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Abstract 
This work describes the implementation of digital 
reconfigurable systems (DRS) using commercial FPGA 
devices. This paper has three main goals. The first one is 
to present the trend of DRS, highlighting the problems 
and solutions of each DRS generation. The second goal 
is to present in detail the configuration architecture of a 
commercial FPGA family allowing DRS implementation. 
The last goal is to present a set of tools for remote and 
partial reconfiguration developed for this FPGA family. 
Even though the tools are targeted to a specific device, 
their building principles may easily be adapted to other 
FPGA families, if they have an internal architecture 
enabling partial reconfiguration. The main contribution 
of the paper is the tool-set proposed to manipulate cores 
using partial reconfiguration in existing FPGAs. 
 
 

1. Introduction 
Reconfigurable computing has been growing in the 

past two decades [1]. Research of FPGA-based systems 
has demonstrated its efficiency over GPP (General 
Purpose Processor) and software-based systems in 
several applications.  

Many of the systems designated as reconfigurable 
architectures can only be statically configured. Static 
reconfiguration means to completely configure the 
device before system execution. If a new configuration is 
required, it is necessary to stop system execution and 
reconfigure the device all over again. 

A dynamic reconfigurable device (or system) allows 
that part of it be modified while the rest of the device (or 
system) continues to operate. Dynamic reconfigurable 

systems are quite often coarse-grain architectures, not 
using off-the-shelf components. 

This work addresses partially reconfigurable systems 
using commercial FPGAs. Currently, only two FPGA 
vendors support partial and dynamic reconfiguration. 
One of them, Atmel, produces the FPSLIC (Field 
Programmable System Level Integrated Circuit), a 
device including a GPP, memory and programmable 
logic in the same integrated circuit. FPSLIC supports 
partial and dynamic reconfiguration through context 
switching [2]. The second one, Xilinx, offers the Virtex 
family, which also supports partial and dynamic 
reconfiguration. Reconfiguration is possible because 
internal configuration elements of this device can be 
individually addressed [3].  

The Virtex family was chosen due to its widespread 
availability in the market. Using the features of the 
Virtex device, a set of tools for remote reconfiguration 
(partial or complete) was developed. Remote 
reconfiguration allows to upgrade or to modify a system 
from a distant location, by sending a partial or complete 
bitstream via Internet, radio or any other transmission 
medium. Partial reconfiguration can be static, if the 
system halts, or dynamic, if the rest of the system 
remains operating. 

This paper is organized as follows. The evolution of 
digital reconfigurable systems and the state-of-the-art on 
CAD for DRS are presented in Section 2. Section 3 
details the Virtex internal configuration architecture, 
showing how to address internal elements to attain 
partial reconfiguration. Section 4 presents the proposed 
tools for partial and remote reconfiguration. Finally, 
Section 5 provides some final remarks and presents 
current and future works on the subject. 
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2.  DRS Trends and CAD for DRS 

2.1 DRS Trends  
The evolution and trends of DRS is shown in Figure 

1. The first generation comprises systems aiming to 
increase performance over GPPs, using off-the-shelf 
FPGAs [4]. Typical applications were cryptography, 
pattern matching and naturally parallel algorithms. 
Systems such as DECPERLE [5], PRISM [6], SPLASH 
[7] are examples of this first generation. Modern 
platforms such as Transmogrifier-2 [8], RPM-2 [9] and 
SPYDER [10] are also examples of systems belonging to 
the first generation (Figure 1- botton). These systems are 

typically composed by a GPP to execute sequential 
operations and FPGAs to exploit parallelism. 
  Common problems are observed in these systems: (i) 
the communication bottleneck between FPGA 
(hardware) and GPP (software), since they are usually 
connected by an external bus; (ii) long time spent to 
configure devices, demanding an initial configuration to 
be done before system starts; (iii) no support to partial 
and dynamic reconfiguration (exception to the devices 
from National Clay and Algotronix); (iv) fixed external 
network. 

The evolution in complexity measured by equivalent 
gates per device made possible to implement complete 
systems on a single integrated circuit, namely SOC – 
System-on-a-Chip. SOCs merge processors, memory and 
programmable logic. As a consequence, the bottleneck 
between GPP and FPGA was minimized. 
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The granularity concept accounts for the complexity of 
the minimal processing element of the programmable 
device. Fine-grain devices typically contain LUTs as 
processing elements, and coarse-grain devices typically 
contain ALU or small processors. Examples of fine-grain 
SOCs are FIPSOC [11] and TRUMPET [12], and coarse-
grain SOCs are GARP [13] and RAW [14]. These 
systems represent examples of the second DRS 
generation (Figure 1– middle).  

Devices and systems allowing dynamic 
reconfiguration are another characteristic of the second 
generation. Dynamic reconfiguration can be achieved by 
context switching with DPGAs [15], or by partially 
reconfigurable devices, like VIRTEX. DISC and 
FIREFLY [10] systems also belong to this second 
generation. 

The workload of DRS is moving towards dataflow-
based algorithms used in multimedia applications. These 
applications require complex operators, such as 
multipliers, and aggressive techniques to increase the 
output data throughput. Pipelined architectures as 
PIPERENCH [17] and Systolic Ring [18] are examples 
of such systems. 

DRS are device dependent, i.e. a system synthesized 
to a given device can only be used in this device. Even 
for devices of the same family, the system must be 
resynthesized. Hardware virtualization is proposed by 
SCORE [19] to minimize this problem. 

Even the industry believes in this trends. For 
exemple, recently the Xilinx Inc launch the Virtex II-Pro, 
a SOC with more than four PowerPC processors 
embedded with the CoreConnect technology, 
programmable logic based on Virtex II FPGAs, with 
memory and multipliers on-chip [26]. This trend is a 
merge between two features viewed in the second 
generation: SOCs  with fine grain programmable logic 
and dynamic reconfiguration. 

Figure 1 - Trends of reconfigurable architectures SOCs targeted to data-flow processing (multimedia) 
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with dynamic reconfiguration and hardware 
virtualization are features of DRS third generation 
(Figure 1-top). Our work focuses on the trends assigned 
on the hatched box. There is a lack of methodologies and 
CAD tools to take advantage of the hardware provided 
by industry, and we try to fill this gap 

2.2 Related Work on CAD for DRS  
Hardware cores can be classified as hard, firm or soft. 

Soft cores are often described using HDLs. A 
synthesized core, in a netlist format such as EDIF, is an 
example of firm core description. Hard cores are cores 
ready to be downloaded (FPGA bitstream) or in a mask 
set format (ASICs).  

Soft and firm cores are frequently used early in the 
design flow, described in HDL or EDIF languages. 
However, if the goal is to allow IP reuse of completely 
synthesized cores, they should be used later in the design 
flow. In the case of reconfigurable devices, these cores 
are bitstreams ready to be used to configure the FPGA. 
Therefore, the function of CAD tools for digital 
reconfigurable systems is to manipulate hard cores, 
inserting them into bitstreams of partially reconfigurable 
FPGAs. 

Some tools were written to allow core 
parameterization, targeting the Xilinx XC6200 FPGA 
family, now discontinued. Luk et al., in [20], describe 
cores using a proprietary language and translates these 
cores automatically into VHDL. FPGA vendors offer 
similar tools to core parameterization in their design 
environment. These are examples of core manipulation 
early in the design flow, not developed for 
reconfigurable systems. 

James-Roxby et al., in [21], describe a tool called 
JbitsDiff, that share some features with one tool 
proposed here. The basis of this tool is the Jbits class 
library [22]. The user generates a core using a standard 
design flow, defining its bounding-box with a 
floorplanning tool. JbitsDiff is used to extract the 
generated core, inserting it into the user bitstream. If the 
core communicates only with the external world, this 
tool can be efficiently used. However, if the core should 
communicate with other cores inside the FPGA, a 
connection structure must be provided.  

The method presented by Dyer, in [23], defines the 
routing between cores using a structure called virtual 
socket, which defines a border between static and 
reconfigurable parts. This interface is built from feed-
through routed CLBs. The virtual socket is manually 
placed and routed to guarantee connection between 
cores. 

Recently, Xilinx announced the Modular Design tool 
[24], enabling partial reconfiguration in Virtex devices. 
The heart of this tool is the bus macro, which connects 
two vertical adjacent cores. Each bus macro provides 

four bits of inter-core communication. The bus macro is 
a pre-synthesized bitstream, inserted between two cores, 
with fixed routing resources. The communication is done 
through tri-state buffers. 

Another approach to partial and dynamic 
reconfiguration is described in [25]. The PARBIT tool 
has been developed to transform and restructure 
bitstreams to implement dynamically loadable hardware 
modules. To do this, the PARBIT utilizes the original 
bitstream, a target bitstream and parameters given by 
user. These parameters include the block coordinates of 
the logic implemented on a source FPGA, the 
coordinates of the area for a partially programmed target 
FPGA and programming options. This tool works over 
Virtex-E FPGA family.  

The presented approaches have interesting advances, 
but there is some gaps to be filled. The Dyer work 
extends the JBits, providing  the class JBitsCopy to 
merge cores into FPGAs. But this approach does not 
address the problem of dynamic reconfiguration. 

The main problem of the PARBIT and the method 
presented in [25] is that they requires a lot of user 
interactions with the vendor’s CAD tool to  put the 
routing resources on the right place, and there is 
necessary to take care that the routes for de cores do not 
pass trough the partially reconfigured area, and vice-
versa. 

The tools JBitsDiff, Modular Design and PARBIT 
allow the connection between cores inside an FPGA. But 
a more structured approach to connect cores (using e.g. a 
standard bus) is required to allow effective 
implementation of DRS. This work proposes such a 
structured approach, showing that it is possible to allow 
IP reuse of synthesized blocks into commercial FPGAs, 
with dynamic reconfiguration. 

3. Virtex Internal Architecture 
The main internal components of a Virtex FPGA are 

CLBs (Configurable Logic Blocks), IOBs (Input Output 
Blocks), memory blocks, clock resources and 
configurable routing. Only the bitstream structure and 
the equations to access data bits into CLBs are presented 
in this Section. More details can be found in [3]. It is 
important to understand the bitstream structure to 
develop tools aiming core manipulation, i.e., dynamic 
replacement of cores. The direct access to CLBs 
information is necessary since CLBs can be configured 
as memory blocks named LUTRAM, storing circuit 
parameters. 

Virtex devices are organized as bi-dimensional arrays 
of bits. A single column of bits is named frame. One 
frame corresponds to one atomic reconfiguration unit, 
i.e. the smallest portion that can be read from (or written 
to) the FPGA configuration memory. Sets of consecutive 
frames compose CLB, Block Select RAM, IOB and 
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Clock columns. Figure 2 illustrates this organization. 
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Figure 2 - Virtex architecture (XCV300 device). 

 
A Virtex device can be partially reconfigured since 

frames can be read or written individually. Note that it is 
not possible to configure a single CLB, since the frames 
belonging to a given CLB are common to all other CLBs 
in the same column. So, if a modification to a single 
CLB is required, all frames belonging to the same 
column must be read (operation called read-back), and 
the modification is inserted over the read frames. In 
practice, this feature renders the configuration structure 
of the Virtex device as an uni-dimensional array of 
columns. 

Each CLB has two slices, named ‘S0’ and ‘S1’. Each 
slice contains two LUTs, named ‘F’ and ‘G’, two flip-
flops and carry resources. To address a given LUT, a 
quadruple is used, for example R8C9.S1.G, which means 
the LUT is the G LUT at row 8, column 9, slice 1. 

3.1 Element Addressing  
To partially reconfigure a device it is necessary to 

address individual elements inside the configuration file, 
called bitstream. The following equations are used to 
address bits inside LUTs [3]: 
 

1)2CLB( MJA

else2)2CLB( MJAthenCLB if

col

colcol

col

col
col

Chip

Chip
2

Chip  

MNA = lut_bit + wd – slice * ( 2*lut_bit + 17) 
fm_bit_idx = 3 + 18*CLBROW - FG + RW*32 
fm_st_wd = FL * (8 + (MJA-1)*48 +MNA) + RW*FL 
fm_wd = abs( fm_bit_idx /32)  
fm_wd_bit_idx = 31 + 32*fm_wd - fm_bit_idx 

Where:  
MJA - Major Address: represents the column address. Chipcol 
is the number of columns available in the device.  

MNA - Minor Address: identifies in which frame the lut_bit 
is placed. MNA assumes values between 0 and 47. “wd” is 
the number of bits per word (32) and “slice” is the slice 
number. 
fm_bit_idx – frame bit index: indicates the start position of 
the CLB being addressed. Constant 18 multiplies CLBrow 
because each CLB requires 18 bits per frame. “FG” is equal 
to 1 if the desired bit is in a G-Lut, and 0 if it is in an F-Lut. 
“RW” is equal to 0 when writing data to the FPGA and 1 
when reading data from the FPGA (read-back operation). 
fm_st_wd – frame starting word in the bitstream (file 
containing 32-bit words). “FL” designates the frame length, 
i.e., the number of 32-bit words needed to store a complete 
frame. “8” is the number of clock columns. 
fm_wd – indicates, in the bitstream, which word contains the 
bit we are looking for. 
fm_wd_bit_idx – designates the bit inside fm_word 
containing the information we are looking for. 

For example, suppose we want to change the 14th bit 
of an F-LUT, placed at slice 0 of row 1 column 1 
(R1C1.S0.F), using the device XCV100, which has 
Chipcols=30, FL=14. Applying the above equations, we 
obtain: MJA=30, MNA=46, fm_bit_idx=21, fm_st_wd= 
20.244, fm_wd=0, fm_wd_bit_idx=10. These results 
mean that the 10th bit (fm_wd_bit_idx) of the bitstream 
word 20.244 (fm_st_wd + f_wd) is the location of the bit 
we want to change. Thus, changing this bit and 
recomputing the bitstream CRC, we are able to 
reconfigure the FPGA. 

4. Tools for Partial and Remote 
Reconfiguration 

This Section presents a pair of tools for partial and 
remote reconfiguration. The first one was developed 
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using JBits [22]. The goal of this tool is to help the 
circuit designer to create an interface to customize 
parameters of the circuit being designed. The second tool 
uses the equations defined in the previous Section to 
manipulate cores, allowing a more powerful form of 
partial reconfiguration. 

4.1 Circuit Customization Tool 
Usually, a circuit has a set of parameters defining its 

behavior, being loaded from an external ROM. The 
function of this tool is to simplify the design, storing 
parameters directly into the bitstream, without using 
ROMs or external microcontrollers. Parameters are 
stored into FPGA memory blocks (e.g. LUTRAM), been 
modified by local or remote reconfiguration. This 
approach reduces the overall system cost, since it 
eliminates the need of external devices and/or the 
associated control logic to allow setting parameters at 
running time. 

Remote configuration/reconfiguration permits to fix 
design errors, to change circuit parameters and/or to 
upgrade the circuit functions without customer 
knowledge. The implemented tool employs the client-
server paradigm to remotely modify the hardware. The 
server communicates with client(s) through sockets, 
receiving values, generating new configuration files from 
these, and downloading them into the FPGA.  

There are three actors involved in this tool: the 
software developer, the circuit designer, and the circuit 
user.  

A design constraint is that parameters that are to be 
customized must be associated to a set of LUTRAMs or 
BLOCKRAMs at fixed positions. Once the initial 
bitstream is created, the tool helps the designer to create 
an interface giving access to the parameters. The user 
downloads his design into the FPGA, and using the 
interface may change the parameters at will, using the 
interface. Note that partial reconfiguration is used, 
changing only the FPGA columns containing the 
specified parameter memory blocks. 

The software developer implements a software layer 
hiding FPGA architecture details. This software layer is 
implemented as an applet. The applet communicates 
with the server. The server uses Jbits classes to 
open/write bitstreams and to access and modify the 
information contained in the bitstream. This applet is the 
same for all circuits being customized.  

The circuit designer uses HTML tags to pass 
commands and parameters to the applet to customize his 
circuit. Figure3a shows an example of such description. 
The reference to the applet is in line 6 
(BITGeneric.class). The parameter “path” (line 7) 
specifies the bitstream name. The parameters “ip” and 
“port” (lines 8 and 9) specify the server address and IP 
service. This is necessary to remotely access the host 

connected to the FPGA. The parameter nbsignals 
indicates the number of configurable parameters (line 
10). For each parameter the circuit designer specifies: (i) 
signal name; (ii) format – bin, dec, hex; (iii) physical 
position of the parameters inside the FPGA, defined by 
row, column, F/G LUT, slice; (vi) starting and ending 
bits in the LUTRAM. Line 13 of Figure3a specifies the 
constraints applied to the SlotPattern signal. It is 
specified as a hexadecimal value (hex), placed at row 32, 
column 37, G-LUT, slice 0, bits 2 to 9 (8-bit value). The 
circuit designer must specify during physical synthesis 
the same constraints to all configurable memory blocks.  
  Finally, the circuit user receives the bitstream and 
the HTML description. The resulting reconfiguration 
page is presented in Figure3b. In the reconfiguration 
page the values of the signals can be modified, saved and 
partially downloaded into the device. Therefore, the 
circuit user can abstract all details concerning the FPGA 
architecture, and carry out remote and partial 
reconfiguration.  

A second version of this tool is under 
implementation, replacing Jbits by the Virtex address 
equations, resulting in an open source code. An 
important comment is that this tool is addressed to the 
same goal as the small bit manipulations proposed in 
[24], but offering a much higher degree of abstraction to 
its user. 

4.2 Core Unifier Tool 
Core reconfiguration requires a communication 

structure between modules inside the FPGA, to allow the 
practical use of partial reconfiguration. This structure can 
be viewed as a bus to which application cores are 
connected.  

A fixed core, named controller, is initially 
downloaded into the FPGA. Other cores, named slave 
cores, can be downloaded at run time. The controller is 
in charge of communication with the external world (I/O 
pins of the device) and of communication among slave 
cores. Each slave core communicates with the controller 
through virtual pins 
1. <html> 
2. <head> <title> Drop </title>  </head> 
3. <body bgcolor=blue> 
4. <center> 
5. <font color=white size=7 face="Arial Black"> Drop </font> 
6. <APPLET code="BITGeneric.class" width=400 height=300> 
7. <PARAM name="path" value="top_e1.bit"> 
8. <PARAM name="ip" value="200.17.93.93"> 
9. <PARAM name="port ue="5000"> " val
10. <PARAM name="nbsignals" value="8"> 
11. <PARAM name="l[1]" value="CRCControl  bin, 32, 37, G, 0, 0, 0"> 
12.  <PARAM name="l[2]" value="Code        bin, 32, 37, G, 0, 1, 1">
13. <PARAM name="l[3]" value="SlotPattern hex, 32, 37, G, 0, 2, 9"> 
14. <PARAM name="l[4]" value="n64         bin, 31, 37, G, 0, 4, 0"> 
15. <PARAM name="l[5]" value="StartSlot   bin, 31, 37, G, 0, 9, 5"> 
16. <PARAM name="l[6]" value="ServicoIn   bin, 31, 37, G, 0,14,10"> 
17. <PARAM name="l[7]" value="InsertServ  bin, 31, 37, G, 0,15,15"> 
18. <PARAM name="l[8]" value="DataInsert  hex, 28, 37, G, 0, 0,15"> 
19. </APPLET> 
20. </center> 
21. </body> 
22. </html> 

(a) 
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(b) 

Figure 3 - Example of HTML description and the 
corresponding interface to circuit customization. 

Some limitations are imposed by the FPGA 
architecture: (i) it is not possible to restrain the CLB 
usage only to tri-state buffers and routing; (ii) it is not 
possible to define wire positions; (iii) only two tri-state 
buffers are available per CLB. To overcome these 
limitations, a communication interface with two tri-state 
buffer layers with common routing wires is 
implemented, presented in Figure 4. To have common 
routing wires the controller is synthesized using “dummy 
cores”, which include the buffers belonging to the slave 
cores. The same procedure is applied to the slave cores, 
which are synthesized with a “dummy controller”. 
“Dummy cores” are also important to avoid floating 
signals in the communication interface.  

Slave
Core

Controller

Core buffer layer

Controller buffer layer

External world
connection

Slave
Core

Slave
Core

 

Common routing wires

Figure 4 - Communication interface with two tri-state 
buffer layers and a common routing wire. 

The controller contains three cores: communication 
bus, connecting the slave cores; arbiter, granting the data 
line to a given slave core; master core, responsible for 
the communication with the external world. The 
communication bus employs a serial communication 
protocol to interact with the slave cores. The serial 
protocol was chosen due to the limited number of tri-
state buffers in Virtex FPGAs and to simplify 

prototyping. 
To implement the proposed structure, a CAD tool 

named core unifier was developed. The tool works as 
follows: 
1. A complete master bitstream is opened. It contains 

the controller and the dummy cores. The controller is 
connected to the dummy cores by wires connecting 
pre-placed (by floorplanning) tri-state buffers. 

2. One or more complete bitstreams containing cores to 
be inserted into the master bitstream are opened. 
Each bitstream contains one core and a dummy 
controller. The user selects the area corresponding to 
one core, and all components inside this area (routing 
and CLBs) are inserted into the master bitstream. 

3. The tool creates a partial bitstream, containing the 
modified area. Partial reconfiguration is then 
executed, inserting a new core into the FPGA.  
This procedure is illustrated in Figure 5.  
This tool was implemented using the Virtex address 

equations (Section 3.1). The approach gives to the user 
most features found in JBitsDiff. However, it provides a 
structured form to interconnect cores, together with the 
possibility to dynamically replace cores in the FPGA. 

Figure 6 presents the main window of the core unifier 
tool. This window has a 48x32 grid, representing all 
CLBs of a Virtex 300 device and it is different for 
distinct devices. Light and dark gray squares represent 
CLBs not used (default values). Red squares represent 
CLBs used by the master bitstream. Squares with 
different colors (e.g. yellow) represent inserted cores. 
The LUT values can be viewed in an auxiliary window, 
selecting the CLB with the mouse.  

Slave
Core

Controller

BITSTREAM 1 (master):
 Tri-state buffers
 Master core
 Arbiter
 Dummy cores

BITSTREAM n:
 Slave core and dummy ctrl
 Tri-state buffers
 Send and receive modules

Complete bitstreams merging

Final bitstream

Controller

Partial
Bitstream

Slave
Core

 
Figure 5 - Bitstream merging procedure. 

The user can insert new cores into the master 
bitstream, a feature that adds flexibility to the tool, 
allowing dynamically inserting and/or removing cores. 

This tool permits to implement virtual hardware, in 
the same manner as virtual memory. The user may have 
several hard cores stored in memory. As a function of 
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some execution scheduling these may be partially 
downloaded into the FPGA. 

Three main problems exist in this approach, all 
related to the current state of commercial FPGA devices 
and associated CAD tools: (i) to constrain the core logic 
to reside inside the core bounding box defined by 
floorplanning; (ii) it is not possible to constrain routing 
with the floorplanner; (iii) it is not possible to define 
exactly the same wiring between tristate buffers. To 
obtain a synthesized core restricted to a fixed area, 
several routing iterations are performed, requiring even 
manual user intervention. This can be compared to the 
manual manipulations proposed in [23] and in [24] to 
verify that FPGA vendor tools must evolve to better 
support partial and dynamic reconfiguration.  

At present, the tool creates complete and partial 
bitstreams. Complete and partial bitstream download 
with core insertion was achieved successfully. A subset 
of JBits classes, collectively known as JRoute is being 
investigated to have access to Virtex FPGA routing 

architecture manipulations. 

5. Conclusions and Future Work  
The first contribution of this work is the analysis of 

DRS trends. The goals, solutions and remaining 
problems of each DRS generation were highlighted. 
Also, this study identified the future directions of 
configurable architectures. 

The second contribution is the development of tools 
for remote, partial and dynamic reconfiguration. Multiple 
advantages are offered by this tool-set. First, remote 
reconfiguration is enabled. It is possible to exploit this 
feature to update and/or fix hardware cores in the field. 
Second, parameter reconfiguration can be used to 
customize a circuit, avoiding extra devices as external 
microcontrollers and ROMs, and saving internal control 
logic in the FPGA. Third, virtual hardware is feasible in 
off-the-shelf FPGA devices, even if the routing model 
imposes hard constraints. 

 
 

 
Figure 6 – Core unifier tool main window. 

 
As suggestions for future work, the following can 

enumerated: (i) to extend the bus structure to more bit 
lines and different bus arbitration schemes; (ii) to 
develop CAD tools to automate the manual steps 
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mentioned above; (iii) to develop techniques for core 
relocation. Core relocation is the possibility of loading 
the same core at different places inside the FPGA. 

The core unifier tool can be integrated with co-design 
tools. Currently, the hardware cores of a SOC require a 
programmable device having enough area to implement 
all cores. Another possibility is the generation of several 
small hardware cores by the co-design tool, with a 
scheduler to download these cores on-demand into the 
FPGA device. This can be seen as a “dynamic co-
design”, a new concept not yet explored. 
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