
1

Enabling PSL Assertions in SystemC

Stuart Swan
Senior Architect
Cadence Design Systems, Inc.
June 2004

2

Introduction
• Want to leverage properties across system level and RTL

designs.

• Provide uniform PSL support in Verilog, VHDL, and SystemC.

• Enable top-down and bottom-up property flow.

TB

TB

TB

SW
Debug

CPU

MEM

Slave

Slave

Master

Slave TB

= RTL HDL
= TLM SystemC

= PSL Properties

3

Approach
• Modeled on VHDL/Verilog flavors.

– Separate PSL verification units bound to SystemC module

– Embedded PSL within SystemC using meta-comments.

• Same PSL syntax as VHDL/Verilog enables portability.

• Full support for the PSL 1.1 LRM “simple subset” is planned.

4

Example (embedded
assertions)// Very simple SystemC 2-bit up counter
#include “systemc.h”

SC_MODULE(ctr) {
sc_in<bool> clk;
sc_out<sc_lv<2> > cnt;

void increment(); // Counter thread

SC_CTOR(ctr) : clk(“clk”), cnt(“cnt”), cntReg(0)
{
SC_THREAD(increment);
sensitive << clk.pos();

}

// psl default clock = fell(clk);
// psl flip1: assert always (cnt[0] -> next !cnt[0]);
// psl flip2: assert always (cnt[0] -> next[2](cnt[0]));

private:
sc_int<2> cntReg;

};

5

Example (property file)
• The same set of assertions can be stored in a property file
like the following:

// Property file for PSL assertions (filename ctr.psl)

vunit flip(ctr) {

// This vunit is bound to the SystemC module name “ctr”.
// Each instance of “ctr” will contain instances of the two
// assertions below, as if they had been included within
// the module definition as meta-comments.

default clock = fell(clk);
flip1: assert always (cnt[0] -> next !cnt[0]);
flip2: assert always (cnt[0] -> next[2](cnt[0]));

}

6

SystemC “flavor” of PSL
• PSL in SystemC is implemented using SystemC methods.

– User's PSL assertion is translated into a SystemC method invoked
at the appropriate clock edge (see below).

• The PSL “clock” in SystemC can be an event or event finder.

– e.g. clk.posedge_event(), clk.pos(), or other event or event finder.

– Unclocked assertions are sensitive to all signals referenced in the
assertion.

• Syntactic sugar helps enhance portability of assertions across
language boundaries:

– Instead of a.range(0,2), use a[0:2]

– Instead of cnt.read()[0].to_char(), use cnt[0]

7

Some Uses of PSL in
SystemC
• Interface checking

– Isolating errors close to their source.

• Protocol checking

– Monitoring communication interactions on a bus.

• Coverage analysis

– Transaction monitoring from assert/cover directives.

– Future capability for reactive testbenches based on PSL coverage
points.

• In all cases, the ability to reuse assertions across SystemC,
Verilog, and VHDL provides many benefits.

8

