
 
Abstract— Dynamically Reconfigurable Systems (DRS), those

where the hardware can be changed at runtime, have the
potential to enhance hardware flexibility to a degree similar to
that of software. At the same time, they may lead to better
performance and a smaller system size. However, the widespread
acceptance of DRS depends on adequate support to design and
implement them. A framework for the design, verification and
implementation of DRS named PaDReH has been proposed by the
authors as one step forward to reduce this lack of support. One of
the main problems for enabling reconfigurable systems is the
unavailability of efficient methods to control the hardware
reconfiguration process. The main contribution of this paper is
the proposition of a configuration controller totally built in
hardware. This is different from previous approaches, where
software implementations dominate. The proposed controller has
been implemented and validated in VirtexII Xilinx FPGAs. The
controller has been designed, validated and prototyped
successfully.

Index Terms— Dynamically reconfigurable systems;
reconfiguration control, Reconfigurable System Configuration
Manager, run-time reconfiguration.

I. INTRODUCTION

LONG the previous decade, it is possible to notice a
considerable increase of the interest on reconfigurable

computing [1]. The potential flexibility provided by
reconfigurable hardware has the potential to increase the
lifetime of products. Similar to software systems, that
constantly receive updates, hardware implemented with
reconfigurable devices can put this strategy to good use, to
preserve product utility for a longer time.

The time available to execute systems design flow
continually decreases, because of market pressures. The use of
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configurable technology coupled to the massive reuse of
intellectual property can make System-on-Chip (SoC) design
quicker [2], adapting the design flow to current and future
time-to-market restrictions.

An attractive factor to the use of reconfigurable computing
is the possibility to implement a whole system in less silicon
than its nominal minimal requirement, developing the concept
of virtual hardware [3]. The use of Run-Time Reconfiguration
(RTR) techniques has potential to save resources while
reducing the system area overhead. This happens because it
allows that parts of the system not needed in some time
interval be removed from the hardware, to make room for
another part of the system, required at that same interval. On
the other hand, potential drawbacks of RTR are the
performance penalty, induced by long reconfiguration times
and the area overhead to implement the hardware responsible
for controlling the reconfiguration process.

The deployment of RTR however requires extensive support
that is not yet available [1]. This support is composed by tools
to enable the use of RTR and infrastructure to implement
Dynamically Reconfigurable Systems (DRS). Table I presents
a summary of the main features still requiring non-existent
support to enable that DRS develop its potential to become a
mainstream technology.

A DRS is seen here as being composed by a set of fixed
modules and a set of reconfigurable modules. Each of the
modules is a complex hardware piece, implemented by tens or
hundreds of thousand equivalent logic gates. Each of the
modules can then be thought as an Intellectual Property Core
(or IP core) [2]. The implementation of DRSs usually assumes
the availability of an infrastructure composed by specific
modules for system control and operation. Among these
modules, one is responsible to manage the system
reconfiguration process, the configuration controller. This
module commands which reconfigurable IP core(s) must be
inserted on the reconfigurable device at any moment, and
which must be removed. The main goal of the present work is
to deal with this lack of infrastructure for DRS.

The rest of this paper is organized as follows. Section II
presents PaDReH, a framework for the design, verification and
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A TABLE I
MAIN FEATURES REQUIRING STRONGER SUPPORT TO ENABLE DRS.

Tools - DRS Design;
- DRS Verification;

Infrastructure of
reconfiguration

- DRS-enabling devices;
- Modules to control dynamic reconfiguration
- Communication interface.



implementation of DRS. Section III contains a brief review on
the state of the art for partial and dynamic reconfiguration
techniques. The state of the art on configuration controller
models and implementations is presented in Section IV. Next,
a model of configuration controller is proposed, in Section V.
Section VI describes a case study employed to validate the
configuration controller model. A first set of implementation
results using the case study appears in Section VII. Finally,
Section VIII presents conclusions and future work.

II. PADREH – A FRAMEWORK FOR DRS
The present work is part of a framework to design and

implement DRSs, named Partial and Dynamic
Reconfiguration of Hardware - PaDReH, to enable the design
of complex reconfigurable system. This framework helps in
obtaining advantages from the use of dynamic and partial
reconfigurable hardware technology. The PaDReH framework
is composed by three main modules, as depicted on Fig. 1.

The first module of the framework, named Design Capture
and Validation, comprises the description and validation of
DRSs at the Transaction Level (TL) of abstraction and
translation to the Register Transfer Level (RTL) of abstraction.

Next there is the Partitioning and Scheduling module,
responsible for the generation of files that describe the DRS
behavior. These files are usually represented in a hardware
description language (HDL). The same files are transmitted to
the Physical Synthesis and Reconfiguration Infrastructure
module.

The last module of the PaDReH framework, named Physical
Synthesis and Reconfiguration Infrastructure, is responsible
for the generation of configuration files implemented as total
and partial bitstreams, according to the partitioning defined in
the previous module. This module is also responsible for
inserting the parameterized configuration controller module in
the system, according to the specific DRS characteristics. The
generation of the physical interconnection implementation
(e.g. bus or network-on-chip) among cores of the DRS is also
performed in this module. More details about PaDReH can be
obtained in the original proposition of the environment,
recently published in [4]. This reference also includes a
comparison with other frameworks proposed recently in the
literature of DRSs.

The Configuration Control module, proposed and
implemented in this work, is part of the Physical Synthesis and
Reconfiguration Infrastructure module as illustrated in Fig. 1.

III. DYNAMIC AND PARTIAL RECONFIGURATION

Several approaches were proposed to enable the use of
dynamic and partial reconfiguration as revised in [1][5][6].
This Section is intended as a specific discussion on three
topics relevant to this work: (i) commercial devices enabling
DRS design and implementation; (ii) tools to generate partial
bitstreams; (iii) methods used to interconnect IP cores in DRS.

A. Hardware devices enabling RTR
There are still very few commercially available

semiconductor devices that enable the use of dynamic and
partial reconfiguration. Atmel Inc. produces two series of
partially reconfigurable devices: AT6000 and AT40k, but
these allow implementing only small circuits, typically smaller
than a hundred thousand logic gates. Another vendor, Xilinx
Inc. commercializes four FPGA device series supporting
dynamic and partial reconfiguration: Virtex, VirtexE, VirtexII
and Virtex-II Pro series.  Xilinx devices can reach up to 10
million equivalent gates, justifying their choice in this work.
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Fig. 1.  The DRS PaDReH framework general structure.

B. Reconfiguration files manipulation
Generating partial reconfiguration files, also called partial

bitstreams, is a crucial task for DRS development. The



production of partial bitstreams with current FPGA tools is a
basically manual, complex and error-prone process. Some
tools and techniques have already been proposed to automate
the generation of partial bitstreams. Examples are JbitsDiff [7],
Jbits [8], PARBIT [9] and JPG [10]. These tools allow
difference based manipulations [11], where just localized
portions of the total bitstream are changed in a given moment.

C. IP core interconnection schemes in DRS
Palma [12] suggests a method to generate the

interconnection among partial bitstreams representing
arbitrarily complex IP cores using a bus-based structure. The
method is partially automated, but is limited by the difficulties
to fine control the routing in Xilinx FPGA designs. Another
technique for interconnecting dynamically replaceable cores in
FPGAs has been recently proposed by Xilinx, called module
based manipulations [11]. This technique, based on the Xilinx
Modular Design flow, establishes a set of steps to generate
partial bitstreams. Operating details of it have been provided
briefly in [13] and extensively in [14].

IV. CONFIGURATION CONTROLLERS

As previously mentioned, one of the main problems for
enabling DRSs is the unavailability of efficient methods to
control the hardware reconfiguration process. A configuration
controller commands which reconfigurable IP core(s) must be
inserted on the reconfigurable device at any moment, and
which may/must be removed. It executes tasks similar to those
of a loader in an operating system, being responsible for
loading configurations to execute on the reconfigurable
hardware, according to a defined task scheduling. This Section
reviews models and implementations of configuration
controllers available in the literature.

Table II compares some of the most relevant configuration
controller models and implementations proposed to date. The
last column in the Table shows the characteristics of the
configuration controller proposed here, detailed in Section V.

The most sophisticated model, proposed by Lysaght et al.
[15] allows the use of advanced scheduling strategies,
preemption, and allows the manipulation of compacted or
encrypted data. The simplest model, proposed by Shirazi et al.
[16] presents a generic configuration controller where
relocation of configurations is not employed. On the other

hand, Burns et al. [17] describe the structure of a DRS
configuration controller, which has a sub module specific to
relocate configurations. A discontinued device series, Virtex
XC6200, is the target of both models. Curd [18] describes a
configuration controller implementation for Virtex-II Pro
devices. This configuration controller is implemented in
software. Code executes in the Virtex-II Pro embedded
PowerPC processor. It reads configuration data from RAMs
and sends them to the Internal Configuration Access Port
(ICAP), an internal port to reconfigure the FPGA, available in
Virtex-II and Virtex-II Pro series FPGAs. Blodget et al. [19]
also implemented a software configuration controller.
However, this controller executes on the Xilinx MicroBlaze
soft processor. Both implementations are based on specific
models, different from others considered in this Section.

V. RSCM - A PROPOSAL OF CONFIGURATION CONTROLLER

The Reconfigurable System Configuration Manager
(RSCM) is a model of configuration controller. The RSCM
general structure, detailed in Fig. 2, comprises 6 modules:
Configuration Memory, Self-Configuration, Configuration
Interface, Reconfiguration Monitor, Configuration Scheduler
and Central Configuration Control. The Configuration
Memory (CM) stores all partial bitstreams used at runtime by
the system. A partial bitstream generated by the technique
employed here has at least 4Kbytes.

The PaDReH framework and the RSCM are designed to
substitute arbitrarily large IP cores from the reconfigurable
device. Consequently, the average size of partial bitstreams is
typically much larger than the minimum, although typically
much smaller than a total bitstream. For example, for a 1-
million-gate Virtex-II device, a total bitstream is about
512Kbytes, but this FPGA contains only about 90Kbytes of
internal RAM, distributed in several blocks. Consider the
relatively large amount of memory needed to store even a
medium amount of partial bitstreams, and the scarcity of
memory in current FPGAs. These are the reasons why the
Configuration Memory is the only module partially
implemented outside the reconfigurable device. The internal
part of the CM module is responsible to control access to an
external memory. External memory bandwidth is not currently
a problem, since present FPGAs reconfiguration technology is
rather restrictive. For example, while synchronous SDRAMs

TABLE II - FEATURES COMPARISON FOR CONFIGURATION CONTROLLER MODELS AND IMPLEMENTATIONS.
Models Implementations Propose

Features
Shirazi Burns Lysaght Curd Blodget RSCM

Hardware/Software NA* NA NA Software Software Hardware
Target device XC6200 XC6200 XC6200 Virtex-II Pro Virtex-II Virtex-II
Scheduler type Static Static Dynamic No No Yes
Preemption Support No No Yes No No No
Relocation Support No Yes Yes No No Planned
Configuration storage No Yes Yes Yes No Yes
Configuration decoder No No Yes No No No
Controller Location NA NA NA FPGA FPGA FPGA
Publication date 1998 1997 1999 2003 2003 2004
*NA means Not Applicable



may easily operate at an access rate of more than 100MHz,
Virtex-II FPGAs must be reconfigured using a clock that is
below 33MHz [20].
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Fig. 2. DRS reconfiguration architecture using RSCM. The gray modules are
components of the configuration controller. The other modules in picture are
part of the rest of the DRS. Memory is the only module outside of the FPGA.

The Self-Configuration (SC) module controls the
configuration process. It has an interface with the CM, to send
control signals requesting configuration data. The interface
with the Configuration Interface (CI) module allows sending
configuration data to the FPGA. The Central Configuration
Control (CCC) interface allows receiving requests to start the
configuration process and providing results in the form of
status signals. SC module can contain logic to control
configuration relocation. CI is responsible for receiving
configuration data from SC module and sending it to the
FPGA configuration port.

The Reconfiguration Monitor (RM) detects situations where
reconfigurations need to be performed, the so-called
reconfiguration events, and notifies CCC, which acts
appropriately.

The Central Configuration Control (CCC) manages all
control flow between other modules of the RSCM system. It
applies the configuration scheduling stored on the
Configuration Scheduler (CS) module. CCC receives requests
from the RM and requests services to the CS and SC modules.
Information about the device allocation status is stored into the
Table of Allocation of Resources (TAR).

The Configuration Scheduler (CS) module is responsible to
determine which configuration is the next to be configured.
This module receives service requests from the CCC. It stores
a data structure with information about configurations
dependence, called Table of Dependencies and Descriptors
(TDD).

This work describes a version of RSCM implemented in
hardware, but the model is generic. It may as well be
implemented in software or mixed hardware/software versions.
Since the implemented controller is part of the hardware and
lies inside the reconfigurable device containing the rest of the
system, the device is capable of performing its own
reconfiguration without using external controlling devices.

Task context switching and communication between
reconfigurable regions not necessarily present at the same
moment in the DRS are not directly addressed by RSCM.
Although these are important issues in DRS operation, it
would be very complex to address them generically. RSCM
assumes they are solved by each pair of communicating tasks
in ad hoc ways, or through an external fixed processor running
software, to provide maximum communication flexibility
adapted to the set of requirements of each specific application.

More details about the operation of each RSCM module can
be found in [22].

VI. CASE STUDY: R8NR
Possibly, the most intuitive form of DRS is one where the

instruction set of a processor is dynamically incremented
through the use of reconfigurable hardware. Such components
are generically known as reconfigurable processors. As a proof
of concept for the RSCM controller, this Section proposes one
such system, a processor with attached reconfigurable
coprocessors, named R8NR. It should be pointed out that this
implementation allows only a partial validation of the RSCM,
since the case study does not encompass functionalities
requiring the Reconfiguration Monitor or the Configuration
Scheduler. Nonetheless, all modules of the RSCM have been
individually and collectively validated in hardware through the
use of small applications, such as Boolean operations on
external switches values and display of results on leds, as
described in detail in [22].

A. R8NR Structure
The main module of the R8NR is R8R, a processor based on

the R8 processor, a 16-bit load-store 40-instruction RISC-like
processor [23]. R8 was transformed into R8R by the addition
of 5 new instructions, intended to give support to the use of
partially reconfigurable coprocessors. R8R was wrapped to
provide communication with the local memory, the system
bus, the RSCM and the reconfigurable regions. The interface
to the reconfigurable regions comprises a set of signals
connected to bus macros.

Fig. 3 displays the general organization of the R8NR system
implementation. The fixed part is a complete computational
system, comprising the R8R processor, its local memory
containing instructions/data and the RSCM. Additionally, not
shown in the picture but implemented, there is a system bus
controlled by an arbiter and peripherals to interface to a host
computer. The RSCM acts as a slave of the R8R processor or
the host computer. The host computer typically fills/alters the
configuration memory before execution starts.

The case study structure follows a DRS implementation
model proposed by the authors, called reconfigurable
Coprocessor System or RCS [24], and was used to validate it.
RCS is a model intermediate between the Application-Specific
Instruction Set Processor model (ASIP) and the
Reconfigurable Instruction Set Processor model (RISP).
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Fig. 3. R8R processor structure.

B. R8NR Behavior
The normal operation of the RSCM module is to wait for

the R8R processor to produce coprocessor reconfiguration
requests using the rec_reconf signal, while informing the
specific coprocessor identifier in the IOaddress lines. If the
coprocessor is already in place (an information internally
stored in the RSCM), the ack_remove signal is immediately
asserted, which releases the processor to resume instruction
execution. If the coprocessor is not configured in some
reconfigurable region, the reconfiguration process is fired. The
RSCM is responsible to locate the configuration memory area
where lies the coprocessor bitstream corresponding to the
identifier. This bitstream is read from memory and sent, word
by word, to the Physical Configuration Interface. For Virtex-II
devices, this corresponds to the ICAP module. In this case,
only after the reconfiguration process is over the ack_remove
signal is asserted. The req_remove signal exists to allow the
R8R processor to invalidate some reconfigurable coprocessor.
This is useful to help the RSCM to better choose which the
most adequate region to reconfigure next is.

The coprocessors are configured on demand, under control
of the software that executes on the R8R processor. During
execution of the system, the R8R selects, at each moment, one
specific coprocessor with which it operates. This selection is
sent to the RSCM controller, which according to the allocation
state of reconfigurable areas verifies if the coprocessor is
already present in the hardware, reconfiguring some unselected
area, if needed. After this, the RSCM notifies the processor
that the selected coprocessor is ready. From now on, the
software can request coprocessor services.

For this case study, three coprocessors were implemented.
The first, named SQRT coprocessor computes the square root
of a 32-bit value and presents a 16-bit value as response. The
MULTI coprocessor executes a multiplication of two 16-bit
values and presents a 32-bit response. The DIV coprocessor
executes a division of two 16-bit values and presents 32 bits
response (quotient-remainder).

VII. RESULTS

The system described in Section VI has been completely
prototyped and is operational in two versions, with one (R81R)
and two reconfigurable regions (R82R), respectively. A
V2MB1000 prototyping platform from Insight-Memec was
used. This platform contains a million-gate XC2V1000 Xilinx
FPGA, memory and I/O resources.

The reconfiguration time (Tr) is composed by the sum of
initialization and transmission times (Eq. 1). The initialization
time (Ti) is the time to read and process the first configuration
word from memory. The transmission time (Tt) is the time
spent to send all other configuration words to the device
configuration interface. Tt is the product of the number of
configuration words (Ncw) of the bitstream and the time to
send each word to the configuration interface (Tw).  After
replacing this into Eq. 1, Eq. 2 is generated.

TtTiTr +=  (1)

)( TwNcwTiTr ×+=  (2)

An experiment was conducted to compare the partial and
total reconfiguration times, using the Self-Configuration
module of the RSCM system (Eq. 3) and a Xilinx Multilinx
USB configuration cable (Eq. 4). The cable reconfiguration
uses the Xilinx Impact software. The latter is much slower due
to the fact that the reconfiguration based on Impact is executed
in the host computer.

)748(884 nsNcwnsTr ×+=  (3)

)44,8(160 sNcwmsTr µ×+= (4)

Fig. 4 presents a plot comparing the reconfiguration times
according to Eq. 3 and Eq. 4, as a function of the bitstream
size (i.e. number of configuration words).

Fig. 4. Comparing reconfiguration times as a function of bitstream size. A
total bitstream to configure a million-gate XC2V1000 Virtex-II device
contains 127,581 32-bit words.

To compare execution times, software implementations of
each coprocessor were used. The results are illustrated in Fig.
5. For the multiplication case, the execution of more than 750
consecutive multiplications will execute faster in hardware,
even considering the reconfiguration time. For division and
square root the respective break-even points occur for 260 and
200 operations, respectively. The determination of this break-
even point is important to establish the advantage of using
DRSs.



Fig. 5. Coprocessors execution time versus number of performed
operations. The _hw suffix regards hardware implementations, while _sw
regards software implementations. All hardware coprocessors were
synthesized in the same reconfigurable area, corresponding to bitstreams of
exactly the same size. Each bitstream is configured in approximately 10ms
by RSCM.

Example applications where the above results can be
applied are digital filters where a great number of multiply-
accumulate operations are executed over a data set.

Table III presents area consumption data for the RSCM
controller in a XC2V1000 Virtex-II Xilinx device.  Data were
obtained from logical synthesis using Leonardo Spectrum.

VIII. CONCLUSIONS AND FUTURE WORK

This work proposed a model and an associated hardware
implementation of a configuration controller for DRSs named
RSCM. This controller was completely prototyped in hardware
and a proof-of-concept reconfigurable processor case study
was employed to demonstrate its efficacy. The RSCM
controller presents a small area overhead for medium to large
devices (less than 5% of a million-gate FPGA). Execution time
quantitative results indicate that the RSCM controller can be
used to enable the construction of DRS applications that
present performance gains with regard to software only
implementations. Much greater improvement on the efficiency
of configuration controllers for dynamic reconfiguration can
be obtained if e.g. FPGA vendors make these available as
optimized standard cells inside their devices. Also, the
percentage of area occupied by the configuration controller is
further reduced if bigger devices are used.
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TABLE III
AREA CONSUMPTION DATA FOR RSCM IN A MILLION-GATE FPGA.
THE CONFIGURATION INTERFACE MODULE EMPLOYS A BUILT-IN FPGA
MODULE, JUSTIFYING ITS NULL AREA CONSUMPTION.

Module LUTs %LUTs
Configuration Interface 0 0.00 %
Reconfiguration Monitor 16 0.16 %
Configuration Scheduler 83 0.81 %
Central Configuration Control 126 1.23 %
Self-Configuration 268 2.62 %
RSCM (Total) 493 4.81 %
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