IEEE International SOC Conference 2003

Current Status ard Challenges of
SoC Verification for
Embedded Systems Market

i@z{@@;&

e

September 18th, 2003/ Portland Hilton

Chong-Min Kyung
KAIST

Agenda

+ Why Verification ?

+ Verification Alternatives
Languages for System Modeling and Verification
Verification with Progressive Refinement

+ SoC Verification

+ Concluding Remarks

Trend of Verification Effort in the Design

+ Verification portion of design increases to anywhere from
50 to 80% of total development effort for the design.

1996

Verify ~ 40
300K gates erify (30 ~ 40%

2000

IEeC Verify (50 ~ 80%)

Verification methodology manual, 2000-
TransEDA

Percentage of Total Flaws

= About 50% of flaws are functional flaws.
Need verification method to fix logical & functional flaws

Other
9%

Slow Path

I 13%

From Mentor presentation material, 2003

H+

Another recent independent study showed that more
than half of all chips require one or more re-spins,

and that functional errors were found in 74% of these
re-spins.

With increasing chip complexity, this situation could
worsen.

+ Who can afford that with >= 1M Dollar NRE cost?

Bug Fixing Cost in Time

+ Cost of fixing a bug/problem increases as design
progresses.
Need verification method at early design stage

Cost of
Fixing
a Problem

Behavioral RTL Gate Level Device
Design Design Design Production

Verification methodology manual, 2000 - TransEDA

Verification Performance Gap: more serious
_...than the design productivity gap

& Gfowing gap between the demand for verification and the
simulation technology offered by the various options.

S

'

Verification Performance Gap

Simulation performance
Werification complexity

N - 7
Design complexity systemon-ahip verication, 2001 - Rashinkar

L R N A YR

Completion Metrics: How do we know when
the verification is done?

+ Emotionally, or Intuitively;
Out of money? Exhausted?
Competition’s product is there.
Software people are happy with your hardware.
There have been no bugs reported for two weeks.

+ More rigorous criteria;
All tests passed
Test Plan Coverage
Functional Coverage
Code Coverage
Bug Rates have flattened toward bottom.

Verification Challenges

- Specification or Operating Environment is
Incomplete/ Open-Ended. (Verification metric is never
complete like last-minute ECO.)

The Day before Yesterday’s tool for Today’s Design.
Design productivity grows faster than Verification
productivity.

Why Verification ?

+ Verification Alternatives
Simulation
Hardware-accelerated simulation
Emulation
Prototyping
Formal verification
Semi-Formal (Dynamic Formal) verification

+ Languages for System Modeling and Verification

Verification with Progressive Refinement

+ SoC Verification

Concluding Remarks

Overview of Verification Methodologies

Prototyping

lardware
Accelerated

imulatio
Basic Semi-formal

verification Verification
tool
B
'99er Cove,

Software Simulation

+ Dynamic verification method
+ Bugs are found by running the design implementation.
Thoroughness depends on the test vector used.

Some parts are tested repeatedly while other parts are
not even tested.

Other parts are
Testbench DUV not even tested.
a=1;

#20 b - 1; ”
$display (“status is = %d”,c); -

Some part of the
design is tested
repeatedly.

Simulate the behavior of the design cycle-by-cycle.

Cycle-accurate information is provided as a result of
simulation.

Only signals at the flip-flop input are evaluated to be
stored, not internal signals of combinational logic.

H

ombinational

Combinational

Cycle-based Event-driven
Timing resolution Clock cycle User-defined minimum
delay
Evaluation time point | Rising/falling/both | At the occurrence of
clock edges events
Evaluation node Every flip-flop At the output of every
boundary logic gate on the event
propagation path
Simulation time Proportional to the | Proportional to the

(number of cycles) | number of events (circuit
times (C/L size * size* no. of cycles* event
number of F/F’s) density)

- Pros

The design size is limited only by the computing
resource.

Simulation can be started as soon as the RTL
description is finished.

Set-up cost is minimal.

+ Cons

Slow (~100 cycles/sec) ; Speed gap between the
speed of software simulation and real silicon widens.
(Simulation speed = size of the circuit simulated /
speed of the simulation engine)

The designer does not exactly know how much

percentage of the design have been tested. .

Hardware-Accelerated Simulation

+ Simulation performance is improved by moving the
time-consuming part of the design to hardware.

Usually, the software simulation communicates with
FPGA-based hardware accelerator.

Simulation environment |/ Hardware

] Accelerator
|
1 Module 2 is
3 synthesized &
compiled into

‘ "

Hardware-Accelerated Simulation

Fast (100K cycles/sec)
Cheaper than hardware emulation
Debugging is easier as the circuit structure is unchanged.

Not an Overhead : Deployed as a step stone in the gradual
refinement

Cons (Obstacles to overcome)

Set-up time overhead to map RTL design into the hardware can
be substantial.

SW-HW communication speed can degrade the performance.
Debugging of signals within the hardware can be difficult.

Hardware-Accelerated Simulation

Overall speed depends on the communication
between simulator and hardware.

Execution time decomposition in a typical case of a
PCl-based hardware accelerator
> SW simulator + PLI/FLI + Driver overhead : 38%

- It is desirable to reduce the driver call overhead

— PCl overhead : 44% -> Can be reduced by using DMA data
transfer

> Today (2008), SystemC has substituted PLI/FLI (Ney)

ardware Accelerator
SW Simulator +PLIFLI + Device Driver 18%
38%
PCloverhead
44%

H

Emulation
Emulation: Imitating the function of another system to
achieve the same results as the imitated system
Usually, the emulation hardware comprises an array of
FPGAs (or special-type processors) and interconnection
scheme among them

About 1000 times faster than simulation

Prototyping

Emulation

Emulation

User logic design is mapped to emulation board with
multiple FPGAs and/or special processors

= The emulation board has external interconnection
hardware that emulates the pins of final chip.

Logic design Emulation hardware with multiple FPGAs

Design
mapping

ardware
Ac_celergted
T [TTTTITT]
19 External pins 20
Emulation General Architecture of Emulation Systems

Pros
Fast (500K cycles/ sec)
Verification on real target system
Cons
Setup time overhead to map RTL design into
hardware is very high
Many FPGAs + resources for debugging
-> high cost

+ Many FPGAs are interconnected together for large gate
capacity
Emulation systems on the market have differences in their
interconnection architectures

FPGAQ & ®FPGA1

Nuw’

00§sbar
Circuit partitioning algorithm and interconnection /(,s”"d‘)\
architecture limit the usable gate count | g N §
FPGA 20— ¢FPGA 3
21 22
Emulation Prototyping
Challenges Special (more dedicated and customized) hardware

Efficient interconnection architecture and Hardware architecture made to fit a specific application.
Mapping efficiency for Speed and Cost
RTL debugging facility with reasonable amount of
resource
Efficient partitioning algorithm for any given Prototyping
interconnection architecture @
Reducing development time (to take advantage of
more recent FPGAs) Simulatio

23 24

Prototyping

Pros

Higher (than emulation) clock rate (over 1M
cycles/sec) due to specific design of prototyping
board

Components as well as the wiring can be customized
for the corresponding application

Can be carried along (Hardware Emulation? Forget
it!)

+ Cons
Not flexible for design change

(Every new prototype requires a new board
architecture. Even a small change requires a new
PCB.)

25

A Prototyping Example

Prototype of 4-Port
Gigabit Ethernet
Switch

Two Xilinx Virtex-E

2000 FPGAs are on
FPGA board.

Four FPGA boards are
used.

Xilinx FPGA.
Processor board

contains PCl bridge
and MPC860 PCl bridge
microprocessor.

MPC860
Courtesy of Paion, Inc. microprocessor

. Overview of Verification Methodologies

0 © Formal verification
2 Application of logical reasoning to the development of digital
. system

» Both design and its specification are described by a language in
which semantics are based on mathematical rigor

. % Semi-formal verification

- Combination of simulation and formal verification

Formal verification cannot fully cover large designs, and
simulation can come to aid in verifying the large design

Objective

Check properties of model with all possible conditions
Pros

Assures 100% coverage

Fast
Cons

Works only for small-size finite state systems

Uncomfortable due to culture difference (E.g., engineers are
not familiar with the use of temporal logic used for “property”
description in Model Checking)

28

+ Equivalence checker compares the golden model with the refined
model.

Golden 2 Refined
Model — Model

Functional representations are extracted from the designs and
compared mathematically.
Pros
Exhaustive design coverage
Very fast
+ Cons
Memory explosion
+ Tools such as LEC (Verplex), Formality (Synopsys), FormalPro
(Mentor) supports Equivalence checking.

29

H

Formal Verification: Model Checking

Model checking verifies that the design satisfies a
property specified using temporal logic

?
Computational : Design
Tree Logic :) °

Computational Tree Logic (CTL)
Specify the temporal relationship among states in FSM with
temporal operators:
> A (always/for all), E (exists/for at least one) — path quantifier
> G (global), F (future), X (next), U (until) — temporal modality

30

ation

Challenges
The most critical issue of formal verification is the
“state explosion” problem
The application of current formal methods are
limited to the design of up to 500 flip-flops
Researches about complexity reductions are:
> Reachability analysis
> Design state abstraction
— Design decomposition
—» State projection

31

Semi-Formal Verification - Assertion

Assertion-based verification (ABV)
“Assertion” is a statement on the intended behavior of a design
The purpose of an assertion: to ensure consistency between
the designer’s intention and the implementation

Key features of assertions

1. Error detection: |f the assertion is violated, it is detected by
the simulator

2. Error isolation: The signals related to the violated assertion
are identified

3. Error notification: The source of error is reported to the user

32

Semi-Formal Verification - Assertio

+ Example of assertion-based bug detection

Semi-Formal Verification - Assertion

Quality of assertion-based verification (simulation)

I dentify signals related to T
i the violated assertion <
PCI DMA Controller | 3
L
o
event devsel : g’ Simulation with assertions " .
if (FRAME=0) [1..4] 2 Efficiency of
“devsel” (DEVSEL=0) B assertion
a_ssertion i assert(devsel); S
VIOIated! 2
g Formalverfication . e
4 Simulation
Report to the —e o9 Time. Effort
user!! Setup Describe Ll Bnieh
testbench assertions By IBM in “C Aided Verification” 2000
33 34
Semi-Formal Verification - Coverage Semi-Formal Verification - Coverage
- & Coverage-directed verification + Coverage metrics for coverage-directed verification
Increase the probability of bug detection by checking the Code-based metrics
‘quality” of stimulus » Line/code block coverage
+ Used as a guide for the generation of input stimulus » Branch/ conditional coverage
> Path coverage
) Circuit structure based metrics
{(Coverage | » Toggle coverage
Definition) | ; -
S = > Register activity
State-space based metrics
> Pair-arcs : usually covered by Line + condition coverage
e Spec.-based metrics
> % of specification items satisfied
36

- Coverage Checking tools
VeriCover (Veritools)
SureCov (Verisity)
Coverscan (Cadence)
HDLScore, VeriCov (Summit Design)
HDLCover, VeriSure (TransEDA)
Polaris (Synopsys)
Covermeter (Synopsys)

HDL simulators (today, 2008, Ney)

Semi-Formal Verification
Pros __

Designer can measure the coverage of the test environment as
the formal properties are checked during simulation

Cons
The simulation speed is degraded as the properties are
checked during simulation

Challenges
There is no unified testbench description method
It is difficult to guide the direction of test vectors to increase
the coverage of the design
Development of more efficient coverage metric to represent
the behavior of the design

37 38
Speed Comparison Design Complexity
s Cycles/sec,
peed (Cycles/sec, log scale) G GG S
10MHz 1~10MHz Simulation/Semi- Unlimited
o formal verification
— 500KHz -
N Emulation/Hardware- | 1M~ 16M gates Depends on the number
accelerated simulation of FPGAs in the
100KHz 100kHz architecture
Prototyping 1M~5M gates Depends on the
components on the board
10 kHz
100Hz 50-70Hz
BP0 o 5 Formal verification < 10K gates Limited to about 500 flip-
Software Hardware- [ing Semi-formal flops dlue to state
imulati i (Assertion- explosion
HDL Simulation (from based
Eimulators (from Quickturn/| Quickturn verification)
Dynalith presentation) 39 40
Presentation)

Verification Time vs. Coverage

Coverage
S

100%

e
Emulation
| Accelerated simulation

[—Smamton

\ Redirection

of testbench
constraints

—7

—_—
»

Verification Tin‘ﬁe

Simulation Semi-formal Emulation prototyping
setup. setu setup. setup

Agenda

+ Why Verification ?
+ Verification Alternatives
Languages for System Modeling and Verification

System modeling languages
Testbench automation & Assertion languages

Verification with Progressive Refinement
SoC Verification
Concluding Remarks

42

Accellera

+ Formed in 2000 through the unification of
Open Verilog International and VHDL
International to focus on identifying new
standards, development of standards and
formats, and to foster the adoption of new
methodologies

43

Accellera

+ Three different ways of specifying
Assertions in Verilog designs:
OVL (Open Verification Library)
PSL (Property Specification Language)
Native assertion construct in System Verilog

»(Ney) In fact, today this is a new language, SVA
(SystemVerilog Assertions), complementary to PSL

44

ACCELLERA APPROVES FOUR NEW
DESIGN VERIFICATION STANDARDS

+ June 2, 2003 - Accellera, the electronics industry
organization focused on language-based electronic
design standards approved four new standards for
language-based design verification:

Property Specification Language (PSL) 1.01
Standard Co-Emulation Application Programming
Interface (SCE-APl) 1.0

SystemVerilog 3.1
Verilog-AMS 2.1

45

Accellera's PSL (Property Specification
Language)

+ Gives the design architect a standard means of
specifying design properties using a concise syntax with
clearly defined formal semantics

Enables RTL implementer to capture design intent in a
verifiable form, while enabling the verification engineer
to validate that the implementation satisfies its
specification with dynamic (that is, simulation) and static
(that is, formal) verification

46

SCE(Standard Co-Emulation Interface)-API

+ SCE-API standard defines a high-speed, asynchronous,
transaction-level interface between simulators or
testbenches and hardware-assisted solutions such as
emulation or rapid prototypes

a7

Language Heritage for SoC Design

+ New languages are developed to fill the productivity gap

Language for JAVA
Software development
Assembly

SystemC
g
Ty st TestBuilder
SystemVerilog

T A Vriog
Hardware description Veerlet

Past 5 Current 5 Today ®

Alibrary of C+ + classes for modeling hardware
Including a simulation kernel that supports hardware
modeling concepts at the system level, behavioral level and
register transfer level
+ SystemC enables us to effectively create
A cycle-accurate model of
— Software algorithm
»Hardware architecture
»Interfaces of System-on-a-Chip

SystemC

Modules, ports, and signals > for hierarchy
-> for concurrency
- for time
Hardware data types - for bit vectors, 4-valued logic,
fixed-point types, arbitrary precision integers
Waiting and watching - for reactivity
Channel, interface, and event - for abstract communications

. Module
- Program in SystemC can be Module
An executable specification of the system
Corocess >
49 50
Abstraction Levels of SystemC Test-bench automation
: o + Why is test-bench automation required?
CIC++ l Algorithm level H Function hierarchy Test-bench for IP can be more complex than the IP itself
- - Manual description of the test-bench is a time-consuming job
Modular struct
l 8 NI NET H duar structure Simulating the whole test-bench in HDL yields excessive
X : N . verification time
l Timed functional level H Timing information
l Bus-cycle accurate level W Intra module: untimed Players
Inter module: cycle accurate TestBuilder (Cadence)
l Cycle accurate level ﬂ Cycle accurate »Closer to C, integrated to SystemC
SystemC ; »(Ney) Today, (2008) adopted as the SCV (SystemC
BehaR\-lllc:ral Ilevel Synthesizable Verification Standard)
v eve VERA (Synopsys)
Verilog/VHDL l Gate level ‘ — Closer to Verilog, integrated to SystemVerilog

51 52

TestBuilder

+ Transaction-Based Verification
Functional verification in higher-level abstraction
Engineer develops tests from a system-level perspective
Advantages
»Enhance reusability of each component in the test-benches
»Improve debugging and coverage analysis

Transaction Level Signal Level

TestBuilder

Transaction Level Signal Level

e VM DUV

tx.send packet (..) {

header = “hd”;
address=0x££f0011;

data = 0xff0011;

Tests

while () {

tx.send_packet () ;

mem.expect_write():

} I Wy
N
—CO—=
Duv
—) - Testbuilder/C/C++ HDL
Tests T™W —— (Design }
G pe— TVM (Transaction Verification Model)
Translates a bus cycle command to a signal waveform
. o 53 May be described in C APl or Verilog PLI. (Ney) Today, (2008) .,
TVM: Transaction Verification Model this is described (mostly) in SystemC, using the SCV
TestBuilder VERA (Synopsys)
Inputs to VERA
D
Transaction Level Signal Level C) C
Tests ‘ ‘ V™M DUV dut.v vera.vr) L
Constraints written in
while () { tx.send packet(..) { AN 7 OpenVera syntax
tx.send_packet () ; BERERss O SiEkp \ VA
mem.expect_write(); address=0x££0011;
- data = 0x££0011; VERA

) N T By B
T
———

Testbuilder/C/C++ HDL

- TVM (Transaction Verification Model)
Translates a bus cycle command to a signal waveform

May be described in C API or Verilog PLI 55

Functional verification language for testbench description

OpenVera is a language specification
VERA (Synopsys) is a testbench generation tool

56

VERA
» OpenVera source codes
are compiled and runs

with HDL simulator in
which DUT is simulated.

A

Assertions are T
also supported S
in OpenVeral o

e

Simulator simulates

testbench generation, while providing assertions to
describe design functionality, including complex
protocols, to drive verification using simulation or formal
verification techniques

Its C-API provides the ability to mix Verilog and C/C+ +
constructs without the need for PLI for direct data
exchange

(Ney) Today (2008), this last characteristic is also
supported by SystemCl!!

59

Simulatar simulates p
p and report file is
and. re;;gg.: file is ted, o
SystemVerilog SystemVerilog
SystemVerilog 3.1 provides design constructs New data types for data abstraction level higher than
for architectqral, algorithmic and transaction- Verilog
based modeling Structures, classes, lists, etc. are supported
+ Adds an environment for automated . Assertion

Assertions can be embedded directly in Verilog RTL
Sequential assertion is also supported

+ Encapsulated interfaces
Most system bugs occur in interfaces between blocks

With encapsulated interfaces, the designer can concentrate on
the communications rather than on the signals and wires

+ DirectC as a fast C-API
C codes can be called directly from the SystemVerilog codes

60

W

s

Key Components of SystemVerilog

Design

61

System Description Languages Summary.

Languge Pros Cons
C/C++

-Unable to handle some
hardware environments

Easy to write test
vectors/environment

HDL -Familiarity -Focuses on the lower-level

(Verilog, -Easy to describe H/W designs

VHDL) designs -Improper for system
modeling

SystemC -Easily connected to -Limited tools (simulation,

C/C++ codes
-Easy to model system

synthesis, etc.) - (Ney)
This is no longer true!

behaviors
SystemVerilog | -Easy to learn for the -Few tools (simulation,
HDL designers synthesis, etc.)
-Easy to model system
behaviors 62

Why Verification ?
Verification Alternatives
Languages for System Modeling and Verification
Verification with Progressive Refinement
Flexible SoC verification environment
Debugging features
Cycle vs. transaction mode verification
Emulation products
+ SoC Verification
Concluding Remarks

63

Criteria for Good SoC Verification
Environment

+ Support various abstraction levels
+ Support heterogeneous design languages

+ Trade-off between verification speed and
debugging features

+ Co-work with existing tools
+ Progressive refinement
+ Platform-based design

64

Conventional SoC Design Flow

Simulation speed is

Use more abstract
simulation model

Applicable too late

Build SoC emulation
platform ASAP

Transaction-Level Modeling

Model the bus system in transaction-level
No notion of exact time.

But precedence relation of each functional block is properly
modeled.

Rough estimation on performance is possible.
Used as the fastest reference model by each block designer

Core model
Memol P 1P
1SS Y
Rough B B =
Performance,
Estimation transaction

Transaction-level Bus model

65 66
{chie -Accurate Bus Modeimg AMBA AHB CLI Specification
% For more accurate modelmg = AMBA AHB Cycle Level Interface (CLI) Specification
Build a cycle-accurate system model in C or SystemC Released on July 23, 2003 by ARM.
« Replace the transaction-level bus model with a cycle-accurate CLI spec defines guidelines for TLM of AHB with SystemC.
bus model Interface methods
< ARM released a “Cycle-Level Interface Specification” for > Data structures
this abstraction level. Header files for SystemC models
) CLI spec leaves the detailed implementation of the AHB bus
Core model model to the reader.
Read 10 data from slaveX starting
HADDR Address 0x10
master AT master
transaction HTRANS)
slave slave
68

Cycle-levelmodeling Transaction-levelmodeling

Example master implementation
Transactions are represented as methods in transaction-level modeling.

The abstraction levels of each method can be decided as needed such
as cycle-count accurate, cycle-accurate, transaction accurate, etc.

Header Body

void masterA::run()

SC_MODULE(masterA) {

<«—+—The granularity of
transactions are
decided according to
the verification needs.

{
bus_request();
has_grant();
init_transaction();
read_from_slave();

void run();

69

Flexible SoC Verification Environment

d::oEd(i;ng Build C reference model
= for the target application.
+ Setup of platform-level
verification environment
as early as possible

Functional block model
e [0 et [ose

Platform-level model

o] [vo] [or

dnjes JUBLIUOIIAUT UOHEOULBA

TITTTT TITTTT TITTTT
‘MemoryH Timer H INTC

N

70

Flexible SoC Verification Environment

Algorithm
JPEG
decoding
=

Functional block model
0] wo e o

Platform-level model

x = E *

Transactor connects
various types of SW
block models with HW
bus system.

Several types of

transactors must be

prepared, for example
AHB <> C model

dnjas JUBWIUOIIAUS UOHEDILIBA

AHB <-> HDL model
OPB <> Testbuilder
PLB €& SystemC

T T INENEES
‘MemoryH Timer H INTC

N

7

Flexible SoC Verification Environment
Socketize |P representation
HW: C > HDL > EDIF
SW: native C - |ISS - Processor Core

C to HDL Synthesis

’Transactor Hi

AHB
Transactor

SW part
model c

Cross-compiler

H

Cycle-Level Transactor

Generate stimulus at every clock cycle
Check the result of DUT at every clock cycle

Cycle-level
transactor

Driver annel | | Controller

le—]

73

SIW simulation part FPGApart

Transaction-Level Transactor

Only information to generate transaction is transferred
to DUT, i.e., address and data

+ No need to synchronize at every clock cycle

Main | DA PCI
Memory| Channel || Controller

JojoBSUBL|

S/W simulation part FPGApart

+

+

Cycle vs. Transaction-level Transactor

Cycle-level transactor
Synchronized at every clock cycle.

Transactor can be automatically generated according to the pin
count.

Operating speed depends on the number of signals to be
transferred.

Transaction-level transactor
Synchronized at the end of each transaction.

Transactor generates all necessary signals for DUT to properly
transfer the data.

Transactor must be designed for each interface standard
ex) AHB transactor, SDRAM transactor, |IS transactor

75

Example) iPROVE Technology

+ PCl-based Simulation Accelerator
Cycle-level verification
Seamless integration with the HDL testbench.

Up to 100K cycles/sec speed. (1000 times faster than SW
simulation)

el ¥
Test generated ¢ 7 DUT
odule [*41

Signalinformation Signals
Transaction-level verification

> Up to 33M cycles/sec speed. (330K times faster than SW
simulation)

Transactor

76

OpenVera (OV) verification IP

Reusable verification modules, i.e.,
1) bus functional models,

2) traffic generators,

3) protocol monitors,

and

4) functional coverage blocks.

7

+ ControlNet India ,
+ GDA Technology
+ HCL Technologies
Integnology
+ nSys
+ Qualis Design , b

= Synopsys, Inc. b ,)

78

Embed logic analyzer with user design in EDIF format
Logic to store pre-registered signals into the probing memory.
Logic for trigger condition generation.

Triggering condition is dynamically configured.

Internal node extraction

Sometimes the designer wants to watch internal nodes in the

design.

Internal node probing ~ ToP Plock™| bur L Built-In

enables this by 12 Logic

wiring-out the internal ~ SuP-Plock] B { | Analyzer

nodes to the boundary) |_—|

of the DUT top block. e Hmm

External
Internal node Dump
BILA, Dynalith Systems Memory .

RTL Debugging Feature

+ Emulation is based on gate-level netlist.

Gate-level netlist generated from the synthesis tools has
too complex name styles difficult to trace manually.

Techniques to resolve RTL symbol names from the gate-
level symbol names and to provide debugging
environment in RTL name spaces is required.

Insert RTL instrumentation IP for debugging
Design flow
— Read RTL design (Verilog, VHDL)
- Generate instrumented RTL design (spiced with triggering and
dump logic)
> Synthesis
— Compile (mapping & PAR)
DiaLite (Temento), Identify (Synplicity)

80

RTL Debugging Feature

Instrumentation |Ps for debugging logic blocks mapped
into FPGAs.

FPGA-based Debuggers

Debugger | Level | Memory | Control ports | Triggering conditions I

Trigger Structures of the RTL design Dynalith Systems | Netlist | External -
Logic Equation Module =i BILA level memory
History Register :
Transaction Register & | Temento RrL | Block memory J;ngsle%ng S | Dynamically configurable
Tam— > an Dialite of FPGA without recompiling FPGA
Random Generator 5 PF " user /O ports
Traffic Analyzer =&
- | 2% Synplicity Block memory | Dedicated JTAG
Instrumentation IPsare | == = I dentify RTL | ""0fFPGA | Ports of FPGA
interconnected to ; =) L/,
support various {
configurations. - — -
Interconnection of instrumentation IPs
DiaLite from Temento 81 82
Connecting Actual Chip to the Simulator Synthesizable Testbench
Building a correct and fast reference model for the hardware is very Prepare a set of programmable test bench module
difficult. which can be also synthesized into hardware.
-> Use the actual discrete chi . . .
for the IP (or FPGA). P iandarr Eereudsion Fianmsn + To verify a DUT, build a test bench using the
o e programmable gmc_cfg_datasize 3 # Set to 32 Bits
A gmc_cfg_msmode OxF # Set to Master TX
Control the clock SIQna,I to the test bench. gmc_cfg_datapath_0x00 # Read/Write to Mem
actual chip (or FPGA), i.e, + The test bench is | gmc_cmd send_data 100 # Send 100 Bytes
slow down and . : | vart_cfg_odd parity 1 # Set ODD parity
synchronize with the HW simulator = applicable to both } i
and SW debugger _;",:‘"I:‘r'l'l':;_‘::l‘::l simulation and
in the host machine. v emulation in
o = = the same fashion. ™
Application
FPGA prototyping “—’
HW/SW co-verification
Silicon validation — —
— from SImPOD Generic Mini-Controller from Duolog Technolog
(GMC)
Large-Scale Emulators Simulation Acceleration
Celaro, Mentor Use one or several large-scale FPGA’s instead of array
,
Massive array of FPGA's of small FPGA's s
Distributed compilation Reduce pin limitation overhead between FPGA's e
RTL debuggability Utilize advanced features of state-of-the-art FPGA’s ;
Full visibility without re-compilation an;mer?aé products =il
. + Eve —ZeBu
+ VStation, Mentor (IKOS) o ALATEK — HES P
Reduce_d routing problem_ by multiplexing multiple physical » Dynalith — IPROVE .
signal lines to a virtual wire. L
Palladium, Quickturn (Cadence) Test-bench IP under
Use custom processor-array instead of FPGA | unning in verffication | <
Support synthesizable testbench L
Support multi-user operation
85 « »

e

Wt | compilation

T
o
P
b

Wt

&

iPROVE Technology

» Design flow e

User design
(DUT)
PROVE nlider (Bulier

" Dovmloadable

mapping data

Mapping by
running
testbench

[Debugging with BILA 87

'

3
e e

Why Verification ?
Verification Alternatives
Languages for System Modeling and Verification
Verification with Progressive Refinement

SoC Verification
Co-simulation
Co-emulation

Concluding Remarks

88

SoC Verification

+ Co-simulation
Connecting |SS with HDL simulation environment
Seamless, N2C

+ Co-emulation
Emulation/rapid-prototyping equipments supporting
co-emulation
ARM Integrator, Aptix System Explorer, AXIS XoC,
Dynalith iPROVE

89

What’s the point in SoC Verification?

+ Mixture of SW and HW
Let the HW model to cooperate with Processor Model such as
1SS or BFM (Bus functional model)

+ Mixture of pre-verified, unverified components
Utilize legacy |IPs already verified

+ Mixture of different language, different abstraction levels
Provide common interface structure between SoC components

90

Canonical SoC design flow

HW/ SW
- o F S -

2

3
G SW refinement
| HW refinement RTO8
(UT->T->RTL) mRTOS)
- 5 - - Emulator
g Gate Final code
In-system emulator

HW-SW co-debugging

91

Tools for HW-SW Co-Verification

Sgslem

........

-n.. HW v SW o
\, Development Development
% SW refinement
HW refinement
{ (UT-> T-> RTL) mRToS

High-level synthesis HW-SW co-simulation
Testbench automation 1SS
IP accelerator RTOS simulator

92

Tools for System-level Verification

+ System-level design (Performance analysis tools)
Hot-spot analyzer
High-level cycle count estimation
High-level power analysis
High-level chip area estimation
On-chip-bus traffic estimation

93

Co-Simulation Tools

+ Software debugging in ISS and hardware verification in
HDL simulator are done in parallel way.

+ Co-simulation stub manages the communication
between HDL simulator and ISS.

The most accurate solution albeit very slow

+ Commercial Products
Eaglei (Synopsys), Seamless (Mentor)

Co-5|mulat|on HDL
Debugger . Stub Simulator
emote

Debugging
Interface

94

Instruction Set Simulator

+ Interpretive |SS ﬁwhile(tme) {
Slow but flexible and accurat s = Gevehng me Do

d Oomplled ISS opcode=decode (inst) ;
Fast and accurate but applicable switch(opcode) {
only for static programs

Static vs. dynamic

_,Depending on the code generation is ©25¢ APP:
done in static or dynamic due to
cache miss, branch prediction and
break;

self-modifying code, etc.
. Native Code (not an 1SS) }
Fast but not accurate }
1/O handling problem Main loop of interpretive ISS
95

Instruction Set Simulator

+ Execution speed
Native code > Static compiled I1SS > Dynamic
compiled ISS > Interpreted |SS

+ Accuracy

Native code < Static compiled 1SS = Dynamic
compiled ISS <= Interpreted ISS

96

Seamless (Mentor)

Seamless and C-Bridge enables co-verification of
ISS(Processor) + HDL + C Hardware model

Full visibility and dynamic performance estimation.
Supports various CPU's
(over 100 models)

Lt DR R

o = o1l

The communication i s =
between the S/W and -_:._ i
the H/'W is optimized [F - _,_li
to maximize the ‘ﬁ'..‘."...:" il
verification performance '..—..“‘1
 F— =)

o =

from Mentor

A set of tools allowing co-simulation of the system
described in various abstraction levels
Un-timed C
Timed functional description
Behavioral bus cycle accurate description
RTC (Register Transfer C)
HDL with C
+ Interface synthesis to enable platform exploration

Interface synthesis make it possible to verify the performance
of each platform efficiently in the early design stage.

> Solving Hardware/ software partitioning problems.
> Deciding bus architecture of the SoC.

98

Co-Emulation Tools

Link hardware emulators with a processor model
running in host machine or an actual processor core
module

Most emulation and rapid prototyping products support
linkage with 1SS running in host machine

As the emulator runs very fast, speed of I1SS including
memory access as well as synchronization between
emulation and ISS rise as new bottlenecks in
verification

Example) ARM ETM (Embedded Trace

___ Macrocell) ...

+ Real-time trace module capable PC-based
. . R debugger

of instruction and data tracing

dedicated to Yy ==

the ARM core family Trace =
+ Triggering enables to focus [P _JTAG

analyzer interface
T

collection around the region
of interest

+ Trace module controls the
amount of trace data by
filtering instructions or data

Only applicable to the ARM :
core debugging M

ETM

Other components

Peripherals

% Target system with ARM based12\OSIC
Typical Co-Emulation Environment ARM Integrator
Connect ARM ISS or ARM board to the emulation ARM prototyping platform
system. Composed of the followings
ARM [SS can be configured to Platform : AMBA backbone + system infrastructure
<:> Emulation user’s target SoC architecture. Core Module : various ARM core modules (up to four)
SRMISS System SW debugger can be fully utilized. Logic Module : FPGA boards for AMBA |P's

Faster than |SS.

Allows fast prototyping
of ARM-based SoC
Enables co-emulation

of both software in ARM

ARM .
Emulation Ready-made ARM development d
Development <:> £ g ' processor core an
ystem boards has fixed architecture and .
Board PGA
oat it may be different from user’s hardware in the Fl
desire. Difficult to debug hardware 1
101 Iog ICS from ARM 102
XoC (Axis) System Explorer (Aptix)

ARM core module is connected to Axis's FPGA arrays.
Source level debugging for both hardware and software
HWI/SW logic simulation hot swapping - VCD on demand

Software instant replay
-> Correlate bus transaction with software instruction

-

L HEE S

ARM
Devel

board 103

from Axis

Backplane with FPID’s (Field-Programmable

Interconnect Device) and connector array.

+ ARM plug-in module is inserted to one portion of

connector array.
System Explorer

ARM7TDMIPlug-in Module

from Aptix

ASI C Verification Methods

............. ;]
10MH17".,'_ Solution _

1MHz+—

Mal
100KHz—

10KHz+—
1KHz+—

100Hz+

10Hz+

Investment
105

iSAVE-MP (Dynalith)

iSAVE-MP main
o

iSAVE-MP Target I nterface

GUI windows

Decoded image

MPEG Board

106

iSAVE-MP (Dynalith)

All-in-one verification :
Heterogeneous models including ARM ISS, C hardware model, HDL
hardware description
SW models run in linux-based PC
HW models run in FPGA's

q q C sessions
Debugging WItf:I PSA . P —
Probe FPGA internal signals| pesign Design Design
values to SRAM memory inC inC inC

on the fly.

-> fastest operating speed,
wide and deep
sampling window

. Communicate with C model I/F protocol 1/F protocol Transactor Transactor
PGA e
using PCI DMA H 0 -

Inter-Lingual Communication

Design Design
in EDIF in EDIF
Target board FPGA

Tools for SoC Design

Tools Pros Cons
ADS - Required tool for ARM SW - No consideration about
development HW IP’s.
ARM Real-Time - SW programming is easy on ARM- - No consideration about
Debuggers based prototyping hardware or SoC. | debugging of HW IP’s.
Seamless - Cosimulation environment is - Low speed
supported.

- Many CPU types

N2C - Cosimulation environment is - Low speed
supported.
- Cand SystemC languages
supported.
ARM I ntegrator - Semi-customization using modules |- Complete customization is
is possible. not possible.
- HW prototyping with ARM - Debugging of IP
. ARM SW debugging through ETM & | embedded in FPGA is not
ETB. easy.

Tools Pros Cons

XoC - Cosimulation with ARM
- ARM SW debugging though ETM & | - Long compilation time
ETB

« HW IP debugging

System Explorer |- HW IP debugging - Long compilation time
- Module-based customization - Manual setup required
« Cosimulation environment

iPROVE/ iSAVE - Cosimulation with ARM 1SS
- SW debugging through | SS
- HW debugging is supported.
- Low cost

- Long compilation time

Why Verification ?

Verification Alternatives
+ Languages for System Modeling and Verification
+ Verification with Progressive Refinement

SoC Verification

Concluding Remarks

110

109
Concluding Remarks
+ Verification is challenging; It needs strategy!
+ Strategy is to apply each method when appropriate
+ Verify as early as possible; Catch the bug when it is
small and still isolated in a smaller region (Don’t wait
until it grows and kills you)
+ 15t step: Apply formal methods
Static formal verification
Assertion-based verification
+ 2nd step: Simulate |P with transaction level test-bench
Test-bench automation tools
- 3 step: Emulate design
Emulate IP operation in FPGA
In-system |P verification
Cycle-level vs. transaction level test-bench "

Concluding Remarks

Main differences of SoC with ASIC design are
Planned |P-reuse
Reuse of pre-verified platform
Focus on co-verification with software
Newly added |P’'s must be thoroughly verified utilizing
automated testbench and formal methods, if possible
Well-established emulation platform helps
Progressive refinement of newly added SoC components
Early development and verification of software
Powerful debugging features handling both hardware
part and software part are required
Language, Tool/Data Interfaces need standardization.

DFV (Design for Verification); You lose in the beginning,

but will win later, like Design for Reuse 2

