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Abstract
Transaction level (TL) modeling is regarded today as the

next step in the direction of complex integrated circuits
and systems design entry. This means that as this

modeling level definition evolves, automated synthesis

tools will increasingly support it, allowing design capture

to start at a higher abstraction level than today. This work

presents a comparison of traditional register transfer

level (RTL) modeling and transaction level modeling
through the implementation of a simple processor case

study. SystemC is a language that naturally supports

hardware transaction level descriptions. The R8

processor was described in SystemC TL and RTL versions

and these were compared to an equivalent hand-coded
VHDL RTL description in some key points, such as

simulation efficiency and implementation results. The

experiments indicate that TL descriptions present a faster

path to system validation and that it is possible to

envisage the automation of the design flow from this level

of abstraction without significant impact on the quality of
the final implementation.

Key words: System modeling, register transfer level,

transaction level, SystemC, VHDL.

1. Introduction

The current mainstream technology employed to

capture the design of a complex integrated circuit (IC) is

based upon the use of hardware description languages

(HDLs) such as VHDL or Verilog. These languages

support the description of circuits at a range of abstraction

levels varying from gate level netlists up to purely

algorithmic behaviors. However, HDL design capture

traditionally starts with an informal specification,

generating from it a detailed, clock cycle accurate

hardware description. As the complexity of ICs increase,

the direct passage from informal product specifications to

clock cycle level accurate HDL descriptions becomes less

feasible, because the amount of information to aggregate

to a specification becomes unmanageable.

Today, designing application specific ICs (ASICs)

with tens of millions of transistors is commonplace. Such

ICs are complex enough to contain all major elements of a

complete end product, and are accordingly known as

Systems-on-Chip (SoCs) [1]. A SoC usually contains one

or more programmable processors, on-chip memory,

peripheral devices, and specifically designed complex

hardware modules. Also, according to the SIA Roadmap

[2], somewhere between years 2010 and 2013, a state of

the art ASIC will be allowed to contain more than one

billion transistors. Capturing the design of current and

future SoCs requires enhancements in current design

practice. These enhancements include both new classes of

resources to use in the design process and new classes of

design techniques to employ.

Essential resources of every SoC are intellectual

property cores (IP cores) [3][4]. An IP core is a complex

module that fulfills some specific task and is created for

reuse. IP cores are the basic building blocks of SoCs.

Previsions are that by 2015, IP cores will compose 90% of

the area of a SoC [2]. Hardware modules inside a SoC

communicate with each other using on-chip shared buses.

Nonetheless, buses are not scalable, and can hardly cope

with future global chip clocking strategies, currently

migrating from a globally synchronous approach to a

globally asynchronous, locally synchronous approach. To

overcome these limitations, concepts used in computer

networks, telecom and distributed systems are being

adapted to the on-chip domain, creating a new kind of

resource, usually called Networks-on-Chip (NoCs) [5][6].

Plugging hardware IP cores into a SoC design must be

an effortless task. The proposition of standard interfaces

like VSI [7] and OCP [8] provide core-centric interfaces

also called sockets. Standard interfaces or sockets improve

design reuse and scalability in SoC design with regard to

interconnection-centric approaches provided by, e.g.

standard buses. Another new resource for SoCs is

reconfigurable hardware [9], which has the potential to

greatly increase performance and flexibility. Adding

reconfigurable resources to SoCs can provide hardware

tuning capabilities and hardware revision to systems,

improving product performance and lifetime. All the cited

new resources may be combined into platforms [10], a

resource to enable timely delivery of SoCs. Platforms are

collections of hardware and software IP cores, together

with on-chip communication structures designed to serve

as a template of a SoC for a given application area, such

as wireless communication or automotive applications.
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Given an adequate platform, a specific SoC design may be

limited to platform tuning and software adaptation.

As for the evolution of design techniques, since

hardware and software compose SoCs, their design must

rely on hardware/software codesign techniques [11]. This

is mandatory because the separate implementation of

these entities can no longer achieve the best performance

and time-to-market figures for highly complex ICs. Also,

to achieve design reuse in general and IP core reuse in

particular, modules have to be designed for reuse [12].

Many of the design techniques common in the traditional

ASIC design flow have to be revised or even discarded if

a reuse method is strictly followed. Finally, it is of

paramount importance to increase the abstraction level in
which formal descriptions are used for design capture and

automated processing both for synthesis and verification

[10]. From design capture starting with physical

descriptions of the chip layout, technology moved to

structural schematics description, and from there to mixed

structural-behavioral descriptions in HDLs. Each design

capture generation brought important productivity gains

for designers with regard to the previous generation.

Among other advantages, HDLs and associated design

tools have ascertained portability and cell library

independence across design tools vendors. This increases

the potential for reuse and for the widespread availability

of IP cores in the market.

However, current SoC design is pushing HDLs to the

limit. Automatically synthesizable HDL descriptions must

contain too many details to allow global SoC validation

by means of HDL simulators. Also, since there is no

consensus as to which HDL is best, tools must support

Verilog, VHDL and mixed designs, causing library

incompatibilities and leading to inefficient tools [13]. Still

worse, the HDL support for validation is poor when

compared to software languages such as C/C++. Complex

hardware requires complex validation processes that are

reusable at several levels of abstraction.

This work addresses the evolution of design capture

techniques in the SoC design context. One important

contribution is to certify that TL modeling can already be

considered better than RTL modeling for validation

purposes, since it enables simulations an order of

magnitude faster than HDL. Another connected

contribution is an indication that SystemC may be a good

candidate language to provide a smooth transition from

TL to RTL modeling without hampering the quality of the

design. This occurs because SystemC RTL modeling is

capable of delivering hardware quality comparable to

hand-coded HDL design.

The rest of this paper is organized as follows. Section

2 presents a brief comparison of register transfer and

transaction abstraction levels for design capture. Also, it

shows a transaction level design flow employed in the

design of the case study described in Section 3. The

SystemC implementations of the case study are the subject

of Section 4. Section 5 provides initial results of the

comparison for three different implementations of the case

study. Section 6 presents conclusions and future work.

2. Design abstraction and flow

The register transfer level (RTL) of abstraction has

been formally described [13]. Informally, RTL consists in

describing hardware modules by means of a datapath and

a control unit. The datapath is composed structurally,

using a set of memory elements (registers), processing

elements (ALUs, multipliers, etc) and interconnection

between these. The control unit is a behavior description

of how data flows and is transformed in the datapath. RTL

modeling assumes clock cycle level accuracy in the

datapath and control unit descriptions. Presently, synthesis

tools accept RTL models as input for producing high-

quality designs.

Abstraction levels beyond the RTL have been

collectively known as system levels. There is no consensus

on how such levels are composed, but there is today an

agreement that they comprise more than one abstraction

level. It is possible to find propositions of two [14], three

[15] or even four [16] levels of abstraction above RTL.

All of these agree that above the RTL level there is the

transaction level (TL) of abstraction, the target level for

this work. TL modeling is timed but not clock cycle

accurate [16]. The first challenge to employ TL modeling

for RTL designers is to abstract the clock and specific

protocols. TL modeling is considered important for

architectural performance analysis, hardware/software

partitioning, and golden test patterns generation for

several abstraction levels, among other uses. Using TL

modeling has the potential to reduce design effort in other

abstraction levels and increase simulation speed.

The first step in the TL design flow, design capture,

consists in describing the system as a set of high-level

components. Components are modeled as hierarchical

modules that contain processes, ports, and abstract

channels. Processes define the behavior of a particular

module and provide a method for expressing concurrency.

The communication between the modules (components) is

performed through abstract channels. An abstract channel

implements one or more interfaces, where an interface is

simply a collection of method definitions (in the sense of

object oriented languages). Abstract channels encapsulate

abstract communication protocols. A process accesses a

channel interface via a port on the module.

The validation of a TL design is done using a TL

simulation. Test patterns used at this level are reused at

subsequent design levels. Once system validation is

achieved, the TL description needs to be partitioned into

hardware and software. This may be performed manually

or automatically using codesign tools. The presented case
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study does not include this partitioning step, being

completely implemented in hardware.

Next, the TL specification is refined into an RTL

specification. Since no tools for automating this

refinement are currently available, this step is performed

manually. Intermodule communication is implemented

with wires. At this level, cycle-accurate communication

protocols are defined and cycle-accurate timing of actions

is delineated. The validation at this level is done by RTL

simulation, using the same gold test patterns developed

for the TL modeling.

The next steps in the design flow are supposed to be

executed automatically and include (1) RTL to logic level

synthesis; (2) physical synthesis.

SystemC [17] is a language that enables the use of

several abstraction levels, including RTL and upper levels

such as TL and the untimed level [15]. This language is

used here to provide a single development framework for

TL and RTL modeling. Our RTL to logic level synthesis

employs the following tools: Synopsys SystemC Compiler

for translating SystemC RTL to VHDL and Leonardo

Spectrum or Xilinx XST for logic synthesis. The physical

synthesis step uses the Xilinx ISE tools to target the

design to Virtex FPGAs.

Concerning the functional validation for the TL and

RTL models, the Synopsys CoCentric System Studio

design capture and simulation environment is used. The

VHDL RTL design was validated with Modelsim and

Active-HDL simulators.

3. Case study

The case study is a simple, 16-bit load-store processor,

named R8. It presents a regular instruction format: all

instructions have exactly the same size, occupying one 16-

bit memory word each. The instruction contains the

operation code and the specification of the operands, in

case these exist. There are just a few addressing modes.

This processor is a RISC-like machine, but still missing

some characteristics so common in most RISC processors,

such as pipelines. The main specific organizational

characteristics of this multi-cycle processor are:

• Address and data are 16-bit wide;

• Memory addressing is performed on a word basis;

• Register bank with 16 general-purpose registers;

• 4 status flags: negative, zero, carry, and overflow;

• Instruction execution takes place in 2 to 4 clock

cycles, i.e. the average clock per instruction (CPI) for

any program executed is a number between 2 and 4.

The R8 processor has already been prototyped in

hardware and is used today in wide range of projects

inside the research group. The processor is available free

of charge at http://www.inf.pucrs.br/~gaph/Projects/R8/

R8%20Processor%20Core.html. In addition to the R8 IP

core, software tools, and a full application are also there.

4. SystemC implementations

This Section describes the case study design in two

abstraction levels using SystemC 2.0.1 [17]. The first

design is a TL modeling and the second one is an RTL

modeling, which can be obtained by the refinement of the

first one, as a top-down modeling approach.

4.1. Transaction level modeling

At this abstraction level, the focus is not on the

processor-memory interface precise description or on the

number and nature of the available registers. The focus is

in the system functionality and on the external and

internal communication, in an abstract way [18]. This

enables early design analysis to find architecture

bottlenecks that can compromise the efficiency of the

system. To achieve this, modules describe the architecture

functional components and channels are responsible for

the communication between modules. Channels abstract

the complexity of the protocols used, allowing the

transmission of any desired data type, from a simple bit to

a complex structure [14].

The case study was implemented with three modules

and three channels, as depicted in Figure 1. The modules

describe the behavior of the processor, the memory, and

the register bank. Each channel describes the

communication between the processor and the memory,

the register bank and the flags, one for each.
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Figure 1 - R8 processor implemented with 3 modules
(Execution Unit, Register Bank and Memory Unit) and 3
channels (FlagsChannel, RegsChannel and Memory
Channel). Boldface names are instances others are classes.

Based on the specification of the case study [19], the

processor is modeled to fetch the instructions from

memory, decode, and execute it. The communication

between the processor and the memory is mapped to a

channel and synchronized by events, which means that no

clock signal need to be explicitly defined. This channel

contains methods to request instructions for the memory
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and to send these instructions back to the processor.

Methods are defined by interfaces, which are classes that

have virtual objects. Interfaces are also used to define the

ports of the modules. For example, when the processor

requests a new instruction, it performs the getNxtWord

method through the port that is connected to the

MemoryCHl channel. This method is executed by the

channel, which contains the PC register to address the

memory, requesting the information for the memory. The

instruction is read from the memory and sent back to the

channel. The channel notifies the processor that the

instruction is available through an event and awaits for a

new request. Figure 2 illustrates the structure of methods

used in the processor-memory communication.

#include <systemc.h>
#include “R8MemIf.h”
#include “memR8If.h”
class memoryChl: public sc_channel, public R8MemIf,
public memR8If{
public:
typedef sc_lv<16> word_type;
typedef sc_uint<16> ad_type;
void getNxtWord(word_type *word){

memPosition = PC;
addressAvailable.notify();
wait(dataOk);
*word=localWord;
PC++; }

void getAddress(ad_type *address){
wait(addressAvailable);
*address=memPosition; }

void sendWord(word_type word){
localWord=word;
dataOk.notify(); }

private:
ad_type PC, memPosition;
word_type localWord;
sc_event addressAvailable, dataOk; };

Figure 2 – Partial TLM description for the R8 processor,
detailing the processor-memory communication.

The TL abstraction layer permits to describe the

processor functionality, abstracting the precise

communication mechanisms. The TL description is

simulateable, and results can help the designer e.g. to fit

the memory size, the number of registers and operations.

4.2. Register transfer level modeling

Once the TL description validated, the next step is the

manual refinement to RTL modeling. The computation

modules are the first elements to be manually translated to

RTL modeling. At this step, flip-flop descriptions, register

size and clock cycle accurate control FSMs are defined.

The focus changes from functionality to implementation,

since a synthesizable description is required.

Keeping channels and first refining the modules

allows incremental validation. When computation

modules are validated, the communication protocols may

be refined. Incremental refinement, simulation, and

validation achieve a synthesizable description. Simulation

steps are each time longer than the ones performed in TL

modeling, since they are executed at clock cycle accurate

levels. Also, the number of components in the design

increases at each step (registers, state machines,

multiplexers, etc).

The channel refinement employs conventional ports,

using signals like standard logic or Boolean. The

communication protocol is implemented internally to each

channel, and the synchronization is carried out using clock

signals. The abstraction of data types cannot be used

anymore. In the TL description, the channel describing the

communication between the processor and the memory

contains the PC register. However, in practice this register

is an internal processor register. So, this register is moved

from the channel to the processor module.

There are no rules for a smooth refinement process.

What is interesting to be done is to focus on the problem

using a hierarchical approach. From TLM to RTL for

example, it is useful to concentrate in refining modules

and then refining communication, as done here.

5. Comparison

To compare SystemC to VHDL design and TL to RTL

modeling, three implementation types of the R8 processor

case study were sought. Several RTL implementations

were conducted, various versions in the SystemC

language and a “gold” one in the VHDL language. The

third type is TL implementations using SystemC, one

version of which was implemented. The implementation

comparison relies upon two metrics. The first metric is

simulation time. The second metric is the size of the

automatically generated hardware. Also, qualitative

evaluation of the designs was conducted to assess how

easy is to learn and use each language.

5.1. Qualitative evaluation

VHDL is a language developed to allow hardware

description. It contains specific features to describe

hardware structure and behavior including specific control

flow structures and specific data types. Once the VHDL

description is done, a tool that interprets the hardware

description can be used. As hardware and software usually

interact in systems, a hardware-software co-simulation

may have to be performed during SoC design. With

VHDL this process is possible but it has to be done by

means of a tool with explicit support to integrate VHDL

simulation with software debuggers through the operating

system of a host computer. ModelSim is an example of a

tool with such support. Moreover, the description of a top

module to perform project validation, usually called a
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testbench in VHDL jargon, has to be described using

specific VHDL libraries and commands. Thus, to start

working with VHDL, a great effort needs to be done to

understand it, if the user does not know the language in

advance. Also, the user has to dominate the set of specific

tools used to capture and validate VHDL designs.

SystemC is a set of classes that extends C++ libraries.

It is not considered a specific language to describe

hardware yet. It uses C++ data types and control flow.

Furthermore, it allows and employs powerful features like

C++ template definitions to easily declare objects and

manipulate them. Instead of being interpreted, the code

that describes the hardware is compiled into an executable

file produced using e.g. GNU gcc/g++ or Microsoft Visual

C++ compilers. As a C++ environment is used, the effort

to describe a cosimulation is much lower compared to

VHDL because the same language is used to describe both

hardware and software entities without the need of

powerful and or heterogeneous supporting tools to

perform cosimulation. Since all the power of C++ can be

used for simulation/cosimulation, testbenches can

capitalize on the use of C++ libraries to validate both the

hardware and the software. C++ is a language available to

a potentially much larger community of users than VHDL.

Although the effort to learn SystemC seems to be lower,

this feature may not justify changing the development

approach for those used to employ VHDL until now.

5.2. Simulation time comparison

The simulation time analysis was adopted to compare

the efficiency obtained from a hardware design starting

from an RTL VHDL description to a TL description in

SystemC. The RTL VHDL description is exercised with a

clock cycle accurate VHDL simulator, while the SystemC

description is compiled code generated by the GNU g++

compiler. VHDL simulation employed Modelsim.

For this process, the same testbench was used with

both descriptions, which included running an R8

assembler version of the bubble sort algorithm. Vector

sizes are 32, 64, 128, 256, 512 and 1024 16-bit words.

Both simulations were run in a Sun Blade 2000, with a

900 MHz single processor and 1Gbyte of main memory.

Figure 3 presents the simulation time in seconds

needed to execute the bubble sort algorithm.

As appears in the figure, the SystemC simulation time

is nearly an order of magnitude faster than the VHDL

simulation. This information is relevant, since, the time

taken to simulate large circuits described in VHDL (as

found in SoC design) is extremely high and constitutes a

main factor in the critical path of complex IC design to

fulfill time-to-market schedules. In this way, adoption of

SystemC may significantly reduce time taken in design

validation, if synthesis can proceed directly from this

point to automatic hardware generation procedures.
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Figure 3 - RTL versus TL simulation time comparison Time
values are available below the graph.

It is important to stress that this case study is about

real, working hardware. Both, VHDL and SystemC RTL

implementations have been validated by simulation using

the same testbench. Both were prototyped in hardware and

tested in the same FPGA board, Xess XSV800.

5.3. Hardware size comparison

The next analysis in the context of this case study is

the hardware size comparison obtained in the design flow

when using either SystemC RTL or VHDL RTL

descriptions as input to automatic synthesis. To perform

this comparison, an EDIF file was obtained from the

SystemC RTL description using the Design Compiler tool

from Synopsys. The ISE XST tool imported the EDIF file.

The synthesis results obtained from mapping the design to

Xilinx Virtex FPGAs appear in Figure 4, comparing the

best SystemC RTL version to the VHL RTL version.
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Virtex XCV800PQ240 was the target FPGA. The

analyzed size metric was the amount of LUTs/FFs used by

each hardware description. The size obtained for each

module is similar for both, VHDL and SystemC. The last

four bars show the total hardware size achieved by both

synthesis processes. Processor data is not equal to the sum

of datapath and control unit data, due to overall synthesis

optimizations. The differences are within 15% for LUTs

and within 10% for memory elements. Equivalent gate

count estimation furnished by the XST tool is 9,032 for

the VHDL version and 9,682 for the SystemC version.

6. Conclusions and future work

The results presented in this work stress the facility to

describe hardware using SystemC, which provides a faster

simulation time, when compared to VHDL. The gain in

simulation time approaches an order of magnitude. Also,

the hardware size obtained from the RTL SystemC

description synthesis is comparable to that obtained from

the synthesis of an equivalent RTL VHDL description.

However this was not a straightforward process. Much

experimentation with SystemC coding styles was done to

achieve good synthesis results, indicating a certain level

of immaturity of SystemC RTL synthesis tools.

SystemC stands as an interesting language option to

describe hardware at high abstraction levels, because it

smoothes the design flow from higher abstraction levels to

lower abstraction levels. SystemC is efficient to validate

hardware when comparing to VHDL, and potentially

enables a much wider community to design hardware.

It is perfectly reasonable to argue that the results

reported here are preliminary. Nonetheless, early results in

an ongoing work with bigger examples have revealed that

the SystemC approach to synthesis has area-scaling

characteristics similar to that of VHDL. Although to date

no tool is available to automatically translate TL models

to hardware, these differ little enough from RTL models

to allow considering that automatic synthesis is not a long

way from real life design flows.

Even though the size of the reported case study is not

at all that of a real SoC, the R8 processor design

comprises all major hardware module types expected to be

present in real SoCs. This includes state machines (the

control unit of the processor) arithmetic logic (the ALU),

multiport memories (the register bank) and wide

interconnection resources (the ALU buses and the external

memory interface). Such reasoning turns the case study

choice adequate to investigate SoC design techniques.

Ongoing and future works include describing NoCs

inside SoCs at the TL abstraction level in SystemC. The

RTL case studies reported here have been prototyped in

hardware. From several SystemC RTL versions that

simulated identically to the VHDL RTL hardware the one

that we managed to run in hardware up to now is

significantly bigger than the version reported here (12,081

equivalent gates). We are investigating this discrepancy.

Other relevant implementation comparison data includes

the quality of the design with regard to maximum

operating clock frequency for both, FPGAs and ASICs.
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