

PSL Reference Guide, VHDL Flavor

Properties and Verification Units Description Example
vunit <name>[(<ent>(<arch>))] {
 [inherit <verification unit>;]
 [<directive>;]
}

Container for defining a complete verification job. Can contain all
verification directives.

vunit my_vunit(fifo(rtl)) {
 restrict {reset; not reset[*]};
 assert never oe and we;
}

vmode <name>[(<ent>(<arch>))] {
 …
}

Container for defining verification environment contraints. Can
not contain the assert directives.

vmode my_vmode(fifo(rtl)) {
 assume never rd and wr;
}

 vprop <name>[(<ent>(<arch>))] {
 …
}

Container for defining verification objectives. Can only contain
the assert directive.

vprop my_vprop(fifo(rtl)) {
 assert never {rd;rd;wr};
}

Declarations Description Example
property <name>[(<parameter list>)] is
 <property>;

A declared property can be instantiated wherever properties are
allowed.

property my_p is always ack -> busy;
assert p1;

sequence <name>[(<parameter list>)] is
 <sequence>;

A delared sequence can be instantiated wherever sequences are
allowed.

sequence my_s is {oe[*5]};
assert s1;

endpoint <name>[(<paramter list>)] is
 <sequence>;

Endpoints can be used as booleans that are true in a specific
cycle if the sequence completes in that cycle.

endpoint my_e is {sample[=8]; done};
assert always ack -> (busy until e1);

Basic logic operators Description Example
not <property> Logical negation. not reset
<property> and <property> Logical and. rd and wr
<property> or <property> Logical or. rd or wr
<property> -> <property> Logical implication. req -> next ack
<property> <-> <property> Logical equivalence. (req and not busy) <-> next ack

Temporal Operators Description Example
always <property or sequence> The property or sequence should always hold. always oe -> not we
never <property or sequence> The property or sequence should never hold. never or and we
next <property> Property holds one clock cycle in the future. always req -> next ack
next[n] (<property>) Property holds on the n’th cycle into the future. always req -> next[2](ack)
next_a[<range>] (<property>) Property holds at all clock cycles of a range of future clock cycles. always next_a[2 to inf](rd -> not wr)
next_e[<range>] (<property>) Property holds at least once in the range of future clock cycles. always next_e[*2 to 5](rd -> wr)
next_event (<bool>) [n] (<property>) Property holds at n’th occurrence of Boolean expression. always next_event(rd)[1](req)
next_event_a (<bool>) [<range>] (<property>) Property holds at all cycles in the range of future clock cycle. always next_event_a(req)[2 to inf](next ack)
next_event_e (<bool>) [<range>] (<property>) Property holds at least once in the range of Boolean occurrences. always next_event_e(req)[1 to 4](ack)
<property> until <property> Must hold until a certain event. always (full_fifo until wr)
<property> before <property> Must hold before a certain event. always ack -> (req before ack)
<property> abort <bool> Terminate at a certain even. always (grant -> (busy until done) abort reset)
<sqeuence> |=> <sqeuence> Suffix implication, precondition is followed by another sequence

in the next clock cycle.
{rd;rd} |=> {{not rd} : {wr}}

<sequence> |-> <sequence> Overlapping suffix implication, precondition is followed but
another sequence starts in the last clock cycle.

{rd;rd;not rd} |-> {wr}

whilenot (<bool>) <sequence> Sequence should hold until Boolean occurs. whilenot(reset){wr;wr;rd}

Clockhandling Description Example
default clock is <clock>; Define one default clock in a vunit to be used by all properties

and sequences.
default clock is (clk’event and clk=’0’);

@clock Clock a property or sequence with a certain clock signal. Usage
will override any default clock.

property my_fifo is (req -> next ack)
@(clk’event and clk=’1’);

© 2000-2005 Jasper Design Automation, Inc.

Sequences and SERE’s Description Example
<SERE>; <SERE> Concatenation of sequences. {rd; rd; wr}
<sequence> : <sequence> Two sequences overlap by one clock cycle. {rd; rd; wr} : {req; ack}
<sequence> | <sequence> One of two sequences hold at a specific clock cycle. {rd; rd} | {rd; wr}
<sequence> & <sequence> Two sequences start at the same clock cycle, they do not need to

be of the same length.
{rd; rd; wr} & {req; ack}

<sequence> && <sequence> Two sequences start at the same clock cycle and they need to be
of the same length.

{rd; rd; wr} && {!int[*]}

<SERE>[*n] Repetition in n consecutive clock cycles. {rd[*5]}
<SERE>[*] Repetition for 0 or any number of clock cycles. {rd[*]; rd; wr}
<SERE>[+] Repetition for 1 or more clock cycles. {rd[+]; wr}
<SERE>[*n:m] Repetition for n to m number of clock cycles. {rd[*2:5]} |=> {wr}
<SERE>[=n] Repetition for n non-consecutive clock cycles. {rd[=3]} |=> {wr}

Built-in functions Description Example
rose(<bool>) Boolean was false at previous clock cycle and true at current. rose(xmittiing) -> (busy until done_xmitting)
fell(<bool>) Boolean was true at previous clock cycle and false at current. never fell(rcving) && !done_rcving;
prev(<expression>) A function, returns the value of <expression> in the previous

clock cycle.
always ((rd = ‘0’) -> next (prev(data_out) =
data_out));

prev(<expression>, n) A functions, returns the value of <expression> in the n’th
previous clock cycle.

{(!rd)[*3]; rd} |=> {prev(data_in, 5) = data_out};

Inheritance Description Example
inherit <verification unit>; Inherits verification directives from other verification units. inherit my_vunit;

Safelogic extensions Description Example
initially <sequence>; Initilizes verification to start at certain state1. initially {reset == '0'};
clock_generator <clock> is <pattern>; Defines how a specific clock should be generated. clock_generator clk_1 = “0011”;

Verification Directives Description Example
assert <property>; Verify that a property holds. assert always req -> (ack || retry);
assume <property>; Assume that the property holds during verification. assume never rd && wr;
assume_guarantee <property>; Treated as assume If the vunit that the directive is defined in,

binds to the top level, and as assert otherwise.
assume_guarantee never busy && rd;

restrict <sequence>; Constrain verification according to a specific sequence2. restrict {reset; !reset[*]};
restrict_guarantee <sequence>; Treated as restrict if the vunit that the directive is defined in,

binds to the top level, and as assert otherwise.
restrict_guarantee {!wr[*]; rd; [*]};

cover <sequence>; Check if the sequence was fulfilled during verification. cover {state == BUSY; [*]; state == IDLE};

Parameter types Description
const Represents a constant integer expression.
boolean Any boolean-layer expression.
property Any property.
sequence Any sequence;

Precedence Operator Description

High <boolean> HDL operators.
 @ Clocking operator.
 ; [*] [=] [->] SERE construction operators.
 : | & && Sequence implication operators.
 |-> |=> Foundation Language implication operators.
 always never next* within* whilenot* G F X [W] Foundation Language occurrence operators.

Low abort until* before * Termination operators.

1 An initially directive must be applied to a sequence with a statically computable length.
2 A restrict directive matches the infinite verification trace. Sequences used in restrict directives should always have infinite lengths.

© 2000-2005 Jasper Design Automation, Inc.

