
Remote and Partial Reconfiguration of FPGAs: tools and trends

Daniel Mesquita1, Fernando Moraes2, José Palma2, Leandro Möller2, Ney Calazans2

1Université Montpellier II, LIRMM

161, Rue Ada – 34392 – Montpellier – France
mesquita@lirmm.fr

2Pontifícia Universidade Católica do Rio Grande do Sul – FACIN
Avenida Ipiranga, 6681 – 90619-900 – Porto Alegre, RS – Brasil

{moraes, jpalma, moller, calazans}@lirmm.fr

Abstract
This work describes the implementation of digital
reconfigurable systems (DRS) using commercial FPGA
devices. This paper has three main goals. The first one is
to present the trend of DRS, highlighting the problems
and solutions of each DRS generation. The second goal
is to present in detail the configuration architecture of a
commercial FPGA family allowing DRS implementation.
The last goal is to present a set of tools for remote and
partial reconfiguration developed for this FPGA family.
Even though the tools are targeted to a specific device,
their building principles may easily be adapted to other
FPGA families, if they have an internal architecture
enabling partial reconfiguration. The main contribution
of the paper is the tool-set proposed to manipulate cores
using partial reconfiguration in existing FPGAs.

1. Introduction
Reconfigurable computing has been growing in the

past two decades [1]. Research of FPGA-based systems
has demonstrated its efficiency over GPP (General
Purpose Processor) and software-based systems in
several applications.

Many of the systems designated as reconfigurable
architectures can only be statically configured. Static
reconfiguration means to completely configure the
device before system execution. If a new configuration is
required, it is necessary to stop system execution and
reconfigure the device all over again.

A dynamic reconfigurable device (or system) allows
that part of it be modified while the rest of the device (or
system) continues to operate. Dynamic reconfigurable

systems are quite often coarse-grain architectures, not
using off-the-shelf components.

This work addresses partially reconfigurable systems
using commercial FPGAs. Currently, only two FPGA
vendors support partial and dynamic reconfiguration.
One of them, Atmel, produces the FPSLIC (Field
Programmable System Level Integrated Circuit), a
device including a GPP, memory and programmable
logic in the same integrated circuit. FPSLIC supports
partial and dynamic reconfiguration through context
switching [2]. The second one, Xilinx, offers the Virtex
family, which also supports partial and dynamic
reconfiguration. Reconfiguration is possible because
internal configuration elements of this device can be
individually addressed [3].

The Virtex family was chosen due to its widespread
availability in the market. Using the features of the
Virtex device, a set of tools for remote reconfiguration
(partial or complete) was developed. Remote
reconfiguration allows to upgrade or to modify a system
from a distant location, by sending a partial or complete
bitstream via Internet, radio or any other transmission
medium. Partial reconfiguration can be static, if the
system halts, or dynamic, if the rest of the system
remains operating.

This paper is organized as follows. The evolution of
digital reconfigurable systems and the state-of-the-art on
CAD for DRS are presented in Section 2. Section 3
details the Virtex internal configuration architecture,
showing how to address internal elements to attain
partial reconfiguration. Section 4 presents the proposed
tools for partial and remote reconfiguration. Finally,
Section 5 provides some final remarks and presents
current and future works on the subject.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

2. DRS Trends and CAD for DRS

2.1 DRS Trends
The evolution and trends of DRS is shown in Figure

1. The first generation comprises systems aiming to
increase performance over GPPs, using off-the-shelf
FPGAs [4]. Typical applications were cryptography,
pattern matching and naturally parallel algorithms.
Systems such as DECPERLE [5], PRISM [6], SPLASH
[7] are examples of this first generation. Modern
platforms such as Transmogrifier-2 [8], RPM-2 [9] and
SPYDER [10] are also examples of systems belonging to
the first generation (Figure 1- botton). These systems are

typically composed by a GPP to execute sequential
operations and FPGAs to exploit parallelism.
 Common problems are observed in these systems: (i)
the communication bottleneck between FPGA
(hardware) and GPP (software), since they are usually
connected by an external bus; (ii) long time spent to
configure devices, demanding an initial configuration to
be done before system starts; (iii) no support to partial
and dynamic reconfiguration (exception to the devices
from National Clay and Algotronix); (iv) fixed external
network.

The evolution in complexity measured by equivalent
gates per device made possible to implement complete
systems on a single integrated circuit, namely SOC –
System-on-a-Chip. SOCs merge processors, memory and
programmable logic. As a consequence, the bottleneck
between GPP and FPGA was minimized.

Pr
is

m
D

ec
Pe

rle
Sp

la
sh

Sp
yd

er
Tr

an
sm

og
rif

ier

Sy
st

em
s

C
om

un
ic

at
io

n
bo

ttl
en

ec
k

In
fle

xi
bl

e
ne

t
in

te
rc

on
ec

tio
n

R
ec

on
fig

ur
at

io
n

Ti
m

e

Pr
ob

le
m

s
Fo

un
d

Ex
te

rn
al

 n
et

re
co

nf
ig

ur
at

io
n

So
C

 w
ith

 fi
ne

gr

ai
n

So
C

 w
ith

 c
oa

rs
e

gr
ai

n

C
on

te
xt

sw

itc
hi

ng

Pa
rt

ia
l/d

yn
am

ic
re

co
nf

ig
ur

at
io

n

So
lu

tio
ns

Pr

op
os

ed

SP
LA

SH
2

FI
PS

O
C

TR
U

M
PE

T
R

PM
2

G
AR

P
R

AW
XP

U
TE

R

TR
U

M
PE

T

FP
SL

IC

D
IS

C
VI

R
TE

X

C
on

fig
ur

at
io

n
ba

se
d

on

co
m

pu
ta

tio
na

l
st

re
am

SC
O

R
E

C
on

fig
ur

at
io

ns

Pi
pe

lin
e

PI
PE

R
EN

C
H

C
irc

ul
ar

Pi
pe

lin
e

Sy
st

ol
ic

R
in

g

SOCS TARGETING
HARDWARE VIRTUALIZATION

Sy
st

em
s

M
et

ho
ds

3rd
G

EN
ER

AT
IO

N
1st

G
EN

ER
A

TI
O

N

Sy
st

em
s

2nd
G

EN
ER

AT
IO

N

SO
C

 w
/

Pa
rt

ia
l/d

yn
am

ic
re

co
nf

ig
ur

at
io

n
Vi

rt
ex

-II
 P

ro

Pr
is

m
D

ec
Pe

rle
Sp

la
sh

Sp
yd

er
Tr

an
sm

og
rif

ier

Sy
st

em
s

C
om

un
ic

at
io

n
bo

ttl
en

ec
k

In
fle

xi
bl

e
ne

t
in

te
rc

on
ec

tio
n

R
ec

on
fig

ur
at

io
n

Ti
m

e

Pr
ob

le
m

s
Fo

un
d

Ex
te

rn
al

 n
et

re
co

nf
ig

ur
at

io
n

So
C

 w
ith

 fi
ne

gr

ai
n

So
C

 w
ith

 c
oa

rs
e

gr
ai

n

C
on

te
xt

sw

itc
hi

ng

Pa
rt

ia
l/d

yn
am

ic
re

co
nf

ig
ur

at
io

n

So
lu

tio
ns

Pr

op
os

ed

SP
LA

SH
2

FI
PS

O
C

TR
U

M
PE

T
R

PM
2

G
AR

P
R

AW
XP

U
TE

R

TR
U

M
PE

T

FP
SL

IC

D
IS

C
VI

R
TE

X

C
on

fig
ur

at
io

n
ba

se
d

on

co
m

pu
ta

tio
na

l
st

re
am

SC
O

R
E

C
on

fig
ur

at
io

ns

Pi
pe

lin
e

PI
PE

R
EN

C
H

C
irc

ul
ar

Pi
pe

lin
e

Sy
st

ol
ic

R
in

g

SOCS TARGETING
HARDWARE VIRTUALIZATION

Sy
st

em
s

M
et

ho
ds

3rd
G

EN
ER

AT
IO

N
1st

G
EN

ER
A

TI
O

N

Sy
st

em
s

2nd
G

EN
ER

AT
IO

N

SO
C

 w
/

Pa
rt

ia
l/d

yn
am

ic
re

co
nf

ig
ur

at
io

n
Vi

rt
ex

-II
 P

ro

Pr
is

m
D

ec
Pe

rle
Sp

la
sh

Sp
yd

er
Tr

an
sm

og
rif

ier

Sy
st

em
s

C
om

un
ic

at
io

n
bo

ttl
en

ec
k

In
fle

xi
bl

e
ne

t
in

te
rc

on
ec

tio
n

R
ec

on
fig

ur
at

io
n

Ti
m

e

Pr
ob

le
m

s
Fo

un
d

Ex
te

rn
al

 n
et

re
co

nf
ig

ur
at

io
n

So
C

 w
ith

 fi
ne

gr

ai
n

So
C

 w
ith

 c
oa

rs
e

gr
ai

n

C
on

te
xt

sw

itc
hi

ng

Pa
rt

ia
l/d

yn
am

ic
re

co
nf

ig
ur

at
io

n

So
lu

tio
ns

Pr

op
os

ed

SP
LA

SH
2

FI
PS

O
C

TR
U

M
PE

T
R

PM
2

G
AR

P
R

AW
XP

U
TE

R

TR
U

M
PE

T

FP
SL

IC

D
IS

C
VI

R
TE

X

C
on

fig
ur

at
io

n
ba

se
d

on

co
m

pu
ta

tio
na

l
st

re
am

SC
O

R
E

C
on

fig
ur

at
io

ns

Pi
pe

lin
e

PI
PE

R
EN

C
H

C
irc

ul
ar

Pi
pe

lin
e

Sy
st

ol
ic

R
in

g

SOCS TARGETING
HARDWARE VIRTUALIZATION

Sy
st

em
s

M
et

ho
ds

3rd
G

EN
ER

AT
IO

N
1st

G
EN

ER
A

TI
O

N

Sy
st

em
s

2nd
G

EN
ER

AT
IO

N

SO
C

 w
/

Pa
rt

ia
l/d

yn
am

ic
re

co
nf

ig
ur

at
io

n
Vi

rt
ex

-II
 P

ro

Pr
is

m
D

ec
Pe

rle
Sp

la
sh

Sp
yd

er
Tr

an
sm

og
rif

ier

Sy
st

em
s

C
om

un
ic

at
io

n
bo

ttl
en

ec
k

In
fle

xi
bl

e
ne

t
in

te
rc

on
ec

tio
n

R
ec

on
fig

ur
at

io
n

Ti
m

e

Pr
ob

le
m

s
Fo

un
d

Ex
te

rn
al

 n
et

re
co

nf
ig

ur
at

io
n

So
C

 w
ith

 fi
ne

gr

ai
n

So
C

 w
ith

 c
oa

rs
e

gr
ai

n

C
on

te
xt

sw

itc
hi

ng

Pa
rt

ia
l/d

yn
am

ic
re

co
nf

ig
ur

at
io

n

So
lu

tio
ns

Pr

op
os

ed

SP
LA

SH
2

FI
PS

O
C

TR
U

M
PE

T
R

PM
2

G
AR

P
R

AW
XP

U
TE

R

TR
U

M
PE

T

FP
SL

IC

D
IS

C
VI

R
TE

X

C
on

fig
ur

at
io

n
ba

se
d

on

co
m

pu
ta

tio
na

l
st

re
am

SC
O

R
E

C
on

fig
ur

at
io

ns

Pi
pe

lin
e

PI
PE

R
EN

C
H

C
irc

ul
ar

Pi
pe

lin
e

Sy
st

ol
ic

R
in

g

SOCS TARGETING
HARDWARE VIRTUALIZATION

Sy
st

em
s

M
et

ho
ds

3rd
G

EN
ER

AT
IO

N
1st

G
EN

ER
A

TI
O

N

Sy
st

em
s

2nd
G

EN
ER

AT
IO

N

SO
C

 w
/

Pa
rt

ia
l/d

yn
am

ic
re

co
nf

ig
ur

at
io

n
Vi

rt
ex

-II
 P

ro

Pr
is

m
D

ec
Pe

rle
Sp

la
sh

Sp
yd

er
Tr

an
sm

og
rif

ier

Sy
st

em
s

C
om

un
ic

at
io

n
bo

ttl
en

ec
k

In
fle

xi
bl

e
ne

t
in

te
rc

on
ec

tio
n

R
ec

on
fig

ur
at

io
n

Ti
m

e

Pr
ob

le
m

s
Fo

un
d

Ex
te

rn
al

 n
et

re
co

nf
ig

ur
at

io
n

So
C

 w
ith

 fi
ne

gr

ai
n

So
C

 w
ith

 c
oa

rs
e

gr
ai

n

C
on

te
xt

sw

itc
hi

ng

Pa
rt

ia
l/d

yn
am

ic
re

co
nf

ig
ur

at
io

n

So
lu

tio
ns

Pr

op
os

ed

SP
LA

SH
2

FI
PS

O
C

TR
U

M
PE

T
R

PM
2

G
AR

P
R

AW
XP

U
TE

R

TR
U

M
PE

T

FP
SL

IC

D
IS

C
VI

R
TE

X

C
on

fig
ur

at
io

n
ba

se
d

on

co
m

pu
ta

tio
na

l
st

re
am

SC
O

R
E

C
on

fig
ur

at
io

ns

Pi
pe

lin
e

PI
PE

R
EN

C
H

C
irc

ul
ar

Pi
pe

lin
e

Sy
st

ol
ic

R
in

g

SOCS TARGETING
HARDWARE VIRTUALIZATION

Sy
st

em
s

M
et

ho
ds

3rd
G

EN
ER

AT
IO

N
1st

G
EN

ER
A

TI
O

N

Sy
st

em
s

2nd
G

EN
ER

AT
IO

N

SO
C

 w
/

Pa
rt

ia
l/d

yn
am

ic
re

co
nf

ig
ur

at
io

n
Vi

rt
ex

-II
 P

ro

The granularity concept accounts for the complexity of
the minimal processing element of the programmable
device. Fine-grain devices typically contain LUTs as
processing elements, and coarse-grain devices typically
contain ALU or small processors. Examples of fine-grain
SOCs are FIPSOC [11] and TRUMPET [12], and coarse-
grain SOCs are GARP [13] and RAW [14]. These
systems represent examples of the second DRS
generation (Figure 1– middle).

Devices and systems allowing dynamic
reconfiguration are another characteristic of the second
generation. Dynamic reconfiguration can be achieved by
context switching with DPGAs [15], or by partially
reconfigurable devices, like VIRTEX. DISC and
FIREFLY [10] systems also belong to this second
generation.

The workload of DRS is moving towards dataflow-
based algorithms used in multimedia applications. These
applications require complex operators, such as
multipliers, and aggressive techniques to increase the
output data throughput. Pipelined architectures as
PIPERENCH [17] and Systolic Ring [18] are examples
of such systems.

DRS are device dependent, i.e. a system synthesized
to a given device can only be used in this device. Even
for devices of the same family, the system must be
resynthesized. Hardware virtualization is proposed by
SCORE [19] to minimize this problem.

Even the industry believes in this trends. For
exemple, recently the Xilinx Inc launch the Virtex II-Pro,
a SOC with more than four PowerPC processors
embedded with the CoreConnect technology,
programmable logic based on Virtex II FPGAs, with
memory and multipliers on-chip [26]. This trend is a
merge between two features viewed in the second
generation: SOCs with fine grain programmable logic
and dynamic reconfiguration.

Figure 1 - Trends of reconfigurable architectures SOCs targeted to data-flow processing (multimedia)

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

with dynamic reconfiguration and hardware
virtualization are features of DRS third generation
(Figure 1-top). Our work focuses on the trends assigned
on the hatched box. There is a lack of methodologies and
CAD tools to take advantage of the hardware provided
by industry, and we try to fill this gap

2.2 Related Work on CAD for DRS
Hardware cores can be classified as hard, firm or soft.

Soft cores are often described using HDLs. A
synthesized core, in a netlist format such as EDIF, is an
example of firm core description. Hard cores are cores
ready to be downloaded (FPGA bitstream) or in a mask
set format (ASICs).

Soft and firm cores are frequently used early in the
design flow, described in HDL or EDIF languages.
However, if the goal is to allow IP reuse of completely
synthesized cores, they should be used later in the design
flow. In the case of reconfigurable devices, these cores
are bitstreams ready to be used to configure the FPGA.
Therefore, the function of CAD tools for digital
reconfigurable systems is to manipulate hard cores,
inserting them into bitstreams of partially reconfigurable
FPGAs.

Some tools were written to allow core
parameterization, targeting the Xilinx XC6200 FPGA
family, now discontinued. Luk et al., in [20], describe
cores using a proprietary language and translates these
cores automatically into VHDL. FPGA vendors offer
similar tools to core parameterization in their design
environment. These are examples of core manipulation
early in the design flow, not developed for
reconfigurable systems.

James-Roxby et al., in [21], describe a tool called
JbitsDiff, that share some features with one tool
proposed here. The basis of this tool is the Jbits class
library [22]. The user generates a core using a standard
design flow, defining its bounding-box with a
floorplanning tool. JbitsDiff is used to extract the
generated core, inserting it into the user bitstream. If the
core communicates only with the external world, this
tool can be efficiently used. However, if the core should
communicate with other cores inside the FPGA, a
connection structure must be provided.

The method presented by Dyer, in [23], defines the
routing between cores using a structure called virtual
socket, which defines a border between static and
reconfigurable parts. This interface is built from feed-
through routed CLBs. The virtual socket is manually
placed and routed to guarantee connection between
cores.

Recently, Xilinx announced the Modular Design tool
[24], enabling partial reconfiguration in Virtex devices.
The heart of this tool is the bus macro, which connects
two vertical adjacent cores. Each bus macro provides

four bits of inter-core communication. The bus macro is
a pre-synthesized bitstream, inserted between two cores,
with fixed routing resources. The communication is done
through tri-state buffers.

Another approach to partial and dynamic
reconfiguration is described in [25]. The PARBIT tool
has been developed to transform and restructure
bitstreams to implement dynamically loadable hardware
modules. To do this, the PARBIT utilizes the original
bitstream, a target bitstream and parameters given by
user. These parameters include the block coordinates of
the logic implemented on a source FPGA, the
coordinates of the area for a partially programmed target
FPGA and programming options. This tool works over
Virtex-E FPGA family.

The presented approaches have interesting advances,
but there is some gaps to be filled. The Dyer work
extends the JBits, providing the class JBitsCopy to
merge cores into FPGAs. But this approach does not
address the problem of dynamic reconfiguration.

The main problem of the PARBIT and the method
presented in [25] is that they requires a lot of user
interactions with the vendor’s CAD tool to put the
routing resources on the right place, and there is
necessary to take care that the routes for de cores do not
pass trough the partially reconfigured area, and vice-
versa.

The tools JBitsDiff, Modular Design and PARBIT
allow the connection between cores inside an FPGA. But
a more structured approach to connect cores (using e.g. a
standard bus) is required to allow effective
implementation of DRS. This work proposes such a
structured approach, showing that it is possible to allow
IP reuse of synthesized blocks into commercial FPGAs,
with dynamic reconfiguration.

3. Virtex Internal Architecture
The main internal components of a Virtex FPGA are

CLBs (Configurable Logic Blocks), IOBs (Input Output
Blocks), memory blocks, clock resources and
configurable routing. Only the bitstream structure and
the equations to access data bits into CLBs are presented
in this Section. More details can be found in [3]. It is
important to understand the bitstream structure to
develop tools aiming core manipulation, i.e., dynamic
replacement of cores. The direct access to CLBs
information is necessary since CLBs can be configured
as memory blocks named LUTRAM, storing circuit
parameters.

Virtex devices are organized as bi-dimensional arrays
of bits. A single column of bits is named frame. One
frame corresponds to one atomic reconfiguration unit,
i.e. the smallest portion that can be read from (or written
to) the FPGA configuration memory. Sets of consecutive
frames compose CLB, Block Select RAM, IOB and

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

Clock columns. Figure 2 illustrates this organization.

2
IOBS

2
IOBS

CLB

CLB

CLB

CLB

CLB

CLBC
LO

C
K

 D
IS

TR
IB

U
TI

O
N

8

FR
A

M
ES

SE
LE

C
T

B
LO

C
K

 R
A

M

64
 F

R
A

M
ES

IN
PU

T/
O

U
TP

U
T

IO
B

 R
ES

O
U

R
C

ES

54
 F

R
A

M
ES

B
LO

C
K

 R
A

M
 IN

TE
R

C
O

N
N

EC
T

R
ES

O
U

R
C

ES

27
 F

R
A

M
ES

SE
LE

C
T

B
LO

C
K

 R
A

M

64
 F

R
A

M
ES

IN
PU

T/
O

U
TP

U
T

IO
B

 R
ES

O
U

R
C

ES

54
 F

R
A

M
ES

B
LO

C
K

 R
A

M
 IN

TE
R

C
O

N
N

EC
T

R
ES

O
U

R
C

ES

27
 F

R
A

M
ES

48 frames by CLB column

2
IOBS

2
IOBS

CLB

CLB

CLB

CLB

CLB

CLB

0244 46 48 52 0 50 1 43 45 47 51 1 49

2
IOBS

2
IOBS

CLB

CLB

CLB

CLB

CLB

CLB

2
IOBS

2
IOBS

CLB

CLB

CLB

CLB

CLB

CLB

2
IOBS

2
IOBS

CLB

CLB

CLB

CLB

CLB

CLB

2
IOBS

2
IOBS

CLB

CLB

CLB

CLB

CLB

CLB

2
IOBS

2
IOBS

CLB

CLB

CLB

CLB

CLB

CLB

2
IOBS

2
IOBS

CLB

CLB

CLB

CLB

CLB

CLB

Number bellow columns represents the MJA – major address.
Figure 2 - Virtex architecture (XCV300 device).

A Virtex device can be partially reconfigured since

frames can be read or written individually. Note that it is
not possible to configure a single CLB, since the frames
belonging to a given CLB are common to all other CLBs
in the same column. So, if a modification to a single
CLB is required, all frames belonging to the same
column must be read (operation called read-back), and
the modification is inserted over the read frames. In
practice, this feature renders the configuration structure
of the Virtex device as an uni-dimensional array of
columns.

Each CLB has two slices, named ‘S0’ and ‘S1’. Each
slice contains two LUTs, named ‘F’ and ‘G’, two flip-
flops and carry resources. To address a given LUT, a
quadruple is used, for example R8C9.S1.G, which means
the LUT is the G LUT at row 8, column 9, slice 1.

3.1 Element Addressing
To partially reconfigure a device it is necessary to

address individual elements inside the configuration file,
called bitstream. The following equations are used to
address bits inside LUTs [3]:

1)2CLB(MJA

else2)2CLB(MJAthenCLB if

col

colcol

col

col
col

Chip

Chip
2

Chip

MNA = lut_bit + wd – slice * (2*lut_bit + 17)
fm_bit_idx = 3 + 18*CLBROW - FG + RW*32
fm_st_wd = FL * (8 + (MJA-1)*48 +MNA) + RW*FL
fm_wd = abs(fm_bit_idx /32)
fm_wd_bit_idx = 31 + 32*fm_wd - fm_bit_idx

Where:
MJA - Major Address: represents the column address. Chipcol
is the number of columns available in the device.

MNA - Minor Address: identifies in which frame the lut_bit
is placed. MNA assumes values between 0 and 47. “wd” is
the number of bits per word (32) and “slice” is the slice
number.
fm_bit_idx – frame bit index: indicates the start position of
the CLB being addressed. Constant 18 multiplies CLBrow
because each CLB requires 18 bits per frame. “FG” is equal
to 1 if the desired bit is in a G-Lut, and 0 if it is in an F-Lut.
“RW” is equal to 0 when writing data to the FPGA and 1
when reading data from the FPGA (read-back operation).
fm_st_wd – frame starting word in the bitstream (file
containing 32-bit words). “FL” designates the frame length,
i.e., the number of 32-bit words needed to store a complete
frame. “8” is the number of clock columns.
fm_wd – indicates, in the bitstream, which word contains the
bit we are looking for.
fm_wd_bit_idx – designates the bit inside fm_word
containing the information we are looking for.

For example, suppose we want to change the 14th bit
of an F-LUT, placed at slice 0 of row 1 column 1
(R1C1.S0.F), using the device XCV100, which has
Chipcols=30, FL=14. Applying the above equations, we
obtain: MJA=30, MNA=46, fm_bit_idx=21, fm_st_wd=
20.244, fm_wd=0, fm_wd_bit_idx=10. These results
mean that the 10th bit (fm_wd_bit_idx) of the bitstream
word 20.244 (fm_st_wd + f_wd) is the location of the bit
we want to change. Thus, changing this bit and
recomputing the bitstream CRC, we are able to
reconfigure the FPGA.

4. Tools for Partial and Remote
Reconfiguration

This Section presents a pair of tools for partial and
remote reconfiguration. The first one was developed

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

using JBits [22]. The goal of this tool is to help the
circuit designer to create an interface to customize
parameters of the circuit being designed. The second tool
uses the equations defined in the previous Section to
manipulate cores, allowing a more powerful form of
partial reconfiguration.

4.1 Circuit Customization Tool
Usually, a circuit has a set of parameters defining its

behavior, being loaded from an external ROM. The
function of this tool is to simplify the design, storing
parameters directly into the bitstream, without using
ROMs or external microcontrollers. Parameters are
stored into FPGA memory blocks (e.g. LUTRAM), been
modified by local or remote reconfiguration. This
approach reduces the overall system cost, since it
eliminates the need of external devices and/or the
associated control logic to allow setting parameters at
running time.

Remote configuration/reconfiguration permits to fix
design errors, to change circuit parameters and/or to
upgrade the circuit functions without customer
knowledge. The implemented tool employs the client-
server paradigm to remotely modify the hardware. The
server communicates with client(s) through sockets,
receiving values, generating new configuration files from
these, and downloading them into the FPGA.

There are three actors involved in this tool: the
software developer, the circuit designer, and the circuit
user.

A design constraint is that parameters that are to be
customized must be associated to a set of LUTRAMs or
BLOCKRAMs at fixed positions. Once the initial
bitstream is created, the tool helps the designer to create
an interface giving access to the parameters. The user
downloads his design into the FPGA, and using the
interface may change the parameters at will, using the
interface. Note that partial reconfiguration is used,
changing only the FPGA columns containing the
specified parameter memory blocks.

The software developer implements a software layer
hiding FPGA architecture details. This software layer is
implemented as an applet. The applet communicates
with the server. The server uses Jbits classes to
open/write bitstreams and to access and modify the
information contained in the bitstream. This applet is the
same for all circuits being customized.

The circuit designer uses HTML tags to pass
commands and parameters to the applet to customize his
circuit. Figure3a shows an example of such description.
The reference to the applet is in line 6
(BITGeneric.class). The parameter “path” (line 7)
specifies the bitstream name. The parameters “ip” and
“port” (lines 8 and 9) specify the server address and IP
service. This is necessary to remotely access the host

connected to the FPGA. The parameter nbsignals
indicates the number of configurable parameters (line
10). For each parameter the circuit designer specifies: (i)
signal name; (ii) format – bin, dec, hex; (iii) physical
position of the parameters inside the FPGA, defined by
row, column, F/G LUT, slice; (vi) starting and ending
bits in the LUTRAM. Line 13 of Figure3a specifies the
constraints applied to the SlotPattern signal. It is
specified as a hexadecimal value (hex), placed at row 32,
column 37, G-LUT, slice 0, bits 2 to 9 (8-bit value). The
circuit designer must specify during physical synthesis
the same constraints to all configurable memory blocks.
 Finally, the circuit user receives the bitstream and
the HTML description. The resulting reconfiguration
page is presented in Figure3b. In the reconfiguration
page the values of the signals can be modified, saved and
partially downloaded into the device. Therefore, the
circuit user can abstract all details concerning the FPGA
architecture, and carry out remote and partial
reconfiguration.

A second version of this tool is under
implementation, replacing Jbits by the Virtex address
equations, resulting in an open source code. An
important comment is that this tool is addressed to the
same goal as the small bit manipulations proposed in
[24], but offering a much higher degree of abstraction to
its user.

4.2 Core Unifier Tool
Core reconfiguration requires a communication

structure between modules inside the FPGA, to allow the
practical use of partial reconfiguration. This structure can
be viewed as a bus to which application cores are
connected.

A fixed core, named controller, is initially
downloaded into the FPGA. Other cores, named slave
cores, can be downloaded at run time. The controller is
in charge of communication with the external world (I/O
pins of the device) and of communication among slave
cores. Each slave core communicates with the controller
through virtual pins
1. <html>
2. <head> <title> Drop </title> </head>
3. <body bgcolor=blue>
4. <center>
5. Drop
6. <APPLET code="BITGeneric.class" width=400 height=300>
7. <PARAM name="path" value="top_e1.bit">
8. <PARAM name="ip" value="200.17.93.93">
9. <PARAM name="port ue="5000"> " val
10. <PARAM name="nbsignals" value="8">
11. <PARAM name="l[1]" value="CRCControl bin, 32, 37, G, 0, 0, 0">
12. <PARAM name="l[2]" value="Code bin, 32, 37, G, 0, 1, 1">
13. <PARAM name="l[3]" value="SlotPattern hex, 32, 37, G, 0, 2, 9">
14. <PARAM name="l[4]" value="n64 bin, 31, 37, G, 0, 4, 0">
15. <PARAM name="l[5]" value="StartSlot bin, 31, 37, G, 0, 9, 5">
16. <PARAM name="l[6]" value="ServicoIn bin, 31, 37, G, 0,14,10">
17. <PARAM name="l[7]" value="InsertServ bin, 31, 37, G, 0,15,15">
18. <PARAM name="l[8]" value="DataInsert hex, 28, 37, G, 0, 0,15">
19. </APPLET>
20. </center>
21. </body>
22. </html>

(a)

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

(b)

Figure 3 - Example of HTML description and the
corresponding interface to circuit customization.

Some limitations are imposed by the FPGA
architecture: (i) it is not possible to restrain the CLB
usage only to tri-state buffers and routing; (ii) it is not
possible to define wire positions; (iii) only two tri-state
buffers are available per CLB. To overcome these
limitations, a communication interface with two tri-state
buffer layers with common routing wires is
implemented, presented in Figure 4. To have common
routing wires the controller is synthesized using “dummy
cores”, which include the buffers belonging to the slave
cores. The same procedure is applied to the slave cores,
which are synthesized with a “dummy controller”.
“Dummy cores” are also important to avoid floating
signals in the communication interface.

Slave
Core

Controller

Core buffer layer

Controller buffer layer

External world
connection

Slave
Core

Slave
Core

Common routing wires

Figure 4 - Communication interface with two tri-state
buffer layers and a common routing wire.

The controller contains three cores: communication
bus, connecting the slave cores; arbiter, granting the data
line to a given slave core; master core, responsible for
the communication with the external world. The
communication bus employs a serial communication
protocol to interact with the slave cores. The serial
protocol was chosen due to the limited number of tri-
state buffers in Virtex FPGAs and to simplify

prototyping.
To implement the proposed structure, a CAD tool

named core unifier was developed. The tool works as
follows:
1. A complete master bitstream is opened. It contains

the controller and the dummy cores. The controller is
connected to the dummy cores by wires connecting
pre-placed (by floorplanning) tri-state buffers.

2. One or more complete bitstreams containing cores to
be inserted into the master bitstream are opened.
Each bitstream contains one core and a dummy
controller. The user selects the area corresponding to
one core, and all components inside this area (routing
and CLBs) are inserted into the master bitstream.

3. The tool creates a partial bitstream, containing the
modified area. Partial reconfiguration is then
executed, inserting a new core into the FPGA.
This procedure is illustrated in Figure 5.
This tool was implemented using the Virtex address

equations (Section 3.1). The approach gives to the user
most features found in JBitsDiff. However, it provides a
structured form to interconnect cores, together with the
possibility to dynamically replace cores in the FPGA.

Figure 6 presents the main window of the core unifier
tool. This window has a 48x32 grid, representing all
CLBs of a Virtex 300 device and it is different for
distinct devices. Light and dark gray squares represent
CLBs not used (default values). Red squares represent
CLBs used by the master bitstream. Squares with
different colors (e.g. yellow) represent inserted cores.
The LUT values can be viewed in an auxiliary window,
selecting the CLB with the mouse.

Slave
Core

Controller

BITSTREAM 1 (master):
 Tri-state buffers
 Master core
 Arbiter
 Dummy cores

BITSTREAM n:
 Slave core and dummy ctrl
 Tri-state buffers
 Send and receive modules

Complete bitstreams merging

Final bitstream

Controller

Partial
Bitstream

Slave
Core

Figure 5 - Bitstream merging procedure.

The user can insert new cores into the master
bitstream, a feature that adds flexibility to the tool,
allowing dynamically inserting and/or removing cores.

This tool permits to implement virtual hardware, in
the same manner as virtual memory. The user may have
several hard cores stored in memory. As a function of

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

some execution scheduling these may be partially
downloaded into the FPGA.

Three main problems exist in this approach, all
related to the current state of commercial FPGA devices
and associated CAD tools: (i) to constrain the core logic
to reside inside the core bounding box defined by
floorplanning; (ii) it is not possible to constrain routing
with the floorplanner; (iii) it is not possible to define
exactly the same wiring between tristate buffers. To
obtain a synthesized core restricted to a fixed area,
several routing iterations are performed, requiring even
manual user intervention. This can be compared to the
manual manipulations proposed in [23] and in [24] to
verify that FPGA vendor tools must evolve to better
support partial and dynamic reconfiguration.

At present, the tool creates complete and partial
bitstreams. Complete and partial bitstream download
with core insertion was achieved successfully. A subset
of JBits classes, collectively known as JRoute is being
investigated to have access to Virtex FPGA routing

architecture manipulations.

5. Conclusions and Future Work
The first contribution of this work is the analysis of

DRS trends. The goals, solutions and remaining
problems of each DRS generation were highlighted.
Also, this study identified the future directions of
configurable architectures.

The second contribution is the development of tools
for remote, partial and dynamic reconfiguration. Multiple
advantages are offered by this tool-set. First, remote
reconfiguration is enabled. It is possible to exploit this
feature to update and/or fix hardware cores in the field.
Second, parameter reconfiguration can be used to
customize a circuit, avoiding extra devices as external
microcontrollers and ROMs, and saving internal control
logic in the FPGA. Third, virtual hardware is feasible in
off-the-shelf FPGA devices, even if the routing model
imposes hard constraints.

Figure 6 – Core unifier tool main window.

As suggestions for future work, the following can

enumerated: (i) to extend the bus structure to more bit
lines and different bus arbitration schemes; (ii) to
develop CAD tools to automate the manual steps

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

mentioned above; (iii) to develop techniques for core
relocation. Core relocation is the possibility of loading
the same core at different places inside the FPGA.

The core unifier tool can be integrated with co-design
tools. Currently, the hardware cores of a SOC require a
programmable device having enough area to implement
all cores. Another possibility is the generation of several
small hardware cores by the co-design tool, with a
scheduler to download these cores on-demand into the
FPGA device. This can be seen as a “dynamic co-
design”, a new concept not yet explored.

6. References
1 Hartenstein, R. A decade of reconfigurable computing:

a visionary retrospective. In: Design, Automation and
Test in Europe, pp. 642 –649, 2001.

2 ATMEL. Field Programmable System Level Integrated
Circuits (FPSLIC) (Aug. 2002).
http://www.atmel.com/atmel/products/prod39.htm

3 XILINX. Virtex series configuration architecture user
guide. Application Note nb. 151,
http://www.xilinx.com/xapp/xapp151.pdf (March 2000)

4 Page, I. Reconfigurable processor architectures.
Elsevier Microprocessors & Microsystems, v.20, p.185–
196, 1996.

5 Vuillemin, J.E.; et al. Programmable active memories:
reconfigurable systems come of age. IEEE Transactions
on VLSI Systems, vol 4(1), pp. 56-69, 1996.

6 Athanas, P.; Silverman, H.F. Processor reconfiguration
through instruction-set metamorphosis. Computer, vol
26(3), pp. 11-18, 1993.

7 Gokhale, M. SPLASH, A Reconfigurable Linear Logic
Array. In: International Conference on Parallel
Processing. pp. 219-314, 1990.

8 Lewis, D.M.; Galloway, D.R.; Van Ierssel, M.; Rose, J.;
Chow, P. The Transmogrifier-2: a 1 million gate rapid-
prototyping system. IEEE Transactions on VLSI
Systems, vol 6(2), pp 188-198, 1998.

9 Dubois, M.; Jaeheon Jeong; Yong Ho Song; Moga, A.
Rapid hardware prototyping on RPM-2. IEEE Design
& Test of Computers, vol 15(3), pp. 112 -118, 1998.

10 Sanchez, E.; et al. Static and dynamic configurable
systems. IEEE Transactions on Computers, vol 48(6), pp.
556-564, 1999.

11 SIDSA. FIPSOC mixed signal system-on-chip.
http://www.sidsa.com/FIPSOC/fipsoc.html (Aug. 2002).

12 Perissakis, S.; Joo, Y.; Ahn, J.; Dellon, A.; Wawraynek, J.
Embedded DRAM for a reconfigurable array. In:
Symposium on VLSI Circuits, pp. 145-148, 1999.

13 Callahan, T.J.; Hauser, J.R.; Wawrzynek, J. The Garp
architecture and C compiler. Computer, vol. 33(4), pp.
62-69, 2000.

14 Waingold, E.; et al. Baring it all to software: Raw
machines. Computer, vol. 30(9), pp. 86-93, 1997.

15 DeHon, A. DPGA-coupled microprocessors:
commodity ICs for the early 21st Century. In: FPGAs
for Custom Computing Machines, pp. 31 –39, 1994.

16 Wirthlin, M.; Hutchings, B. DISC: The dynamic
instruction set computer. In: Proceedings of the SPIE -

FPGA for Fast Board Development and Reconfigurable
Computing, pp. 92-103, 1995.

17 Goldstein, S.C.; et al. PipeRench: a reconfigurable
architecture and compiler. Computer, vol 33(4), pp. 70-
77, 2000.

18 Sassatelli, G.; et al. Highly scalable dynamically
reconfigurable systolic ring-architecture for DSP
applications. In: DATE, pp. 553-558, 2002.

19 Caspi, E.; et al. Stream Computations Organized for
Reconfigurable Execution (SCORE): Introduction and
Tutorial. In: Field Programmable Logic and Applications
(FPL'2000), Villach, Austria.. pp 605-614. 2000

20 Luk, W.; Mckeever, S. Pebble: a language for
parameterized and reconfigurable hardware design.
In: Field Programmable Logic and Applications
(FPL'1998), pp 9-18, 1998.

21 James-Roxby, P.; Guccione, S.A. Automated extraction
of run-time parameterisable cores from programmable
device configurations. In: Field-Programmable Custom
Computing Machines, pp. 153-161, 2000.

22 XILINX. The Jbits 2.8 SDK for Virtex.
ftp://customer:xilinx@ftp.xilinx.com/download/JBits2_8.e
xe (Sept. 2001).

23 Dyer, M.; Plessl, C.; Platzner Marco. Partially
Reconfigurable Cores for Xilinx Virtex. In: Field
Programmable Logic and Applications (FPL’2002), pp
292-301, 2002.

24 XILINX. Two Flows for Partial Reconfiguration: Core
Based or Small Bit Manipulations. Application Note nb.
290. http://www.xilinx.com/xapp/xapp290.pdf (May
2002).

25 Horta, E. L.; Locwood, J. W.; Kofuji, S. T. Using
PARBIT to implement Partial Run-time
Reconfigurable Systems. In: Field Programmable Logic
and Applications (FPL'2002), pp 182-191, 2002.

26 XILINX. Virtex II-Pro Platform FPGA Complete
DataSheet. Application Note nb. 083
http://direct.xilinx.com/bvdocs/publications/ds083.pdf.
(January 2003).

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

