level, such that cycle-accurate estimation can be 
obtained. 

Inspired by [lo] [12], we define six abstraction models in 
the system modeling graph, which are indicated by circles. 
Among them, component-assembly model, bus-arbitration 
model, bus-functional model, and cycle-accurate computa- 
tion model are TLMs, which are indicated by shaded circles. 

Specification model. It  describes the system function- 
ality and is free of any implementation details. This model 
is similar to the specification model in [lo] and untimed 
junctional model in 1121. It  can model the data transfer 
between processes through variable accessing without using 
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Figure  2: The example  of specification model 
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Figure  3: The example  of component-assembly 
model  

channel concept, which eases to convert C/C++ language 
to SystemC/SpecC language. Specification model is an uu- 
timed model. Figure 2 displays an example of specification 
model. Processes B1, B2B3, and B4 execute sequentially. 
82B3 is a parallel composition of B2 and 83. Variables v f ,  
v2 and v3  are used to transfer data among processes. 

Component-assembly model .  The entities a t  the top 
level of the model represent concurrently executing process- 
ing elements (PES) and global memories, which commu- 
nicate through channels. A PE can be a custom hard- 
ware, a general-purpose processor, a DSP, or an IP. The 
channels are message passing channels, which only repre- 
sent data transfer or process synchronization between PES 
without any bus/protocol implementation. The communi- 
cation part of the model (channel) is un-timed, while com- 
putation part of the model (PE) is timed by approximately 
estimating the execution on specific PE. The estimated time 
of computation is computed by system-level estimator such 
as [SI. The estimated time is annotated into the code by 
inserting wait statements. Component-assembly model is 
the same as architecture model defined in [lo] and belongs 
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Figure  4: The example  of bus-arbitration model 

to timed functional model defined in [12 ] .  In compari- 
son to specification model, component-assembly model ex- 
plicitly specifies the allocated PES in the system architec- 
ture and process-twPE mapping decision. The example of 
component-assembly model is displayed in Figure 3. PE1, 
PE2 and PE3 are three allocated PES. cull, cul2, cv2 are 
the message-passing channels. 

Bus-arbitration model. In comparison to component- 
assembly model, channels between PES in bus-arbitration 
model represent buses, which are called abstract bus chan- 
nels. The channels still implement data transfer through 
message passing, while bus protocols can be simplified as 
blocking and nonblocking 110. No cycle-accurate and pin- 
accurate protocol details are specified. The abstract bus 
channels have estimated approximate time, which is speci- 
fied in the channels by one wait statement per transaction. 
Because several channels may be grouped to one abstract 
bus channel, two parameters are added to the interface func- 
tions of channels: logical address and bus priority. Logical 
address distinguishes interface function calls of different PES 
or processes; bus priority determines the bus access sequence 
when bus conflict happens. Furthermore, a bus arbiter is in- 
serted into the system architecture as a new P E  to arbitrate 
the bus conflict. Master PES, slave PES, and the arbiter call 
the functions of different interfaces of the same abstract bus 
channels. 

Figure 4 illustrates an example of busarbitration model 
refined from component-assembly model in Figure 3. The 
three channels in component-assembly model are encapsu- 
lated into an abstract bus channel representing a system bus. 
In order to access the new channel, the bus masters (PE1 
and PE2),  the bus slave (PE3) ,  and the inserted arbiter 
(PE4) use different channel interfaces. 

Bus-functional model. I t  contains time/cycle accurate 
communication and approximate-timed computation. Two 
types of bus-functional model are specified: time-accurate 
model and cycle-accurate model. Time-accurate model spec- 
ifies the time constraint of communication, which is deter- 
mined by the time diagram of component's protocol. For 
example, in Figure 5(a), the time is limited in the time range 
between 25 and 75. Cycle-accurate model can specify the 
time in terms of the bus master's clock cycles, as displayed 
in Figure 5(b). The task of refining a time-accurate model 
to a cycle-accurate model is called protocol refinement. 

addressll5:0] + 
datal3t:Ol 
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ack 

(b)Cycle accurate time diagram 

Figure  5: Time/cycle accura te  d iagram 
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Figure  6: The example  of bus-functional model 

In hus-functional model, the messagopassing channels are 
replaced by protocol channels. A protocol channel is time/cycle 
accurate and pin-accurate. lnside a protocol channel, wires 
of the bus are represented by instantiating corresponding 
variables/signals. Data is transferred following the time/cycle 
accurate protocol sequence. At its interface, a protocol 
channel provides functions for all abstraction bus transac- 
tion. A protocol channel is the same as a protocol channel 
of [lo]. We call an abstract bus channel containing a pr* 
tocol channel a detailed bus channel. It should be noted 
that in the bus-functional model, it is not necessary to re- 
fine all the abstract bus channels into detailed bus chan- 
nels. Some abstract bus channels can he refined while others 
are untouched. The refinement process from bus-arbitration 
model to the bus-functional model is similar to the proto- 
col insertion introduced in [lo]. Figure 6 illustrates our 
bus-functional model. 

Cycle-accurate computa t ion  model. It contains cycle- 
accurate computation and approximatotimed communica- 
tion. This model can be generated from the bus-arbitration 
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Table 1: Characterist ics of different abs t rac t ion  models 

Communication Computation Communication PE  interface 
time time scheme 

1. Master interiace 
2. Slave intsmacs 
3. Albite, intslface 
4. wrapper 

B- 
/PE3 

Figure  7: The example  of cycle-accurate computa-  
t ion model 

model. In this model, computation components (PES) are 
pin accurate and execute cycle-accurately. The custom hard- 
ware components are modeled at register-transfer level, and 
general-purpose processors and DSPs are modeled in terms 
of cycle-accurate instruction set architecture. To enable 
communication between cycle-accurate PES and abstract 
level interfaces of abstract bus channels, wrappers which 
convert data transfer from higher level of abstraction to 
lower level abstraction are inserted to bridge the PES and 
the bus interfaces. Similar to the bus-functional model, it 
is not necessary to refine all the PES to the cycleaccurate 
level. Some PES can be refined while others are untouched. 
Figure 7 illustrates a cycleaccurate computation model, in 
which only PE3 is refined to a time-accurate and pin-accurate 
model. 

I t  has both cycleaccurate 
communication and cycleaccurate computation. The com- 
ponents are defined in terms of their register-transfer or 
instruction-set architecture. The implementation model can 
he obtained from the bus-functional model or the cycle- 
accurate computation model. The implementation model is 
the same as the implementation model in [lo] and register- 
transfer level model in [12]. Figure 8 displays an example 
of the implementation model. PE1 and PE2 are micro- 
processors while PE3 and PE4 are custom-hardwares. 

Table 1 summaries the characteristics of different ahstrac- 
tion models. Although models indicated by x in Figure 1 
can also be specified, they will not be discussed in this paper 
because they are not commonly used. 

Implementa t ion  model.  

PE1 PE2 

Figure  8: The example of implementation model 

4. SYSTEM DESIGN WITH TLMS 
4.1 Design Flow 

The gray solid arrow in Figure 1 represents a well-accepted 
design flow. I t  goes through models A, C, and F, which r e p  
resents system functionality, abstract system architecture, 
and cycle-accurate system implementation respectively. Among 
them, bus-arbitration model divides the system flow into two 
stages: system design stage and component design stage. 
System design stage selects/generates system architecture 
and maps the system behavior to that architecture. Compo- 
nent design stage refines/systhezises computation and com- 
munication components to the cycle accurate level. In gen- 
eral, different design flows include different models. For ex- 
ample, [lo] goes through models A, B, D and F, [9] goes 
through models A, C, E and F, while 1121 goes through 
models A, B, C, D and F. 

4.2 Design Domain Definition 
In Figure 1, we use arrows t o  represent a set of tasks that 

generate one abstractinn model from the previous one. Fig- 
ure 9 shows a general design flow with five design domains 
for generating model B from model A. 

1. Modeling domain. It deals with languages and styles 
of writing models. In other words, it deals with semm- 
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Figure 9: A general design flow with  five domains 

tics of different models used for different design tasks, 
such as verification, refinement, and synthesis. System 
modeling task can be simplified if the part of model 
has been predefined as IP and saved in IP library. An 
example of modeling is that designers can specify the 
Model A using system level design languages such as 
SpecC and SystemC. 

The modeling styles of TLMs have been briefly dis- 
cussed in section 3. Especially, because communi- 
cation is completed separated from computation in 
TLM, designers can specify different components of 
one model at different abstraction levels. Such a model 
is called multi-level model. Both SpecC and SystemC 
support TLM modeling. The difference of modeling 
TLMs using SpecC and SystemC is discussed in [8] 

2. Validation domain. Validation asserts that the model 
represents the system properties faithfully. The cor- 
rectness of the model can be validated by different 
methods such as simulation and formal verification. 

Validating TLMs can be performed by simulation. For 
example, SystemC provides a Verification Standard 
141 to improve the validation capability with standard 
APIs for transaction-based verification tasks. On the 
other hand, 171 proposes a formal verification approach 
that proves the equivalence of models generated through 
automatic refinement. 

Furthermore, validating components through simulat- 
ing multi-level model can dramatically speed up the 
validation time. If we model the component which we 
want to validate at the cycle-accurate level, and model 
the rest of components at the approximate-timed level, 
then simulation time can be dramatically shorter than 
the time needed for simulating the pure cycle-accurate 
model. Both [14] and 1151 work in this direction. 

3. Refinement domain. Every time a new design detail 
is added, the original model must be rewritten or re- 
fined in order to include the new design detail. These 
design decisions made by the designers or an automat- 
ical synthesis tool can be incorporated into the new 
model manually or automatically. An automatic re 
finement for the flow which goes through models A, B, 
D, and F in Figure 1 can be  founded in [IO], which 
defines four abstraction models and proposes refining 
guidelines. In comparison to our defined models, it has 
a bus-functional model (called communication model) 

which has cycle/pin accurate communication and ab- 
stract computation. The same strategy can be easily 
applied to the sequence A ,  B, C, D and F. 
The refinement tasks for the flow which goes through 
models C, E, and F can be founded in 191, which refines 
model C to E by producing software and co-simulation 
wrappers for microprocessors and refines model E to 
F by producing hardware wrappers among micropr* 
cessors. 

4. Exploration domain. In order to aid designers to 
make better decisions, the different metrics for poten- 
tial design decisions should be estimated, based on the 
Model A and the availability of buses, channels, RTOS, 
ISS, drivers, arbiters, and other SWJHW components 
in the est imation library 
Different TLMs require different estimation supports. 
We need to estimate approximate computation time 
for PES in model B, approximate communication time 
for abstract bus channels in model C, cycle-accurate 
communication time for detailed bus channels in model 
D, and cycle-accurate computation time for PES in 
model E. For example, 1161 proposes an simulation- 
based estimation approach. 
Furthermore, in order to speed up the simulation and 
enlarge the exploration space, we can perform architec- 
ture exploration at bus-arbitration model, which has 
both approximatetimed computation and approximate- 
timed communication. In order to estimate compo- 
nents at such an approximate-timed level more accu- 
rately, we can first refine the components to the cycle 
accurate level and achieve cycle-accurate estimation 
by simulation or some other methods. Then we an- 
notate back this estimation to the component models 
at approximate-timed level. Back annotation ensures 
very fast simulation with cycle-accurate estimation. 

5. Synthesis domain. Synthesis algorithms perform 
automatical exploration and produce optimal solution 
for given constraints and optimization metrics. Syn- 
thesis algorithms relieve designers from making deci- 
sion decision. However, designers always can override 
the algorithms and make their own decision since new 
model generation is separated from decision making. 

Synthesis algorithms can he divided into several groups 
where each group contains algorithms for transforma- 
tion of one model to another. 

Component  assembly (A->B) contains algorithms 
for selecting PES from PE libraries, mapping of 
processes in the specification model to the se- 
lected PES, and selecting real time operating sys- 
tems (RTOS) for general-purpose processors or 
DSPs. 

Communication exploration (B->C) contains al- 
gorithms for producing the bus-topology, deter- 
mining abstract bus protocols, mapping channels 
to the buses, assigning bus-accessing priorities to 
the processes in PES, and determining bus arbi- 
tration mechanism. 

Pro tocol  refinement (C->D) contains algorithms 
that determine the pin-accurate and time-accurate 
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bus protocols, and refine time-accurate bus p r o  
tocols to cycleaccurate bus protocols if required. 

PE refinement (D->F) contains algorithms that 
synthesize the processes mapped to cycle-accurate 
custom hardware to register transfer models, con- 
vert the processes mapped to general-purpose p r o  
cessors or DSPs to ANSI-C code which is ready 
to be compiled and ready to he linked to the cor- 
responding cycleaccurate instruction set models. 

PE replacement  (C->E) contains algorithms that 
select lower level PE models which have pin-accurate 
interface to replace the higher level PE models, 
and vice versa, and insert across level wrappers 
to bridge the lower level PE models and bus- 
abstraction channels. 

Communica t ion  synthesis  (E>F) contains algo- 
r i t h m  that determine the pin-accurate and t i m e  
accurate bus protocols and synthesize channels 
and across-level wrappers to cycle-accurate com- 
munication coprocessors. 

4.3 Design Flow Styles 
The style of design flows may depend on the companies 

and system design tools. In any case, it becomes easier with 
the usage of well-defined aforementioned TLMs with inter- 
mixed application of the three design practices mentioned 
in section 2. 

The initial version of the design can be designed using 
topdown approach. During the implementation process, all 
the generated models a t  different levels are stored in the IP 
library. After this step we have a predefined platform which 
can be used further. 

The changes in the design can he inserted by rewriting 
of the specification model. At this stage we have a prede- 
fined platform which allows us to apply meet-in-the-middle 
approach. Furthermore, we have an accurate estimation of 
the system behavior obtained from the initial version of the 
design. Now, the designers only need to estimate the new 
additions of the system behavior. Hence, the component as- 
sembly and communication exploration for the new design 
can be easily made using the generated platform. 

After generating the bus-arbitration model for the new 
version, designers can perform computation or commnnica- 
tion component implementation a t  the component design 
stage. For the components that are not updated, designers 
can reuse the pre-designed bucfunctional model and imple 
mentation model, instead of carrying out refinement from 
busarbitration model again. Only the updated components 
need to be refined. 

On the other hand, if designers want to replace an old 
IP by an new IP  for the designed system, bottom-up design 
can he exploited. Starting from cycleaccurate computation 
model of the design, designers can replace an old IP and 
its wrapper with the new IP  and its wrapper in the cycle 
accurate computation model. Then communication synthe- 
sis is performed again for the new IP  and its wrapper. Start- 
ing with cycle-accurate computation model saves us several 
synthesis tasks. 

5. CONCLUSION 
In order to eliminate the some ambiguity with the transac- 

tion level model, this paper attempts to define several TLMs 

and present the system level design flow and major design 
tasks for generation of each model. The major challenge in 
front of us is to define the semantics of each model in de- 
tail and formally so that algorithms and tools for modeling, 
verification, refinement, exploration, and synthesis can be 
developed and deployed in industry. 
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