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Abstract. High-performance microarchitectures use, among other structures, deep pipelines to help speed up exe-
cution. The importance of a good branch predictor to the effectiveness of a deep pipeline in the presence of condi-
tional branches is well-known. In fact, the literature contains proposals for a number of branch prediction schemes.
Some are static in that they use opcode information and profiling statistics to make predictions. Others are dynamic
in that they use run-time execution history to make predictions.

This paper proposes a new dynamic branch predictor, the Two-Level Adaptive Paining scheme, which alters the
branch prediction algorithm on the basis of information collected at run-time.

Several configurations of the Two-Level Adaptive Training Branch Predictor are introduced, simulated, and
compared to simulations of other known static and dynamic branch prediction schemes. Two-Level Adaptive
Training Branch Prediction achieves 97 percent accuracy on nine of the ten SPEC benchmarks, compared to less
than 93 percent for other schemes. Since a prediction miss requires flushing of the speculative execution already in
progress, the relevant metric is the miss rate. The miss rate is 3 percent for the Two-Level Adaptive Training scheme
vs. 7 percent (best case) for the other schemes. This represents more than a 100 percent improvement in reducing
the number of pipeline hushes required.

1. Introduction

Pipelining, at least as early as [18] and continuing to
the present time [6], has been one of the most effective
ways to improve performance on a single processor. On
the other hand, branches impede machine performance
due to pipeline stalls for unresolved branches. As pipe-
lines get deeper or issuing bandwidth becomes greater,
the negative effect of branches on performance increases.

Among different types of branches, conditional
branches have to wait for the condition to be resolved
and the target address to be calculated before the target
instruction can be fetched. Unconditional branches
have to wait for the target address to be calculated. In
conventional computers, instruction issuing stalls until
the target address is determined, resulting in pipeline
bubbles. When the number of cycles taken to resolve a
branch is large, the performance loss due to the pipeline
stalls is considerable. There are two ways to reduce the
loss: the first is to resolve the branch as early as possi-

ble to reduce the instruction fetch pipeline bubbles. The
second is to provide fast fetching and decoding of the
target instruction to reduce the execution pipeline bub-
bles. Branch prediction is a way to reduce the execution
penalty due to branches by predicting, prefetching and
initiating execution of the branch target before the
branch is resolved.

Branch prediction schemes can be classified into
static schemes and dynamic schemes depending on the
information used to make predictions. Static branch
prediction schemes can be as simple as predicting that
all branches are not taken or predicting that all
branches are taken. Predicting that all branches are
taken can achieve approximately 68 percent prediction
accuracy as reported by Lee and Smith [13]. In the dy-
namic instructions of the benchmarks used in this study,
about 60 percent of conditional branches are taken.
Static predictions can also be based on the opcode.
Certain classes of branch instructions tend to branch
more in one direction than the other. The branch direc-
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tion can also be taken into consideration such as the
Backward Taken and Forward Not Taken scheme [16]
which is fairly effective in loop-bound programs, be-
cause it misses only once over all iterations of a loop.
However, this scheme does not work well on programs
with irregular branches. Profiling [12, 5] can also be
used to predict the branch path by measuring the ten-
dencies of the branches and presetting a static predic-
tion bit in the opcode. However, program profiling has
to be performed in advance with certain sample data
sets which may have different branch tendencies than
the data sets that occur at run-time.

Dynamic branch prediction takes advantage of the
knowledge of branches’ run-time behavior to make
predictions. Lee and Smith proposed a structure they
called a Branch Target Buffer [13] which uses 2-bit
saturating up-down counters to collect history informa-
tion which is then used to make predictions. The exe-
cution history dynamically changes the state of the
branch’s entry in the buffer. In their scheme, branch
prediction is based on the state of the entry. The Branch
Target Buffer design can also be simplified to record
only the result of the last execution of the branch. An-
other dynamic scheme also proposed by Lee and Smith
is the Static Training scheme [13] which uses the sta-
tistics collected from a pre-run of the program and a
history pattern consisting of the last n run-time execu-
tion results of the branch to make a prediction. The
major disadvantage of the Static Training scheme is
that the program has to be run first to accumulate the
statistics and the same statistics may not be applicable
to different data sets.

There is serious performance degradation in deep-
pipelined and/or superscalar machines caused by pre-
diction misses due to the large amount of speculative
work that has to be discarded [1, 8]. This is the motiva-
tion for proposing a new, higher-accuracy dynamic
branch prediction scheme. The new scheme uses two
levels of branch history information to make predic-
tions. The first level is the history of the last n
branches. The second is the branch behavior for the last
s occurrences of that unique pattern of the last n
branches. The history information is collected on the
fly without executing the program beforehand, elimi-
nating the major disadvantage of Static Training Pre-
diction. The scheme proposed here is called Two-Level
Adaptive Training Branch Prediction, because predic-
tions are based not only on the record of the last n
branches, but moreover on the record of the last s oc-
currences of the particular record of the last n branches.

Trace-driven simulations were used in this study.
The Two-Level Adaptive Training branch prediction
scheme as well as the other dynamic and static branch
prediction schemes were simulated on the SPEC
benchmark suite. By using Two-Level Adaptive Train-

ing Branch Prediction, the average prediction accuracy
for the benchmarks reaches 97 percent, while most of
the other schemes achieve under 93 percent. This rep-
resents more than 100 percent reduction in mispredic-
tions by using the Two-Level Adaptive Training
scheme. This reduction can lead directly to a large per-
formance gain on a high-performance processor.

Section two gives an introduction to the proposed
Two-Level Adaptive Training Branch Prediction
scheme. Section three discusses the methodology used
in this study and the simulated prediction models. Sec-
tion four reports the simulation results of a wide selec-
tion of schemes including both the dynamic and the
static branch predictors. Section five contains some
concluding remarks.

2. Two-Level Adaptive Training Branch
Prediction

The Two-Level Adaptive Training Branch Prediction
scheme has the following characteristics:

• Branch prediction is based on the history of
branches executed during the current execution of
the program.

• Execution history pattern information is collected
on the fly of the program execution by updating the
pattern history information in the branch history
pattern table of the predictor. Therefore, no pre-
runs of the program are necessary.

2.1 Concept of Two-Level Adaptive Training
Branch Prediction

The Two-Level Adaptive Training scheme has two
major data structures, the branch history register (HR)
and the branch history pattern table (PT), similar to
those used in the Static Training scheme of Lee and
Smith [13]. In Two-Level Adaptive Training, instead of
accumulating statistics by profiling the programs, the
execution history information on which branch predic-
tions are based is collected by updating the contents of
the history registers and the pattern history bits in the
entries of the pattern table depending on the outcomes
of the branches. The history register is a shift register
which shifts in bits representing the branch results of
the most recent history information. All the history
registers are contained in a history register table (HRT).
The pattern history bits represent the most recent
branch results for the particular contents of the history
register. Branch predictions are made by checking the
pattern history bits in the pattern table entry indexed by
the content of the history register for the particular
branch that is being predicted.
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Since the history register table is indexed by branch
instruction addresses, the history register table is called
a per-address history register table (PHRT). The pattern
table is called a global pattern table, because all the
history registers access the same pattern table.

The structure of Two-Level Adaptive Training
Branch Prediction is shown in Figure 1. The prediction
of a branch Bi is based on the history pattern of the last
outcomes of executing the branch; therefore, k bits are
needed in the history register for each branch to keep
track of the history. If the branch was taken, then a “1”
is recorded; if not, a “0” is recorded. Since there are k
bits in the history register, at most 2k different patterns
appear in the history register. In order to keep track of
the history of the patterns, there are 2k entries in the
pattern table; each entry is indexed by one distinct his-
tory pattern.

When a conditional branch Bi is being predicted,
the contents of its history register, HRi, whose content
is denoted as Ri, c–kRi, c–k+l……Ri, c–1 for the last k out-
comes of executing the branch, is used to address the
pattern table. The pattern history bits Sc in the ad-
dressed entry PTRi,c–kRic–k+1,……Ric–1 in the pattern
table are then used for predicting the branch. The pre-
diction of the branch is

zc = λ(Sc),             (1)

where λ is the prediction decision function.

After the conditional branch is resolved, the out-
come Ri,c is shifted left into the history register HRi in
the least significant bit position and is also used to up-
date the pattern history bits in the pattern table entry
PTRi,c–kRic–k+1,……Ric–1. After being updated, the con-
tent of the history register becomes Ric–k+1Ri,c–

k+2……Ri,c and the state represented by  the pattern
history bits becomes Sc+1. The transition of the pattern
history bits in the pattern table entry is done by the state
transition function δ which takes in the old pattern
history bits and the outcome of the branch as inputs to
generate the new pattern history bits. Therefore, the
new pattern history bits Sc+l become

Sc+l = δ(Sc, Ric)             (2)

A straightforward combinational logic circuit is
used to implement the function δ to update the pattern
history bits in the entries of the pattern table. The tran-
sition function δ, pattern history bits S and the outcome
R of the branch comprise a finite-state machine, which
can be characterized by equations 1 and 2. Since the
prediction is based on the pattern history bits, the finite-
state machine is a Moore machine with the output z
characterized by equation 1.

Figure 1: The structure of the Two-Level Adaptive Training scheme.
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Figure 2: The state transition diagrams of the finite-state machines used for updating the pattern history in
the pattern table entry.

The state transition diagrams of the finite-state ma-
chines used in this study for updating the pattern his-
tory in the pattern table entry are shown in Figure 2.
The automaton Last-Time stores in the pattern history
bit only the outcome of the last execution of the branch
when the history pattern appeared. The next time the
same history pattern appears the prediction will be what
happened last time. Only one bit is needed to store the
pattern history information. The automaton Al records
the results of the last two times the same history pattern
appeared. Only when there is no taken branch recorded,
the next execution of the branch when the history reg-
ister has the same history pattern will be predicted as
not taken; otherwise, the branch will be predicted as
taken. The automaton A2 is a saturating up-down
counter, which is also used, but differently, in Lee and
Smith’s Branch Target Buffer design [13]. The counter
is incremented when the branch is taken and is decre-
mented when the branch is not taken. The next execu-
tion of the branch will be predicted as taken when the
counter value is greater than or equal to two; otherwise,
the branch will be predicted as not taken. Automata
A3and A4 are both similar to A2.

Both Static Training and Two-Level Adaptive
Training are dynamic branch predictors, because their
predictions are based on run-time information, i.e. the
dynamic branch history. The major difference between
these two schemes is that the pattern history informa-
tion in the pattern table changes dynamically in Two-
Level Adaptive Training but is preset in Static Training
from profiling. In Static Training, the input to the pre-
diction decision function, λ, for a given branch history
pattern is determined before execution. Therefore, the

output of λ is determined before execution for a given
branch history pattern. That is, the same branch predic-
tions are made if the same history pattern appears at
different times during execution. Two-Level Adaptive
Training, on the other hand, updates the appropriate
pattern history information with the actual result of
each branch. As a result, given the same branch history
pattern, different pattern history information can be
found in the pattern table; therefore, there can be dif-
ferent inputs to the prediction decision function for
Two-Level Adaptive Training. Predictions of Two-
Level Adaptive Training change adaptively in accor-
dance with the program execution behavior.

Since the pattern history bits change in Two-Level
Adaptive Training, the predictor can adjust to the cur-
rent branch execution behavior of the program to make
proper predictions. With the updates, Two-Level
Adaptive Training can still be highly accurate over
many different programs and data sets. Static Training,
on the contrary, may not predict well if changing data
sets results in different execution behavior.

3. Implementation Methods

3.1 Implementations of the Per-address History
Register Table

It is not feasible to have a big enough history register
table for each static branch to have its own history reg-
ister in real implementations. Therefore, two ap-
proaches are proposed for implementing the Per-
address History Register Table.
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The first approach is to implement the per-address
register table as a set-associative cache. A fixed number
of entries in the table are grouped together as a set.
Within a set, the Least-Recently-Used (LRU) algorithm
is used for replacement. The lower part of a branch
address is used to index into the table and the higher
part is used as a tag which is recorded in the entry allo-
cated for the branch. The per-address history register
table implemented in this way is called the Associative
History Register Table (AHRT). When a conditional
branch is to be predicted, the branch’s entry in the
AHRT is located first. If the branch has an entry in the
AHRT, the contents of the corresponding history reg-
ister is used to address the pattern table. If the branch
does not have an entry in the AHRT, a new entry is
allocated for the branch. There is an extra cost for im-
plementing the tag store in this approach.

The second approach is to implement the history
register table as a hash table. The address of a condi-
tional branch is used for hashing into the table. The
per-address history table using this approach is called
the Hash History Register Table (HHRT). Since colli-
sions can occur when accessing a hash table, this im-
plementation results in more interference in the execu-
tion history. As one would expect, the prediction accu-
racy for this approach is lower than what would be ob-
tained with an AHRT, but the cost of the tag store is
saved.

In this study, the above two practical approaches
and the Ideal History Register Table (IHRT), in which
there is a history register for each static conditional
branch, were simulated for the Two-Level Adaptive
Training Branch Predictor. The AHRT was simulated
with two configurations: 512-entry 4-way set-
associative and 256 entry 4-way set-associative. The
HHRT was also simulated with 512 entries and 256
entries The IHRT simulation data is provided to show
how much accuracy is lost due to the history interfer-
ence in the practical history register table designs.

3.2 Prediction Latency

The Two-Level Adaptive Training Branch Predictor
needs two sequential table lookups to make a predic-
tion. It is hard to squeeze the two lookups into one cy-
cle, which is usually the requirement for a high-
performance processor in determining the next instruc-
tion address. The solution to this problem is to perform
the pattern table lookup with the updated history pat-
tern of a branch at the time the history register is up-
dated, produce a prediction from the pattern table, and
store the prediction as a prediction bit in the history
register table with the history register for the branch.
Therefore, the next time the branch must be predicted,
the prediction is available in the history register table,

and the pattern table does not have to be accessed that
cycle.

Another problem occurs when the prediction of a
branch is required before the result of the previous exe-
cution of the branch has been confirmed. This case
appears very often when a tight loop is being executed
by a deep-pipelined superscalar machine, but not usu-
ally otherwise. Since this kind of branch has a high
tendency to be taken, the branch is predicted taken and
the machine does not have to stall until the previous
branch result is confirmed.

4. Methodology and Simulation Model

Trace-driven simulations were used in this study. A
Motorola 88100 instruction level simulator (ISIM) is
used for generating instruction traces. The instruction
and address traces are fed into the branch prediction
simulator which decodes instructions, predicts
branches, and verifies the predictions with the branch
results to collect statistics for branch prediction accuracy.

The branch instructions in the M88100 instruction
set [4] are classified into four classes: conditional
branches, subroutine return branches, immediate un-
conditional branches, and unconditional branches on
registers. Instructions other than the branches are clas-
sified into the non-branch instruction class.

Conditional branches have to wait for condition
codes in order to decide the branch targets. Subroutine
return branches can be predicted by using a return ad-
dress stack. A return address is pushed onto the stack
when a subroutine is called and is popped as the pre-
diction for the branch target address when a return in-
struction is detected. The return address prediction may
miss when the return address stack overflows. For in-
struction sets without special instructions for returns
from sub-routines, the double stacks scheme proposed
by Kaeli and Emma in [2] is able to perform the return
address prediction. An immediate unconditional
branch’s target address is calculated by adding the off-
set in the instruction to the program counter; therefore,
the target address can be generated immediately. Un-
conditional branches on registers have to wait for the
register value which is the target address to become
ready.

4.1 Description of Traces

Nine benchmarks from the SPEC benchmark suite are
used in this branch prediction study. Five are float-ing
point benchmarks and four are integer benchmarks. The
floating point benchmarks include doduc, fpppp, ma-
trix300, spice2g6 and tomcatv and the integer ones
include eqntott, espresso, gcc, and li. Nasa7 is not in-
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cluded because it takes too long to capture the branch
behavior of all seven kernels. Among the five floating
point benchmarks, matrix300 and tomcatv have repeti-
tive loop execution; thus, a very high prediction accu-
racy is attainable. The integer benchmarks tend to have
many conditional branches and irregular branch be-
havior. Therefore, it is on the integer benchmarks
where the mettle of the branch predictor is tested.

Since this study focuses on the prediction for con-
ditional branches, all benchmarks except fpppp and gcc
were simulated for twenty million conditional branch
instructions. The benchmarks fpppp and gcc finish exe-
cution before twenty millions conditional branches are
executed. The number of dynamic instructions simu-

lated for the benchmarks range from fifty million to 1.8
billion.

The dynamic instruction distribution is shown in
Figure 3. About 24 percent of the dynamic instructions
for the integer benchmarks and about 5 percent of the
dynamic instructions for the floating point benchmarks
are branch instructions.

The distribution of the dynamic branch instructions
is shown in Figure 4. As can be seen from the distribu-
tion, about 80 percent of the dynamic branch instruc-
tions are conditional branches. The conditional branch
is the branch class that should be studied to improve the
prediction accuracy. The number of static conditional
branches in the trace tapes of the benchmarks are listed
in Table 1.

Figure 3: Distribution of dynamic instructions.

Figure 4: Distribution of dynamic branch instructions.
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Table 1: The number of static conditional branches in each benchmark.

Benchmark name Number of Static
Conditional Branches

eqntott 277

gcc 6922

doduc 1149

Matrix300 213

tomcatv 370

espresso 556

li 489

fpppp 653

Spice2g6 606

4.2 SimuIation Model

Several configurations were simulated for the Two-
Level Adaptive Training scheme. For the per-address
history register table (PHRT), two practical implemen-
tations, the associative HRT (AHRT) and the hash
HRT (HHRT), along with the ideal HRT (IHRT) were
simulated. In order to distinguish the different schemes,
the naming convention for the branch prediction
schemes is Scheme(History(Size, Entry_Content), Pat-
tern(Size, Entry_Content), Data). Scheme specifies the
scheme, for example, Two-Level Adaptive Training
(AT), Static Training (ST), or Lee and Smith’s Branch
Target Buffer design (LS). In History(Size, En-
try_Content), History is the implementation for keeping
history information of branches, for example, IHRT,
AHRT, or HHRT. Size specifies the number of entries
in the implementation, and Entry Content specifies the
content in each entry. The content of an entry in the
history register table can be any automaton shown in
Figure 2 or a history register. In Pattern(Size, En-
try_Content), Pattern is the implementation for keeping
history information for history patterns, Size specifies
the number of entries in the implementation, and En-
try_Content specifies the content in each entry. The
content of an entry in the pattern history table can be
any automaton shown in Figure 2. For Lee and Smith’s
Branch Target Buffer designs, the Pattern part is not
included, because there is no pattern history informa-
tion kept in their designs. Data specifies how the data
sets are used. When Data is specified as Same, the
same data set is used for both training and testing.
When Data is specified as Diff, different data sets are

used for training and testing. If Data is not specified,
no training data set is needed for the schemes, as in
Two-Level Adaptive Training schemes or Lee and
Smith’s Branch Target Buffer designs. The configura-
tion and scheme of each simulation model in this study
are listed in Table 2.

Since about 60 percent of branches are taken ac-
cording to our simulation results, the contents of the
history register usually should contain more 1’s than
0’s. Accordingly, all the bits in the history register of
each entry in the HRT are initialized to l’s at the begin-
ning of program execution. During execution, when an
entry is re-allocated to a different static branch, the
history register is not re-initialized.

The pattern history bits in the pattern table entries
are also initialized at the beginning of execution.
Since taken branches are more likely, for those pat-
tern tables using automata, Al, A2, A3, and A4, all
entries are initialized to state 3. For Last-Time, all
entries are initialized to state 1 such that the branches
at the beginning of execution will be more likely to be
predicted taken.

In addition to the Two-Level Adaptive Training
schemes, Lee and Smith’s Static Training schemes and
Branch Target Buffer designs, and some dynamic and
static branch prediction schemes were simulated for
comparison purposes. Lee and Smith’s Static Training
scheme is similar to the Two-Level Adaptive Training
scheme with an IHRT but with the important difference
that the prediction for a given pattern is pre-determined
by profiling. The two practical approaches for the HRT
were also simulated for Static Training with the same
accessing method introduced above.
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Table 2: Configurations of simulated branch predictors.

Model Name Number of
Entries

Entry Content Number of Entries Entry Content

AT (AHRT(256, 12SR),
    PT(212, A2),)

256 12-bit SR 212 ATM A2

AT (AHRT(512, 12SR),

    PT(212, A2),)

512 12-bit SR 212 ATM A2

AT (AHRT(512, 12SR),

    PT(212, A3),)

512 12-bit SR 212 ATM A3

AT (AHRT(512, 12SR),

    PT(212, A4),)

512 12-bit SR 212 ATM A4

AT (AHRT(512, 12SR),

    PT(212, LT),)

512 12-bit SR 212 ATM LT

AT (AHRT(512, 10SR),

    PT(210, A2),)

512 10-bit SR 210 ATM A2

AT (AHRT(512, 8SR),

    PT(28, A2),)

512 8-bit SR 28 ATM A2

AT (AHRT(512, 6SR),

    PT(26, A2),)

512 6-bit SR 26 ATM A2

AT (HHRT(256, 12SR),

    PT(212, A2),)

256 12-bit SR 212 ATM A2

AT (HHRT(512, 12SR),

    PT(212, A2),)

512 12-bit SR 212 ATM A2

AT (IHRT(256, 12SR),

    PT(212, A2),)
∞ 12-bit SR 212 ATM A2

ST (AHRT(512, 12SR),

    PT(212, PB),Same)

512 12-bit SR 212 PB

ST (HHRT(512, 12SR),

    PT(212, PB),Same)

512 12-bit SR 212 PB

ST (IHRT(12SR),

    PT(212, PB),Same)
∞ 12-bit SR 212 PB

ST (AHRT(512, 12SR),

    PT(212, PB),Diff)

512 12-bit SR 212 PB

ST (HHRT(512, 12SR),

    PT(212, 512),Diff)

512 12-bit SR 212 PB

ST (IHRT(12SR),

    PT(212, PB),Diff)
∞ 12-bit SR 212 PB

LS(AHRT(512, A2),,) 512 ATM A2

LS(AHRT(512, LT),,) 512 ATM LT

LS(HHRT(512, A2),,) 512 ATM A2

LS(HHRT(512, LT),,) 512 ATM LT

LS(IHRT(,A2),,) ∞ ATM A2

LS(IHRT(,LT),,) ∞ ATM LT
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Figure 5: Two-Level Adaptive Training schemes using different state transition automata.

Lee and Smith’s Branch Target Buffer designs were
simulated with automata A2, A3, A4, and Last-Time.
The static branch prediction schemes simulated include
the Always Taken, Backward Taken and Forward Not
taken, and a simple profiling scheme. The profiling
scheme is done by counting the frequency of taken and
not-taken for each static branch in the profiling execu-
tion. The predicted direction of a branch is the one the
branch takes most frequently. Since the same data set
was used for profiling and execution in this study, the
prediction accuracy was calculated by taking the ratio of
the sum of the larger number in the two numbers for two
possible directions of every static branch over the total
number of the dynamic conditional branch instructions.

5. Simulation Results

The simulation results presented in this section were
run with the Two-Level Adaptive Raining schemes, the
Static Training Schemes, the Branch Target Buffer
designs, and some static branch prediction schemes.
Figures 5 through 10 show the prediction accuracy
across the nine benchmarks. On the horizontal axis, the
category labeled as “Tot G Mean” shows the geometric
mean across all the benchmarks, “Int G Mean” shows
the geometric mean across all integer benchmarks, and
“FP G Mean” shows the geometric mean across all
floating point benchmarks. The vertical axis shows the
prediction accuracy scaled from 76 percent to 100 per-
cent. This section concludes with a comparison be-
tween different branch prediction schemes.

5.1 Two-Level Adaptive Training

The Two-Level Adaptive Training schemes were
simulated with different state transition automata, dif-
ferent HRT implementations, and different history reg-
ister lengths to show their effects on prediction accu-
racy. The simulations of the Two-Level Adaptive
Training scheme using an IHRT demonstrate the accu-
racy the scheme can achieve without history table miss
effect and is used as a comparison to Lee and Smith’s
Static Training scheme which also uses the ideal history
register table.

5.1.1 Effect of State Transition Automata

Figure 5 shows the efficiency of different state transi-
tion automata. Four state transition automata, A2, A3,
A4, and Last-Time were simulated. A1 is not included,
because early experiments indicated it was inferior to
the other four-state automata, A2, A3, and A4. The
scheme using Last-Time performs about l percent worse
than the ones using the other automata which achieve
similar accuracy around 97 percent. The four-state fi-
nite-state machines maintain more history information
than the Last Time which only records what happened
last time; A2, A3, and A4 are therefore more tolerant to
noise in the execution history.

In order to show the curves clearly in the following
figures, each scheme is shown with the state transition
automata A2 which usually performs the best among the
state transition automata used in this study.
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5.1.2 Effect of History Register Table Implementation

Figure 6 shows the effects of the HRT implementations
on the prediction accuracy of the Two-level Adaptive
Training schemes. Every scheme in the graph was
simulated with the same history register length. With
the equivalent history register length, the IHRT scheme
performs the best, the 512-entry AHRT scheme the
second, the 512-entry HHRT scheme the third, the 256-
entry AHRT scheme the fourth and the 256-entry
HHRT scheme the worst, in the decreasing order of the
HRT hit ratio. This is due to the increasing interference
in the branch history as the hit ratio decreases.

5.1.3 Effect of History Register Length

Figure 7 shows the effect of history register length on
the prediction accuracy of Two-Level Adaptive Train-
ing schemes. The Two-Level Adaptive Training
schemes using four different history register lengths
were simulated. The accuracy increases for about 0.5
percent by lengthening the history registers for 2 bits.
According to the simulation results, increasing the his-
tory register length often improves the prediction accu-
racy until the accuracy asymptote is reached.

5.2 Static Training

Static Training Branch Prediction examines the history
pattern of the last n executions of a branch and the sta-

tistics gathered from profiling the program with a
training data set to calculate the probabilities the
branch will be taken or not-taken with the given history
pattern to predict the branch path.

Although the accounting required to gather the
training statistics can be done in software, the Static
Training scheme needs to keep track of the execution
history of every static branch in the program, which
requires hardware support. History registers must be
used to keep track of the branch execution history of
each static branch during run-time. When a branch is
being predicted, its recorded history pattern is used to
index the branch pattern table which contains preset
branch prediction information. The preset prediction bit
is then used for predicting the branch. Because the
number of static branches varies from one program to
another, the number of history registers required
changes, which requires the hardware to offer a big
enough table like IHRT to hold all the static branches
in the programs. In order to consider the effects of
practical implementations, in addition to the IHRT, the
two practical HRT implementations used in this study
were simulated with the Static Training schemes. The
cost to implement Static Training is not any less expen-
sive than for Two-Level Adaptive Training, because
the history register table and pattern table required by
both schemes are similar. However, the state transition
logic in the pattern table is simpler for the Static
Training scheme.

Figure 6: Two-Level Adaptive Training schemes using different history register table implementations.
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Figure 7: Two-Level Adaptive Training schemes using history registers of different lengths.

In order to show the effects of the training data sets,
the simulation results for the schemes (with Same in
their names) which were trained and tested on the same
data set and those for the schemes (with Diff in their
names) which were trained and tested on different data
sets are both presented. All the testing data sets are the
same as those used by other schemes in order for a fair
comparison. In the schemes which were trained and
executed on the same data set, the results are the best

the Static Training schemes can achieve with that data
set, because the best predictions for branches are
known beforehand.

Five of nine benchmarks were trained with other
applicable data sets. The other four benchmarks, eqn-
tott, matrix300, fpppp, and tomcatv, are excluded be-
cause there are no other applicable data sets or the ap-
plicable data sets are too similar to each other. The data
sets used in training and testing are shown in Table 3.

Table 3: Training and testing data sets of each benchmark.

Benchmark Name Training Data Set Testing Data Set
Eqntott NA Int_pri_3.eqn

Espresso Cps Bca

Gcc Cexp.i Dbxout.i

Li Tower of hanoi Eight queens

Doduc Tiny doducin Doducin

Fpppp NA Natoms

Matrix300 NA NA

Spice2g6 Short greycode.in Greycode.in

tomcatv NA NA
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The Static Training schemes with similar configu-
rations to the Two-Level Adaptive Training schemes in
Figure 6 are shown in Figure 8. The highest prediction
accuracy of the schemes using the same data set for
training and execution is about 97 percent. This is
achieved by the Static Training scheme using 12 bit
history registers and an IHRT. The accuracy is about
the same as that achieved by the Two-Level Adaptive
Training scheme using 12 bit history registers and a
512-entry 4-way AHRT. However, when different data
sets are used for training and execution, the prediction
accuracy for gcc and espresso is about 1 percent lower
respectively. The drop in the accuracy for li is more
significant. It is about 5 percent lower. For the floating
point benchmarks, the degradations are not so apparent
due to the regular branch behavior of the programs.
The degradations are within 0.5 percent. Since the data
for the Static Training Schemes using different data sets
for training and testing is not complete, the average
accuracy for the schemes is not graphed.

5.3 Other Schemes

Figure 9 shows the simulation results of Lee and
Smith’s Branch Target Buffer designs, Backward
Taken and Forward Not taken (BTFN), Always Taken,

and the profiling scheme. The Branch Target Buffer
designs were simulated with automata, A1, A2, A3, A4,
and Last-Time. Only the results of the designs using A2
and Last-Time are shown in the figure, because the re-
sults of the designs using A3 and A4 are similar to those
of the designs using A2. The designs using A1 predict
about 2 to 3 percent lower than those using A2. Three
buffer configurations, similar to IHRT, AHRT, and
HHRT, were simulated. Using an IHRT in those
schemes sets the upper bound at 93 percent for the
same schemes with practical HRT implementations.
Using Last-Time is about 4 percent lower than using
A2.

BTFN and Always Taken predict poorly compared
to the other schemes. Some of the data points fall below
76 percent.

The Backward Taken and Forward Not taken
scheme (BTFN) is effective for the loop-bound bench-
marks like matrix300 and tomcatv but not for other
benchmarks. For the loop-bound benchmarks, the pre-
diction accuracy is as high as 98 percent. However, for
the other benchmarks, its accuracy is often lower than
70 percent. The average accuracy is approximately 69
percent.

The accuracy of the Always Taken scheme changes
quite markedly from one benchmark to another. Its av-
erage is about 60 percent.

Figure 8: Prediction accuracy of Static Training schemes.
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Figure 9: Prediction accuracy of Branch Target Buffer designs, BTFN, Always Taken, and the Profiling
scheme.

Figure 10: Comparison of branch prediction schemes

The simple profiling scheme simulated here is to
run the program once to accumulate the statistics of
how many times the branch is taken and how many
times the branch is not taken for each branch. The pre-
diction bit in the opcode of the branch is set or cleared
depending on whether the taken branch count is larger
than the not-taken branch count or not. The run-time
prediction of the branch is made according to the pre-
diction bit. The average of this scheme is about 92.5
percent. This scheme is fairly simple but at the cost of
profiling and low prediction accuracy.

5.4 Comparison of Schemes

Figure 10 illustrates the comparison between the
schemes mentioned above. The 512-entry 4-way AHRT
was chosen for all the uses of HRT, because it is simple
enough to be implemented. Two-Level Adaptive and
Static training schemes are chosen on the basis of
similar costs. At the top is the Two-Level Adaptive
Training scheme whose average prediction accuracy is
about 97 percent. As can be seen from the graph, the
Static Training scheme predicts about 1 to 5 percent
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lower than the top curve. The profiling scheme predicts
almost as well as Lee and Smith’s Branch Target
Buffer design with accuracy around 92.5 percent. The
scheme which predicts a branch with the last result of
the execution of the branch achieves about 89 percent
accuracy.

6. Concluding Remarks

This paper proposes a new branch predictor, Two-
Level Adaptive Training. The scheme predicts a branch
by examining the history of the last n branches and the
branch behavior for the last s occurrences of that
unique pattern of the last n branches.

The Two-Level Adaptive Training schemes were
simulated with three HRT configurations: the IHRT
which is an ideal history register table large enough to
hold all static branches, the AHRT which is a set-
associative cache, and the HHRT which is a hash table.
The IHRT data was included to obtain upper bounds
for each of the other schemes. A scheme using an
AHRT usually has higher prediction accuracy than the
same scheme using an HHRT of the same size, because
the AHRT has lower miss rate than the HHRT.

Each Two-Level Adaptive Training scheme was
simulated with various history register lengths. As seen
from the simulation results, prediction accuracy is usu-
ally improved by lengthening the history register.

In addition to the Two-Level Adaptive Training
scheme, several other dynamic or static branch predic-
tion schemes such as Lee and Smith’s Static Training
schemes, Branch Target Buffer designs, Always Taken,
Backward Taken and Forward Not taken, and a simple
profiling scheme were simulated.

The Two-Level Adaptive Training scheme has been
shown to have an average prediction accuracy of 97
percent on nine benchmarks from the SPEC benchmark
suite. The prediction accuracy is about 4 percent better
than most of the other static or dynamic branch predic-
tion schemes, which means more than a 100 percent
reduction in the number of pipeline flushes required.
Since a prediction miss causes flushing of the specula-
tive execution already in progress, the performance
improvement on a high-performance processor can be
considerable by using the Two-Level Adaptive Train-
ing scheme.

Deep-pipelining and superscalar execution are ef-
fective methods for exploiting instruction level paral-
lelism to improve single processor performance. This
effectiveness, however, depends critically on the accu-
racy of a good branch predictor. Two-Level Adaptive

Training Branch Prediction is proposed as a way to
support high performance processors by minimizing the
penalty associated with mispredicted branches.
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