
A Low Area Overhead Packet-switched Network on Chip:
Architecture and Prototyping

Fernando Moraes, Aline Mello, Leandro Möller, Luciano Ost, Ney Calazans
Pontifícia Universidade Católica do Rio Grande do Sul (FACIN-PUCRS)

Av. Ipiranga, 6681 - Prédio 30 / BLOCO 4 - 90619-900 - Porto Alegre – RS – BRASIL
{moraes, alinev, moller, ost, calazans}@inf.pucrs.br

Abstract
The increasing complexity of integrated circuits drives
the research of new intra-chip interconnection
architectures. A network-on-chip adapts concepts
originated in the distributed systems and computer
networks subject areas to connect IP cores in a
structured and scalable way, pursuing the goal of
achieving superior bandwidth to conventional intra-chip
bus architectures. This paper presents the design of a
switch targeted to a mesh interconnection topology.
Each switch has 5 bi-directional ports, connecting 4
neighbor switches and a local IP core. They employ a
XY routing algorithm, with input queue buffers. The
main objective is to develop a switch with a small area,
enabling its immediate practical use. The switch and a
2x2 mesh network were validated through functional
simulation. Also the network has been successfully
prototyped in hardware, using a million-gate FPGA.

Keywords: network on chip, system on chip, core base
design, switches, intra-chip interconnection.

1. Introduction
Increasing transistor density, higher operating

frequencies, short time-to-market and reduced product
life cycle characterize today’s semiconductor industry
scenery [1]. Under these conditions, designers are
developing ICs that integrate complex heterogeneous
functional elements into a single chip, known as a
System on a Chip (SoC). As described by Gupta et al.
[2], SoC design is based on intellectual property (IP)
cores reuse. Gupta et al. [2] define a core as pre-
designed, pre-verified silicon circuit block that can be
used to build a larger or more complex application on a
semiconductor. These cores can be analog/digital cores,
memory blocks, DSP cores, and also new technologies
such as micro-electro-mechanical systems or
optoelectronic systems [1][3]. Cores do not make up
SoCs alone; they must include an interconnection
architecture and interfaces to peripheral devices [3]. The
interconnection architecture includes physical interfaces
and communication mechanisms, which allow the
communication between SoC components.

Usually, the interconnection architecture is based on
dedicated wires or shared busses. The dedicated wires
are effective for systems with a small number of cores,

but the number of wires around the core increases as the
system complexity grows up. Also, dedicated wires have
poor reusability and do not offer flexibility. A shared
bus is a set of wires shared by multiple cores. This
approach is more flexible and is totally reusable, but it
allows only one communication transaction at a time,
because all cores share the bandwidth in the system and
its scalability is limited to few IP cores, less than one or
two dozens [4]. Using separate busses interconnected by
bridges or hierarchical bus architectures may reduce
some of these constraints, since different busses may
account for different bandwidth needs, protocols and so
on. Thus, each core can access the bus that fulfills its
own requirements.

 According to several authors [4]-[10], the
interconnection architecture based on shared busses will
not support the communication requirements for future
ICs. According to ITRS, ICs will have billions of
transistors, with feature sizes around 50 nm and clock
frequencies around 10 GHz in 2012 [1]. In this context, a
Network on Chip (NoC) appears as a possible solution
for future on-chip interconnects. A NoC is an on-chip
network [5] composed by cores connected to one switch,
and switches connected by communication channels.
This paper proposes a low area overhead NoC design
based on a simple switch.

The rest of this paper is organized as follows. Section
2 presents an overview of the basic concepts and features
of NoCs. The NoC communication protocol stack is
discussed in Section 3. Section 4 details the main
contribution of this work, the design of switch. The
implementation and validation of a mesh topology NoC
is described in Section 5. In Section 6, initial prototyping
results are presented. Section 7 presents some
conclusions and directions for future work.

2. Basic Concepts
As described in [9], NoCs are emerging as a possible

solution to the existing interconnection architecture
constraints, due to the following characteristics: (i)
energy efficiency and reliability [7]; (ii) scalability of
bandwidth when compared to traditional bus
architectures; (iii) reusability; (iv) distributed routing
decisions [6].

Two main parts compose a network, the services and
the communication system. Rijpkema et al [9] describe
some services considered essential for chip design, such



as data integrity, throughput and latency. The
communication system supports the information transfer
from a source to a target. As defined in [11], the
communication among elements of a network is based
on packet transference, which are often composed by a
header, a payload, and a trailer. The NoC structure is
basically a set of switches connected among them by
communication channels. The way switches are
connected define the network topology. Network
topologies can be classified in two main classes: static
and dynamic networks [12]. In static networks, each
node has fixed point-to-point static connections to some
number of other nodes. Hypercube, mesh, torus and fat-
tree are examples of networks used to implement static
networks. Dynamic networks employ dynamically
configured switched channels. Busses and crossbar
switches are examples of dynamic networks.

To ensure correct functionality in terms of message
transfer, a NoC must avoid deadlock, livelock and
starvation [11][12]. Deadlock may be defined as a cyclic
dependency among nodes requiring access to a set of
resources so that no forward progress can be made, no
matter what sequence of events happen [12]. Livelock
refers to packets circulating the network without ever
making any progress towards their destination. It may be
avoided with adaptive routing strategies. Starvation
happens when a packet in a buffer requests an output
channel and is blocked because the output channel is
always allocated to another packet.

Besides avoiding the phenomena defined in the
previous paragraph, it is necessary to specify how
packets pass through the switches. Two methods for
transferring messages are circuit switching and packet
switching [13]. In circuit switching, a path is established
before the packet is sent. When a circuit between source
and destination has been established, the packet can be
sent and any other communication on the allocated path
is denied. In packet switching, a message is broken into
packets that are transmitted through the network. The
main difference between circuit and packet switching is
that in the last one there is no communication channel
reservation. In other words, the path is established
dynamically. Packet switching implies the use of a
switching mode. The most popular are store-and-
forward, virtual cut-through and wormhole [13]. In
store-and-forward mode, a switch cannot forward a
packet until it has been received in its entirety. Each time
a switch receives a packet; its contents are examined to
decide what to do, implying per-switch latency. In
virtual cut-through mode, a switch can forward a packet
as soon as the next switch gives a guarantee that a packet
will be completely accepted. Thus, it is necessary a
buffer to hold a complete packet, like in store-and-
forward, but in this case with lower latency
communication. The wormhole routing mode is a variant
of the virtual cut-through mode that avoids the need for
large buffer spaces. A packet is transmitted between the
switch in units called flits (flow control digits – the
smallest unit of flow control). Only the header flit has
the routing information. Then, the rest of the flits that

compose a packet must follow the same path reserved
for the header.

The switching modes define how packets move
through switches. The routing defines the path taken by
a packet between the source and the target. According to
where routing decisions are taken it is possible to
classify the routing in source and distributed [11]. In
source routing, the whole path is decided at the source
switch, while in distributed routing each switch
receiving a packet decides where to send it. According to
how a path is defined to transmit packets, routing can be
classified as deterministic and adaptive. In deterministic
routing, the path is uniquely defined by the source and
target addresses. In adaptive routing the path is a
function of the network traffic [11]. This last routing
classification can be further divided into partially or fully
adaptive. Partially adaptive routing uses only a subset of
the available physical paths between source and target.

3. NoCs Protocol Stack
The OSI reference model is a hierarchical structure

of seven layers that define the requirements for
communication among processing elements [14][10].
Each layer offers a set of services to the upper layer,
using functions available in the same layer and in the
lower ones. NoCs usually implement a subset of the
lower layers, such as Physical, Data Link, Network and
Transport. These layers are described below in the NoC
context.

The physical layer is responsible to provide
mechanical and electrical media definitions to connect
different entities at bit level [14]. In the present work this
layer corresponds to the communication between
switches, as exemplified in Figure 1. The physical data
bus width must be chosen as a function of the available
routing resources and available memory to implement
buffering schemes.

 

Output Port

Input Port

tx

data_in 

rx 
ack_rx

Switch

data_out
ack_tx

rx 

data_out 

tx 
ack_tx 

data_in 
ack_rx 

1 
1 
n 

n 

1 
1 

Input Port

Output Port

Switch

Figure 1 – Example of physical interface between
switches.

The data link layer has the objective of establishing a
logical connection between entities and converting an
unreliable medium into a reliable one. To fulfill these
requirements, techniques of flow control and error
detection are commonly used [11]. This work
implements in the data link layer a simple handshake
protocol built on top of the physical layer, to deal with
flow control and correctly sending and receiving data. In
this protocol, when the switch needs to send data to a
neighbor switch, it puts the data in the data_out signal
and asserts the tx signal. Once the neighbor switch stores
the data from the data_in signal, it asserts the ack_rx
signal, and the transmission is complete.



The network layer is concerned with the exchange of
packets. This layer is responsible for the segmentation
and reassembly of flits, point-to-point routing between
switches, and contention management. The network
layer in this work implements the packet switching
technique.

The transport layer is responsible to establish an
end-to-end communication from source to target.
Services like flow control, segmentation and reassembly
of packets are essential to provide a reliable
communication [11]. In this work, end-to-end
connections are implemented in the IP cores connected
to the NoC. The implementation of flow control and
other options is envisaged as future work.

4. Proposed Switch
The main objective of an on-chip switch is the

correct transfer of messages between IP cores. They
usually have routing logic, arbitration logic and
communication ports directed to other switches or cores.
The communication ports include input and output
channels, which can have buffers for temporary storage
of information.

The switch proposed here has a routing controller
logic and five bi-directional ports: East, West, North,
South and Local. Each port has a buffer for temporary
storage of information. The Local port establishes a
communication between the switch and its local core.
The other ports of the switch are connected to the
neighbor switches, as presented in Figure 2. The routing
controller logic implements the arbitration logic and a
packet-switching algorithm.

 N

L

W 

S

EControl
Logic 

B 

B B 

B B

Figure 2 - Switch Architecture. B indicates input
buffers.

Among the switching modes presented in Section 2,
wormhole was chosen because it requires less memory,
provides low latency, and can multiplex a physical
channel into more than one logical channel. Although
the multiplexing of physical channels may increase the
wormhole routing performance [13] this has not been
implemented. The reason is to lower complexity and cost
of the switch by using only one logical channel for each
physical channel.

As previously described, the wormhole mode implies
dividing packets into flits. The flit size is
parameterizable, and the number of flits in a packet is
fixed at 2(flit size, in bits). An 8-bit flit size was chosen here
for prototyping and evaluation purpose. The first and the
second flit of a packet are header information, being
respectively the address of the target switch, named
header flit, and the number of flits in the packet payload.

Each switch must have a unique address in the network.
To simplify routing on the network this address is
expressed in XY coordinates, where X represents the
horizontal position and Y the vertical position.

4.1. Control Logic

Two modules implement the control logic: routing
and arbitration, as presented in Figure 4. When a switch
receives a header flit, the arbitration is executed and if
the incoming packet request is granted, an XY routing
algorithm is executed to connect the input port data to
the correct output port. The algorithm compares the
actual switch address (xLyL) to the target switch address
(xTyT) of the packet, stored in the header flit. Flits must
be routed to the local port of the switch when the xLyL
address of the actual switch is equal to the xTyT packet
address. If this is not the case, the xT address is first
compared to the xL (horizontal) address. Flits will be
routed to the East port when xL<xT, to West when
xL>xT and if xL=xT the header flit is already
horizontally aligned. If this last condition is true, the yT
(vertical) address is compared to the yL address. Flits
will be routed to South when yL<yT, to North when
yL>yT. If the chosen port is busy, the header flit as well
as all subsequent flits of this packet will be blocked. The
routing request for this packet will remain active until a
connection is finally established in some future
execution of the above procedure in this switch.

When the XY routing algorithm finds a free output
port to use, the connection between the input port and
the output port is established and the in, out and free
switching vectors at the switching table are updated. The
in vector connects an input port to an output port. The
out vector connects an output port to an input port. The
free vector is responsible to modify the output port state
from free (1) to busy (0). Consider the North port in
Figure 3(a). The output North port is busy (free=0) and
is being driven by the West port (out=1). The input
North port is driving the South port (in=3). The
switching table structure contains redundant information
about connections, but this organization is useful to
enhance the routing algorithm efficiency.

2(N)

0(E)1(W)

3(S) 4(L)

0 (E) 1 (W) 2 (N) 3 (S) 4 (L)
Free 0 1 0 0 1
In - 2 3 - 0
Out 4 - 1 2 -

(a) (b)
Figure 3 – Example of three simultaneous

connections in the switch (a), and the respective
switching table (b).

After all flits composing the packet have been
routed, the connection must be closed. This could be
done in two different ways: by a trailer, as described in
Section 2, or using flit counters. A trailer would require
one or more flits to be used as packet trailer and
additional logic to detect the trailer would be needed. To
simplify the design, the switch has five counters, one for
each output port. The counter of a specific port is



initialized when the second flit of a packet arrives,
indicating the number of flits composing the payload.
The counter is decremented for each flit successfully
sent. When the counter value reaches zero, the
connection is closed and the free vector corresponding
position of the output port goes to one (free=1), thus
closing the connection.

A switch can simultaneously be requested to
establish up to five connections. Arbitration logic is used
to grant access to an output port when one or more input
ports simultaneously require a connection. A dynamic
arbitration scheme is used. The priority of a port is a
function of the last port to have a routing request
granted. For example, if the local input port (index 4)
was the last to have a routing request granted, the East
port (index 0) will have greater priority, being followed
by the ports West, North, South and Local. This method
guarantees that all input requests will be granted,
preventing starvation to occur. The arbitration logic
waits four clock cycles to treat a new routing request.
This time is required for the switch to execute the
routing algorithm. If a granted port fails to route the flit,
the next input port requesting routing have its request
granted, and the port having the routing request denied
receives the lowest priority in the arbiter.

4.2. Message buffering

When a flit is blocked in a given switch, the
performance of the network is affected, since the flits
belonging to the same packet are blocked in other
switches. To lessen the performance loss, a buffer is
added to each input switch port, reducing the switches
affected by the blocked flits. The inserted buffers work
as circular FIFOs. The FIFO size is parameterizable, and
a size eight has been used for prototyping purposes.

4.3. Switch Functional Validation

The proposed switch was described in VHDL and
validated by functional simulation. Figure 4 presents the
internal blocks of the switch and the signals of two ports
(Local and East). Figure 5 presents a functional
simulation for the most important signals of Figure 4.

The simulation steps are as follows (numbering
below have correspondences in Figure 4 and in Figure
5):
1. The switch (xLyL=00) receives a flit by the Local

port (index 4), signal rx is asserted and the data_in
signal has the flit contents.

2. The flit is stored in the buffer and the ack_rx signal
is asserted indicating that the flit was received.

3. The local port requests routing to the arbitration logic
by asserting the h signal.

4. After selecting a port, the arbitration logic makes a
request to the routing logic. This is accomplished by
sending the header flit that is the switch target
address (value 11) and the source of the input request
(signal incoming, value 4, representing the local
port) together with the request itself.

5. The XY routing algorithm is executed, the switching
table is written, and the ack_rot signal is asserted

indicating that the connection is established.
6. The arbitration logic informs the buffer that the

connection was established and the flit can now be
transmitted.

7. The switch asserts the tx signal of the selected output
port and puts the flit in the data_out signal of this
same port.

8. Once the ack_tx signal is asserted the flit is removed
from the buffer and the next flit stored can be treated.

9. This second flit starts the counter indicating after
how many clock cycles the connection must be
closed (illustrated just in Figure 5).

h              ack_h
Arbiter

req_rot  ack_rot  incoming

Routing Logic
req_rot  ack_rot  incoming     header

free
 in    out

data_out               tx       ack_txdata_in   rx   ack_rx
Buffer

h  ack_h  data_av  data     data_ack
free

6

4 5

55

7 8

4 4

E
out

data_in all ports

data_out               tx        ack_tx

L

data_in   rx   ack_rx
Buffer

h  ack_h  data_av  data     data_ack
free

1 21

3

out

data_in all ports
in

ack_tx all ports

out

data_av all ports

out

data_av all ports
in

ack_tx all ports

free
all ports

data all ports

5 5

Figure 4 – Partial block diagram of the switch,
showing two of the five ports. Numbers corresponds

to the sequence of events in Figure 5.

1

2

5

3

4

6

7

8

9

Figure 5 - Simulation of a connection between the
Local port and the East port.

More complex validation procedures were also
carried out but are not discussed for conciseness reasons.
Text files containing packets are “connected” to the
input ports. The received packets are written to text files,
one for each port. It was verified that all sent packets
were correctly received, validating the switch
architecture.



5. Proposed Network On Chip
NoC topologies are defined by the connection

structure of the switches. The proposed NoC assumes
that each switch has a set of bi-directional ports linked to
other switches and to an IP core. In the mesh topology
used in this work, each switch has a different number of
ports, depending on its position with regard to limits of
the network, as shown in Figure 6.

00

C C C

C C C

C C C

2
10 20

22

01 11 21

02 122

10
0

1

Figure 6 – 3x3 Mesh NoC structure. C marks IP cores,
Switch addresses indicate the XY position in

network.
The use of mesh topologies is justified to facilitate

placement and routing tasks as stated before. The switch
can also be used to build torus, hypercube or similar
NoC topologies. However, building such topologies
implies changes in switch connections and, more
importantly, in the routing algorithm.

5.1. NoC Functional Validation

Packet transmission in the proposed NoC was
validated first by functional simulation. Figure 7
illustrates the transmission of a packet from switch 00 to
switch 11 in the topology of Figure 6. In fact, only the
input and output interface behaviors of Switch 10 are
shown in the simulation.

The simulation steps are as follows:
1. Switch 00 sends the first flit of the packet (address

of the target switch) to the data_out signal at its East
port and asserts the tx signal in this port.

2. Switch 10 detects the rx signal asserted in its West
port and gets the flit in the data_in signal. It takes
10 clock cycles to route this packet, as explained in
Section 4. Next flits are routed with a 2-clock cycle
latency.

3. Thus, switch 10 output South port indicates its busy
state in the free(3) signal. Signals free(i) are
elements of the free vector defined in Section 4.1.

4. Switch 10 puts the flit in data_out signal and asserts
the tx signal of its South port. Next, Switch 11
detects asserted the rx signal of its North port. The
flit is captured in the data_in signal and the source
to target connection is now established.

5. The second flit of the packet contains the number of
flits composing the payload.

6. After all flits are sent, the connection is closed and
the free tables entries of each switch involved in the
connection return to their free state.

ro
ut

er
00

ro
ut

er
10

ro
ut

er
11

1

2

3

4

5

6

6

Figure 7 – Simulation of a packet transmission from
switch 00 to switch 11 in the topology of Figure 6.

The minimal latency in clock cycles to transfer a
packet from a source to a target switch is given by:

( ) 2
1

×+= � =
PRlatency n

i i

where: n is the number of switches in the communication
path (source and target included), Ri is the time required
by the routing algorithm at each switch (at least 10-clock
cycles), P is the packet size. This number is multiplied
by 2 because each flit requires 2-clock cycles to be sent.

6. Prototyping and Results
The proposed NoC was prototyped in the Memec

Insight Virtex-II MB1000 development kit. This kit
contains a 1-million equivalent gates Xilinx XC2V1000
456-pin FPGA [15]. A 2x2 mesh network was
implemented. To validate the prototyped network two IP
cores were developed: an RS-232 serial core and a
memory core. The RS-232 serial core is responsible to
send and receive packets to and from the network. The
serial core was attached to Switch 00 and the memory
cores were attached to the other three switches.

Two software programs were used for hardware
validation. The authors implemented the first one to
provide communication between the development kit
and a host personal computer. The second software is
ChipScope [15] from Xilinx. ChipScope allows
visualizing FPGA internal signals selected by the user at
run time.

The NoC with 4 IP cores (1 serial and 3 memories)
and four switches was synthesized using the Leonardo
synthesis tool. Table 1 presents the area data generated
by synthesis, expressing the usage of FPGA resources.
Approximately, 50% of the resources were employed,
i.e. 500,000 equivalent gates.

Table 2 details the area usage of the NoC modules
for two mappings, FPGA and ASIC. The switch itself
takes 631 LUTs to be implemented, which represents
6,2% of the available LUTs in a million-gate device. The
Table also gives area data for 3 simple IP cores: serial,
memory, and an embedded small 16-bit processor (R8).
The R8 processor is a 40-instruction, 16-bit non-
pipelined, load store architecture, with a 16x16 bit
register file. These cores are being used to build a NoC-
based on-chip multiprocessing system. The SR
(send/receive) is an adapter between the IP core and the
communication interface. Additional glue logic is



needed to connect the IP core to SR, adding to the total
gate count of the wrapped module.

Table 1 – 2x2 NoC area data for XC2V1000 FPGA.
Gates are equivalent gates, LUTs are 4-input Look-Up-
Tables, a slice has 2 LUTs and 2 flip-flops and BRAMs

are 18-Kbit RAM blocks (flit width=8, buffer size=8).

Resources Used Available Used/Total
Gates 513.107 1.000.000 51,31%
Slices 3.757 5.120 73,38%
LUTs 5.654 10.240 55,21%
Flip Flops 2.942 10.240 28,73%
BRAM 6 40 15,00%

Table 2 - NoC modules area report for FPGA and
ASIC (0,35µµµµm CMOS). LUTs represent combinational

logic. ASIC mapping represents the number of equivalent
gates (flit width=8, buffer size=8).

Virtex II Mapping
LUTs FFs BRAM

ASIC
Mapping

Switch 631 200 - 2.930
SR 193 233 - 1.986
Serial 91 93 - 752
Serial+ SR 590 563 - 4.587
RAM - - 2 -
R8 513 114 - 1.885
RAM + SR + R8 1.043 576 2 5.678

This multiprocessor NoC platform is presently used
to execute parallel programs. The discussion of the
results reported in this Section is presented next.

7. Conclusion and Future Work
The proposed switch and NoC fulfilled the

requirement of implementing a low area overhead and
low latency communication path for intra-chip modules.

It is already possible to compare area results obtained
with some approaches found in the literature. First,
Marescaux [16] employed exactly the same prototyping
technology and proposed a switch that occupies 446
Virtex2 FPGA slices. The implemented switch employs
316 slices (631 LUTs) but it does not implement virtual
channels. Second, the aSOC approach [17] mentions a
switch ASIC implementation with an estimated transistor
count of 50,000. The implemented switch with the
smallest possible buffer size (since aSOC does not use
buffers) and a 32-bit flit size (the same as aSOC) has an
estimated gate count of 10,000, which translates to
40,000 transistors.

It is possible to note that the area of the IP cores is
strongly influenced by the wrapper (SR module). The
wrapper is still a preliminary structure, with buffers large
enough to guarantee correct functionality of the
communication. Better dimensioning of the wrapping
structures is an ongoing work.

The most relevant point of this work is the
availability of a hardware testbed where NoC

architectures, topologies and algorithms can be
implemented and evaluated.

The proposed NoC provides in its current state
support to the implementation of best effort (BE) NoCs
only [9]. In BE, sent the network can arbitrarily delay
packets. For applications with real time constraints, it is
necessary to provide guaranteed throughput (GT)
services. Two techniques can be used to provide GT
services, circuit switching and virtual channels.

Also, the IP core to NoC interface will be changed to
a standard interface such as VSI or OCP, to provide
reusability of the NoC modules.

8. References

[1] International Sematech. International Technology
Roadmap for Semiconductors - 2002 Update, 2002.
Available at http://public.itrs.net.

[2] Gupta R.K.; et al. Introducing Core-Based System
Design. IEEE Design & Test of Computers, 14(4), Oct.-
Dez. 1997, pp. 15-25.

[3] Martin, G.; Chang, H. Tutorial – System on Chip
Design. In: ISIC´2001, Singapore, 2001.

[4] Kumar, S.; et al. A network on chip architecture and
design methodology. In: ISVLSI´2002.

[5] Benini L.; al. Networks on chips: a new SoC paradigm.
IEEE Computer, 35(1), Jan. 2002, pp. 70-78.

[6] Guerrier P.; et al. A generic architecture for on-chip
packet switched interconnections. In DATE´2000.

[7] Benini, L.; et al. Powering Networks on Chip. In:
ISSS´2001, pp. 33 –38.

[8] Dally, W.J.; Towles, B. Route packets, not wires: on-
chip interconnection networks. In: DAC´2001, pp. 684-
689.

[9] Rijpkema, E.; et al. Trade Offs in the Design of a
Router with both Guaranteed and Best-Effort Services
for Networks On Chip. In: DATE´2003.

[10] Sgroi, M.; Sheets, M.; Mihal, A.; Keutzer, K.; Malik, S.;
Rabaey, J.; Sangiovanni-Vincentelli, A. Addressing the
system-on-a-chip interconnect woes through
communication-based design. In: DAC´2001, pp. 667-
672.

[11] Duato, J. et al. Interconnection Networks. IEEE
Computer Society Press Los Alamitos, CA. 1997, 515 p.

[12] Patterson, D.; Hennessy, J. L. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann, San
Francisco, CA. 1996, 760 p.

[13] Mohapatra, P.; Wormhole routing techniques for
directly connected multicomputer systems, ACM
Computing Surveys, 30(3), Sep. 1998.

[14] Day, J.D.; Zimmermman, H. The OSI reference model.
Proceedings of the IEEE, 71(12), Dec. 1983, pp. 1334-
1340.

[15] Xilinx, Inc. Virtex-II Platform FPGA User Guide.
Available at: http://www.xilinx.com (Jul. 2002).

[16] Marescaux, T.; Bartic, A.; Verkest, D.; Vernalde, S.;
Lauwereins, R. Interconnection Networks Enable Fine-
Grain Dynamic Multi-Tasking on FPGAs. In: FPL’02,
Sep. 2002, pp. 795-805.

[17] Jian, L.; Swaminathan, S.; Tessier, R. aSOC: A Scalable,
Single-Chip communications Architecture. In: IEEE
International Conference on Parallel Architectures and
Compilation Techniques, Oct. 2000, pp. 37-46.

http://public.itrs.net/
http://www.xilinx.com/

	Introduction
	Basic Concepts
	NoCs Protocol Stack
	Proposed Switch
	Control Logic
	Message buffering
	Switch Functional Validation

	Proposed Network On Chip
	NoC Functional Validation

	Prototyping and Results
	Conclusion and Future Work
	References

