
An Automatic Testbench Generation Tool for a SystemC
Functional Verification Methodology

Karina R. G. da Silva
Universidade Federal de

Campina Grande
Aprigio Veloso Avenue, 882,

Bodocongo
Campina Grande - PB

Brasil
KarinarochaQdee .ufcg.edu.br

Elmar U. K. Melcher
Universidade Federal de

Aprigio Veloso Avenue, 882,

Guido Araujo
Universidade Estadual de

Albert Einstein Avenue, 1251
Campina Grande Campinas

Bodocongo Carnpinas - SP
Campina Grande - PB Brasil

Brasil guidoQic.unicamp.hr
elmarQdsc. ufcg.edu.br

ABSTRACT sian verification. Although they have some useful hardware

The advent of new 90nm/130nm VLSI technology and SoC
design methodologies, has brought an explosive growth in
the complexity of modern electronic circuits. As a result,
functional verification has become the major bottleneck in
any design flow. New methods are required that allow for
easier, quicker and more reusable verification. In this pa-
per we propose an automatic verification methodology a p
proach that enables fast, transaction-level, coverage-driven,
self-checking and random-constraint functional verification.
Our approach uses the SystemC Verification Library (SCV),
to synthesize a tool capable of automatically generating test-
bench templates. A case study from a real MP3 design is
used to show the effectiveness of our approach.
Categories and Subject Descriptors: B.7.3 [Integrated
Circuits]: Reliability and Testing
Genera l Terms: Verification.
Keywords:SystemC, SCV, VeriSC, Brazilip, tool.

1. INTRODUCTION
The most difficult challenge in the design of any system is

to make sure that the final implementation is free of imple-
mentation flaws [Z]. The goal of functional verification is to
verify all functionalities of the design and to assure that it
behaves according to the specification. To do this, one must
create the design environment, by means of a testbench,
that is capable of generating input data, while monitoring
the design output against the output of a given reference
model. Verification can consume over 70% of the overall
design effort [l], and thus, tools that can quickly create ef-
ficient testbenchs are in great demand.

Some well established hardware description languages, like
VHDL and VERILOG, are sometimes also used to do de-

Permission to make digital or hard copies of all or part of this work for
personal or dassrwm use is granted without fee provided h a t copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, IO posl on scwers or to redistribute to lists, requires prior specific
permission and/or a fee.
SBCCI'M, September 7-1 I, 2oM, Pemambuco, Brazil.
Copyfight 2004 ACM 1-58113-947-0/C4/~9 ... $5.00.

- -
programming constructs, they lack major functional veri-
fication capabilities like constrained randomization, func-
tional coverage and transaction recording. On the other
hand, programming languages like C, C++: and Java, al-
low high-level abstraction constructs, but do not have the
mechanisms to account for parallelism and timing which are
required for hardware description. In order to close this
gap, some specialized verification languages have been cre-
ated like Verisity, OpenVera and the SysteniC Verification .~
Library (SCV).

Historicallv. several methodoloaies have been used for func-
tional verification[7][8], but theylack generality and ease of
use. There are currently (circa April 2004) no tools that
are complete and generic enough to solve this problem [l].
For this reason, a lot of effort has been concentrated on the
research of this problem.

The methodology proposed in this paper creates a Sys-
temC based object oriented environment to perform veri-
fication. Many reuse methodologies are based on object-
orientation[6]. In [4] the authors describe an approach that
uses constraint solving to generate input vectors through a
finite state machine. The machine produces all possible in-
puts to a specific Device Under Verification (DUV). In [5] the
authors propose a methodology and a tool to do transaction-
based functional coverage. Most tools cover some aspect of
verification or are specific to some kind of DUV.

In this paper we propose a new methodology, that aut-
matically creates a DUV-specific template testbench. The
methodology intends to be generic and covers all kinds of
synchronous DUV. Our methodology is implemented in
VeriSC, a tool that performs automatic testbench genera-
tion. VeriSC uses SystemC and the SystemC Verification Li-
brary(SCV) to create a random-constraint, coverage-driven,
self-checking and transaction-based testbench template. A
case study from a real MP3 design is used to show the ef-
fectiveness of our approach.

The remainder of this paper is organized as follows. In
section 2 we explain the proposed methodology. Section
3 describes the implementation from VeriSC. In section 4
we show a functional verification application example (MP3
design), followed by the conclusion in 5 .

66

-
C
H
E

R 0 K
I N E
V I
E -
R -

REFERENCE MODEL
S
0
U
R
C
E +

- 1
M C D

A - -
P

2. THE METHODOLOGY
An important problem in design verification is the need

to adapt the testbench to the DUV. With our methodology,
the verification engineer can use the testbench generation
tool to make such adaptation. Other interesting aspect of
this methodology is that the Reference Model (RM) can be
written in virtually any high-level language, making i t sim-
ple and easier to maintain. However, the method proposed
can not be applied to reference models written in a non-
executable description (e.g. natural language).

Our methodology proposes to create a testbench com-
posed of source, driver, monitor, reference model and checker
modules as shown in Figurel. Input data is fed into the
DUV and the RM, and the outputs of both are collected
to see if they are equivalent. The purpose of each module
inside the functional verification methodology is explained
next subsections.

We have been created a tool that automatize the test-
bench implementation. This tool follows the methodology
showed in this section.

2.1 VeriSC
VeriSC implements the methodology proposed and aut*

matically creates a template testbench according to the par-
ticular characteristics of the DUV. It creates all testbench
modules: source, driver, monitor, reference model, checker
and all FIFOs that connect these modules. The tool is also
responsible for connecting the specific DUV. The template
is created automatically by analyzing the DUV input and
output ports and the SystemC descriptions of the transac-
tion level structures. The transaction level structures must
contain all information about the semantics of the relevant
data that are communicating with the DUV.

VeriSC offers enhanced productivity to verification engi-
neers by reducing the design time spent in creating test-
benches. The resulting testbench templates are compact,
easy to understand and guaranteed to compile and simulate
without run time errors or hang ups. The next subsection
describes VeriSC implementation details.

2.2 Automatic Template Generation
The VeriSC tool generates all templates of the testbench's

modules according to the DUV. Signal handshake, func-
tional coverage metrics and input value distributions must
be implemented by the verification engineer.

For the sake of clarity a simple adder will be used as an

I/ interface in input
S t N d add-input
(int a;

int b:
);
inline ostreama operator <4 (ostreamL os, wnst add-input& arg)(

os << "a=" cc aq.a<< "b=" cc aq.b;
return os;

1
I / interface out output
struct add-output
(int s;

inline bwl operator == (const add_output& arg) const (

I
return((s== ar0.s));

1;
inline asveama operator cc (0stream.S os. const add-output& arg)(

os << '"S'.' << a q s ;
return os:

)

Figure 3: Transaction-level structure

example. The generated testhench, with the DUV and the
RM is shown in Figure 2.

A parsing phase produces all the necessary information to
construct the driver and checker ports and the FIFOs and to
connect the DUV to the testbench. This phase also reads the
specific transaction level structures given by the verification
engineer. The drivers and monitors are generated straight
from the transaction description file. The tool generates
one driver for each input interface and one monitor for each
output interface. Figure 3 shows our example transaction
level structure.

The source module is created as an SCV class that inputs
transaction level data into the DUV, see example in Figure
4. VeriSC creates one input class t o each input interface
that communicates with the DUV through FIFOs.

The Driver is responsible for transforming transaction-
level data to handshake signals and pass for the DUV. There
is one driver for each input interface of the DUV.

The implementation of the specific handshaking protocol
for the DUV has to be done by the verification engineer using
behavioral SystemC. The driver records each transaction for
visualization.

The monitor is responsible for receiving the DUV's signals
and transforming them into transaction level data. For the

67

S

void PO (
while (1) (
inputgtr = input_stimule.read();
outputjtr = new add_output();
outputjlr->s = inputgtr->a + inputgtr->b;

delete inputgfr;
- o"tp"t_answerwnte(o"lp"ljl~); d

>

R
C
E

D
R
I
V
E
R

SC_MODULE(adderK
sc_in cinP inputLa, input-b:
SC_OU~ cints outpulLs:
void add(X

'SC_CTOR(adder)(

outputLs= InputLa + input-b;

SC-METHOD(add);
sensitive <c inputLa << input-b;

) t 1;

C
H
E
C

M K
O E

* I + R N

T
0
R - I

Figure 2: Adder ' s t e s tbench gene ra t ed

class input-constraint-class: public scv-constraint-base {
scv-bagcinb a-distrib;
scv-bagcinb b-distrib;
public:

scv-srnart-ptr-=add-input> add-input-sptr;
SCV_CONSTRAINT-CTOR(input-constraint-class) {

a-distrib.push(0, 50);
a-distrib.push(1. 50);
b-distrib.push(0, 50):
b distrib.Dush(1. 501:

class input-constraint-class: public scv-constraint-base {
scv-bagcinb a-distrib;
scv-bagcinb b-distrib;
ouhlic r-- -

scv-srnart-ptr-=add-input> add-input-sptr.
SCV_CONSTRAINT-CTOR(input-constraint-class) {

a-distrib.push(0, 50);
a-distrib.push(1. 50);
b-distrib.push(0, 50):
b distrib.Dush(1. 501: . . .
aid- npdl_sptr->a set-rnode(a-oislr b),
ada_inpLl_splr->Q set-rnoae(b-aistr~b)

Figure 4: gene ra t ed Source module

structure shown in Figure 3, with only one output interface,
one monitor was generated. The monitor puts the data into
a FIFO and passes them to the checker module.

The Checker module is responsible for functional cover-
age. Coverage is a measurement indicating what functional-
ities of the DUV have been tested during a simulation run.
By specifying quantitative values for the desired coverage
the verification engineer can determine when verification is
finished. It uses the bve-cover class (BVE = Brazil-IP Veri-
fication Extensions), which is part of the methodology pro-
posed in this paper, see In Figure5, for an example. That
class is a In-house creation to be used in our methodology.
The Verification Engineering must specify in this class, what
functional characteristics must be verified, i.e. what cover
criterions must be reached by the Verification. In example
from Figure 5 we show a cover criterion that only permit to
stop the simulation after the sum reach 10 times the number
1, 10 times the number 0 and 10 times the number 2.

The hve-cover class contains a optional progress bars which
allow the verification engineer to monitor verification progres:
during the simulation run.

output-checker-cv.begin();
EVE-COVER-COND(output-checker-cv, 1, IO);
BVE-COVER-COND(output-checker-cv, 0, IO) ;
BVE-COVER-COND(output-checker-cv, 2, IO);

output-checker-cv.end();

Figure 5: Funct ional Cover

The checker is also reponsible for self-checking capability
by comparing the results coming from reference model and
monitor. This comparison is done at the transaction-level,

FIFO(s) and sends data to the Checker through FIFO(s).
All data in the Reference Model are transactionJeve1. The
tool generates the required FIFOs and connects them. The
functionality from Reference Model must be implemented
by the verification engineering. Any compiled object code
that can be linked into C++ can be used as reference model.
Input transaction data is used as arguments to subroutine
or method calls and the output transactions receive their
data from the results. Depending on the operating systems
used to run the simulator, IPC (inter process call) or RPC
(remote procedure call) can also be used to run the reference
model.

3. IMPLEMENTATION DETAILS
We have implemented our tool using the SystemC library

and SCV. SystemC is based on the C++ programming lan-
guage and thus it considerably simplifies the creation of a
high level environment. On the top of C++ SystemC adds
such important concepts as concurrence, events and hard-
ware data types to enable efficient designs. The SCV library
improves SystemC capability by providing APIs for trans-
action based verification, constrained and weighted random-
ization, exception handling and other verification features.

The Reference Model receives data from the Source through

68

D e c o d i n g and :
MP3 Input : CRC Requantization :
Stream

Figure 6: MP3 blocks schema

Furthermore, SCV permits transaction level programming,
a methodology that enables a high-level abstraction, reuti-
lization and simulation speedup.

It is well known that providing the design with random-
ized input data is a very good technique to test the func-
tionality of the design [l]. This comes from the fact that
even the rare input cases can be simulated with constrained
randomization, leading to a verification coverage that is dif-
ficult to obtain by using directly specified inputs. Moreover,
in order to verify all states of the design it is required that
every important functiouality has been tested during sim-
ulation. To do this, a functional coverage mechanism is
provided that monitors the progress of the verification p r ~
cess. With functional coverage monitoring one knows, at
any moment, which percentage of a specified full coverage
has already been achieved.

4. APPLICATION EXAMPLE
Our test case DUV is an MP3 decoder implementation,

which is part of the BrazilIP project[9]. The entire MP3
decoder project was verified using VeriSC, see Figure 6 . We
have choosen the window function to show the testhench
produced by VeriSC.

The window function is responsible for generating audio
data (PCM) from subband samples. The reference model
used is from the Lihmad library that follows the I S 0 stan-
dard and is open source code with GPL licence.

The next subsection describes the MP3 functional verifi-
cation steps and points out the most relevant design errors
found by the testbench.

4.1 Verification of Window module
The Window function's environment has only two inter-

faces, an input and an output interface. The source uses
floating point to provide random input data to the module.
Input data was generated as sets of data pairs with a preci-
sion of up to the 9th decimal digit. Random input was cre-
ated by using the SCV library's class SCV-CONSTRAINT,
with SCVBAG. Handshake to do the interfaces driver-DUV
and DUV-monitor was also implemented.

To make the comparison between the Reference Model
results and DUV results at the Checker Module, the Root

Mean Square method (RMS), was used:

where n is the samples number, x is the reference samples
and y is the resulting samples of our module decodification.
A function in the Checker was created that permits the com-
parison between the module outputs. According I S 0 stan-
dards, the RMS must not be higher than g, fnrthermore
Ixk ~ yk1 it must not be higher than Z-14. Through this
function we could verify if the window outputs were within
specifications.

4.2 Results
The verification found three major design errors that were

not found during the preliminary simulation which did not
use the proposed methodology. The list of relevant mistakes
is shown below:

1 In the Finite State Machine (FSM): the reset state was
not reinitializing the nt[2][512] vector to zero.

2 The first 15 output blocks caused errors when the reset
signal is raised;

3 The module decoded correctly only stereophonic data,
but was not capable to decode monophonic data cor-
rectly.

Notice that subtle design errors, like error 3 above, could
hardly be captured if only simulation or standard verifica-
tion procedures were used.

By using the VeriSC tool the three designers of the MP3
could considerably speedup the verification of the MP3 de-
sign, cutting in half the design time. All errors have been
corrected. Verification was repeated and it could not find
any more mistakes.

69

5. CONCLUSION
Verification engineers must employ tools that allow them

t o do easier, quicker and more reliable functional verifica-
tion.

In this paper, we propose a new methodology that allows
transaction-level, coverage-driven, self-checking and random-
constraint functional verification. We have shown a tool,
based on SystemC and SCV, that implements this method-
ology. Furthermore we presented the verification of an MP3
module and showed that, by using the VeriSC tool, the de-
signers could capture very hard design errors, considerably
reducing the design time.

6. ADDITIONAL AUTHORS
Additional authors:Valdiney Alves Pimenta(Universidade

Estadual de Campinas. Albert Einstein Avenue, 125. Camp-
inas - SP, Brasil. Email: ra005055Qic.unicamp.br).

7. REFERENCES
[1] BERGERON, J., Functional Verification of HDL

models, Kluwer Academic Publishers, Second
Edition, 2002.

System-on-a-chip Verification: Methodology €4
Techniques, Kluwer Academic Publishers,
February, 2001.

(21 Rashinkar, P., Paterson, P., Singh, L.,

[3] Bhasker, J., A SystemC Primer, Star Galaxy

[4] FERRANDI, F., RENDINI, M., SCIUTO, D.,
Publishing, 2002.

Functional Verification for SystemC Descriptions
using Constraint solving, Automation and Test in
Europe Conference and Exhibition (DATEOZ),
p.0704, Paris, March,2002.

[5] REGIMBAL, S., LEMIRE, J.-F., SAVARIA, Y.,
BOIS, G., ABOULHAMID, M., BARON, A.,
Automating Functional Covemge Analysis Based
On An Executable Specification, Proc. of the
International Workshop on System-on-Chip for
Real-Time Applications, Calgary, June,2003.

[6] DRUCKER,L., SystemC Verification Libmry
speeds transaction-based verification, D&R
Industry Articles,EEdesign, EEtimes,Fehruary,
2003.

[7] FOURNIER, L., ARBETMAN, y., LEVINGER,
M., Functional Verification Methodology for
Microprocessors Using the Genesys Test-Program
Genemtor,Design, Automation and Test in Europe
(DATE '99), p.434, Munich, March 09, 1999.

Functional Verification Methodology for PowerPC
604 Microprocessor,33rd Design Automation
Conference, DAC 96, Las Vegas.

[E] MONACO, J., HOLLOWAY, D., RAINA, R.,

[9] http://www.brazilip.org

70

http://www.brazilip.org

