cadencel

SystemC Tutorial: -

From Language to Applications,
From Tools to Methodologies

Grant Martin
Fellow, Cadence Berkeley Labs

SBCCI 2003, Sao Paolo, Brazil, 8-11 Sept 2003
8 September 2003: 0830-1030

N =

Abstract

 This tutorial will cover SystemC from more than just a language
perspective. It will start with a brief survey of language features and
capabilities, including some of the more recent developments such as
the SystemC Verification Library. The usage of several of these
language features, in particular for system-level modelling, design,
verification and refinement will be illustrated. We will then address
many interesting applications of SystemC drawn from a number of
different industrial and academic research groups.

* Next, we will talk about current tools available for design modelling,
analysis and implementation with SystemC, covering the areas of
cosimulation, synthesis, analysis, refinement, and testbenches,
illustrating them with examples. Of course, tools are not enough; we
will cover a number of methodology examples, in particular illustrating
the use of SystemC in building complete design flows for complex SoC
and system designs. This will also illustrate the linkage between
SystemC and other design languages. We will close with a few notes
on possible future SystemC evolution.

2 [cadence|

I =

Outline

e The Context for SystemC

e Language Structure and Features
» Use Models

» Application Examples

* Tools

* Design Flows and Methodologies

e SystemC Futures

3 [cadence]

The Context for SystemC

(Hugo De Man’s “7t. Heaven of Software”)

System and SW Modeling:
UML, SDL, etc.

System Level Inteqgration
Infrastructure: SystemC

Mere Implementation!!
VHDL, Verilog,
SystemVerilog

(Hugo De Man'’s “Deep Submicron Hell of Physics™)

[cadence|

SystemC needs a ceiling as well as a floor

System and
SW Modeling:
__ UML, SDL. etc. J

SystemC

Mere

Implementation!!
VHDL, Verilog,

N SystemVerilog
5 [cadence]

How the Industry Looks at the Many Language Choices

S ang System

Embedded SW
Simulation

-
est

A
- Good Verification
N 4
A

SystemC 2.01 C/C++ SystemVerilog SCVL, VHDL/
Vera, e Verilog

System Design

A Single Language Alone Cannot Effectively
Cover All of the Design Flow

6 [cadence|

SystemC is for System Level Design and
Modeling

Real potential for SystemC is to be the industry standard language for
system level design, verification and IP delivery for both HW and SW.

Towards this goal, SystemC 2.0 supports generalized modeling for
communication and synchronization with channels, interfaces, and
events. Hardware signals are modeled as a specialization of channels.

System level extensions in SystemC 2.0 support transaction-level
modeling, communication refinement, executable specification modeling,
HW/SW co-design.

Ability to refine HW portions of design to RTL level within a single
language is a unique strength of SystemC, as is the fixed point modeling
capability, and easy integration of existing C/C++ models.

[cadence|

What

are Users Doing Today with SystemC?

» A few user groups have experimented with or are using SystemC for RTL
modeling, but this is not where the real interest is.

e Many companies/design groups are in the process of replacing in-house C/C++
system level modeling environments with SystemcC.

 Many companies view SystemC as both a modeling language and a modeling
“backplane” (e.g. for ISS integration).

* A number of companies have completed TLM & TBV modeling efforts using
SystemC 2.0 and are very excited & interested. Some of the results are starting to
be made publicly available. Some companies have announced that they will
provide system-level IP using SystemC and have made it available:

E.g. July 23, 2003: “ARM Delivers AMBA AHB SystemC Specification”

May 14, 2003: “ARM Announces Launch of RealView Model Library: Delivering
SystemC™ models of ARM cores to ARM designers for System-Level-Design”

May 5, 2003: “OPEN CORE PROTOCOL INTERNATIONAL
PARTNERSHIP ANNOUNCES AVAILABILITY OF SYSTEMC
TRANSACTIONAL MODELS”

March 3, 2003: “ARM Announces AMBA SystemC Interface to Enable System-
Level Design”

[cadence|

I =

Outline

e The Context for SystemC

e Language Structure and Features

» Use Models

e Application Examples

e Tools

* Design Flows and Methodologies

e SystemC Futures

9 [cadence]

SystemC 2.0 Language Architecture

Standard Channels for Add-On Libraries
Various MOCs Verification Standard Library
Kahn Process Networks Master/Slave Library
Static Dataflow, etc. etc.

Upper layers
are built C|ean|y EIementarv Channels
on lower layers. Signal, Clock, Mutex, Semaphore, Fifo, etc.
Core Language Data Types
Ic_ngzrelﬁyéggs Modules Log!c Type (OlXZ)
. Ports Logic Vectors
without upper Processes Bits and Bit Vectors
layers. Interfaces Arbitrary Precision Integers
Channels Fixed Point Numbers

Events C++ Built-In Types (int, char, double, etc.)
C++ User-Defined Types

C++ Lanquage Standard

SystemC Language recent updates

Future (SystemC 3.0) SW modeling: SW tasks and schedulers — RTOS modeling
Under Investigation Analog/mixed-signal modeling extension

Standard Channels for
Models of Computation
= Kahn process networks
= Static dataflow

= Etc.

Verification Standard Library

» Transaction monitoring and recording
= Randomization and constraints

= HDL connection

» Data introspection

Elementary Channels
Signal, timer, mutex, semaphore, FIFO, etc.

Core Language
= Modules

= Ports

= Processes

= Events

= |Interfaces

= Channels

Data-Types

» 4-valued logic types (01zx)
= 4-valued logic vectors

= Bits and bit-vectors

= Arbitrary-precision integers
» Fixed-point numbers

» C++ user-defined types

Event-driven Simulation Kernel
C++ Language Standard

1 [cadence]

Models of Computation in SystemC 2.0

A model of computation is broadly defined by:

— Model of time (real, integer, untimed) and event ordering constraints
(globally ordered, partially ordered, etc.)

— Methods of communication between processes
— Rules for process activation
* Flexible communication and synchronization capabilities

In SystemC 2.0 enable a wide range of MOCs to be
naturally modeled.

— Examples: RTL, Process Networks, Static Dataflow, Transaction Level
Models, Discrete Event

— These operate within the underlying event-driven kernel, although MOC-
specific optimisations are possible — e.g. for all statically-scheduled
dataflow, substitute a new kernel.

— The open nature of SystemC allows many possible optimisations

12 [cadence|

RTL Model of Computation in SystemC

* Models combinational logic and sequential logic triggered by
clocks.

* Very similar to RTL modeling in Verilog & VHDL.
e Signhals modeled using sc_signal<>, sc_signal_ rv<>

e Ports modeled using sc_in<>, sc_out<>, sc_inout<>

D Q
A
ouT D o pb———o
CLK —| B
SEL
D Q —CLK
—cLK

13 [cadence]

Kahn Process Network MOC in SystemC

 Very useful for high level system modeling

 Modules communicate via FIFOs (sc_fifo<T>) that suspend
readers and writers as needed to reliably deliver data items.

» Easy to use and guaranteed to be deterministic
* Pure KPN has no concept of time

« With annotated time delays, becomes timed functional model or

performance model.
=

]

-
=1

HH

[cadence]

Static Dataflow MOC in SystemC

» A proper subset of the KPN MOC

 Each module reads and writes a fixed number of data items each time it is
activated. Sample delays modeled by writing data items into FIFOs before
simulation starts.

« Simulators and implementation tools can determine static schedule for system
at compile-time, enabling high performance simulation and implementation.

« Commonly used in DSP systems, especially along with SystemC'’s fixed point
types (sc_fixed<>, sc_fix).

i}
—l-

Z(-1)

1

l:

[:H

[cadence]

Transaction-Level MOC in SystemC

« Communication & synchronization between modules modeled

using function calls (rather than signals)

 Transactions have a start time, end time, and set of data
attributes (e.g. burst_read(uint addr, char* data, uint n))

e Two-phase synchronization scheme typically used for overall

system synchronization

e Much faster than RTL models (more later...)

CPU / Bus Master DSP / Bus Master Monitor

—_— | ————

Bus H Arbiter

r........::::J_]_l............1

FastMem / Slave SlowMem / Slave HW Accel / Slave

Communication between modules
Is modeled using function calls that
represent transactions. No signals
are used.

—— Read: Addr: OxFF12
Data: 0x0123

Read: Addr: OxFF14

16

Data: OXxBEEF

[cadence]

Modeling Example - Interfaces

class write_if : public sc_interface
{
public:
virtual void write(char) = 0;
virtual void reset() = 0;

};

class read_if : public sc_interface
{
public:
virtual void read(char &) = 0;
virtual int num_available() = 0;

¥

17 [cadence]

Modeling Example - Channel

18

class fifo : public sc_channel, public write_if, public read_if
{
public:
fifo() : num_elements(0), first(0) {}

void write(char c) {
If (num_elements == max_elements)
wait(read_event);

data[(first + num_elements) % max_elements] = c;
++ num_elements;
write_event.notify();

}

void read(char& c) {
if (num_elements == 0)
wait(write_event);

¢ = data[first];

-- num_elements;

first = (first + 1) % max_elements;
read_event.notify();

void reset() { num_elements = first = 0; }
int num_available() { return num_elements; }

private:
enum e { max_elements = 10 }; // just a constant
char data[max_elements];
int num_elements, first;
sc_event write_event, read_event;

};

[cadence]

Modeling Example - Producer / Consumer

class producer : public sc_module
{
public:
sc_port<write_if> out; // the producer's output port

SC_CTOR(producer) // the module constructor

{
SC_THREAD(main); // start the producer process

}

void main()

{

char c;
while (true) {

/I the producer process

out->write(c); I/ write c into the fifo

if (...)

out->reset();
¥

}
}

/I reset the fifo

class consumer : public sc_module
{
public:
sc_port<read_if>in; // the consumer's input port

SC_CTOR(consumer) /I the module constructor

{
SC_THREAD(main); // start the consumer process
¥
void main() I the consumer process
{
char c;
while (true) {
in->read(c); // read ¢ from the fifo
if (in->num_available() > 5)
I/ perhaps speed up processing
¥
}
o

19

[cadence]

Modeling Example - Top

class top : sc_module
{
public:
fifo fifo_inst; /[a fifo instance
producer *producer_inst; // a producer instance
consumer *consumer_inst; // a consumer instance

SC_CTOR(top) // the module constructor
{
producer _inst = new producer("Producerl");
// bind the fifo to the producer's output port
producer_inst->out(fifo_inst);

consumer_inst = new consumer("Consumerl");
// bind the fifo to the consumer's input port
consumer_inst->in(fifo_inst);

20 [cadence]

Communication Refinement in SystemC

« Channels may have multiple separate interfaces.

* Ports are bound to a particular interface, not to a channel
» Interfaces can be reused with different channels

« Communication can be refined via channel substitution

 Examples of communication refinement
— Exploration during functional specification
— Retargeting abstract communication and synchronization to RTOS API

— Refining communication to a hardware implementation using adapters
and hierarchical channels, perhaps followed by “protocol inlining”.

21 [cadence]

Transaction-Level Producer/Consumer Design

» Let's start with an example design similar to the previous design:

top

sc_fifo<char>
pI‘OdUCEI’ consumer

22 [cadence]

Transaction-Level Producer/Consumer Design

class producer : public sc_module

{
public:
sc_port<sc_fifo_out_if<char> > out;
SC_HAS_ PROCESS(producer);
producer(sc_module_name name) :
sc_module(name) {
SC_THREAD(main);
}
void main() {
const char *str =
"Visit www.systemc.org!\n";
const char *p = str;
while (true) {
iT (rand(Q) & 1) {
out->write(*p++);
it (I*p) p = str;
}
wait(l, SC_NS);
by
by
}:

class consumer :

{
public:
sc_port<sc_Tfifo_in_if<char> > in;

public sc_module

SC_HAS_ PROCESS(consumer);

consumer(sc_module_name name) :
sc_module(name) {
SC_THREAD(main);

}

void main() {
char c;

while (true) {
if (randQ & 1) {
in->read(c);
cout << c;

}

wait(l, SC_NS);

23

[cadence]

Transaction-Level Producer/Consumer Design

24

class top : public sc_module

{
public:
sc_fTifo<char> fifo_inst;
producer prod_inst;
consumer cons_inst;
top(sc_module_name name, int size) :
sc_module(name),
fifo_inst("Fifol™, size),
prod_inst("'Producerl™),
cons_inst('Consumerl™)
{
prod_inst.out(fifo_inst);
cons_inst.in(fifo_inst);
+
};

int sc_main (int argc, char *argv[])

{

top topl("'Topl™, size);
sc_start(1000, SC NS);
cout << endl << endl;
return O;

[cadence]

RTL Hardware FIFO Module

« Assume we have the following RTL clocked HW FIFO model that we
wish to insert into the just shown transaction-level producer/consumer

design:
clock
data_in<T> =——p —> data_out<T>
valid_in —> hw fifo<T> —> valid_out
ready out < <+ ready in

25 [cadence]

RTL Hardware FIFO Module

template <class T> class hw_fifo : public

sc_module

{

public:
sc_in<bool> clk;
sc_in<T> data_in;
sc_in<bool> valid_in;
sc_out<bool> ready out;
SC_out<T> data_out;
sc_out<bool> valid out;
sc_in<bool> ready in;

SC_HAS_PROCESS(hw_Fifo);

hw_fifo(sc_module name name, unsigned size)
: sc_module(name), _size(size)
{

assert(size > 0);
_First = _items = 0;
_data = new T[_size];

SC_METHOD(main);
sensitive << clk.pos(Q);

ready out.initialize(true);
valid out.initialize(false);

}

~hw_Ffifo() { delete[] _data; }

protected:

void main()

{
if (valid_in.read() && ready out.read())

{
// store new data item into fifo
_data[(_First + _items) % _size] = data_in;
++_ 1tems;

}

if (ready _in.read() && valid _out.read())
{

// discard data item that was just

// read from fifo

-- _items;

_First = (first + 1) % _size;

}

// update all output signals
ready out = (items < _size);
valid out = (items > 0);
data_out = _data[first];

}

unsigned _size;
unsigned _TFirst;
unsigned _items;
T* _data;

26

[cadence]

The hw_fifo_wrapper Hierarchical Channel

 We need to wrap the RTL hw_fifo module in order to use it in the
transaction-level producer/consumer design:

27

top

clock

.

producer

write()
protocol

1

hw_fifo<T>

— read|()

. protocol

h-

consumer

[cadence]

28

'he hw_fifo_wrapper Hierarchical Channel

template template <class T>

class hw_fifo_wrapper

: public sc_module, public sc_fifo_in_if<T>,
public sc_fifo out if<T>

{

public:
sc_in<bool> clk;

protected:
// embedded channels
sc_signal<T> write_data;
sc_signal<bool> write_valid;
sc_signal<bool> write_ready;
sc_signal<T> read_data;
sc_signal<bool> read_valid;
sc_signal<bool> read_ready;
// embedded module
hw_fifo<T> hw_Ffifo_;

public:

hw_fifo_wrapper(sc_module_name name,

unsigned size)

: sc_module(name), hw_fifo_("hw_fifol™, size)
{

hw_fifo_.clk(clk);

hw_fifo_.data_in (write_data);
hw_fifo_.valid_in (write_valid);
hw_fifo_.ready out(write_ready);
hw_fifo_.data_out (read_data);

hw_fifo_.valid_out(read_valid);
hw_fifo_.ready in (read_ready);

virtual void write(const T& data)

{

write_data = data;
write_valid = true;

do {
wait(clk->posedge _event());
} while (write_ready != true);

write_valid = false;

}

virtual T read()
{

read_ready = true;

do {
wait(clk->posedge_event());
} while (read_valid != true);

read_ready = false;
return read_data.read();

}

virtual void read(T& d) { d = read(Q); }
};

NOTE: See web link for System Design
with SystemC book to download the
complete source code.

[cadence]

Insert hw_fifo_wrapper into Producer/Consumer

class top : public sc_module {
public:
hw_fifo_wrapper<char> fifo_inst; // changed
producer prod_inst;
consumer cons_inst;
sc_clock clk; // added

top(sc_module_name name, int size) :
sc_module(name) ,
fifo_inst("Fifol™, size) ,
prod_inst("'Producerl™) ,
cons_inst('Consumerl’™),
clk('cl™, 1, SC_NS) // added
{
prod_inst.out(fifo_inst);
cons_inst.in(fifo_inst);
fifo_inst.clk(clk); // added
+
s

 We can now simulate the RTL hw_fifo module within the transaction-level
producer/consumer design!

— The hw_fifo_wrapper read/write methods hide the detailed RTL hw_fifo signal
protocol.

 The hw_fifo_wrapper read/write methods are closely related to transactors

20 [cadence]

Transaction-Level Modeling in SystemC

CPU / Bus Master DSP / Bus Master Monitor

Communication between modules
is modeled using function calls that

ﬁ_l_# represent transactions. No signals

- are used.
Bus H Arbiter

;T% ——— Read: Addr: OxFF12
Data: 0x0123

FastMem / Slave SlowMem / Slave HW Accel / Slave Read: Addr OxFE14

Data: OXBEEF

 Why do transaction-level modeling in SystemC?

Models are relatively easy to develop and use

HW and SW components of a system can be accurately modeled. Typically bus
IS cycle-accurate, and bus masters / slaves may or may not be cycle-accurate.

Extensive system design exploration and verification can be done early in the
design process, before it’s too late to make changes

Models are fast — typically about 100K clock cycles per second, making it
possible to execute significant amounts of the system’s software very early in the
design process

« Transaction-level modeling is extensively covered in the System Design
with SystemC book and the code for the simple bus design is provided

30

[cadence]

Suggested Modelling Abstraction Levels

(Source: “Transaction Level Modeling: Overview and Requirements for SystemC Methodology” and
“Introduction to TLM” by Mark Burton (ARM), Frank Ghenassia (STMicroelectronics and Stuart Swan
(Cadence), May 13, 2003; and “ARM System-Level Modelling” by Jon Connell, June 25, 2003).

& | Algorithmic Level (AL) Function-calls
System .§ Functional
Architecture 1
’Sotare. ' Programmer’s View (PV) Bus generic
T Foundation: Memory Map Architectural

Programmer’s View + Timing (PVT) Bus architecture

p Hardware
Middleware uArchitecture .
Architecture I EEEEE

System

Validation

Foundation: Timed Protocol Timing approx.
HW dependent
Software
. A Cycle Level (CC) Word transfers
MR Foundation: Clock Edge Cycle-accurate
e
RT Level (RT) Signal/Bit
Cogic T!h-ygiga-l: Cycle-accurate
__ Design __,

=

Transaction-Based Verification in SystemC

6]
Constrained Golden Model of Response
Random > Design Checker
Generation of (abstract or TLM)
Transactions 6
0 ® Black = SystemC
6 = Transaction) — . =
mon?[o?frllcg:;t;) —p| High->Low SDeCS'ng-M »| Low->High Red = SysC or HDL
: < ys <
recording Transactor or RTL HDL Transactor

« Why do transaction-based verification in SystemC?

— Ability to have everything (except perhaps RTL HDL) in SystemC/C++ provides
great benefits: easier to learn and understand, easier to debug, higher
performance, easy to integrate C/C++ code & models, open source
Implementation, completely based on industry standards

— Allows you to develop smart testbenches early in the design process (before
developing detailed RTL) to find bugs and issues earlier. Enables testbench
reuse throughout the design process.

— Much more efficient use of verification development effort and verification
compute resources

» Transaction-Based Verification in SystemC is described in the SystemC
Verification Standard Specification, and in the documentation and
examples included with the OSCI SCV reference implementation Kit.

[cadence]

T =

Outline

e The Context for SystemC

e Language Structure and Features

— SystemC Verification Library

» Use Models

e Application Examples

e Tools

* Design Flows and Methodologies

e SystemC Futures

33 |cadence'

SystemC Verification Library (SCV) - s
Standardisation

. Late 2001 - Early 2002 :

— Discussion on White Papers from Various Members

— Requirement gathering, discussions, and prioritization
e April 2002 - August 2002

— Creation of first proposal draft
— Distribution of prototype codes and use scenarios

— Discussion and revision on the proposal
« August 2002

— Verification Working Group approved the SystemC Verification (SCV)
standard specification version 1.0a

e September 2002

— Steering Committee approved the SCV specification version 1.0a

34 [cadence]

Standardisation Activities, continued

* The SCV Reference Implementation

— Cadence's TestBuilder team created a reference implementation, and
used it to get feedback — layered on top of Core Language

e Octobher 2002

— OSCI LWG and VWG reviewing reference implementation

e Nov. 20, 2002: “Open SystemC Initiative Delivers SystemC
Verification Library” (1.0, Beta —reference implementation made
available OSCI web site)

e June 2003

— SCV 1.0 Beta3 released
* Production likely for SCV 1.0 by September-October

3 [cadence]

Motivating Example m

36

transaction Signal

: level activities S
Transaction master activities

signal level

Level tests transactors design

test transactor design

K
U

ir
K

_____ —— —_——]

Reference: C. Norris Ip and Stuart Swan, “A Tutorial Introduction on
The New SystemC Verification Standard”, January 29, 2003,
URL: http://www.testbuilder.net/whitepapers/sc_tut.pdf

[cadence|

Overview of SCV Features

ﬁata introspectiorﬁ
weighted randomization N manipulation of
data objects
with arbitrary
type
> (C/C++/SystemC
transaction recording types, user-
specified

composite types,

enumeration
types) /

constrained randomization

N

{ transaction recording

HDL connection

est fransactor design

l 3 |—J—1 |——|—1I
' |

D) | P =] !
—> | | | |
— I = |
D : : -« o |

] | —

37 [cadence]

SCV provides APIs for creating Verification

IP
— TN

Verification IP is designed for detecting bugs
(e.g. atransactor for a AMBA bus)

* Consistent exception reporting mechanism

* Consistent debugging mechanism

\ /
N
'z B

test fransactor design

K
U

ir
K

38 [cadence]

Example: Data Introspection in SCV standard m

struct bus_data t{
unsigned addr;
unsigned data;
%
/[sharing a data object among multiple C++ threads
typedef scv_shared ptr<bus data t> bus_data h;
/[importing a user-defined type into the SCV library
template<> scv_extensions<bus data t>:...{... }

// enabling PLI-like access to a data object with smart pointer to
allow abstract operations (e.g. read/write values, traverse data
structures or set callbacks on value changes)

typedef scv_smart_ptr<bus_data t> bus_data hh;

39 [cadence|

Example: Data Introspection for abstract
operations

scv_smart_ptr<int> k; k->next(); //assigns the next random
value to k.

Type access: (basis for attribute recording in transactions)
unsigned scv_extensions_if :: get_num_fields() const; ...
Value access and assignment : (basis for attribute recording)
void scv_extensions_if :: assign (long long);
long long scv_extensions_if :: get_integer() const; ...
Randomization : (basis for constrained randomization)
void scv_extensions_if :: next(); ...
Callbacks : (basis for variable recording)

void scv_extensions _if :: register_cb (...); ...

40 [cadence]

Transaction Recording

 Debugging at the transaction-level can speed up debugging and analysis
time

« Each high-level operation indicated by the test represents a transaction

A stream represents a set of related and overlapping transactions,
typically w.r.t. the same interface.

* A generator represents a specific type of transactions within a stream.
* A transaction has begin-time, end-time, and attributes.
» A relation can be specified between two transactions.

- Proc_Interrupt : ...

a1 [cadence]

Example: Transaction Recording in a Transactor

class master : public sc_module {
scv_tr_stream transaction_stream;
scv_tr_generator<unsigned, unsigned> read_generator;
unsigned do_read (unsigned addr) {
bus_access_semaphore.wait(); wait(clk->posedge event());

scv_tr_handle h = read_generator.begin_transaction (addr);

unsigned data = bus_data; wait(clk->posedge_event());
read_generator.end_transaction (h , data);

return data;

}
I

e [cadence]

Example: Simple Randomization

void test_body() {
scv_smart_ptr < bus_data _t > arg;

arg->addr. keep_only (0x1000, OXABCD); // restricts the range
of values to be generated

arg->data. keep_only (0,10);
for (int k=0; k<100; ++k) {
arg -> next (); // generates a new random value

master_p-> do_write(arg);

}

[cadence]

Example: Creating a Simple Distribution

probability distribution

oo ||

p->keep only(0,100); >
3 4 ... 98 99 100

scv_smart_ptr<int> p; ‘ ‘ ‘
01 2
p->keep_ out(3,98);

p->nex();

a4 [cadence]

Example : Creating a Complex Distribution

« Weighted randomisation : pick a value from a distribution

specification
Scv_smart_ptr<int> p;
scv_bag<int> dist;
dist.add(0,16);
dist.add(1,8);
dist.add(2,4);
dist.add(3,2);
dist.add(4,1);
p->set_mode(dist);

pP->next();

45

probability distribution

1y

012 3 4

o

[cadence]

Example : Creating a Constraint

class write_constraint : virtual public scv_constraint_base {

public:
scv_smart_ptr< bus_data h > write;
SCV_CONSTRAINT_CTOR(write_constraint) {
SCV_CONSTRAINT(write->addr() < 0x00ff); // write address is less than 255

SCV_CONSTRAINT(write->addr() != write->data()); // write address does
not equal the data being written

SCV_CONSTRAINT (a() > b() && b() > c() && (a() — c() > 100)); //complex
constraint expression (of a,b,c)

}
};

write_constraint c("c"); c . next (); *p = *c.write; // style 1
p->use_constraint (c.write); p->next(); Il style 2

46 [cadence]

SCV Constrained Randomisation

» Constrained randomisation : pick a value that satisfies the Boolean
constraint or sets of constraints.

» A good use example is for ATM or IP packets: to ensure no packets
point back to the sender, or there are none or a controlled number of
Invalid addresses, or to ensure an unbalanced traffic distribution to
specific addresses

» Characteristics of the SCV Constrained Randomisation Solver:
— Distributes solutions uniformly over legal values
— Good performance as number of variables grows
— Commutability (order independence) of constraint equations
— Can express complex constraints
— Debugging of over-constrained (unsolvable) systems
— Control value generation of constrained objects

 Reference: John Rose and Stuart Swan, “SCV Randomisation”, 8
August 2003. URL:
http://www.testbuilder.net/reports/scv_random_white paper 7aug03.pdf

41 [cadence|

Example : Callbacks

A callback is called every time a value is assigned
Scv_smart_ptr< int > data;
data->register_cb(my_value change callbacks);

wait(1,SC_NS); *data = 3;

walit(1,SC_NS); data->next(); // assigns a random value to data
walit(1,SC_NS); *data = 4;

< 3 ><Ox104>< 4 >

48 |cadence'

Simulation Database

e Signhal information (VCD) |

— RTL level semantic —

e Variable information

/ > <
— Value change callbacks N\ >

e Transaction information

— Stream and Generator

— Begin time, end time

— Attributes

— Transaction Relation

*SCV Reference Implementation provides a primitive ASCII database.
*More complex capabilities can be provided in proprietary databases.

49 [cadence]

Callback Connection to Any Database

* SCV includes a set of callback registration routines

— a proprietary database can be connected to any SystemC simulation
— similar to how a tools connect to a Verilog simulator through PLI.

void my_database _init() {
scv_tr_db::register class_cb(database cbf);
scv_tr_stream::register_class_cb(stream_cbf);
scv_tr_generator_base::register_class_cb(generator_cbf);
scv_tr_handle::register_class_cb(handle_cbf);
scv_tr_handle::register_special attribute cb(attribute_cbf);
scv_tr_handle::register_relation_cb(relation_cbf);

50 [cadence]

Miscellaneous Additional Features

« HDL connection: a standard way to connect SystemC signals to an
HDL signal identified by a character string

scv_connect(sc_signal<T>& s, const char * hdl, ...)

(Everything else, for example simulation control, is provided by tool
vendors in specific tools)

e Exception Handling — Standard Reporting Methods
scv_report::set_actions(SCV_INFO, SCV_DO_NOTHING);
SCV_REPORT_ERROR("bad data", "the data in master ... ");

e Debugging: SCV library has some classes to allow state query
while debugging

gdb) data.show()

51 [cadence|

T =

Outline

e The Context for SystemC

e Language Structure and Features
— SystemC Verification Library

e Use Models

» Application Examples
e Tools
* Design Flows and Methodologies

e SystemC Futures

52 |cadence'

Computer1 | T~~~ """ """ T T T T TTT T T T TTTTTTo ;
P | Ethernet To ATM | —
T *| Ethernet UTOPIA | Paris
| Switch U2E Bridge ATM Switch | .
< < |
I | Tokyo
[ione RIS —
“ 0.0 : .
B rrame . | R
Hubl | . E2U Bridge | A
! 1 :
i |
| |
: |
| |

System-Level Design Questions
Do the components within the design work properly together?
How can the design be globally optimized?

How can the system-level design engineer be confident that
the results obtained from design exploration will hold true when

the system is implemented?
53 [cadence]

I =

Validation of Transaction-Level Models

Ethernet
Et:l:g?m » Switch
Abstract
Transaction
» Database

Ethernet Enet

Switch Slave

Verilog TV

TXE
Search

Transaction
Equivalent?

Performance
Equivalent?

[cadence]

Functional Verification of Hardware

Ethernet E2U UTOPIA
- - »[Response [+ - - —j---- -+| Response AT

Response

1 |
: Checker : Checker Checker
1 |
1 |
Enet En.et
S Monitor
TVM
AT
l .| Ethernet UTOPIA ,L >l |
Y| switch ATM = T\a;ve

RTL Function Verification Questions
Is the final version of the design error-free?

Has all of the functionality of the design been proven to work correctly?

How can the verification engineer be sure that an error found in the
design is alogical error instead of a performance error?

55 [cadence]

Embedded Software Verification
Method: Hardware Model Abstraction

“IIIIIIIIIIIIIIIIIIIIIIIIII..

. .
o Abstract Hardware Model in SystemC 2.0 *s

S Faster Simulation *
| |
n Int. n
' - Cntrl .
uP - n

ISS n :
‘ n Timerl | g
T u -
| |
| |
s AHB Bus «> GPIO | =
| I |
| |
u <« UART | =
n Memory u
- Cntrl u
| |
[yy > USB -
| |
| |

|
== = . ROM/ 8
Software Debugglng Enwronment N FLASH Model R

L 4

e *
S EEEEEEEEEEEEEEEEEEEEEEEEERS

56 [cadence]

Implement Abstract Module in RTL / Legacy

RTL Method: Top-Down / Bottom-up Design

LAN \ WAN
r—r——r»>>~- -~ -—"——"—""f"~F~"~®">"™""™""~>"~"">""~>""™""~>""™""™>""~""~“""~""~""“""“"“"“"“"“""“""“""“"“"*""™""™"""™"7"¥™/"7/"7/7/"7/7/71
Computer 1 | | [Enet Ethernet To ATM |)
[[Master=— UTOPIA | ! Paris
: VM ATM Switch : >
: :)
| | Tokyo
Computer 2 | | [ENet) R
[Master | ——
VM | ——
I Enet E2U Bridge ! Austin
| <
| =P Slave e |
TS N Y | ——
HsMasterfs |
L |
|

Verilog — Signal Domain

Ethernet
Switch |

Verilog

57 [cadence]

T =

Outline

e The Context for SystemC

e Language Structure and Features
— SystemC Verification Library

e Use Models

e Application Examples

e Tools
* Design Flows and Methodologies

e SystemC Futures

58 |cadence'

S -2

Application Examples — Useful Reference

» SystemC - Methodologies and
Applications, edited by Wolfgang
Muller, Wolfgang Rosenstiel and
Jurgen Ruf, Kluwer Academic
Publishers, 2003

[cadence|

05/03/2002

A LC ATE L microelectronics

A Method for the Development of
Combined Floating- and Fixed-Point
SystemC Models

Yves Vanderperren
yves.vanderperren@mie.alcatel.be

5. European SystemC Users Group Meeting

v

ALCATEL :
All rights reserved

Alcatel Microelectranics ©® 2002 - Alcatel Microelectronics

ALCATEL

Alcatel Microelectronics

Fixed-Point with SystemC

v E}(perime ntal results) SlidRDist)
SlidRLength SlidRLength
L-1 . sumPIE_EH [| [bata srag
P_r_r{H}ZZI(H—L—F:)+x [ﬁ‘-ﬁ.") ‘
k=0 | Y correlator : |
T . . =

1R

Gl e @R,

0.05

v 6 bitz £, paint
w7 hitz T point
G itz fx. point

: . # 9 hitz fx. paint
[[)|5ea006aaaa00aaaa000aa — fl. pont |

1 1 1
145 150 155 160 165

05/03/2002

A Method for the Development of Combined Floating- and Fixed-Point SystemC Models, @ 2002 - Alcatel Microelectronics 18

Ays

)

Experiences and Challenges of
Transaction-Level Modelling
with SystemC 2.0

Alain CLOUARD

STMicroelectronics
Central R&D — Crolles (Grenoble, France)

STMicroelectronics

MPEG4 SoC Transactional Model
@Fmes22y——— — [Objective ——

vt L.
Enable application software

L development concurrently with

Speech HW design
CODEC
Micro-
Processor
I uP Bus
$]
Analog Telephone MODEM or
&oﬂnal =*1 ISDN iff
Q— Telephone Line
Users

Used by MPEG4 IVT team for software development
6 months before RTL top netlist ready

Used by SoC team for ARM software development

—_— IC&{I? CONFIDENTIAL K’I -

MPEG4

VHDL simulation

Cosimulation
C+VHDL

C transactional

model
HW emulation

(1D

SoC Transactional Model

Key benefits —

- Close to emulation speed
- Debug facilities

- Fast development (days to few mm)

>x2ﬂ

>

1 picture (coding + decoding)

Simulation time for 1 image (coding + decoding)

Crolles

CONFIDENTIAL

A Design Methodology for the Development of a Complex SoC
using UML and Executable System Models

Yves Vanderperren
yves.vanderperren@st.com

6th European SystemC User Group Meeting
October 22nd, 2002

From Function to Architecture

Bt inal CHI)
e e]

ouc

AComnoclion it
Ll eclion
& HET

B inoahvudL CH||

Tabarfer

TxBol - Sagiio
T ndowSime : Inegar

| S o

ofrzramitl i

mit : S
sCounter : Inbnger
[iscanisH_Prosent

andng i)
¥ Bt}
madir [et |

Carotor T Bt

S HCY
i T op e
A WilHir

System functionality
can be modelled in
abstract terms using
conventional OOA

approac

| et eary)
B Gl N el LCH

S Fncotesdl CHI
B Trarsmill CH()

LCH

Soquasnsumbar
o or el
CRC

B alculalsCRC 24

CL_Houfar

AihelIUC List : Is1=D0C"

Soutai)

HaHufler

:E,'.H:.' SorlLs

A Hapuired

fighesiEN_Roosd
guu;:a F ez

T

it _ oL

HuHoA
N indowSon

e bl CHY)

W fdARLY

o BullerStalus))
M= Pording |

B realeFsEutien)
Siosetth Hufen

CircularRxEatfer
GO

A
AT o Eer
' i

/

oL

miodula==

EC_HX

®

Pelars i

=

AHEB

e

UML can be tailored to
represent SystemC
abstractions such as
Module, Port, Channel
(e.g. using
stereotypes)

h A Design Methodology for the Development of a Complex SoC using UML and Executable System Models, @ 2002 - 51

I Microelectronics

SystemC — AMS Study Group

SystemC — Analog and Mixed Signal

Karsten Einwich

1April 2002, msgroup_conc.ppt

Fraunhofer (nstitut

Inteqrierte Schaltungen

SystemC-AMS concept

User view layer | \jew 1.1 || View 1.2 | see | View 2.1 .o

classical
Solver layer Solver 1 Solver 2 oes | SYystemC
Layers
[1]
SANEHIGRLZIICh AMS - Synchronization
layer
SystemC layer SystemC kernel

4April 2002, msgroup_conc.ppl

Fraunhofer

Institut
Inteqrierte Schaltungen

="'-'*=,, TEL ECOM | A |5 Fabio Ricciato, Paolo Pellegrino, Maura Turolla, Paolo Gallo
™ S TAL A Telecom Italia Lab

4 B T

/

All rights reserved

Franco Fummi Massimo Poncino
Universita di Verona - Dipartimento di Informatica

Stefano Martini Giovanni Perbellini
Embedded Systems Design Center

PARCO SCIEMTIFICO Df VERONA

Networked embedded

curopeAn SvsTeilC devices design:
» USERS GROUP MEETING
MUNICH 2003 Ns'syStemc
timing-accurate
synchronization

ﬁ_‘"rﬂECDM LAB I
ITALLA

Simulation cores synchronization

Network
Simulator

by Berkeley ‘\

Programming Model Time synchronization

[Data Exchange Performance

=

All rights reserved

ﬁ_""TELECDM [AE I
ITALLA

Data Exchange

Packet Size

Packet Type

Data time

Data Size Data Receiver

Next Event Time

Data : Process

Process
Queue NS2 Queue Queue

Wrapper| _Kernel D Manager (Wrapper

Message

All rights reserved

—— P A
European SystemC TELECﬂﬂf i I

Users Group Meeting

Extending the SystemC ™ Synthesis
Subset by Object Oriented Features

Experiences and Results from
the ODETTE Project

Eike Grimpe
OFFIS Research Institute

SystemC Technological Symposium,
DAC'03

OFFIS

Why?

Today:
SystemC synthesis subset = HDL synthesis subsets

— why should anyone use it for synthesis at this level?

Extending the synthesis subset by OO features
seems to be a logical step

high level spec. }

* time consuming
* error-prone

\Z
synthesisable spec.

Without improved synthesis techniques, SystemC will
remain ‘only’ a design space exploration language

OFFIS

SystemC Technological Symposium, DAC'03

SystemC™

modules

signals & ports
processes

data types

hier. channels
sc_fifo, sc_mutex, ...
dynamic threads

eliminate inheritance
replace objects
replace member
access

resolve polymorphism
instantiate templates
no behavioral
synthesis

‘flattened’
behavioral/RT level
SystemC or VHDL
processable with
existing tools

VHDL
SystemC

SystemC Technological Symposium, DAC'03

]
Object- 1 —_—t

oriented
SystemC
HW-Spec.

+ polymorphism
shared objects &
inter-process
communication

C++

+ classes

+ templates
+ inheritance
- pointers

- file IO

- new, delete

e b

rmag T

= functional equivalent

= cycle accurate

OFFIS

Enabling system analysis of Tl ¢55x
processor megacell based designs via
integration with OCP SystemC testbench

Saurabh Tiwari (
Software Design Engineer

Texas Instruments India Ltd.

REAL WORLD SIGNAL PRUOCESSING. J{JTEXASINSTRUMENTS

C55x TL Architecture Exploration

CoCentric(R) System Studia - _sestemetesty CoveTestbench
Eile Edit Yiew |nsert Library Model Gimulalion Qplions Tools Window Help

OFRECF =R BEEY [vazr 456 280 ¢ B8
B0 %fwas SHgm(ooc [AD vor|[aao daax|[n]

5l 2w system: testrmsacoreTestench MMSCOreTesthench
G o | e e
Facr | R
ool a] | o] »ffm
[|F Time: [

Eraakpoints | Data Walch | Lavel Walch Monitor:

a4 Paih
1 |[F /e CoreTestoanch 1012 i 0TI2 S

| —-| Manitor: TI2. keae

Pl "0 T Bsthianh 1T T2)

<= |IReq |DFE=ad Dreiriba |}<Heaﬂ |}1:'H.-'nba laReq
Renuest |94 3 4 3 3 244

249 [G6.90%)

j E Closa | & [0E5%) 39 [2TALH)
| | BN | ' e [J#read [it [[EGEN
= [coe |

—
[[~756492, 0115 8 |CvA

B Confidential TI

REAL WORLD SIGNAL PROCESS.] Wi# TEXAS INSTRUMENTS

T =

Outline

e The Context for SystemC

e Language Structure and Features
— SystemC Verification Library

* Use Models
e Application Examples

e TOOIS

* Design Flows and Methodologies

e SystemC Futures

77 |cadence'

Taxonomy of “SystemC EDA products” from
OSCIl web pages

e Total number of products = 38 (last update 1 June
2003) (# was 32 — 9 August 2002)

— Commercial SystemC Simulators 4 (3)

— Co-Simulators 4 (4) 1/3

— Links to Emulation 3 (4) T

— Synthesis 6 (6) }

— HDL to SystemC Model Converters 3 (4) M

— SystemC Extended Libraries 4 (2)

— Analysis, Display, Verification and Checkers 3 (3) } 45%
— System Level Modelling and Design Tools 10 (6)

78 [cadence]

Examples of Tools

« Commercial SystemC Simulators

— Cadence, Forte, Synopsys, Veritools
» Co-Simulators

— Cadence, Mentor, Synopsys, TNI-Valiosys, (Celoxica)
e Links to Emulation

— Dynalith, EVE, Mentor (IKOS)
e Synthesis

— Adelante (ARM), Forte, Prosilog, Synopsys, Xilinx
 HDL to SystemC Model Converters

— Ascend, Tenison, TNI-Valiosys

79 [cadence]

Examples of Tools, continued

» SystemC Extended Libraries
— Adelante (ARM), ARM, Forte, Simucad

» Analysis, Display, Verification and Checkers

— Actis, Blue Pacific, Verisity, (ChipVision ORINOCO system level power
estimation)

» System Level Modelling and Design Tools

— Axys Design, Cadence, CoWare, Future Design Automation,
LisaTek (CoWare), Prosilog, Summit Design, Synopsys

80 [cadence]

Example of Tool — Cadence SPW 4.8 Eﬁz

HDL - Verilog, VHDL

Entry cj W L. - = ,J“ ‘ " o g 11 G Jﬁ On | SS

Signal S \crilog & VEDES _ [Integrated

Analysis o Debug

Cross

Data Path Debug

- WpaPum
- Dt barm.

S e Waveform

iR = - - ELlT Signal

[cadence]

Example of Tool

'SimVision: Design Browser 1 E [=I[=][
File Edit Miew Select Esplore Simulation File Edit Wiew Select Format Simulation Windowes Help
=] = B] Send To: ﬁ (i)
&2 o | % El % EEYEE
N nleimeAj =|D jlns Rafin: e I nleimeAj =|D jlns [Search Times: | Marker » I r{ r’
DS 5 ¢ [simuation Tme: 0+ 0 || IDNEERT | & & = | &0 | Simulation Time: 0+ 0
Databases/Designs: IF"H - & sig Scope: [sctop.CPU x| E=E Files: Jfusti/julianod. Jam_cpuh [62:165] x| 8
E--JE sctop Sig EE v A4 extern "C" X
B2 husl B 2 class arm_cpu
F-ZE CPU gi { : public AHE_hus_master
-2 GPIOD 353
B3 gpiaGeno g? int debug_lewvel;
-8 intctl 68 /* Number and list of modules in RDI target */
E-3E LCD 59 ARMword nModules;
70 EDI_ModuleDesc* modules;
.--ZE MEMI_Interrupt_Vectors 71
. T2 4+ CCM application to connect to */
#-2E MEMZ_Code 73 armdbg_Application application;
e 5 ISURLS 76| /% IPCRDI handles for step/emscute mulbiplexing +/
andles for step/execute multiplexing
-2 MEM4_Debugger 76 woid iperdi;
#--ZE MEMS_External_Memary 7
_ T8+ BDI_ProcVec of GCM +/
#--ZEE reset_gen 79 FRDI_ProcVect rdi;
[RTC1 80
= 81+ CCM memory system's hus type */
+---ZBE src_instance 82 int bus_type;
o E 83 -
& :E i (i) [84 4+ hgent handle of ROI target */
-2 th_method_1 85 RDI_AgentHandle agent;
= g6
g 2 weinmel 2 27 /* RDI error status */
-3 tb_method_3 88 int BrL;
3 29
-3 th_method_4 00 4+ Are we executing debugger commands or running */
H--ZE th_method_5 91 hool rdi_commands;
92
F -3 th_method_ 93 4+ Handle for the instance of the DLL */
-2 th_method 7 94 woid* mem_handle;
p - - 95
S0 th method 8 4 96 /* Function pointer to DLL's interrupt and reset handler */
= lﬁ 97 dintres fn* intres handler: /
|© | |@ | |D objects selected
i g =
3*‘ &y ’ m ’ O simvision: Design .. |If| (@) [rame] | @ Microsoft Outlook .. = 9 [] 04:52 P
b 10 simvision: source .. &8 Terminal Terminal 100% ilem ¥ 1€

Cadence Incisive SystemC

ARM
Functional
Virtual
Prototype
SystemC
Model In
Cadence
Incisive

Browser

Example of Tool: User-programmed

SystemC analysis “widgets”

ctop LCD.led_master:master framebI=1ES] ST e B e e (O R L] I
FEile Cptions |nfo
1] 1 e i

1] Liviniti 1000 100M
4 JdA13dE1 JdA1 3dET ad613dE1 JdA1 3dE
] JdE13dE7 31 3067 ad613d61 JdA1 3dE
C JdE13dE7 31 3067 ad613d61 JdA1 3dE
10 JdB13dE1 JdE1 3067 adB13d61 JdE1 3dE1
14 JdB13dE1 JdB13d61 SdA13dE1 JdB13d61
18 Bd156d15 Bd1a6d15 Gd156d15 Bd1a6d15
1c Bl 5615 JdB1Rd1 S 13dR1 100M
20 1000 Liviniti 1000 100M
24 JdB13dE1 JdfB1 367 Jd613d61 31 3dE1

|| 28 JdB13dE1 JdfB1 367 Jd613d61 31 3dE1
2c JdB13dE1 JdfB1 367 ad613d61 31 3dB1
30 JdB13dB1 JdfA1 367 adB13d61 31 3dB1
34 JdB13dE1 JdA1 3d67 dd613d61 JdA1 3dB1
38 Ad156d15 Ad1a6d15 Ad156d15 Ad156d15
4]

— | temory kdap Yisualiser

ARM
LCD and
Memory
Display
Widgets
Linked to
Their
SystemC
Model

[cadence]

Example of Tool: User-programmed
SystemC analysis “widgets”

. External_Memary
File Zoom Display Data Options Help File Cptions Info
" TITTT § ARM
‘M5_External. 0 ittt ittt 10001 10001
0000 4 10001 10001 10001 10001
. 3 10001 10001 10001 10001 M e m O r
c 10001 10001 10001 T y
000
10 10001 10001 10001 10001 .
2 14 10001 10001 10001 10001 Transactl O n
e 18 10001 10001 10001 10001
o 1c 10001 10001 10001 10001
20 10001 i 10001 10001
- 24 10001 10001 10001 10001 L eve I
1603 28 10001 10001 10001 10001
e zc 10001 10001 10001 T I\/l O d e I
30 10001 T 10001 10001
12000
34 10001 10001 10001 10001 N
o a6 10001 10001 10001 10001 I t t
a0 3c 10001 10001 10001 i n e raC Ive
oo a0 10001 T T 10001
44 10001 10001 10001 10001 D b
- 46 10001 10001 10001 10001 e u g
oo 4c 10001 10001 10001 10001 .
o 50 10001 10001 10001 10001
" vt 54 10001 10001 10001 10001 WI n d OW
55 10001 10001 10001 10001
5S¢ 10001 10001 10001 T
0 10001 10001 i 10001
i 10001 10001 377d0001 | 37TdITT
58 1377d 10001 10001 10001 &l
| |Chan Wisualiser | | Memary hMap Visualiser
:"‘ = Q ’ iE [Simifision: Console] |E1 sctop . MERMS_External_Memaory i 09:42 Ahkd
b d jE} sctop. MEMS_External_kemary ez w7

Example of Tool: Display in Cadence
Incisive SystemC

File Edit ¥iew Esxplore Format Windows ﬂelp_ Cadence
Fo |t mm x| et P BE D000 E RS+ eBELEYEE

T SimVision
| Display

Cursor-Baseline

(D) 0 objects selected]

[cadence|

| Simyision: T<E:bus_husy
File Edit Wiew Locate PMavigate SWindows Help
! p— L ke
S [& B X [’E Eaa o
1 N
2|source { i
3}
4linit §
g
B|set totall Ons; set maxl Ons; set minl 1000ns;
Tlset total® Ons; set max? Ons; set minZ 1000ns;
3|set totalld Ons; set max3d Ons; set min3d 1000ns;
9lset totald Ons: set maxd Ons; set mind 1000ns;
10|set totals Ons; set maxt Ons; set minb I!.EIEIEIns; i
P~ =
Browyse | Execute | Save | Cloze |
== ==
Result —| 6o see | ﬁ;l rﬁl &l F@l 4:}4| H:rl
Slave |Countl |kind % E= Totall Percent_Ltil A
1 96|100000000fs | 30000000075 |Z2400000000f% 1, 5599720014
2 2033 |100000000fs |300000000f% | FOFFO0000000f 176916154152
3 1051 00000000fs | 30000000075 | 245300000000f% 0,612469376531
4 1[300000000fs | 300000000fs |300000000f% 0,007 49962501875
5 3037 |100000000fs | 30000000075 (G25300000000f 20,6314634266
LCD 1785 |300000000fs | 30000000075 |535500000000f% 13, 2868206025
kdaster [Count |Min Pl Tatal FPercent_[LHil
ZPU h728|20000000fs (2500000007 [§59200000000f% 21, 4789260037
LCD 2358 |50000000fs |250000000fs |353700000000f 3,84205783711 |
£
P~ .=

Cadence
SimVision
Display of
Transaction
Explorer

[cadence]

Example of Tool: Synopsys CoCentric System
Studio (used in Tl example earlier)

C55x TL Architecture Exploratlon

CoCentriclR) Swstem Studia — . _sustemc_testd CoseTesthench
EIIE' Edit Yiew nsart Librany Modgl Gimulalion Oplions Tools _'|-_'.l_|ndw.r Help

OFRECF =R BEEY [vazr 456 280 ¢ B8
5B 0 %foswa> Fegmcos A0 vor|[aas dagan||n |

3l |2 e systemc testhemsroreTestiench TCoreTesthench i
RN coeTestency:) (RIRRRINIRINY oot L s D B e L
Mﬂ ilﬂ LH_ZE':' : i A et e St e e e R e U i e
I?J F Time: 47 50n5 .

Eraakpoints | Data Walch | Lawel Walch | Moniter| |

a4 Paih
1 |[F /e CoreTestoanch 1012 i 0TI2 S

[=] Manitor: TIZ_seasd
Pblslele” 17T B5thaNCh_1.TI2 I (|0

s |Req [oRead [owie [HRean [weme [Hodeg
Resuisst |59 3 4 3 3 245

249 [G6.90%)

e 1 |3|:| Fig j E Close | 3 [0E5%) 39 [2TAL%)
| | BN | ' e [J#read [it [[EGEN
=~

1111 [} Ii
L —
[[~756492, 0115 8 |CvA

B Confidential TI

REAL WORLD SIGNAL PROCESSING. Wi# TEXAS INSTRUMENTS

— R T 7
.:..._I..-.|_......_.|.'-'....l....I...::I.........I.......
I |

:

=y e s w
T LT % |
=
! “-a. i
u &l
v | | I\
in 1]
B il
| |
T |
|
p— S
4l

88

| [0S, u 1062 1

Memory Reads and Writes

Bl=lwi=l P) FlEE EE O
| ENf S | e HfF o vt oo el b a5 ik)

il

] - | |
A

S5t il ot)Ll CHRR LT e T St Trara ol ra

L4 ST | TR |

Transaction Counts and Bus Contention

[cadence]

Example of Tool: Forte Cynthesizer

Architectural Exploration
with Cynthesizer

_Prowan | -

Implementation Trade-offs
Data path | ::::‘::!lgn - _ . ‘. ‘

ey z . ¢

1‘3-”__-»-"
£ . Goal:
_ 66 fps
GATES ' '
Frames/second

-

Increasing performance

89 cadence

10

GO WES POIWER

Example of Tool: ChipVision ORINOCO System-level Power Estimation

ORINOCO® e

Pnalyie and ndarstand peor swn dasign|

elavant aspacts of yoor Sesign. B desplays
I REMC P o dick st e Fow wisisali zak i the inpaect of your decsions moments attar

G LR B givd ol =n mSighl ma 1hae poaver thi changes ware made

Dptimizatan of mamery accesaes and mapping rasul in

talantal power savngs

Thie axanmpbe identifies the indctds as the real Hat Spot
This Poawer Burnar has the haghast petential for agtimization

LTS R AT

= w w
e =
I T, T ST P T R
= el eTele i

F 2

= =

i =

I

FERRIIRIFRE R

!
i
!
i
§
f

Memory atosstas befara o plimizaban

Memary accesses aitar opiimizaban

Eagy algenthm translermation prasents very déferant povwer recufic

Lizi

g samiple data encoding, 1his axamgds chowe

% pormer s

0E i BEConds

Teial
Aom b 1]
alss
mhik | £=1} whda [c»1]
Awd ™ A=ATr
TR c
1)
Tatal
Power Baln
FUI% Total 20F%

2 URINOCO"™ &

C/C+= and Sy=lemC design enlry

Real, beheaoral estimatan

Inb=gration with leading industry design
llows ard simulatars

Bound =stimation for the archileclural

power desegn space

Benerabon ol power miodels with manimsm

w=er inlervention

Extensive alization capabililies

Open IP interlascs

Leww power archilechure advisee

Platiorms: Salans Sparc wd, Linux «84 Redhat 7.3

High Performance for large designs

Lnux x84 Suse 7.3

Future SystemC Tool Possibilities m

A Personal View:

— Links to Implementation are important

— But the world has not figured out behavioural synthesis yet (although a next
generation of behavioural synthesis, and coprocessor synthesis, is emerging)

— And using SystemC as an RTL entry vehicle is not the best approach

— System level modelling, analysis and refinement is still not a well-understood
and well-adopted approach

— This is where users of SystemC need to spend most of their time, experimenting and
working out methodologies

— Calls out for:
— Methodology-driven design flows
— Analysis capabilities
— Design space exploration concepts

— Flows from higher level modelling e.g. UML, and links to embedded SW

— From the system level designer viewpoint, this is the most useful area for tool
development

o1 [cadence|

T =

Outline

e The Context for SystemC

e Language Structure and Features
— SystemC Verification Library

* Use Models
e Application Examples
* Tools

e Design Flows and Methodoloqgies

e SystemC Futures

02 |cadence'

Design Flows with SystemC: 2 key decisions

 Where You Start

— Some other high level modelling
language or tool

— E.g. UML, SDL, Matlab/Simulink
— Functional model in SystemC

— E.g. Untimed or Timed Function
(UTF, TF)

— Architectural

— Functional or Transaction-level
model of the system
implementation architecture

e How You Go

— Model-Refine-Synthesise

— (to SystemC RTL, HDL RTL, or
HDL Gates)

— Model-Refine-Manually transfer
— (to SystemC RTL or HDL RTL)

In addition, for Derivative Design/Embedded SW Design and Verification: Building
a model upwards from a SystemC architectural or implementation model (Platform model)

93

[cadence]

Possible Flows

Higher level modelling:

UML, SDL, Matlab/Simulink Platform Model
/ \ For System/SW
[= =% - mm - : Verification
Functional <« Architectural |
Possible Entry ' 1

Points \ B _7

SystemC
imblementation Code Generation
mple
Routes T —
Functional <« Architectural
v
Refine:
e.g. transaction-level
Synth Man
/\
SystemC, Verilog, VHDL, Verilog-2005, SystemVerilog RTL
Verilog, VHDL, Verilog-2005, SystemVerilog Implement

!)
[cadence]

cadence]

94

Flows starting with Higher-level languages or
notations

« UML.:
— ST (Alcatel) UML flow shown earlier

— UML Code Generation for SystemC: (Yves Vanderperren, 6. European
SystemC users group meeting)

— “SoC Design with UML and SystemC”, Alberto Sardini, Rational, 6™". European
SystemC users group meeting

— “A SystemC based design flow starting from UML Models”, Bruschi, Politecnico di
Milano, 6" European SystemC users group meeting

— “Fujitsu Develops New SoC Design Methodology Based on UML and C Programming
Languages” — Press Release, Fujitsu, Tokyo, April 16, 2002: URL.:

http://pr.fujitsu.com/en/news/2002/04/16-2.html
» Matlab/Simulink:

— “Modeling Cycle-Accurate Hardware with Matlab/Simulink Using SystemC”,
Czerner and Zellmann, limenau, 6. European SystemC users group
meeting

% [cadence|

A SystemC based design f
starting from UML mode

Politecnico di Milano, Cefriel
Siemens ICM

2

Front-end system design flow
Speciﬁcation . { UML model (analysis
document and implementation)

Functional SystemC ificati CoCentric System
() o el

Design space
exploration

SystemC hw spec | 2 C++ sw spec

Fujitsu — UML, SystemC

New SoC Design Methodology

r’ UMLISystemC b rr’ :
Software System [Requirements, 5
Algorithms Specifications Standards |
CIC++ *
Optimized Architecture .

Division of HWISW Wor by Quantitative ﬂnal‘.VSIS

O UMLISystemC Performance Evaluation UML, CICH+ i
b Verification o

Hardware Spec.] Environment for [Software Spec.]
\ * L_em:a-ls of Abstractioni

I

| [" Timing Accuracy l
/Gerlfcatlup/ Untimed N HW/SW k - RTOS |
\ ¥ . » ¥/ Co-Verificatio ':-- [REf'“E"‘E“t]Mapping'
Timed) l !
| -»[RTL " [Final Code] |
© Hardware { (GateLevel PBR) [RTOS: Real Time Operating System
Refinement| | mplementation Untimed: Behavioral Model without
gl Clock Definition
* Timed: Behavioral Model with {partial)
Clock Definition

All Rights Reserved. Copyright © FUJITSU LUNTED

[cadence|

Complete SystemC-based flow

e Modelling in SystemC

 Refining in SystemC

* Verification in SystemC

 Manual Translation to Verilog (currently)
» Synthesis from Verilog (currently)

e Eventual goal: Synthesis from SystemC at RTL and (perhaps)
transaction-level

* Rob Slater, Motorola Israel, “Towards a complete SystemC
flow”, 61. European SystemC users group meeting

90 [cadence]

Towards a Complete
SystemC Flow

Rob Slater
Motorola Semiconductor Israel, Ltd. (MSIL)
r.slater@motorola.com

- . . Rob Slater — 6= European SystemC User's Group MOTOROLA "2
intelligence @ everywhere 22 October 2002 — Slide 1 of 11 d]. f-rﬂ 'l dﬂ a'l
Motorola Internal Use Only g

Motorola, th Styleed M, and all e rademarnks indicabed as suoh kanzin aeo ndemarnks of Molorola, Ino. 8 Heg. LS. Pat £ T O
il other product or senion namaes s B propaty of Saeir respecive carers. S Motorola, Ine 20040, A sighls mearied.

SYSTEMC™™

A SystemC Based Flow
. 4

SystemC (C++)

Refine

Refine

M1 Done By Designers

M Netlist Preserved

Rest of Process

intelli here” Rob Slater — 6 European SystemC User's Group MOTORODLA =:_{
ineliigence everywnere 22 October 2002 — Slide 6 of 11 d]. f-rﬂ' 'l dﬂ a
Motorola Internal Use Only g
|

Motorola, th Styleed M, and all e rademarnks indicabed as suoh kanzin aeo ndemarnks of Molorola, Ino. 8 Heg. LS. Pat £ T O
Al other product o senios namaes ae B proparty of Suer respecive cweers. S Motorola, Ine 20040, Al sghls moeroed

SYSTEMC™™

SystemC for Verification

Abstract
Function Calls

Abstract
Function Calls

- oy
o ¥ sc_module®™ _
sc channel

Transactor Transactor sc_signal

- ~
Reference o ™ sc_module sc_module ™=
Model

Transactor

sc_channel Transactor

sc _module

In Verilog or

In SystemC SystemC RTL

i

sc module
Abstract

Function Calls

sc _module
Abstract

Function Calls

intelli here” Rob Slater — 6 European SystemC User's Group MOTORODLA ;{{
ineliigence everywnere 22 October 2002 — Slide 7 of 11 d]. f-rﬂ' 'l dﬂ a
Motorola Internal Use Only g

Motorola, th Styleed M, and all e rademarnks indicabed as suoh kanzin aeo ndemarnks of Molorola, Ino. 8 Heg. LS. Pat £ T O
il other product or senion namaes s B propaty of Saeir respecive carers. S Motorola, Ine 20040, A sighls mearied.

Example of Tool: Axys Design MaxSIM
Developer Suite — System Platform Model

Creation and Export

=

=
Design Space E Platform Space
LE Gl 5 |5 - L oy
E S MaxSim™ ||| & E Al MaxSim™ | |||E=—-=N MaxSim™ [/
.E - Bevalopar Balis E E- Plaiffo = W uplarie -E Flylitoam Canbial
L-I:l .-.i::'_-ll-l e nE|vTm E = EITEI ""E .-Eth i E|¥ 6
5] 5 S S
I RS E T = = g

o
MaxSim Developer Suite £ | Platform Explarer nﬁr_ﬂffﬂgﬂw

EW,E}-MDM;W:MEEHWM 3 Hﬁtﬂé{“mu Y 5W Debugging and
Exacution
APCETS

103

[cadence|

T =

Outline

e The Context for SystemC

e Language Structure and Features
— SystemC Verification Library

» Use Models

e Application Examples

e Tools

* Design Flows and Methodologies

e SystemC Futures

104 cadence'

SystemC 2.1

» SystemC 2.1 intended as a relatively minor release to add features that
could not wait until SystemC 3.0

— Intended to have very high compatibility with SystemC 2.0.1
— Specs and code for 2.1 were developed by LWG over last year (2002-2003)
— Anticipated availability sometime 2H 2003 — perhaps October/November

« Main features

— Dynamic Thread Creation (designed with SystemC 3.0 in mind) — also
critical for testbenches (e.g. SCV) and general SW modelling

— New error reporting API
— Exported Interfaces

— A variety of small cleanups and bug fixes

10 [cadence]

SystemC 3.0

« SystemC 3.0 will be a major release that adds RTOS and
scheduler modeling capabilities such as:

— Thread interrupt and abort

— User-defined scheduler models layered on top of the core SystemC
scheduler

* (as indicated, requires dynamic thread creation for SW/RTOS
modelling)

 Status: 3.0 specification to be continued after 2.1 is finished and
IEEE SystemC standardisation (based on 2.01) started — thus,
likely to continue in 2004. Plans are not firm at this point.

106 [cadence]

Layered Language Architecture

RTOS models
user-defined channels |Scheduler models

libraries

core language elementary channels

modules channels & scheduler API
interfaces

events & sensitivity dynamic threads &
thread control

kernel scheduler

Source: Thorsten Groetker, “Modelling software with SystemC 3.0”, 61", European
SystemC Users group meeting, October, 2002

= " (E:;\T-'STF@-C"

Beyond SystemC 3.0 — tentative roadmap

« At one point there was the idea of SystemC 4.0 with Analogue/Mixed-Signal
modelling and solver capabilities (cf. SystemC-AMS study group and earlier
presentation by Karsten Einwich

— Status: might continue as community effort

» Donation of SystemC (based on 2.01 Language Reference Manual) from OSCI to

IEEE for official standardisation — likely by late 2003/early-2004. (2.01 LRM on
OSCI web)

* Other OSCI Working Groups

— Transaction-Level Modelling — standardise semantics, and perhaps APIs, for agreed
levels of transaction-level models. Preliminary standards possible Q1-2 2004.

— Leveraging work with ARM AMBA, OCPIP, and other developments
— Synthesis subset of SystemC- behavioural and RTL. Draft for review by Oct-Nov.
— Verification library (SCV) may also be donated to IEEE for standardisation
» Future of OSCI:

— May become a usage and idea development community

— When SystemC standardised by the IEEE, OSCI may (or may not) withdraw from
developing reference implementations (pOSSIb|e alternative: “community prototypes”)

— May leave this for commercial tool vendors (cf. Verilog, VHDL)

108 [cadence|

S =

Conclusions

» SystemC is very clear a system-level modelling language

» Can be used as the basis for system-level design, verification and
Implementation flows

* Not a substitute for HDLs

* Is being applied in real-life design situations and being used to build
real system-level design tools, methodologies and flows

* [ts open nature, and being based on C++, allows many variant
applications and flows to be built

» Can be easily plugged into both higher and lower level modelling and
Implementation environments

* |s being extended by the community in several interesting directions

* Has a very interesting future!

109 [cadence|

	SystemC Tutorial:From Language to Applications,From Tools to Methodologies
	Abstract
	Outline
	The Context for SystemC
	SystemC needs a ceiling as well as a floor
	How the Industry Looks at the Many Language Choices
	SystemC is for System Level Design and Modeling
	What are Users Doing Today with SystemC?
	Outline
	SystemC 2.0 Language Architecture
	SystemC Language recent updates
	Models of Computation in SystemC 2.0
	RTL Model of Computation in SystemC
	Kahn Process Network MOC in SystemC
	Static Dataflow MOC in SystemC
	Transaction-Level MOC in SystemC
	Modeling Example - Interfaces
	Modeling Example - Channel
	Modeling Example - Producer / Consumer
	Modeling Example - Top
	Communication Refinement in SystemC
	Transaction-Level Producer/Consumer Design
	Transaction-Level Producer/Consumer Design
	Transaction-Level Producer/Consumer Design
	RTL Hardware FIFO Module
	RTL Hardware FIFO Module
	The hw_fifo_wrapper Hierarchical Channel
	The hw_fifo_wrapper Hierarchical Channel
	Insert hw_fifo_wrapper into Producer/Consumer
	Transaction-Level Modeling in SystemC
	Suggested Modelling Abstraction Levels(Source: “Transaction Level Modeling: Overview and Requirements for SystemC Methodolo
	Transaction-Based Verification in SystemC
	Outline
	SystemC Verification Library (SCV)Standardisation
	Standardisation Activities, continued
	Motivating Example
	Overview of SCV Features
	SCV provides APIs for creating Verification IP
	Example: Data Introspection in SCV standard
	Example: Data Introspection for abstract operations
	Transaction Recording
	Example: Transaction Recording in a Transactor
	Example: Simple Randomization
	Example: Creating a Simple Distribution
	Example : Creating a Complex Distribution
	Example : Creating a Constraint
	SCV Constrained Randomisation
	Example : Callbacks
	Simulation Database
	Callback Connection to Any Database
	Miscellaneous Additional Features
	Outline
	Design Space Exploration in System-Level Design
	Validation of Transaction-Level Models
	Functional Verification of Hardware
	Embedded Software VerificationMethod: Hardware Model Abstraction
	Implement Abstract Module in RTL / LegacyRTL Method: Top-Down / Bottom-up Design
	Outline
	Application Examples – Useful Reference
	Outline
	Taxonomy of “SystemC EDA products” from OSCI web pages
	Examples of Tools
	Examples of Tools, continued
	Example of Tool – Cadence SPW 4.8
	Example of Tool: Cadence Incisive SystemC
	Example of Tool: User-programmed SystemC analysis “widgets”
	Example of Tool: User-programmed SystemC analysis “widgets”
	Example of Tool: Display in Cadence Incisive SystemC
	Example of Tool: Transaction-Level analysis in Cadence Incisive SystemC
	Example of Tool: Synopsys CoCentric System Studio (used in TI example earlier)
	Example of Tool: CoWare ConvergenSC System-level design and verification
	Example of Tool: Forte Cynthesizer (SystemC Behavioural Synthesis)
	Example of Tool: ChipVision ORINOCO System-level Power Estimation
	Future SystemC Tool Possibilities
	Outline
	Design Flows with SystemC: 2 key decisions
	Possible Flows
	Flows starting with Higher-level languages or notations
	Fujitsu – UML, SystemC
	Complete SystemC-based flow
	Example of Tool: Axys Design MaxSIM Developer Suite – System Platform Model Creation and Export
	Outline
	SystemC 2.1
	SystemC 3.0
	Beyond SystemC 3.0 – tentative roadmap
	Conclusions

