JASPER

design automation

PSL Reference Guide, VHDL Flavor

Properties and Verification Units

Description

Example

vunit <name>[(<ent>(<arch>))] {
[inherit <verification unit>;]
[<directive>;]

}

vmode <name>[(<ent>(<arch>))] {

}

vprop <name>[(<ent>(<arch>))] {

Container for defining a complete verification job. Can contain all
verification directives.

Container for defining verification environment contraints. Can

not contain the assert directives.

Container for defining verification objectives. Can only contain
the assert directive.

vunit my_vunit(fifo(rtl)) {
restrict {reset; not reset[*]};
assert never oe and we;

}

vmode my_vmode(fifo(rtl)) {
assume never rd and wr;

}

vprop my_vprop(fifo(rtl)) {
assert never {rd;rd;wr};

Declarations

Description

Example

property <name>[(<parameter list>)] is
<property>;

sequence <name>[(<parameter list>)] is
<sequence>;

endpoint <name>[(<paramter list>)] is
<sequence>;

A declared property can be instantiated wherever properties are
allowed.

A delared sequence can be instantiated wherever sequences are
allowed.

Endpoints can be used as booleans that are true in a specific
cycle if the sequence completes in that cycle.

property my_p is always ack -> busy;
assert p1;

sequence my_s is {oe[*5]};

assert sl1;

endpoint my_e is {sample[=8]; done};
assert always ack -> (busy until el);

<property> -> <property>
<property> <-> <property>

Logical implication.
Logical equivalence.

Basic logic operators Description Example
not <property> Logical negation. not reset
<property> and <property> Logical and. rd and wr
<property> or <property> Logical or. rd or wr

req -> next ack
(req and not busy) <-> next ack

Temporal Operators

Description

Example

always <property or sequence>

never <property or sequence>

next <property>

next[n] (<property>)

next_a[<range>] (<property>)
next_e[<range>] (<property>)

next_event (<bool>) [n] (<property>)
next_event_a (<bool>) [<range>] (<property>)
next_event_e (<bool>) [<range>] (<property>)
<property> until <property>

<property> before <property>

<property> abort <bool>

<sgeuence> |=> <sgeuence>

<sequence> [-> <sequence>

whilenot (<bool>) <sequence>

The property or sequence should always hold.
The property or sequence should never hold.
Property holds one clock cycle in the future.
Property holds on the n’th cycle into the future.

Property holds at all clock cycles of a range of future clock cycles.

Property holds at least once in the range of future clock cycles.
Property holds at n’th occurrence of Boolean expression.
Property holds at all cycles in the range of future clock cycle.
Property holds at least once in the range of Boolean occurrences.
Must hold until a certain event.

Must hold before a certain event.

Terminate at a certain even.

Suffix implication, precondition is followed by another sequence
in the next clock cycle.

Overlapping suffix implication, precondition is followed but
another sequence starts in the last clock cycle.

Sequence should hold until Boolean occurs.

always oe -> not we

never or and we

always req -> next ack

always req -> next[2](ack)

always next_a[2 to inf](rd -> not wr)
always next_e[*2 to 5](rd -> wr)
always next_event(rd)[1](req)

always next_event_a(req)[2 to inf](next ack)

always next_event_e(req)[1 to 4](ack)
always (full_fifo until wr)
always ack -> (req before ack)

always (grant -> (busy until done) abort reset)

{rd;rd} |=> {{not rd} : {wr}}

{rd;rd;not rd} |-> {wr}

whilenot(reset){wr;wr;rd}

Clockhandling

Description

Example

default clock is <clock>;

@clock

Define one default clock in a vunit to be used by all properties
and sequences.

Clock a property or sequence with a certain clock signal. Usage
will override any default clock.

default clock is (clk’event and clk="0’);

property my_fifo is (req -> next ack)
@(clk’event and clk="1");

© 2000-2005 Jasper Design Automation, Inc.

JASPER

design automation

Sequences and SERE’s

Description

Example

<SERE>; <SERE>

Concatenation of sequences.

{rd; rd; wr}

<sequence> : <sequence>
<sequence> | <sequence>
<sequence> & <sequence>

<sequence> && <sequence>

<SERE>[*n]
<SERE>[*]
<SERE>[+]
<SERE>[*n:m]
<SERE>[=n]

Two sequences overlap by one clock cycle.
One of two sequences hold at a specific clock cycle.

Two sequences start at the same clock cycle, they do not need to

be of the same length.

Two sequences start at the same clock cycle and they need to be

of the same length.

Repetition in n consecutive clock cycles.
Repetition for 0 or any number of clock cycles.
Repetition for 1 or more clock cycles.
Repetition for n to m number of clock cycles.
Repetition for n non-consecutive clock cycles.

{rd; rd; wr} : {req; ack}
{rd; rd} | {rd; wr}
{rd; rd; wr} & {req; ack}

{rd; rd; wr} && {lint[*]}

{rd[*5]}

{rd[*]; rd; wr}
{rd[+]; wr}
{rd[*2:51} |=> {wr}
{rd[=31} |=> {wr}

Built-in functions

Description

Example

rose(<bool>)
fell(<bool>)
prev(<expression>)

prev(<expression>, n)

Boolean was false at previous clock cycle and true at current.
Boolean was true at previous clock cycle and false at current.
A function, returns the value of <expression> in the previous
clock cycle.

A functions, returns the value of <expression> in the n’th
previous clock cycle.

rose(xmittiing) -> (busy until done_xmitting)
never fell(rcving) && !done_rcving;

always ((rd = ‘0’) -> next (prev(data_out) =
data_out));

{('rd)[*3]; rd} |=> {prev(data_in, 5) = data_out};

Inheritance

Description

Example

inherit <verification unit>;

Inherits verification directives from other verification units.

inherit my_vunit;

Safelogic extensions

Description

Example

initially <sequence>;
clock_generator <clock> is <pattern>;

Initilizes verification to start at certain state’.
Defines how a specific clock should be generated.

initially {reset == "0"};
clock_generator clk_1 = “0011";

Verification Directives

Description

Example

assert <property>;
assume <property>;
assume_guarantee <property>;

restrict <sequence>;
restrict_guarantee <sequence>;

cover <sequence>,

Verify that a property holds.

Assume that the property holds during verification.

Treated as assume If the vunit that the directive is defined in,
binds to the top level, and as assert otherwise.

Constrain verification according to a specific sequence2.
Treated as restrict if the vunit that the directive is defined in,
binds to the top level, and as assert otherwise.

Check if the sequence was fulfilled during verification.

assert always req -> (ack || retry);
assume never rd && wr;
assume_guarantee never busy && rd;

restrict {reset; reset[*]};
restrict_guarantee {wr[*]; rd; [*]};

cover {state == BUSY; [*]; state == IDLE},

Parameter types

Description

Low abort until*

always never next* within* whilenot* G F X [W]
before *

const Represents a constant integer expression.
boolean Any boolean-layer expression.
property Any property.
sequence Any sequence;
Precedence Operator Description
High <boolean> HDL operators.
@ Clocking operator.
1 =1 [=>1 SERE construction operators.
| & && Sequence implication operators.
[-> [=> Foundation Language implication operators.

Foundation Language occurrence operators.
Termination operators.

' An initially directive must be applied to a sequence with a statically computable length.
2 A restrict directive matches the infinite verification trace. Sequences used in restrict directives should always have infinite lengths.

© 2000-2005 Jasper Design Automation, Inc.

