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 This work describes the implementation of digital

reconfigurable systems (DRS) using commercial FPGA

devices. The main goal is to present a set of tools for

remote and partial reconfiguration developed for the

Virtex FPGA family. Even though the tools are targeted to

a specific device, their building principles may easily be

adapted to other FPGA families, if they have an internal

architecture enabling partial reconfiguration. The main

contribution of the paper is the tool-set proposed to

manipulate cores using partial reconfiguration in existing

FPGAs.

Currently, only two FPGA vendors support partial and

dynamic reconfiguration. One of them, Atmel, e.g.

produces the FPSLIC, a device including a GPP (general-

purpose processor), memory and programmable logic in

the same integrated circuit. FPSLIC supports partial and

dynamic reconfiguration through context switching [1].

The second vendor, Xilinx, offers e.g. the Virtex family,

which also supports partial and dynamic reconfiguration.

Reconfiguration is possible because internal configuration

elements of this device can be individually addressed [2].

The Virtex family was chosen due to its widespread

availability in the market.

Interest in reconfigurable computing has been growing

in the past two decades [3]. The evolution of DRS is

shown in Figure 1. The first generation comprises systems

aiming to increase performance over GPPs, using off-the-

shelf FPGAs. The second generation comprises

architectures aiming the bottleneck minimization between

GPP and FPGA, and reconfiguration techniques.

Examples of fine-grain SOCs are FIPSOC and

TRUMPET, and of coarse-grain SOCs are GARP and

RAW. Dynamic reconfiguration can be achieved by

context switching with DPGAs, or by partially

reconfigurable devices, like Virtex devices. The third

generation is characterized by architectures target to

dataflow-based algorithms used in multimedia

applications and hardware virtualization.
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Figure 1- Evolution of reconfigurable architectures.

Usually, a circuit has a set of parameters defining its

behavior, being loaded from an external ROM. The
function of the circuit customization tool is to simplify

the design, storing parameters directly into the bitstream,

without using ROMs or external microcontrollers.

Parameters are stored into FPGA memory blocks (e.g.

Xilinx LUTRAM blocks), being modified by local or

remote reconfiguration. This approach reduces the overall

system cost, since it eliminates the need of external

devices and/or the associated control logic to allow setting

parameters at running time.

A design constraint is that parameters that are to be

customized must be associated to a set of LUTRAMs or

BLOCKRAMs at fixed positions. Once the initial

bitstream is created, the tool helps the designer to create

an interface giving access to the parameters. The user

downloads his design into the FPGA. Using the interface

he may change the parameters at will. It should be noted

that partial reconfiguration is used, changing only the

FPGA columns containing the specified parameter

memory blocks.

There are three actors involved in this tool: the

software developer, the circuit designer, and the circuit
user.

The software developer implements a software layer

hiding FPGA architecture details. This software layer is

implemented as a Java applet. The applet communicates

with the server. The server uses Jbits classes to open/write

bitstreams and to access and modify the information

contained in the bitstream. This applet is the same for all

circuits being customized.

The circuit designer uses HTML tags to pass

commands and parameters to the applet to customize his

circuit. For each parameter the circuit designer specifies:

(i) signal name; (ii) format – e.g. binary, decimal,

hexadecimal; (iii) physical position of the parameters

inside the FPGA, defined by row, column, F/G LUT,

slice; (vi) starting and ending bits in the LUTRAM.

 Finally, the circuit user receives the bitstream and the

HTML description responsible to create the

reconfiguration page. In the reconfiguration page the

values of the signals can be modified, saved and partially

downloaded into the device. Therefore, the circuit user

can abstract all details concerning the FPGA architecture,

and carry out remote and partial reconfiguration.

An important comment is that this tool is addressed to

the same goal as the small bit manipulations proposed in

[5], but offering a much higher degree of abstraction to its

user.

The second tool developed is named core unifier. A
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fixed core, named controller, is initially downloaded into

the FPGA. The controller contains three cores: (i)
communication bus, connecting the slave cores; (ii)
arbiter, granting the data line to a given slave core; (iii)
master core, responsible for the communication with the

external world. Other cores, named slave cores, can be

downloaded at run time.

Each slave core communicates with the controller

through virtual pins. To have common routing wires the

controller is synthesized using “dummy cores”, which

include the buffers belonging to the slave cores. The same

procedure is applied to the slave cores, which are

synthesized with a “dummy controller”. “Dummy cores”

are also important to avoid floating signals in the

communication interface.

This tool creates partial bitstreams, working as

follows:

1. A complete master bitstream is opened. It contains

the controller and the dummy cores. The controller is
connected to the dummy cores by wires connecting

pre-placed (by floorplanning) tri-state buffers.

2. One or more complete bitstreams containing cores to

be inserted into the master bitstream are opened.

Each bitstream contains one core and a dummy
controller. The user selects the area corresponding to

one core, and all components inside this area (routing

and CLBs) are inserted into the master bitstream.

This procedure is illustrated in Figure 2.
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Figure 2 - Bitstream merging procedure.

Figure 3 presents the main window of the core unifier

tool. This window has a 48x32 grid, representing all CLBs

of a Virtex XCV300 device being different for other

devices. Light and dark gray squares represent CLBs not

used (default values). Red squares represent CLBs used

by the master bitstream. Squares with different colors

(e.g. yellow) represent inserted cores. The user can insert

new cores into the master bitstream, a feature that adds

flexibility to the tool, allowing dynamically inserting

and/or removing cores.

This tool permits to implement virtual hardware, in the

same manner as virtual memory. As a function of some

execution scheduling these may be partially downloaded

into the FPGA.

Figure 3 – Core unifier tool main window.

Three main problems exist in this approach, all related

to the current state of commercial FPGA devices and

associated CAD tools: (i) it is hard to constrain the core

logic to reside inside the core bounding box defined by

floorplanning; (ii) it is not possible to constrain routing

with the floorplanner;  (iii) it is not possible to define

exactly the same wiring between tristate buffers. To

obtain a synthesized core restricted to a fixed area, several

routing iterations are performed, requiring even manual

user intervention. This can be compared to the manual

manipulations proposed in [3] and in [5] to verify that

FPGA vendor tools must evolve to better support partial

and dynamic reconfiguration.

As suggestions for future work it is possible to

enumerate: (i) to extend the bus structure to more bit lines

and different bus arbitration schemes; (ii) to develop CAD

tools to automate the manual steps mentioned above; (iii)
to develop techniques for core relocation. Core relocation

is the possibility of loading the same core at different

places inside the FPGA.
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