
CADENCE CONFIDENTIAL

SystemC Tutorial:
From Language to Applications,
From Tools to Methodologies
Grant Martin
Fellow, Cadence Berkeley Labs

SBCCI 2003, São Paolo, Brazil, 8-11 Sept 2003
8 September 2003: 0830-1030

2

Abstract
• This tutorial will cover SystemC from more than just a language

perspective. It will start with a brief survey of language features and
capabilities, including some of the more recent developments such as
the SystemC Verification Library. The usage of several of these
language features, in particular for system-level modelling, design,
verification and refinement will be illustrated. We will then address
many interesting applications of SystemC drawn from a number of
different industrial and academic research groups.

• Next, we will talk about current tools available for design modelling,
analysis and implementation with SystemC, covering the areas of
cosimulation, synthesis, analysis, refinement, and testbenches,
illustrating them with examples. Of course, tools are not enough; we
will cover a number of methodology examples, in particular illustrating
the use of SystemC in building complete design flows for complex SoC
and system designs. This will also illustrate the linkage between
SystemC and other design languages. We will close with a few notes
on possible future SystemC evolution.

3

Outline

• The Context for SystemC

• Language Structure and Features

• Use Models

• Application Examples

• Tools

• Design Flows and Methodologies

• SystemC Futures

4

The Context for SystemC

System and SW Modeling:
UML, SDL, etc.

System Level Integration
Infrastructure: SystemC

}
}
}

(Hugo De Man’s “7th. Heaven of Software”)

Mere Implementation!!
VHDL, Verilog,
SystemVerilog

(Hugo De Man’s “Deep Submicron Hell of Physics”)

5

SystemC needs a ceiling as well as a floor

Mere
Implementation!!
VHDL, Verilog,
SystemVerilog

SystemC

System and
SW Modeling:
UML, SDL, etc.

6

How the Industry Looks at the Many Language Choices
SW and System
Modelling

RTL

Verification

System Design

Embedded SW
Simulation

No

Best

OK+

VHDL/
Verilog

No

Good

Best

C/C++

OK

No Best

Good

OK

No

SystemVerilog

Best

SCVL,
Vera, e

No

No

No

SystemC 2.01

OK

Good

Best

Best

A Single Language Alone Cannot Effectively
Cover All of the Design Flow

7

SystemC is for System Level Design and
Modeling

• Real potential for SystemC is to be the industry standard language for
system level design, verification and IP delivery for both HW and SW.

• Towards this goal, SystemC 2.0 supports generalized modeling for
communication and synchronization with channels, interfaces, and
events. Hardware signals are modeled as a specialization of channels.

• System level extensions in SystemC 2.0 support transaction-level
modeling, communication refinement, executable specification modeling,
HW/SW co-design.

• Ability to refine HW portions of design to RTL level within a single
language is a unique strength of SystemC, as is the fixed point modeling
capability, and easy integration of existing C/C++ models.

8

What are Users Doing Today with SystemC?
• A few user groups have experimented with or are using SystemC for RTL

modeling, but this is not where the real interest is.

• Many companies/design groups are in the process of replacing in-house C/C++
system level modeling environments with SystemC.

• Many companies view SystemC as both a modeling language and a modeling
“backplane” (e.g. for ISS integration).

• A number of companies have completed TLM & TBV modeling efforts using
SystemC 2.0 and are very excited & interested. Some of the results are starting to
be made publicly available. Some companies have announced that they will
provide system-level IP using SystemC and have made it available:

– E.g. July 23, 2003: “ARM Delivers AMBA AHB SystemC Specification”

– May 14, 2003: “ARM Announces Launch of RealView Model Library: Delivering
SystemC™ models of ARM cores to ARM designers for System-Level-Design”

– May 5, 2003: “OPEN CORE PROTOCOL INTERNATIONAL
PARTNERSHIP ANNOUNCES AVAILABILITY OF SYSTEMC
TRANSACTIONAL MODELS”

– March 3, 2003: “ARM Announces AMBA SystemC Interface to Enable System-
Level Design”

9

Outline

• The Context for SystemC

• Language Structure and Features

• Use Models

• Application Examples

• Tools

• Design Flows and Methodologies

• SystemC Futures

10

SystemC 2.0 Language Architecture

Core Language
Modules
Ports
Processes
Interfaces
Channels
Events

Data Types
Logic Type (01XZ)
Logic Vectors
Bits and Bit Vectors
Arbitrary Precision Integers
Fixed Point Numbers
C++ Built-In Types (int, char, double, etc.)
C++ User-Defined Types

Elementary Channels
Signal, Clock, Mutex, Semaphore, Fifo, etc.

Standard Channels for
Various MOCs

Kahn Process Networks
Static Dataflow, etc.

Add-On Libraries
Verification Standard Library

Master/Slave Library
etc.

C++ Language Standard

Upper layers
are built cleanly
on lower layers.

Lower layers
can be used
without upper
layers.

11

SystemC Language recent updates

C++ Language Standard

Core Language
Modules
Ports
Processes
Events
Interfaces
Channels

Data-Types
4-valued logic types (01zx)
4-valued logic vectors
Bits and bit-vectors
Arbitrary-precision integers
Fixed-point numbers
C++ user-defined types

Elementary Channels
Signal, timer, mutex, semaphore, FIFO, etc.

Standard Channels for
Models of Computation

Kahn process networks
Static dataflow
Etc.

Verification Standard Library
Transaction monitoring and recording
Randomization and constraints
HDL connection
Data introspection

Future (SystemC 3.0) SW modeling: SW tasks and schedulers – RTOS modeling

Under Investigation Analog/mixed-signal modeling extension

Event-driven Simulation Kernel

12

Models of Computation in SystemC 2.0
• A model of computation is broadly defined by:

– Model of time (real, integer, untimed) and event ordering constraints
(globally ordered, partially ordered, etc.)

– Methods of communication between processes
– Rules for process activation

• Flexible communication and synchronization capabilities
in SystemC 2.0 enable a wide range of MOCs to be
naturally modeled.

– Examples: RTL, Process Networks, Static Dataflow, Transaction Level
Models, Discrete Event

– These operate within the underlying event-driven kernel, although MOC-
specific optimisations are possible – e.g. for all statically-scheduled
dataflow, substitute a new kernel.

– The open nature of SystemC allows many possible optimisations

13

RTL Model of Computation in SystemC
• Models combinational logic and sequential logic triggered by

clocks.

• Very similar to RTL modeling in Verilog & VHDL.

• Signals modeled using sc_signal<>, sc_signal_rv<>

• Ports modeled using sc_in<>, sc_out<>, sc_inout<>

D Q

CLK

D Q

CLKD Q

CLK

A

OUT

B

SEL

14

Kahn Process Network MOC in SystemC
• Very useful for high level system modeling

• Modules communicate via FIFOs (sc_fifo<T>) that suspend
readers and writers as needed to reliably deliver data items.

• Easy to use and guaranteed to be deterministic

• Pure KPN has no concept of time

• With annotated time delays, becomes timed functional model or
performance model.

15

Static Dataflow MOC in SystemC
• A proper subset of the KPN MOC

• Each module reads and writes a fixed number of data items each time it is
activated. Sample delays modeled by writing data items into FIFOs before
simulation starts.

• Simulators and implementation tools can determine static schedule for system
at compile-time, enabling high performance simulation and implementation.

• Commonly used in DSP systems, especially along with SystemC’s fixed point
types (sc_fixed<>, sc_fix).

1 12
1 1

10

10

Z(-1)
1

1

1

16

Transaction-Level MOC in SystemC
• Communication & synchronization between modules modeled

using function calls (rather than signals)

• Transactions have a start time, end time, and set of data
attributes (e.g. burst_read(uint addr, char* data, uint n))

• Two-phase synchronization scheme typically used for overall
system synchronization

• Much faster than RTL models (more later…)

Communication between modules
is modeled using function calls that
represent transactions. No signals
are used.

CPU / Bus Master DSP / Bus Master Monitor

Bus Arbiter

FastMem / Slave SlowMem / Slave HW Accel / Slave

Read: Addr: 0xFF12
Data: 0x0123

Read: Addr: 0xFF14
Data: 0xBEEF

17

Modeling Example - Interfaces

class write_if : public sc_interface
{
public:
virtual void write(char) = 0;
virtual void reset() = 0;

};

class read_if : public sc_interface
{
public:
virtual void read(char &) = 0;
virtual int num_available() = 0;

};

18

Modeling Example - Channel

class fifo : public sc_channel, public write_if, public read_if
{
public:
fifo() : num_elements(0), first(0) {}

void write(char c) {
if (num_elements == max_elements)

wait(read_event);

data[(first + num_elements) % max_elements] = c;
++ num_elements;
write_event.notify();

}

void read(char& c) {
if (num_elements == 0)

wait(write_event);

c = data[first];
-- num_elements;
first = (first + 1) % max_elements;
read_event.notify();

}

void reset() { num_elements = first = 0; }

int num_available() { return num_elements; }

private:
enum e { max_elements = 10 }; // just a constant
char data[max_elements];
int num_elements, first;
sc_event write_event, read_event;

};

19

Modeling Example - Producer / Consumer

class producer : public sc_module
{
public:
sc_port<write_if> out; // the producer's output port

SC_CTOR(producer) // the module constructor
{
SC_THREAD(main); // start the producer process

}

void main() // the producer process
{

char c;
while (true) {

...
out->write(c); // write c into the fifo
if (...)

out->reset(); // reset the fifo
}

}
};

class consumer : public sc_module
{
public:
sc_port<read_if> in; // the consumer's input port

SC_CTOR(consumer) // the module constructor
{
SC_THREAD(main); // start the consumer process

}

void main() // the consumer process
{

char c;
while (true) {
in->read(c); // read c from the fifo
if (in->num_available() > 5)

...; // perhaps speed up processing
}

}
};

20

Modeling Example - Top

class top : sc_module
{

public:
fifo fifo_inst; // a fifo instance
producer *producer_inst; // a producer instance
consumer *consumer_inst; // a consumer instance

SC_CTOR(top) // the module constructor
{

producer_inst = new producer("Producer1");
// bind the fifo to the producer's output port
producer_inst->out(fifo_inst);

consumer_inst = new consumer("Consumer1");
// bind the fifo to the consumer's input port
consumer_inst->in(fifo_inst);

}
};

21

Communication Refinement in SystemC

• Channels may have multiple separate interfaces.

• Ports are bound to a particular interface, not to a channel

• Interfaces can be reused with different channels

• Communication can be refined via channel substitution

• Examples of communication refinement

– Exploration during functional specification

– Retargeting abstract communication and synchronization to RTOS API

– Refining communication to a hardware implementation using adapters
and hierarchical channels, perhaps followed by “protocol inlining”.

22

Transaction-Level Producer/Consumer Design

• Let’s start with an example design similar to the previous design:

producer consumer
sc_fifo<char>

top

23

Transaction-Level Producer/Consumer Design
class producer : public sc_module
{
public:

sc_port<sc_fifo_out_if<char> > out;

SC_HAS_PROCESS(producer);

producer(sc_module_name name) :
sc_module(name) {

SC_THREAD(main);
}

void main() {
const char *str =

"Visit www.systemc.org!\n";
const char *p = str;

while (true) {
if (rand() & 1) {

out->write(*p++);
if (!*p) p = str;

}

wait(1, SC_NS);
}

}
};

class consumer : public sc_module
{
public:

sc_port<sc_fifo_in_if<char> > in;

SC_HAS_PROCESS(consumer);

consumer(sc_module_name name) :
sc_module(name) {

SC_THREAD(main);
}

void main() {
char c;

while (true) {
if (rand() & 1) {

in->read(c);
cout << c;

}

wait(1, SC_NS);
}

}
};

24

Transaction-Level Producer/Consumer Design

class top : public sc_module
{
public:

sc_fifo<char> fifo_inst;
producer prod_inst;
consumer cons_inst;

top(sc_module_name name, int size) :
sc_module(name),
fifo_inst("Fifo1", size),
prod_inst("Producer1"),
cons_inst("Consumer1")

{
prod_inst.out(fifo_inst);
cons_inst.in(fifo_inst);

}
};

int sc_main (int argc, char *argv[])
{

int size = 10;

top top1("Top1", size);
sc_start(1000, SC_NS);
cout << endl << endl;
return 0;

}

25

RTL Hardware FIFO Module

• Assume we have the following RTL clocked HW FIFO model that we
wish to insert into the just shown transaction-level producer/consumer
design:

clock

hw_fifo<T>

data_in<T> data_out<T>
valid_in valid_out
ready_out ready_in

26

RTL Hardware FIFO Module
template <class T> class hw_fifo : public
sc_module
{
public:
sc_in<bool> clk;

sc_in<T> data_in;
sc_in<bool> valid_in;
sc_out<bool> ready_out;

sc_out<T> data_out;
sc_out<bool> valid_out;
sc_in<bool> ready_in;

SC_HAS_PROCESS(hw_fifo);

hw_fifo(sc_module_name name, unsigned size)
: sc_module(name), _size(size)

{
assert(size > 0);
_first = _items = 0;
_data = new T[_size];

SC_METHOD(main);
sensitive << clk.pos();

ready_out.initialize(true);
valid_out.initialize(false);

}

~hw_fifo() { delete[] _data; }

protected:

void main()
{
if (valid_in.read() && ready_out.read())
{
// store new data item into fifo
_data[(_first + _items) % _size] = data_in;
++_items;

}

if (ready_in.read() && valid_out.read())
{
// discard data item that was just
// read from fifo
-- _items;
_first = (_first + 1) % _size;

}

// update all output signals
ready_out = (_items < _size);
valid_out = (_items > 0);
data_out = _data[_first];

}

unsigned _size;
unsigned _first;
unsigned _items;
T* _data;

};

27

The hw_fifo_wrapper Hierarchical Channel

• We need to wrap the RTL hw_fifo module in order to use it in the
transaction-level producer/consumer design:

hw_fifo<T>

write()
protocol

read()
protocolproducer

clock

consumer

top

28

The hw_fifo_wrapper Hierarchical Channel
template template <class T>
class hw_fifo_wrapper
: public sc_module, public sc_fifo_in_if<T>,
public sc_fifo_out_if<T>

{
public:
sc_in<bool> clk;

protected:
// embedded channels
sc_signal<T> write_data;
sc_signal<bool> write_valid;
sc_signal<bool> write_ready;

sc_signal<T> read_data;
sc_signal<bool> read_valid;
sc_signal<bool> read_ready;

// embedded module
hw_fifo<T> hw_fifo_;

public:
hw_fifo_wrapper(sc_module_name name,
unsigned size)
: sc_module(name), hw_fifo_("hw_fifo1", size)
{
hw_fifo_.clk(clk);

hw_fifo_.data_in (write_data);
hw_fifo_.valid_in (write_valid);
hw_fifo_.ready_out(write_ready);
hw_fifo_.data_out (read_data);
hw_fifo_.valid_out(read_valid);
hw_fifo_.ready_in (read_ready);

}

virtual void write(const T& data)
{
write_data = data;
write_valid = true;

do {
wait(clk->posedge_event());

} while (write_ready != true);

write_valid = false;
}

virtual T read()
{
read_ready = true;

do {
wait(clk->posedge_event());

} while (read_valid != true);

read_ready = false;
return read_data.read();

}

virtual void read(T& d) { d = read(); }
};

NOTE: See web link for System Design
with SystemC book to download the
complete source code.

29

Insert hw_fifo_wrapper into Producer/Consumer

class top : public sc_module {
public:

hw_fifo_wrapper<char> fifo_inst; // changed
producer prod_inst;
consumer cons_inst;
sc_clock clk; // added

top(sc_module_name name, int size) :
sc_module(name) ,
fifo_inst("Fifo1", size) ,
prod_inst("Producer1") ,
cons_inst("Consumer1"),
clk("c1", 1, SC_NS) // added

{
prod_inst.out(fifo_inst);
cons_inst.in(fifo_inst);
fifo_inst.clk(clk); // added

}
};

• We can now simulate the RTL hw_fifo module within the transaction-level
producer/consumer design!

– The hw_fifo_wrapper read/write methods hide the detailed RTL hw_fifo signal
protocol.

• The hw_fifo_wrapper read/write methods are closely related to transactors

30

Transaction-Level Modeling in SystemC

Communication between modules
is modeled using function calls that
represent transactions. No signals
are used.

CPU / Bus Master DSP / Bus Master Monitor

Bus Arbiter

• Why do transaction-level modeling in SystemC?
– Models are relatively easy to develop and use
– HW and SW components of a system can be accurately modeled. Typically bus

is cycle-accurate, and bus masters / slaves may or may not be cycle-accurate.
– Extensive system design exploration and verification can be done early in the

design process, before it’s too late to make changes
– Models are fast – typically about 100K clock cycles per second, making it

possible to execute significant amounts of the system’s software very early in the
design process

• Transaction-level modeling is extensively covered in the System Design
with SystemC book and the code for the simple_bus design is provided

FastMem / Slave SlowMem / Slave HW Accel / Slave

Read: Addr: 0xFF12
Data: 0x0123

Read: Addr: 0xFF14
Data: 0xBEEF

Suggested Modelling Abstraction Levels
(Source: “Transaction Level Modeling: Overview and Requirements for SystemC Methodology” and
“Introduction to TLM” by Mark Burton (ARM), Frank Ghenassia (STMicroelectronics and Stuart Swan
(Cadence), May 13, 2003; and “ARM System-Level Modelling” by Jon Connell, June 25, 2003).

Cycle Level (CC) Word transfers
Foundation: Clock Edge Cycle-accurate

Programmer’s View + Timing (PVT) Bus architecture
Foundation: Timed Protocol Timing approx.

Programmer’s View (PV) Bus generic
Foundation: Memory Map Architectural

RT Level (RT) Signal/Bit
Foundation: Implementation Cycle-accurate

Algorithmic Level (AL) Function-calls
Foundation: Function FunctionalSystem

Architecture

System
Verification

System
Validation

Logic / Physical
Design

Hardware
Implementation

Hardware
µArchitecture

HW dependent
Software

Implementation

Middleware
µArchitecture

Application
Software

Design

H
D

L
Transaction Level M

odeling
U

M
L

32

Transaction-Based Verification in SystemC

• Why do transaction-based verification in SystemC?
– Ability to have everything (except perhaps RTL HDL) in SystemC/C++ provides

great benefits: easier to learn and understand, easier to debug, higher
performance, easy to integrate C/C++ code & models, open source
implementation, completely based on industry standards

– Allows you to develop smart testbenches early in the design process (before
developing detailed RTL) to find bugs and issues earlier. Enables testbench
reuse throughout the design process.

– Much more efficient use of verification development effort and verification
compute resources

• Transaction-Based Verification in SystemC is described in the SystemC
Verification Standard Specification, and in the documentation and
examples included with the OSCI SCV reference implementation kit.

Constrained
Random

Generation of
Transactions

Golden Model of
Design

(abstract or TLM)

High->Low
Transactor

Design:
SysC TLM

or RTL HDL

Low->High
Transactor

Response
Checker

Black = SystemC

Red = SysC or HDL= Transaction
monitoring /
recording

33

Outline

• The Context for SystemC

• Language Structure and Features

– SystemC Verification Library

• Use Models

• Application Examples

• Tools

• Design Flows and Methodologies

• SystemC Futures

34

SystemC Verification Library (SCV)
Standardisation
• Late 2001 - Early 2002 :

– Discussion on White Papers from Various Members
– Requirement gathering, discussions, and prioritization

• April 2002 - August 2002
– Creation of first proposal draft
– Distribution of prototype codes and use scenarios
– Discussion and revision on the proposal

• August 2002
– Verification Working Group approved the SystemC Verification (SCV)

standard specification version 1.0a

• September 2002
– Steering Committee approved the SCV specification version 1.0a

35

Standardisation Activities, continued

• The SCV Reference Implementation
– Cadence's TestBuilder team created a reference implementation, and

used it to get feedback – layered on top of Core Language

• October 2002
– OSCI LWG and VWG reviewing reference implementation

• Nov. 20, 2002: “Open SystemC Initiative Delivers SystemC
Verification Library” (1.0, Beta – reference implementation made
available OSCI web site)

• June 2003
– SCV 1.0 Beta3 released

• Production likely for SCV 1.0 by September-October

36

Motivating Example
transaction

level activities
signal

activitiesTransaction
Level tests

signal level
design

master
transactors

test transactor design

Reference: C. Norris Ip and Stuart Swan, “A Tutorial Introduction on
The New SystemC Verification Standard”, January 29, 2003,
URL: http://www.testbuilder.net/whitepapers/sc_tut.pdf

37

Overview of SCV Features

test transactor design

data introspection:
manipulation of

data objects
with arbitrary

type
(C/C++/SystemC

types, user-
specified

composite types,
enumeration

types)

constrained randomization

transaction recording

HDL connection

transaction recording

weighted randomization

38

SCV provides APIs for creating Verification
IP

Verification IP is designed for detecting bugs
(e.g. a transactor for a AMBA bus)

* Consistent exception reporting mechanism
* Consistent debugging mechanism

test transactor design

39

Example: Data Introspection in SCV standard
struct bus_data_t {

unsigned addr;

unsigned data;

};

// sharing a data object among multiple C++ threads

typedef scv_shared_ptr<bus_data_t> bus_data_h;

// importing a user-defined type into the SCV library

template<> scv_extensions<bus_data_t> : … { … }

// enabling PLI-like access to a data object with smart pointer to
allow abstract operations (e.g. read/write values, traverse data
structures or set callbacks on value changes)

typedef scv_smart_ptr<bus_data_t> bus_data_hh;

40

Example: Data Introspection for abstract
operations

scv_smart_ptr<int> k; k-> next(); //assigns the next random
value to k.

Type access: (basis for attribute recording in transactions)

unsigned scv_extensions_if :: get_num_fields() const; …

Value access and assignment : (basis for attribute recording)

void scv_extensions_if :: assign (long long);

long long scv_extensions_if :: get_integer() const; …

Randomization : (basis for constrained randomization)

void scv_extensions_if :: next(); …

Callbacks : (basis for variable recording)

void scv_extensions_if :: register_cb (…); …

41

Transaction Recording
• Debugging at the transaction-level can speed up debugging and analysis

time
• Each high-level operation indicated by the test represents a transaction
• A stream represents a set of related and overlapping transactions,

typically w.r.t. the same interface.
• A generator represents a specific type of transactions within a stream.
• A transaction has begin-time, end-time, and attributes.
• A relation can be specified between two transactions.

Read : …

Read : …

Write : …

Proc_Interrupt : …

42

Example: Transaction Recording in a Transactor
class master : public sc_module {

scv_tr_stream transaction_stream;

scv_tr_generator<unsigned, unsigned> read_generator;

unsigned do_read (unsigned addr) {

bus_access_semaphore.wait(); wait(clk->posedge_event());

scv_tr_handle h = read_generator.begin_transaction (addr);

…

unsigned data = bus_data; wait(clk->posedge_event());

read_generator.end_transaction (h , data);

return data;

}

};

43

Example: Simple Randomization

void test_body() {

scv_smart_ptr < bus_data_t > arg;

arg->addr. keep_only (0x1000, 0xABCD); // restricts the range
of values to be generated

arg->data. keep_only (0,10);

for (int k=0; k<100; ++k) {

arg -> next (); // generates a new random value

master_p-> do_write(arg);

}

}

44

Example: Creating a Simple Distribution

0 1 2 3 4 … 98 99 100

probability distribution

scv_smart_ptr<int> p;

p->keep_only(0,100);

p->keep_out(3,98);

p->next();

45

Example : Creating a Complex Distribution
• Weighted randomisation : pick a value from a distribution

specification

scv_smart_ptr<int> p;

scv_bag<int> dist;

dist.add(0,16);

dist.add(1,8);

dist.add(2,4);

dist.add(3,2);

dist.add(4,1);

p->set_mode(dist);

p->next();

0 1 2 3 4 5 …

probability distribution

46

Example : Creating a Constraint
class write_constraint : virtual public scv_constraint_base {
public:
scv_smart_ptr< bus_data_h > write;
SCV_CONSTRAINT_CTOR(write_constraint) {
SCV_CONSTRAINT(write->addr() < 0x00ff); // write address is less than 255
SCV_CONSTRAINT(write->addr() != write->data()); // write address does

not equal the data being written
SCV_CONSTRAINT (a() > b() && b() > c() && (a() – c() > 100)); //complex

constraint expression (of a,b,c)
}

};
…
write_constraint c("c"); c . next (); *p = *c.write; // style 1
p->use_constraint (c.write); p->next(); // style 2

47

SCV Constrained Randomisation
• Constrained randomisation : pick a value that satisfies the Boolean

constraint or sets of constraints.
• A good use example is for ATM or IP packets: to ensure no packets

point back to the sender, or there are none or a controlled number of
invalid addresses, or to ensure an unbalanced traffic distribution to
specific addresses

• Characteristics of the SCV Constrained Randomisation Solver:
– Distributes solutions uniformly over legal values
– Good performance as number of variables grows
– Commutability (order independence) of constraint equations
– Can express complex constraints
– Debugging of over-constrained (unsolvable) systems
– Control value generation of constrained objects

• Reference: John Rose and Stuart Swan, “SCV Randomisation”, 8
August 2003. URL:
http://www.testbuilder.net/reports/scv_random_white_paper_7aug03.pdf

48

Example : Callbacks

• A callback is called every time a value is assigned

scv_smart_ptr< int > data;

data->register_cb(my_value_change_callbacks);

wait(1,SC_NS); *data = 3;

wait(1,SC_NS); data->next(); // assigns a random value to data

wait(1,SC_NS); *data = 4;

3 40x104

49

Simulation Database

• Signal information (VCD)
– RTL level semantic

• Variable information
– Value change callbacks

• Transaction information
– Stream and Generator

– Begin time, end time

– Attributes

– Transaction Relation

SCV Reference Implementation provides a primitive ASCII database.
More complex capabilities can be provided in proprietary databases.

50

Callback Connection to Any Database
• SCV includes a set of callback registration routines

– a proprietary database can be connected to any SystemC simulation
– similar to how a tools connect to a Verilog simulator through PLI.

void my_database_init() {
scv_tr_db::register_class_cb(database_cbf);
scv_tr_stream::register_class_cb(stream_cbf);
scv_tr_generator_base::register_class_cb(generator_cbf);
scv_tr_handle::register_class_cb(handle_cbf);
scv_tr_handle::register_special_attribute_cb(attribute_cbf);
scv_tr_handle::register_relation_cb(relation_cbf);

}

51

Miscellaneous Additional Features
• HDL connection: a standard way to connect SystemC signals to an

HDL signal identified by a character string

scv_connect(sc_signal<T>& s, const char * hdl, …)

(Everything else, for example simulation control, is provided by tool
vendors in specific tools)

• Exception Handling – Standard Reporting Methods

scv_report::set_actions(SCV_INFO, SCV_DO_NOTHING);

SCV_REPORT_ERROR("bad data", "the data in master … ");

• Debugging: SCV library has some classes to allow state query
while debugging

gdb) data.show()

52

Outline

• The Context for SystemC

• Language Structure and Features

– SystemC Verification Library

• Use Models

• Application Examples

• Tools

• Design Flows and Methodologies

• SystemC Futures

53

Design Space Exploration in System-Level Design

LAN WAN

Computer 2

Ethernet To ATM
Ethernet
Switch

E2U Bridge

U2E Bridge

Computer 1

Hub1

Paris

Tokyo

Austin
cell

frame cell

cell

AHB AMBA
Port

UTOPIA
ATM Switch

frame

frame cell

frame

cell

System-Level Design Questions
Do the components within the design work properly together?
How can the design be globally optimized?
How can the system-level design engineer be confident that
the results obtained from design exploration will hold true when
the system is implemented?

54

Validation of Transaction-Level Models

Ethernet
Test

Ethernet
Switch
Verilog

Ethernet
Switch

Abstract

Transaction
Database

Transaction
Equivalent?

Performance
Equivalent?

TxE
Search

Enet
Master
TVM

Enet
Slave
TVM

55

Functional Verification of Hardware

Ethernet
Switch

E2U
Bridge

UTOPIA
ATM

ATM
Monitor

TVM

ATM
Monitor

TVM

Enet
Monitor

TVM

Enet
Monitor

TVM

Enet
Master
TVM

Enet
Test

ATM
Slave
TVM

E2U
Response
Checker

Ethernet
Response
Checker

UTOPIA
ATM

Response
Checker

RTL Function Verification Questions

Is the final version of the design error-free?

Has all of the functionality of the design been proven to work correctly?

How can the verification engineer be sure that an error found in the
design is a logical error instead of a performance error?

56

Embedded Software Verification
Method: Hardware Model Abstraction

AHB/APB
Bridge

Memory
Cntrl

SDRAM/
ROM/

FLASH Model

AHB Bus

Int.
Cntrl

GPIO

UART

USB

Timerl

µP
ISS

Software Abstract Hardware Model in SystemC 2.0
Faster Simulation

Software Debugging Environment

57

Implement Abstract Module in RTL / Legacy
RTL Method: Top-Down / Bottom-up Design

LAN WAN

Computer 2

Ethernet To ATM

E2U Bridge

Computer 1

Hub1

Paris

Tokyo

Austin
cell

AHB AMBA
Port

UTOPIA
ATM Switch

Ethernet
Switch

Verilog

Enet
Master
TVM

Enet
Master
TVM

Enet
Master
TVM

Enet
Slave
TVM

SystemC – Abstract Domain
Verilog – Signal Domain

58

Outline

• The Context for SystemC

• Language Structure and Features

– SystemC Verification Library

• Use Models

• Application Examples

• Tools

• Design Flows and Methodologies

• SystemC Futures

59

Application Examples – Useful Reference

• SystemC - Methodologies and
Applications, edited by Wolfgang
Müller, Wolfgang Rosenstiel and
Jürgen Ruf, Kluwer Academic
Publishers, 2003

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

Outline

• The Context for SystemC

• Language Structure and Features

– SystemC Verification Library

• Use Models

• Application Examples

• Tools

• Design Flows and Methodologies

• SystemC Futures

78

Taxonomy of “SystemC EDA products” from
OSCI web pages
• Total number of products = 38 (last update 1 June
2003) (# was 32 – 9 August 2002)
– Commercial SystemC Simulators 4 (3)

– Co-Simulators 4 (4)

– Links to Emulation 3 (4)

– Synthesis 6 (6)

– HDL to SystemC Model Converters 3 (4)

– SystemC Extended Libraries 4 (2)

– Analysis, Display, Verification and Checkers 3 (3)

– System Level Modelling and Design Tools 10 (6)

}1/3

} 1/4

}45%

79

Examples of Tools

• Commercial SystemC Simulators

– Cadence, Forte, Synopsys, Veritools

• Co-Simulators

– Cadence, Mentor, Synopsys, TNI-Valiosys, (Celoxica)

• Links to Emulation

– Dynalith, EVE, Mentor (IKOS)

• Synthesis

– Adelante (ARM), Forte, Prosilog, Synopsys, Xilinx

• HDL to SystemC Model Converters

– Ascend, Tenison, TNI-Valiosys

80

Examples of Tools, continued
• SystemC Extended Libraries

– Adelante (ARM), ARM, Forte, Simucad

• Analysis, Display, Verification and Checkers
– Actis, Blue Pacific, Verisity, (ChipVision ORINOCO system level power

estimation)

• System Level Modelling and Design Tools

– Axys Design, Cadence, CoWare, Future Design Automation,
LisaTek (CoWare), Prosilog, Summit Design, Synopsys

81

Example of Tool – Cadence SPW 4.8

HDL – Verilog, VHDL
Software
on ISS

Control
Entry

Integrated
Debug

Signal
Analysis

Cross
Debug

C/C++/RTL
Data Path

Entry

Block
Wizard HDL

Waveform

Signal
Analysis

Verilog
AMS

82

Example of Tool: Cadence Incisive SystemC

ARM
Functional
Virtual
Prototype
SystemC
Model in
Cadence
Incisive
Browser

83

Example of Tool: User-programmed
SystemC analysis “widgets”

ARM
LCD and
Memory
Display
Widgets
Linked to
Their
SystemC
Model

84

Example of Tool: User-programmed
SystemC analysis “widgets”

ARM
Memory
Transaction
Level
Model
Interactive
Debug
Window

85

Example of Tool: Display in Cadence
Incisive SystemC

Cadence
SimVision
Display

86

Example of Tool: Transaction-Level analysis
in Cadence Incisive SystemC

Cadence
SimVision
Display of
Transaction
Explorer

87

Example of Tool: Synopsys CoCentric System
Studio (used in TI example earlier)

88

Example of Tool: CoWare ConvergenSC
System-level design and verification

Cache Hits/Misses and SW Task Gantt
Memory Reads and Writes

Transaction Counts and Bus Contention

89

Example of Tool: Forte Cynthesizer
(SystemC Behavioural Synthesis)

90

Example of Tool: ChipVision ORINOCO System-level Power Estimation

91

Future SystemC Tool Possibilities
• A Personal View:

– Links to Implementation are important

– But the world has not figured out behavioural synthesis yet (although a next
generation of behavioural synthesis, and coprocessor synthesis, is emerging)

– And using SystemC as an RTL entry vehicle is not the best approach

– System level modelling, analysis and refinement is still not a well-understood
and well-adopted approach

– This is where users of SystemC need to spend most of their time, experimenting and
working out methodologies

– Calls out for:

– Methodology-driven design flows

– Analysis capabilities

– Design space exploration concepts

– Flows from higher level modelling e.g. UML, and links to embedded SW

– From the system level designer viewpoint, this is the most useful area for tool
development

92

Outline

• The Context for SystemC

• Language Structure and Features

– SystemC Verification Library

• Use Models

• Application Examples

• Tools

• Design Flows and Methodologies

• SystemC Futures

93

Design Flows with SystemC: 2 key decisions

• Where You Start

– Some other high level modelling
language or tool

– E.g. UML, SDL, Matlab/Simulink

– Functional model in SystemC

– E.g. Untimed or Timed Function
(UTF, TF)

– Architectural

– Functional or Transaction-level
model of the system
implementation architecture

• How You Go

– Model-Refine-Synthesise

– (to SystemC RTL, HDL RTL, or
HDL Gates)

– Model-Refine-Manually transfer

– (to SystemC RTL or HDL RTL)

In addition, for Derivative Design/Embedded SW Design and Verification: Building
a model upwards from a SystemC architectural or implementation model (Platform model)

94

Possible Flows
Higher level modelling:

UML, SDL, Matlab/Simulink

Functional Architectural

SystemC
Code Generation

Functional Architectural

Refine:
e.g. transaction-level

RTL

Synth Man

Implement

Platform Model
For System/SW

Verification

Possible Entry
Points

Implementation
Routes

SystemC, Verilog, VHDL, Verilog-2005, SystemVerilog

Verilog, VHDL, Verilog-2005, SystemVerilog

95

Flows starting with Higher-level languages or
notations
• UML:

– ST (Alcatel) UML flow shown earlier

– UML Code Generation for SystemC: (Yves Vanderperren, 6th. European
SystemC users group meeting)

– “SoC Design with UML and SystemC”, Alberto Sardini, Rational, 6th. European
SystemC users group meeting

– “A SystemC based design flow starting from UML Models”, Bruschi, Politecnico di
Milano, 6th European SystemC users group meeting

– “Fujitsu Develops New SoC Design Methodology Based on UML and C Programming
Languages” – Press Release, Fujitsu, Tokyo, April 16, 2002: URL:
http://pr.fujitsu.com/en/news/2002/04/16-2.html

• Matlab/Simulink:
– “Modeling Cycle-Accurate Hardware with Matlab/Simulink Using SystemC”,

Czerner and Zellmann, Ilmenau, 6th. European SystemC users group
meeting

96

97

98

Fujitsu – UML, SystemC

99

Complete SystemC-based flow

• Modelling in SystemC

• Refining in SystemC

• Verification in SystemC

• Manual Translation to Verilog (currently)

• Synthesis from Verilog (currently)

• Eventual goal: Synthesis from SystemC at RTL and (perhaps)
transaction-level

• Rob Slater, Motorola Israel, “Towards a complete SystemC
flow”, 6th. European SystemC users group meeting

100

101

102

103

Example of Tool: Axys Design MaxSIM
Developer Suite – System Platform Model
Creation and Export

104

Outline

• The Context for SystemC

• Language Structure and Features

– SystemC Verification Library

• Use Models

• Application Examples

• Tools

• Design Flows and Methodologies

• SystemC Futures

105

SystemC 2.1

• SystemC 2.1 intended as a relatively minor release to add features that
could not wait until SystemC 3.0
– Intended to have very high compatibility with SystemC 2.0.1

– Specs and code for 2.1 were developed by LWG over last year (2002-2003)

– Anticipated availability sometime 2H 2003 – perhaps October/November

• Main features
– Dynamic Thread Creation (designed with SystemC 3.0 in mind) – also

critical for testbenches (e.g. SCV) and general SW modelling

– New error reporting API

– Exported Interfaces

– A variety of small cleanups and bug fixes

106

SystemC 3.0

• SystemC 3.0 will be a major release that adds RTOS and
scheduler modeling capabilities such as:

– Thread interrupt and abort

– User-defined scheduler models layered on top of the core SystemC
scheduler

• (as indicated, requires dynamic thread creation for SW/RTOS
modelling)

• Status: 3.0 specification to be continued after 2.1 is finished and
IEEE SystemC standardisation (based on 2.01) started – thus,
likely to continue in 2004. Plans are not firm at this point.

107

Source: Thorsten Groetker, “Modelling software with SystemC 3.0”, 6th. European
SystemC Users group meeting, October, 2002

108

Beyond SystemC 3.0 – tentative roadmap
• At one point there was the idea of SystemC 4.0 with Analogue/Mixed-Signal

modelling and solver capabilities (cf. SystemC-AMS study group and earlier
presentation by Karsten Einwich

– Status: might continue as community effort
• Donation of SystemC (based on 2.01 Language Reference Manual) from OSCI to

IEEE for official standardisation – likely by late 2003/early-2004. (2.01 LRM on
OSCI web)

• Other OSCI Working Groups
– Transaction-Level Modelling – standardise semantics, and perhaps APIs, for agreed

levels of transaction-level models. Preliminary standards possible Q1-2 2004.
– Leveraging work with ARM AMBA, OCPIP, and other developments

– Synthesis subset of SystemC- behavioural and RTL. Draft for review by Oct-Nov.
– Verification library (SCV) may also be donated to IEEE for standardisation

• Future of OSCI:
– May become a usage and idea development community
– When SystemC standardised by the IEEE, OSCI may (or may not) withdraw from

developing reference implementations (possible alternative: “community prototypes”)
– May leave this for commercial tool vendors (cf. Verilog, VHDL)

109

Conclusions
• SystemC is very clear a system-level modelling language

• Can be used as the basis for system-level design, verification and
implementation flows

• Not a substitute for HDLs

• Is being applied in real-life design situations and being used to build
real system-level design tools, methodologies and flows

• Its open nature, and being based on C++, allows many variant
applications and flows to be built

• Can be easily plugged into both higher and lower level modelling and
implementation environments

• Is being extended by the community in several interesting directions

• Has a very interesting future!

	SystemC Tutorial:From Language to Applications,From Tools to Methodologies
	Abstract
	Outline
	The Context for SystemC
	SystemC needs a ceiling as well as a floor
	How the Industry Looks at the Many Language Choices
	SystemC is for System Level Design and Modeling
	What are Users Doing Today with SystemC?
	Outline
	SystemC 2.0 Language Architecture
	SystemC Language recent updates
	Models of Computation in SystemC 2.0
	RTL Model of Computation in SystemC
	Kahn Process Network MOC in SystemC
	Static Dataflow MOC in SystemC
	Transaction-Level MOC in SystemC
	Modeling Example - Interfaces
	Modeling Example - Channel
	Modeling Example - Producer / Consumer
	Modeling Example - Top
	Communication Refinement in SystemC
	Transaction-Level Producer/Consumer Design
	Transaction-Level Producer/Consumer Design
	Transaction-Level Producer/Consumer Design
	RTL Hardware FIFO Module
	RTL Hardware FIFO Module
	The hw_fifo_wrapper Hierarchical Channel
	The hw_fifo_wrapper Hierarchical Channel
	Insert hw_fifo_wrapper into Producer/Consumer
	Transaction-Level Modeling in SystemC
	Suggested Modelling Abstraction Levels(Source: “Transaction Level Modeling: Overview and Requirements for SystemC Methodolo
	Transaction-Based Verification in SystemC
	Outline
	SystemC Verification Library (SCV)Standardisation
	Standardisation Activities, continued
	Motivating Example
	Overview of SCV Features
	SCV provides APIs for creating Verification IP
	Example: Data Introspection in SCV standard
	Example: Data Introspection for abstract operations
	Transaction Recording
	Example: Transaction Recording in a Transactor
	Example: Simple Randomization
	Example: Creating a Simple Distribution
	Example : Creating a Complex Distribution
	Example : Creating a Constraint
	SCV Constrained Randomisation
	Example : Callbacks
	Simulation Database
	Callback Connection to Any Database
	Miscellaneous Additional Features
	Outline
	Design Space Exploration in System-Level Design
	Validation of Transaction-Level Models
	Functional Verification of Hardware
	Embedded Software VerificationMethod: Hardware Model Abstraction
	Implement Abstract Module in RTL / LegacyRTL Method: Top-Down / Bottom-up Design
	Outline
	Application Examples – Useful Reference
	Outline
	Taxonomy of “SystemC EDA products” from OSCI web pages
	Examples of Tools
	Examples of Tools, continued
	Example of Tool – Cadence SPW 4.8
	Example of Tool: Cadence Incisive SystemC
	Example of Tool: User-programmed SystemC analysis “widgets”
	Example of Tool: User-programmed SystemC analysis “widgets”
	Example of Tool: Display in Cadence Incisive SystemC
	Example of Tool: Transaction-Level analysis in Cadence Incisive SystemC
	Example of Tool: Synopsys CoCentric System Studio (used in TI example earlier)
	Example of Tool: CoWare ConvergenSC System-level design and verification
	Example of Tool: Forte Cynthesizer (SystemC Behavioural Synthesis)
	Example of Tool: ChipVision ORINOCO System-level Power Estimation
	Future SystemC Tool Possibilities
	Outline
	Design Flows with SystemC: 2 key decisions
	Possible Flows
	Flows starting with Higher-level languages or notations
	Fujitsu – UML, SystemC
	Complete SystemC-based flow
	Example of Tool: Axys Design MaxSIM Developer Suite – System Platform Model Creation and Export
	Outline
	SystemC 2.1
	SystemC 3.0
	Beyond SystemC 3.0 – tentative roadmap
	Conclusions

