
© 2002, Cadence Design Systems, Inc.

Using Transaction-Based Verification in SystemC

June 2002, Cadence Design Systems, Inc.

Keywords : Functional Verification, System-Level
Verification, C++, TestBuilder, SystemC, TestBuilder-SC

Abstract
SystemC is a new modeling language based on C++ for

hardware and system-level design modeling. This paper
examines how a basic transaction-based test bench may be
created in the SystemC version 2.0 standard. An example
with a pipelined bus interface is presented to illustrate what
can be done easily with the latest SystemC version 2.0
distribution [1].

The TestBuilder team is currently creating a
TestBuilder-SC library to fill in several missing pieces in
SystemC 2.0, in order to support advanced transaction-
based verification in a real design development process.
While TestBuilder [3] was designed for direct connection to
an HDL simulator, TestBuilder-SC acts as a verification
layer on top of SystemC. The API in TestBuilder-SC has
been proposed to the SystemC’s verification working group
to be adopted as a standard.

1. Introduction
Recently SystemC has released version 2.0 that is

capable of capturing System-Level Designs. Together with
the basic facilities in version 1.0, it seems that we may be
able to complete a design from System-Level down to RTL
level in a seamless flow.

However, one important element in creating a product is
verification. Does the current SystemC standard contain
enough features for an effective functional validation of a
real design?

In order to answer this question, we have gone through
the exercise of creating a transaction-based test bench for a
simple design with a pipelined bus. While we were able to
create a basic transaction-based test bench using the current
SystemC 2.0 standard, we have also identified several
aspects that are not convenient or effective in supporting a
realistic verification effort.

This paper reviews the design and the test benches that
we used to evaluate a SystemC-based verification
environment. After the review of this system, we describe
the missing verification aspects, and how the existing
TestBuilder concepts can be adapted into a SystemC

verification layer to address these missing verification
aspects in the current SystemC 2.0 standard.

We have been driving the standardization effort in the
SystemC verification working group, gathering
requirements and feedback from the group members. While
we plan to release a new library called TestBuilder-SC as an
open-source library, we are also submitting this library as a
proposal to the SystemC standard, and our implementation
as the reference implementation.

This paper explains some basic SystemC and
TestBuilder concepts as we describe the design and the
transaction-based test bench. For a more detailed
description of SystemC and TestBuilder concepts, please
check out the papers by Stuart Swan [4] and by Cox et al.
[5].

2. Basic Transaction-Based Test Benches
SystemC 1.0 provides a set of modeling constructs that

are similar to those used for RTL and behavioral modeling
within an HDL such as Verilog or VHDL. Similar to HDLs,
users can construct structural designs in SystemC 1.0 using
modules, ports, and signals. SystemC 2.0 enables modeling
of systems both at and above the RTL level of abstraction. It
introduces a set of features for generalized modeling of
communication and synchronization, using channels,
interfaces, and events [4].

The different levels of abstraction in SystemC 1.0 and
2.0 provide the basis upon which transaction-based test
benches can be created. As shown in Figure 1a, a
transaction-based verification methodology partitions the
system into transaction-level tests, transactors, and the
design. Communication between the tests and the
transactors is done through task invocation, at a level above
the RTL level of abstraction. The communication between
the transactors and the design is done through signal
manipulation at the RTL/Signal level.

Let’s look at a transaction-based test bench for a design
with a pipelined bus interface, shown in Figure 1b. The
complete code can be obtained upon request.

Using abstract methods in C++, the task-based interface
can be declared as:

class rw_task_if : virtual public sc_interface {
public:

typedef sc_uint<64> addr_t;

C. Norris Ip
ip@cadence.com

Stuart Swan
stuart@cadence.com

© 2002, Cadence Design Systems, Inc. 2

typedef sc_uint<64> data_t;
struct write_t {

addr_t addr;
data_t data;

};
virtual data_t read(addr_t *) = 0;
virtual void write(write_t *) = 0;

};
This abstract base class specifies two abstract methods,

read and write, and their related data types, representing the
abstract level in which a test is to be written in. The class
sc_interface is provided by SystemC to facilitate the
creation of such interfaces. The template sc_uint and other
similar templates are provided by SystemC to support data
objects with different bit widths and different operator
semantics.

The communication between the transactor and the
design is captured in another class with signal-level ports:

class pipelined_bus_ports : public sc_module {
public:

sc_in<bool> clk;
sc_inout<bool> rw;
sc_inout<bool> addr_req;
sc_inout<bool> addr_ack;
sc_inout< sc_uint<8> > bus_addr;
sc_inout<bool> data_rdy;

sc_inout< sc_uint<8> > bus_data;
};
The signals in this class represent the RTL-level

interface in which a design under verification communicates
to its environment. The class sc_module is provided by
SystemC to specify a block with ports; and signal ports are
created via the templates sc_in, sc_out, and sc_inout,
indicating a read-only port, a write-only port, and a read-
write port respectively.

A transaction-based verification methodology relies on
transactors to act as the adaptors between the abstract tests
and the concrete design. By capturing these transactors as
reusable IP, new tests with complex concurrent behavior can
be quickly created.

In this example, a transactor is created as a class
deriving from both aforementioned interfaces:

class rw_pipelined_transactor
: public rw_task_if,

public pipelined_bus_ports {
public:

SC_CTOR(rw_pipelined_transactor) {}
virtual data_t read(addr_t *);
virtual void write(write_t *);

private:
fifo_mutex addr_phase;
fifo_mutex data_phase;

};

designtransactortest
signalstasks

Figure 1a : transaction-based verification

Figure 1b : an example with a pipelined bus

rw_task_ifsc_port < rw_task_if >

class test class design

...

clk

data

class rw_pipelined_transactor

pipelined_bus_ports pipelined_bus_ports

a module instance

a C++ base class

port-transactor
binding

a signal

port

an abstract method

© 2002, Cadence Design Systems, Inc. 3

The macro SC_CTOR is provided by SystemC to signify
the constructor of a module. The class fifo_mutex is a mutex
that grant access in a first-come-first-serve manner.

The job of a transactor is to convert a transaction as
modeled by a function call into signal-level communication,
and vice versa. For example, the read method is
implemented as:

data_t rw_pipelined_transactor::read(addr_t * addr) {
addr_phase.lock();
bus_addr = *addr;
addr_req = 1;
wait (addr_ack->posedge_event());
addr_req = 0;
wait (addr_ack->negedge_event());
addr_phase.unlock();

data_phase.lock();
wait (data_rdy->posedge_event());
data_t data = bus_data.read();
wait (data_rdy->negedge_event());
data_phase.lock();

}
This method translates a read transaction into a series of

signals according to the specific protocol at the signal-level
interface. Because a pipelined bus is used, two mutexes,
addr_phase and data_phase, are used for the two phases.
At the beginning of the address phase, the corresponding
mutex is locked so that there is at most one address
communication on the bus at any given time. At the end of
the address phase, the corresponding mutex is unlocked so
that, although the data phase has not finished yet, another
call to this transactor can still start its address phase. The
three methods, posedge_event(), negedge_event(), and
read(), are provided by SystemC to denote a positive edge
transition of a signal, a negative edge transition of a signal,
and the access of the value in a port. The procedure wait() in
SystemC suspends the thread of execution until the event
specified in the argument occurs.

With the detailed protocol abstracted by the transactor, a
test can be written in a form independent of the actual
signal-level interface:

class test : public sc_module {
public:

sc_port< rw_task_if > transactor;
SC_CTOR(test) { SC_THREAD(main); }
void main();

};
void test::main() {

// simple sequential tests
for (int i=0; i<3; i++) {

rw_task_if::addr_t addr = i;

rw_task_if::data_t data = transactor->read(&addr);
cout << "received data : " << data << endl;

}
// simple concurrent tests
rw_task_if::addr_t addr[2]; addr[0] = 0; addr [1] = 1;
rw_task_if::data_t data[2];
SC_FORK

sc_spawn_method(&data[0], transactor[0],
&rw_task_if::read, &addr[0]),

sc_spawn_method(&data[1], transactor[0],
&rw_task_if::read, &addr[1])

SC_JOIN
cout << "received data : " << data[0] << ","

<< data[1] << endl;
}
The first half of the test generates a series of three read

transactions, starting a new one after the previous one has
completed. The second half generates two read transactions
in parallel, so that they exercise the pipeline. The macro
SC_THREAD creates a new thread of execution for the
method main during simulation. The sc_spawn_method
function is similar to create in pthread, creating a new C++
thread and executing the method specified in the third
argument for the object in the second argument. The first
argument is the object to store the return value, and the last
argument is the argument to the method.

The constructs, SC_FORK, and SC_JOIN, together with
sc_spawn_method, are dynamic spawning enhancements
proposed to SystemC and their implementation is
distributed as an example in the SystemC 2.0 distribution
kit.

It is important to note that the port of this test has the
rw_task_if interface as the template argument. Because of
this, the test can be reused with other designs with a
different bus interface, by plugging in a appropriate
transactor.

To complete the example, the code for the design and
the netlist is shown below:

class design : public pipelined_bus_ports {
public:

SC_CTOR(design) {
...
SC_THREAD(addr_phase);
SC_THREAD(data_phase);

}
void addr_phase() { while (1) ... }
void data_phase() { while (1) ... }

private:
...

};

© 2002, Cadence Design Systems, Inc. 4

int sc_main(int argc, char *argv[]) {
...
// the static structures in this simulation
test t ("t"); // the test
rw_pipelined_transactor tr ("tr"); // the transactor
design duv ("duv"); // the design under verification
sc_clock clk ("clk",20,0.5,0,true); // a clock

// the signals to connect the static data structures
sc_signal < bool > rw;
sc_signal < bool > addr_req;
...

// connecting the signals and transactors to
// the ports of the modules
t.transactor = tr;
tr (clk.signal(), rw, addr_req, ...);
duv (clk.signal(), rw, addr_req, ...);

// start simulation
sc_start(10000);
...

}
The design implementation contains the same set of

signals for the pipelined interface, with two C++ threads to
respond to the two phases of the pipeline.

This example illustrates a preferred style for transaction-
based verification in SystemC. In the remainder of this
paper, we will discuss how to use TestBuilder-SC to extend
this example for a more effective verification effort.

3. Advanced Transaction-Based Test Benches
Although existing SystemC features are sufficient for

creating a basic test bench, there are still many missing
pieces that are necessary for an effective verification effort.
These include:
• constrained randomization for effective generation of

random stimulus.
• creation of a event and transaction database for effective

debugging and coverage analysis.
• complex synchronization and assertions for effective

coordination among concurrent tests and detection of
illegal behaviors.

• infrastructure and scripts for interaction with HDL
simulators and other tools.

TestBuilder was developed to address similar issues in
verification for HDL simulators such as NC-Sim. However,
because it was developed independent of SystemC,

TestBuilder and SystemC do not operate together
seamlessly.

In September 2001, a prototype for connecting
TestBuilder 1.2 and SystemC was made available in
www.testbuilder.net. While it is in general very useful to our
customers, the translations between data types and events
are not very efficient. Some functionality is duplicated in
both libraries with different APIs and use models; this could
lead to confusion and deepen the learning curve.

As a result, the TestBuilder team has started a project to
create another version of TestBuilder directly on top of
SystemC. It is called TestBuilder-SC and is designed to
have the same look and feel of SystemC, but fill in the hole
so that our customers would be able to perform transaction-
based verification with linkage to analysis tools offered by
Cadence.

Using our experience in developing TestBuilder, and
customer feedback on the use models of TestBuilder and
SystemC, the TestBuilder team was able to design the
interface for TestBuilder-SC in a relatively short amount of
time, and is in the processing of implementing an open-
source library for external distribution.

3.1 TestBuilder-SC
Taking the pipelined bus design as an example, let’s

discuss how TestBuilder-SC would be able to improve the
verification process.

Handling arbitrary data types.
TestBuilder-SC contains a data introspection facility to

analyze third-party data types and user-specified composite
types.

For example, the rw_task_if interface uses a SystemC
data class sc_uint<64> and a composite type write_t. We
would like to extract information from these types and
manipulate them without asking the user to modify the
source code.

The data introspection facility uses partial specialization
of templates to analyze a data type. Two templates are
developed for this purpose:

template<typename T> class tb_extensions;
template<typename T> class tb_smart_ptr;
The tb_extensions template extends arbitrary data types

to have a standard access interface, called tb_extensions_if.
This standard access interface allows a piece of code to
extract type information, perform value access and value
assignment to a variable without requiring the code to have
explicit type information at compile time.

The tb_smart_ptr template extends the arbitrary data
type to have extra storage for callback registration,
randomization, and other purposes.

This facility can be considered as a C++ version of the
Verilog PLI standard. The ability to handle arbitrary data
types enables the import of legacy code and facilitates the
reuse of the same code for multiple libraries. It is a crucial

© 2002, Cadence Design Systems, Inc. 5

basic building block for constrained randomization, variable
recording, and transaction attribute recording.

Constrained randomization.
Constrained random tests are an important element in a

state-of-the-art verification environment. Using the data
introspection facility discussed previously, TestBuilder-SC
supports constrained randomization on arbitrary data types.
For example, random write requests for our
rw_pipelined_transactor transactor can be generated by:

tb_smart_ptr < rw_task_if::write_t > write;
for (int i=0; i<3; i++) {

write->next(); // generate a random value
transactor->write(&write);
cout << "send data : " << write->data << endl;

}
The tb_smart_ptr template is designed to have very

similar use model as a C/C++ pointer. Fields and methods
are accessed by the overloaded operator->. The next()
method generates a new random value, and the field access
returns the value of the data field to cout.

Expressions and constraints can be created using
tb_smart_ptr as well. For example, the following code
specifies an address range and a relationship between the
address and the data:

class write_constraint : public tb_constraint_base {
public:

tb_smart_ptr< rw_task_if::write_t > write;
TB_CTOR(write_constraint) {

TB_CONSTRAINT(write->addr() < 0x00FF);
TB_CONSTRAINT(write->addr() != write->data());

}
};
This constraint creates two Boolean expressions

regarding the fields of the variable write. TestBuilder-SC
first translates these expressions to Binary Decision
Diagrams (BDDs), and then generates only values that
satisfy these expressions.

Creation of a event and transaction database.
SystemC can be viewed as a hybrid language which

contains elements of both procedural and hardware
description languages. While the procedural portions of a
SystemC description can be analyzed and debugged using a
typical C++ debugger, the hardware aspects are best
analyzed and debugged using a waveform tools.

For example, the activities in the pipelined bus can be
captured in a series of transactions as shown in the
following figure.

This diagram succinctly displays the activities in terms
of transactions, with three non-overlapping back-to-back
reads and two overlapping reads. The related address and
data values are displayed in the corresponding child-
transactions in the address phase and data phase.

Furthermore, a coverage tool may generate a report that
five read transactions have been executed, with one
occurrence of simultaneous activities on both the address
bus and the data bus.

A TestBuilder-SC test bench for SystemC can generate a
database from which these tools can extract the relevant
information. A transaction is generated through the concept
of a fiber, with each fiber corresponding to a line in the
waveform display. For example,

addr_phase.lock();

tb_tr::transaction_type<rw_task_if::addr_t>
addr_phase_handler("addr phase", addr_phase_fiber);

tb_tr::transaction h =
addr_phase_handler.begin_transaction(*addr);

bus_addr = *addr;
addr_req = 1;
wait (addr_ack->posedge_event());
addr_req = 0;
wait (addr_ack->negedge_event());
addr_phase.unlock();

addr_phase_handler.end_transaction(h);

Three lines of code (shown in italics) are added to the
address phase in rw_pipelined_transactor::read() to capture
the address phase of a read transaction. The first line creates
a addr phase transaction type in the fiber addr_phase_fiber.
The second line begins a transaction via the
begin_transaction() method, and the third line ends a
transaction via the end_transaction() method. The value in
variable addr is added in the beginning of the transaction as
an attribute. The attribute type, specified in the parameter of
the template tb_tr::transaction_type, can be any arbitrary
data type. The implementation of begin_transaction() uses

read read read read

read

a a a a a

ddddd

bus

addr_phase

data_phase

© 2002, Cadence Design Systems, Inc. 6

the data introspection facility to extract the name and the
values of the attribute. The overall read transactions and the
transactions for the data phase can be generated similarly.

The database may also contain data for value transitions
in variables. This can be done by registering a value change
callback to a variable via tb_smart_ptr instantiation.

Complex synchronization and assertions.
A realistic design typically has multiple interfaces and

complex protocols, and operates in a complex concurrent
environment. Capturing the environment of such a design in
a test bench requires special features in a tool.

In order to globally coordinate traffic generation among
the interfaces, and to check whether the outputs from the
design occur in the right sequence, complex
synchronization is necessary. The ability to efficiently wait
on multiple events such as signal transitions and semaphore
waiting (in a sequential, conjunctive, or disjunctive manner)
is very important. Similarly a user should be able to create a
monitor to verify that a complex protocol is being met
throughout the simulation.

TestBuilder-SC provides a set of synchronization classes
and the ability to compose them into event expressions.
These synchronization classes extend the existing SystemC
synchronization class to have better support for verification
purposes. The event expression provides extra expressive
power to model complex protocols efficiently. Temporal
assertions enable the test bench to detect illegal events in
simulation, and are fully integrated with the transaction
recording facility in TestBuilder-SC.

Infrastructure and scripts.
The SystemC standard describes the API with which a

user specifies the design and the test bench. However, a
complete verification environment requires more than just
the design and test bench description.

TestBuilder-SC includes several scripts for detecting
utilities in a customer’s C++ working environment,
configuring your SystemC and TestBuilder-SC installation,
and building and running simulations.

TestBuilder-SC objects support an abstract interface
called tb_object_if, which contains various abstract methods
that you can call in a debugger and other tools.

Although TestBuilder-SC is different from TestBuilder,
the TestBuilder team is working on an interoperability
guideline so that existing TestBuilder IP can still be used in
a SystemC/TestBuilder-SC environment.

Finally, a complete verification environment also
requires the ability to simulate both HDL descriptions and
SystemC/TestBuilder-SC descriptions in the same

simulation run. The TestBuilder team is currently working
on an intermediate solution based on SystemC reference
implementation, with a high-speed proprietary version
being developed in the NC team.

4. Summary
This tutorial illustrates the use of SystemC and

TestBuilder-SC to create effective test benches. Through the
use of system-level features in SystemC 2.0, a transaction-
based test bench can be created. However, in order to
support realistic verification efforts, extensions to SystemC
2.0 are needed.

We have identified several areas that need improvement,
and worked with the TestBuilder engineering team to come
up with a proposal.

Through the use of constrained random tests, more tests
can be created, leading to higher confidence in a design,
with better utilization of the simulation cycles in a
customer’s server farm. Through the use of recording API, a
database is generated in SystemC simulation, with sufficient
data for Cadence’s verification tools to facilitate the
debugging and coverage analysis process.

Because many of our tools use a C++ library in one form
or another for design and test bench capture, SystemC has
the potential to be the unifying language with which various
tools in a verification environment can talk to each other.

5. Acknowledgement
The authors would like to thank the many people who

contributed to the development of SystemC and the
TestBuilder team for designing and developing both
TestBuilder and TestBuilder-SC open-source libraries.

6. References
[1] Functional Specification for SystemC 2.0, available at

www.SystemC.org.
[2] Thorsten Grotker, Stan Liao, Grant Martin, and Stuart

Swan, System Design with SystemC, Kluwer
Academic Publishers, 2002.

[3] Functional Specification and User Guide for TestBuilder
1.3, available at www.testbuilder.net.

[4] Stuart Swan, An Introduction to System Level Modeling
in SystemC 2.0, white paper, available at
www.SystemC.org.

[5] Steven Cox, Mark Glasser, William Grundmann, C.
Norris Ip, William Paulsen, John L. Pierce, John Rose,
Dean Shea, and Karl Whiting. Creating a C++ Library
for Transaction-based Test Benches, Forum on Design
Languages, France, September, 2001.

