
Core Communication Interface for FPGAs

José Carlos Palma, Aline Vieira de Mello, Leandro Möller, Fernando Moraes, Ney Calazans

Pontifícia Universidade Católica do Rio Grande do Sul (FACIN-PUCRS)
Av. Ipiranga, 6681 - Prédio 30 / BLOCO 4 - 90619-900 - Porto Alegre – RS – BRASIL

{ jpalma, alinev, moller, moraes, calazans }@inf.pucrs.br

Abstract
The use of pre-designed and pre-verified complex

hardware modules, also called IP cores, is an important
part of the effort to design and implement complex
systems. However, many aspects of IP core manipulation
are still to be developed. This paper presents an approach
to solve problems related to the dynamic interconnection
of hard IP cores inside VLSI reconfigurable devices. The
approach targets system-on-a-chip designs built in a
single large FPGA. The paper proposes a communication
interface that allows IP cores replacement during FPGA
normal operation. The same interface also allows the
communication among distinct IP cores to take place.

1. Introduction
IP cores are complex pre-designed and pre-verified

hardware modules today considered as key components in
the development of system-on-a-chip (SoC) designs.
According to a recent ITRS report [1], by 2012, IP cores
will constitute 90% of the area in state of the art
integrated circuits. Table 1 shows the main features of
cores in general, according to well-established
classification proposals found in the literature [2][3].

Table 1 – Different core types characterization.
Core Type

Criterion Hard core Firm core Soft core

Structure Pre-defined
organization

Source code and
netlist, technology
independent.

Behavioral source
code, technology
independent.

Modeling Modeled as a
library component.

Synthesizable
logic blocks.

Synthesizable with
several
technologies.

Flexibility
Cannot be
modified by the
designer.

Possibility to
customize some
parameters.

The user can
modify the design.

Timing
Closure Timing ensured.

Critical paths have
timing fixed by
constraints.

Timing not
guaranteed.

Intellectual
Property
Protection

Strong. Usually
corresponds to a
layout.

Average Weak. Source
code.

Example
FPGA Bitstream,
CIF or GDS2 file
for IC layout.

EDIF VHDL, VERILOG

Current system design techniques use to employ or
integrate IP cores before logical or physical synthesis. For
ASIC designs, this corresponds to the normal design flow.
However, for FPGAs a different scenario is possible:
dynamic hard IP core insertion and removal. This idea
allows inserting a hardware module into an FPGA
according to application requirements, at execution time.

For instance, consider the situation where an FPGA
board connects to a host computer and a new piece of
hardware may be necessary to speed up the processing in
a graphic application. A reconfiguration controller can
download this piece of hardware (a hard IP core) through
the Internet and use it to reconfigure the FPGA, which
will then present this new functionality.

Another example could be the yet to be precisely
defined concept of dynamic co-design. The hardware
generated by a co-design tool requires an FPGA with
sufficient area to implement all the application modules.
Using the proposed approach (hard IP core reuse), the co-
design tool can generate small modules, loading them
according to a schedule. This approach is similar to the
virtual memory concept, found in traditional operating
systems, and is usually called hardware virtualization [4].

To achieve hard IP core reuse some requirements have
to be fulfilled: (i) FPGAs allowing partial and dynamic
reconfiguration must be available; (ii) floorplanning tools
to determine IP cores position in the IC are needed; (iii)
software for partial bitstream generation must exist; (iv)
software for partial bitstream download are necessary; (v)
a core communication interface needs to be provided; (vi)
input/output pin virtualization must be enabled.
Requirements (i) to (iii) can be satisfied with existing
devices and tools. To the Authors knowledge, works
fulfilling requirements (iv) to (vi) are very scarce or
simply do not exist.

The core communication interface is a critical
problem, since it must allow dynamic insertion and
removal of cores without system operation interruption.
This interface is a fixed module in the FPGA, with three
main functions: bus arbitration, communication between
modules, and pin input/output virtualization.

This rest of this paper has the following structure.
Section 2 presents the requirements for hard IP core reuse.
Section 3 details the main contribution of this work, the
communication interface. Section 4 presents preliminary
implementation results. Finally, Section 5 draws some
conclusions and directions for future work.

2. Requirements for hard IP core reuse
Research in reconfigurable computing emphasizes

mostly the use of coarse grain reconfigurable arrays with
datapath widths greater than 1 bit. Fine-grained

architectures, like commercial FPGAs, are much less
efficient with large routing area overhead and poor
routability [5].

In spite of this fact, our goal is to investigate the
feasibility of implementing reconfigurable computing
systems into commercial FPGAs, since such devices are
more widely available than coarse-grain reconfigurable
devices. The reconfiguration granularity of the proposed
approach is an important point, and it classifies as coarse-
grain, since it achieves reconfiguration with hard IP cores.

The next sections detail each requirement discussed in
the Introduction.

2.1. FPGA support to partial reconfiguration

Examples of available FPGA devices allowing partial
and dynamic reconfiguration are Xilinx Virtex [6] and
Atmel At40k [7]. Selection of the target for this work
felled on the Xilinx Virtex FPGAs because of facilities
such as satisfactory CAD tools, sufficient gate counting at
affordable costs, and diversity of prototyping boards
available.

The main components of Virtex devices are [6]:
Configurable Logic Blocks (CLBs), Input/Output Blocks
(IOBs), RAM blocks, clock resources, and programmable
routing. Each CLB has two slices, named ‘S0’ and ‘S1’.
Each slice contains two LUTs, named ‘F’ and ‘G’, two
flip-flops and carry resources. Each CLB has also local
routing resources, connected to the general routing matrix
(GRM). A peripheral routing ring, called VersaRing,
allows additional routing to I/O blocks (IOBs). This
FPGA has dedicated RAM memory blocks (BRAMs),
each one with 4096 bits, and 4 to 8 DLL circuits for clock
distribution and skew minimization. Figure 1 shows an
abstraction of the Virtex FPGA internal reconfiguration
architecture.

2
IOBS

2
IOBS

CLB

CLB

CLB

CLB

CLB

CLBC
LO

C
K

DI
ST

R
IB

UT
IO

N
8

FR
A

M
ES

SE
LE

C
T

B
LO

C
K

R
AM

64
 F

RA
M

ES

IN
PU

T/
O

U
TP

U
T

IO
B

R
ES

O
UR

C
ES

54
 F

RA
M

ES

B
LO

CK
 R

A
M

 IN
TE

R
CO

N
NE

C
T

RE
SO

U
RC

ES
27

 F
RA

M
ES

SE
LE

C
T

B
LO

C
K

R
AM

64
 F

RA
M

ES
IN

PU
T/

O
U

TP
U

T
IO

B
R

ES
O

UR
C

ES
54

 F
RA

M
ES

B
LO

CK
 R

A
M

 IN
TE

R
CO

N
NE

C
T

RE
SO

U
RC

ES
27

 F
RA

M
ES

48 frames by column

2
IOBS

2
IOBS

CLB

CLB

CLB

CLB

CLB

CLB

0244464852050 1 43 45 47 51 1 49

2
IOBS

2
IOBS

CLB

CLB

CLB

CLB

CLB

CLB

2
IOBS

2
IOBS

CLB

CLB

CLB

CLB

CLB

CLB

2
IOBS

2
IOBS

CLB

CLB

CLB

CLB

CLB

CLB

2
IOBS

2
IOBS

CLB

CLB

CLB

CLB

CLB

CLB

2
IOB
S

2
IOB
S

CLB

CLB

CLB

CLB

CLB

CLB

2
IOBS

2
IOBS

CLB

CLB

CLB

CLB

CLB

CLB

Figure 1 - Virtex FPGA example of internal
reconfiguration architecture (for the XCV300 device).

The Virtex configuration memory is organized as a bi-
dimensional array of bits [8]. A single column of bits is a
frame. One frame corresponds to one atomic unit for

reconfiguration, i.e., the smallest portion readable from
(or writeable to) the deice configuration memory. Sets of
consecutive frames compose CLB, Select Block RAM,
IOB, and Clock columns. As observed in Figure 1, 48
frames configure a CLB column.

The Virtex device is partially reconfigurable, since
frames can be read or written individually. Note that it is
not possible to configure a single CLB, since the frames
belonging to a given CLB are common to all other CLBs
in the same column. Therefore, if a modification to a
single CLB is required, all frames belonging to the same
column must be read, by performing an operation called
readback. Next, the required modification is inserted over
the read frames. In practice, this feature makes the
structure of a Virtex device a single-dimension array of
columns for reconfiguration purposes.

2.1.1. Element Addressing
To partially reconfigure a device it is necessary to

address individual elements inside the configuration file,
also called bitstream. The following equations define how
to address bits inside LUTs [8], the main FPGA logic
resource available for reconfiguration:

1)2CLB(MJA
else

2)2CLB(MJAthenCLB if

col

colcol

−−∗=

+∗−=�
�

�
�
�

� ≤

col

col
col

Chip

Chip
2

Chip

MNA = lut_bit + wd – slice * (2*lut_bit + 17)
fm_bit_idx = 3 + 18*CLBROW - FG + RW*32
fm_st_wd = FL * (8 + (MJA-1)*48 +MNA) +
RW*FL
fm_wd = abs(fm_bit_idx /32)
fm_wd_bit_idx = 31 + 32*fm_wd - fm_bit_idx

The terms in these equations are defined as follows:
• MJA - Major Address: represents the column address.

Chipcol is the number of columns available in the
device.

• MNA - Minor Address: identifies in which frame the
lut_bit is placed. MNA assumes values between 0
and 47. “wd” is the number of bits per word (32) and
“slice” is the slice number.

• fm_bit_idx – frame bit index: indicates the start
position of the CLB being addressed. Constant 18
multiplies CLBrow because each CLB requires 18 bits
per frame. “FG” is equal to 1 if the desired bit is in a
G-Lut, and 0 if it is in an F-Lut. “RW” is equal to 0
when writing data to the FPGA and 1 when reading
data from the FPGA (read-back operation).

• fm_st_wd – frame starting word in the bitstream (file

containing 32-bit words). “FL” designates the frame
length, i.e., the number of 32-bit words needed to
store a complete frame. “8” is the number of clock
columns.

• fm_wd – indicates, in the bitstream, which word
contains a given desired bit.

• fm_wd_bit_idx – designates the bit inside fm_word
containing some desired information.

For example, suppose a need arise to change the 14th

bit of an F-LUT, placed at slice 0 of row 1 column 1
(R1C1.S0.F), using the device XCV100, which has
Chipcols=30, FL=14 (Figure 2). Applying the above
equations, it is possible to obtain: MJA=30, MNA=46,
fm_bit_idx=21, fm_st_wd= 20.244, fm_wd=0,
fm_wd_bit_idx=10. These results mean that the 10th bit
(fm_wd_bit_idx) of the bitstream word 20.244 (fm_st_wd
+ f_wd) is the location of the desired bit. Thus, changing
this bit and recomputing the bitstream CRC, it is possible
to reconfigure the FPGA.

Figure 2 - Locating bit 14 from an F-LUT for a given
CLB.

2.2. Availability of floorplanning tools

Partial reconfiguration is only possible if the IP cores
to insert do not overlap the existing cores inside the
FPGA. So, it is required to produce placement restrictions
to use during physical synthesis.

Example of such a tool is the Xilinx floorplanner [9],
a graphical tool that allows the designer to control IP
cores position and shape in a FPGA using “drag and
drop” facilities. Figure 3 displays an example of
screenshot for this tool.

A browser displaying the design hierarchy allows the
designer to restrict the position of each core component.
Detailed placement and routing execute typically after the
floorplanning step.

The Xilinx floorplanning tool allows constraining
logic blocks, memory blocks, I/O blocks, and tristate
buffers. This tool does not allow constraining detailed

routing. As a result, after routing some wires may fall
outside the delimited area, overlapping area reserved for
other cores. Several iterations between floorplanning and
routing, and even manual user operations in the routing
tool are required to solve this problem.

Core with a restricted area

Design hierarchy

Figure 3 - Xilinx floorplanning interface.

2.3. Partial bitstream generation

Tools provided by FPGA vendors do not generate
partial bitstreams. JBits [10] is a toolbox of Java classes
provided by Xilinx to manipulate an abstract view of the
Virtex FPGA configuration architecture.

Without using JBits, the reconfiguration tools
developer has to deal with a huge set of details, such as
frame, slice, and CLB addressing [8]. JBits operates with
bitstreams generated by Xilinx tools as well as bitstreams
read from the hardware by readback operations.

Figure 4 shows examples of JBits methods to read and
write to LUTs.

WRITTING VALUES IN LUTS
SLICE 0 F LUT: jbits.set(row, column, LUT.SLICE0_F, value)
SLICE 0 G LUT: jbits.set(row, column, LUT.SLICE0_G, value)
SLICE 1 F LUT: jbits.set(row, column, LUT.SLICE1_F, value)
SLICE 1 G LUT: jbits.set(row, column, LUT.SLICE1_G, value)

READING VALUES FROM LUTS
SLICE0 FLUT: int[] returnVal = jbits.get(row, column, LUT.SLICE0_F)
SLICE0 GLUT: int[] returnVal = jbits.get(row, column, LUT.SLICE0_G)
SLICE0 FLUT: int[] returnVal = jbits.get(row, column, LUT.SLICE0_F)
SLICE0 GLUT: int[] returnVal = jbits.get(row, column, LUT.SLICE1_G)

Figure 4- Example of JBits method call.

The value parameter is a 16-bit string specifying the
function implemented by the LUT. For partial bitstream
generation, complete columns are extracted from a
complete bitstream, and written to a new file. This is not a
simple task, since all configuration registers values

present in the bitstream have to be recomputed, new
bitstream CRCs must be generated, and columns do not
have a continuous addressing scheme. Even frames are in
the left half of the FPGA device, while odd frames are in
the right half of it.

2.4. IP core communication interface

In the early stages of SoC development, cores are
designed with different interfaces and communication
protocols. Some standard interfaces, such as Wishbone
[11], AMBA [12] and CoreConnect [13], were created to
increase core reuse. These interfaces are used during the
design phase of the SoC, for ASIC and FPGA flows.
After the SoC implementation, it is not possible to
connect a new core to the system.

As our goal is to dynamically insert cores into an
operating FPGA, a different mechanism must be created.
Section 3 details this communication interface.

2.5. I/O pins virtualization

I/O pins virtualization means that cores exchange data
only with the communication interface and the real off-
chip communication is a function assigned to the
interface.

3. Communication interface
Figure 5 outlines the basic idea to achieve

communication between synthesized cores. A fixed
module, named controller, is initially downloaded into the
FPGA. Functional cores, named slave cores, are
downloaded at run time.

controller

slave
core

overlapped
area

virtual pins

Figure 5 - Communication interface with one tristate
buffer layer. Tristate control signals are not shown.

The controller is responsible for the communication
with the external world (I/O pins of the device) and for
the communication with slave cores. In other words, slave
cores communicate with the external world only through
the controller (I/O pins virtualization). Each slave core
communicates with the controller through virtual pins.
Virtual pins are in fact tristate buffers, having the position
defined by the floorplanning tool. The overlapping of
virtual pins creates the interconnection between slave

cores and the controller.
The interface proposed in Figure 5 is not feasible due

to restrictions imposed by the FPGA architecture. Such
restrictions are:
• Each CLB contains LUTs, flip-flops, tristate buffers,

and routing resources. It is not possible to restrain the
CLB usage only to tristate buffers and routing.
Therefore, overlapping slave cores over the controller
could destroy some of the controller functions.

• Each CLB contains only 2 tristate buffers. The
reduced number of buffers limits the IP core
communication width. In addition, the buffers routing
wires share common hex lines [6], restricting the
routing tool. Due to this limitation, adoption of a
serial bus (using 1-bit data lines) is the choice here.

In order to overcome these limitations, a
communication interface with two tristate buffer layers
with common routing wires is implemented. Figure 6
shows this solution. One buffer layer belongs to the
controller and another buffer layer belongs to the slave IP
cores.

Slave
Core

Controller

Core buffer
layer

Common
routing wires

Controller
buffer layer

External world
connection

Slave
Core

Slave
Core

Figure 6 - Communication interface with two tristate
buffer layers and a common routing wire.

In order to have common routing wires, the controller
is synthesized by using dummy cores, which contain the
buffers that will belong to the slave IP cores. The same
procedure works for the slave IP cores synthesis, which
include a dummy controller. Dummy cores are also
important to avoid floating signals in the communication
interface.

3.1. Controller implementation

Figure 7 illustrates the 3-module controller structure:
• Communication bus, connecting the slave cores;
• Arbiter, granting the data line to a given slave core;
• Master core, responsible for the communication with

the external world.
The communication bus has the following signals:

reset (global), clock (global), individual request and grant

lines for each slave core, and a bi-directional data line
(global). Each slave core communicates with the bus
through six tristate buffers, connected to the following
signals: clock, reset, request, grant, datain and dataout.
Datain and dataout are connected together to the data
line. The 1-bit serial data line transports a 40-bit word
packet, containing an 8-bit core address and a 32-bit data
word. A simple protocol is employed, using a starting bit
to indicate the transmission of a new word.

Arbiter

Master
Core

Slave
Core 1

Slave
Core 2

Controller

Clock reset

startM

start

32

I/O Pins

D
is

pl
ay

dataO
ut

dataIn
request
grant
reset
clock

dataO
ut

dataIn
request
grant
reset
clock

dataO
ut

dataIn
request
grant
start
reset
clock

data
line

Figure 7 - Controller modules: master core, arbiter and
communication bus.

The arbiter continuously reads the request lines, in a
serial fashion. When a request line is active the arbiter
grants the data line to the slave core requesting data for 40
clock cycles. After these 40 clock cycles, the arbiter starts
reading the request line of the next core. In this way, it is
possible to serve all cores, even those with lower priority.

The implementation of the master core depends on the
functions and I/O requirements of the slave IP cores.

3.2. Send and receive modules

Slave cores contain the hardware implementing the
function specified by the user (hw-core), plus send and
receive modules. Figure 8 illustrates this structure.

When the hw-core wants to send data to another core,
it activates the ‘disp’ line and puts a 40-bit word in the
‘word_in’ port. The send module activates the ‘request’
signal, and waits for the assertion of the ‘grant’ signal.
When this happens, the available 40-bit word is stored by
the send module, and put serially into the dataOut port.
After 40 clock cycles the ‘grantC’ is asserted, signaling to
the hw-core that the send module is ready to send a new
word. Neither buffering mechanism nor time-out controls
were implemented in this first version of the send module.

The receive module constantly reads the data line. The
8 bits following the start bit are compared against the
address of the receive module (unique for each slave
core). If the address does not match the module address,
the module ignores the remaining 32 bits. If the data is
addressed to the slave core, the receive module sends the

data to the hw-core 32 clock cycles after address
matching, asserting the ‘disp’ line during one clock cycle.

disp grantC word_in

clock SEND

request grant dataOut

40

word_out disp

 RECEIVE clock

dataIn

32

HW-CORE – module wrapped with send/receive
modules

SLAVE CORE

communication bus

Figure 8 - Send and receive modules.

3.3. Case study

The implementation of a simple case study application
validated the communication interface. Tree modules
compose this application, as illustrated in Figure 7: (1)
controller (2) slave1; (3) slave2.

The function of each slave core is very simple. First,
it receives two 32-bit words. Then it executes an
arithmetic operation over these (slave1 executes addition
and slave2 subtraction), sending of the result to the master
core. After that, it waits for two new words.

The master core has three internal registers acting as
data memory, and a program memory holding the
operations. Virtex LUTRAMs, a small memory resource
available inside Virtex FPGAs, implement the program
memory. Specialized reconfiguration tools define the
program memory contents. The actions specified in the
program memory can be register initialization or
arithmetic operation between two registers. The target
register (T) is always the same. Example of operations
stored in LUTRAM can be A=8, B=7, T=A+B, T=T+A,
etc. A special code is used to indicate the last operation.
When an arithmetic operation is found, the arithmetic
operation is translated to the slave IP core address. The
master core merges this address to the first register value,
sending the 40-bit package to the communication bus. The
procedure repeats for the second operator. After sending
the two operators, the master core waits the response from
the target core, storing the received value into the ‘T’
register. Then, it sends the result of each operation to the
external world, which shows it in an 8-digit display.

4. Preliminary results
This section presents preliminary results, including

the communication interface functional validation, the
generation of the partial bitstream, and an implemented
tool for partial IP cores manipulation.

4.1. Functional validation

Module description occurred in the VHDL language,
and simulation employed the Active-HDL simulator, from
Aldec [14]. Figure 9 illustrates the system operation,
using the case study presented in Section 3.3. The
numbers highlighted in Figure 9 represent events with the
following meaning:
1. Initially, the data line is in steady state (logic 1).
2. The master core asserts its internal send signal

(connected to ‘disp’ in Figure 8), indicating it has
data available to transfer.

3. The master send module asserts the request signal,
and waits for the grant signal.

4. The grant signal is sent to the master send module.
5. Data transmission starts, the first ‘0’ corresponds to

the start bit.
6. Receive modules detect start, initiating data storage.
7. After 8 clock cycles, all receive modules compare the

stored byte to their respective internal address. If they
match, the receive module continues to store the
arriving bits. If they do not match, the receive module
waits 32 clock cycles to read again the data line.

8. 40 clock cycles after the starting bit, a new 32-bit
word is available.

9. The slave1 receive module signs an available word to
the hw-core.

10. At the end of the first transmission, the master send
signal is still in logic ‘1’, indicating that it wants to
send the second operator. A new request is sent to the
arbiter and operations 4 to 9 are repeated.

Events 13-14 indicate data transmission from slave1
to the master core (result of the arithmetic operation). The
master core, in event 17, receives the sent data.

After the system functional validation, the next step is
to prototype it. The prototyping board Virtual Workbench
[15], with a Virtex XCV300, was used. In the experiment
the communication bus has three “sockets” (set of tristate
buffers to slave core connections), and the application has
two slave cores.

Two bitstreams were created. The first bitstream
contains the controller and two slave cores. Floating
signals induced by unused tristate buffers in the third
socket made the system instable.

In the second bitstream, a dummy core was connected
to the empty socket to avoid floating signals, mainly in
the request and dataOut lines.

As several independent modules compose this system,
it is important a careful design of the FSMs initialization
and avoiding high-impedance values to occur in the data
line is mandatory.

The system worked correctly in the prototyping board,
showing that the communication interface with tristate
buffers can be used in Virtex devices to interconnect hard
IP cores.

Master Core
Send/Master

Arbiter

Receive/Slave1

Send/Slave1

Receive/Master

Data line

2

1
5

3
4
6

7

7

8
9

10

11

12
13

14

15
16

17

Figure 9 - Functional simulation of the communication interface.

4.2. Partial bitstream generation

The next step is to generate an individual bitstream
for each module. The floorplanning tool is used to restrict
the physical position of each module. As mentioned
before, the synthesis of each slave IP core includes a
dummy controller and the synthesis of the controller
includes dummy cores, to ensure the common routing

wires.
The main difficulties to generate these bitstreams are:

• Placement of the tristate buffers in fixed positions.
Due to the scarcity of wire resources, the routing
often fails.

• The logical synthesis tool can eliminate tristate
buffers connected to the FPGA outputs. Constraints
inserted in the design solve this problem.

• The routing associates clock signals with global
clock lines. Constraints applied to the routing tool
avoid the use of such resources.

• It is hard to ensure that the routing will be
constrained to the reserved module area.

• Ensure the same routing between tristate buffer
layers is hard. This is the critical restriction. The
routing needs to be manually executed between
signals belonging to the communication interface,
after all other signals are automatically routed.

Complete bitstreams are created, one for each
module. Figure 10 shows the routing between the two
buffer layers and the frontier between the controller and

an IP core.
Dedicated tools were implemented to extract a partial

bitstream from complete bitstreams as described in
Section 2.3. This was mandatory, since the employed
tools do not generate partial bitstreams.

4.3. Core unifier tool

The last step is to insert the slave core into the
controller core, achieving partial and dynamic
reconfiguration.

Core buffers

Controller buffers

Routing between buffer layers

Area limit for core insertion

Figure 10 – Routing between buffers in the frontier between an IP core and the controller.

A tool to insert or remove cores in a FPGA, named
core unifier was developed in the context of this work,
and is used in this step. The tool works as follows. First,
a master bitstream file, corresponding to the controller
core, is opened. Then, one or more bitstreams files
containing slave cores to be inserted into the master
bitstream are opened. The user selects the area
corresponding to the core, and all FPGA components
inside this area are inserted into the master bitstream.
Lastly, the tool creates a partial bitstream, containing the
modified area. Partial reconfiguration is then executed,
inserting a new core into the FPGA. Figure 11 illustrates
this procedure.

The Virtex address equations described in Section
2.1.1. are the basis for the development of the core
unifier tool. This tool provides a structured form to
interconnect cores, together with the possibility to
dynamically replace cores in the FPGA.

Slave
Core

Controller

BITSTREAM 1 (master):
• Tri-state buffers
• Master core
• Arbiter

BITSTREAM n:
• Slave core
• Tri-state buffers
• Send and receive modules

Bitstreams merging

Final bitstream

Controller

Partial
Bitstream

Slave
Core

Figure 11 - Bitstream merging procedure.

Figure 12 presents the main window of the core
unifier tool. This window has a 48x32 grid, representing
all CLBs of a Virtex XCV300 device and it is different
for distinct devices. Light and dark gray squares
represent CLBs not used (default values). Red squares
represent CLBs used by the master bitstream. Squares
with different colors (e.g. yellow) represent inserted
cores. Visualization of LUT values is possible using an
auxiliary window, selecting the CLB with the mouse.

Figure 12 – Core unifier main window.

The user can insert new cores into the master
bitstream, a feature that adds flexibility to the tool,
allowing dynamic insertion and/or removal of IP cores.

This tool permits to implement virtual hardware, in a
similar manner as dealing with virtual memory. The user
may have several hard cores stored in memory. As a
function of some execution scheduling, these may be
partially downloaded into the FPGA.

The tool creates complete and partial bitstreams.
Complete bitstream download with core insertion was
achieved successfully, however partial bitstream fails due
to the lack of partial download tools. Another observed
problem relates to routing. Even with correct common
routing wires, sometimes the core insertion fails. A new
tool is under development to solve routing problems.

5. Conclusions and future work
The main contribution of this work is the presented

method to reuse hard IP cores in FPGAs. The
requirements to achieve partial and dynamic IP core
reuse were presented and a communication interface was
proposed and described. The communication interface is
functional, validated through simulation and prototyping.
A tool to merge independent bitstreams and to create
partial bitstreams was developed and described.

This work shows that it is possible to implement
virtual hardware with commercial FPGA devices. The
main obstacles to develop automatic tools are the internal
architecture of these devices, which is quite difficult to
use for partial reconfiguration, requiring complex manual
operations (manual placement and manual routing).
Intellectual IP core distribution of hard IP cores through
the Internet is also possible, since the communication
interface standardize the input/output protocol.

As suggestions for future work it is possible to
enumerate: (i) to extend the bus structure to more bit
lines and different bus arbitration schemes; (ii) to
develop tools to automate the manual steps mentioned
above; (iii) to develop core relocation techniques.

6. References
[1] Sematech International. International Technology

Roadmap for Semiconductors – 2002 Update. 2002.
Available at http://public.itrs.net

[2] Bergamaschi, R. A.; et al. Automating the design of
SoCs using cores. IEEE Design & Test of Computers,
Volume: 18(5), Sep.-Oct. 2001, pp. 32-45.

[3] Keating, M.; Bricaud, P. Reuse methodology manual for
system-on-a-chip designs. Second Edition. Kluwer
Academic Publishers, Norwell, MA, 1999, 286p.

[4] Dehon, A.; Caspi, E.; Chu, M.; Huang, R.; Yeh, J.;
Markovsky, Y.; Wawrzynek,J. Stream computations
organized for reconfigurable execution (SCORE):
Introduction and Tutorial. In: Proceedings of Field-
Programmable Logic and Applications (FPL´00), 2000.

[5] Hartenstein,R. A decade of reconfigurable computing: a
visionary retrospective. In: Design, Automation and Test
in Europe (DATE´01), 2001, pp. 642 –649.

[6] Xilinx, Inc. Virtex 2.5V Field Programmable Gate Arrays
(DS003). Virtex Series Datasheet, Version 2.5, 2001.

[7] Atmel, Inc. 5K-50K gates coprocessor FPGA with
FreeRAM. Datasheet, Document doc2818. 2003.
Available at http://www.atmel.com/dyn/resources/prod_
documents/doc2818.pdf

[8] Xilinx, Inc. Virtex Series Configuration Architecture
User Guide. Xilinx Application Note XAPP151, Version
1.5¸ Sep. 2000. Available at http://www.xilinx.com/xapp
/xapp151.pdf

[9] Xilinx, Inc. Floorplanner Guide 3.1i. 2001.
[10] James-Roxby,P.; Guccione,S.A. Automated extraction of

run-time parameterisable cores from program-mable
device configurations. In: IEEE Symposium on Field-
Program. Custom Comp. Machines (FCCM´00), 2000.

[11] OpenCores.Org. WISHBONE SoC Interconnection.
Available at http://www.opencores.org/wishbone

[12] Flynn, D. AMBA: enabling reusable on-chip designs.
IEEE Micro, Volume: 17(4), July-Aug. 1997, pp. 20-27.

[13] IBM, Inc. The CoreConnectTM Bus Architecture. 2000
Available at http://www.chips.ibm.com/products/
coreconnect/docs/ crco_wp.pdf.

[14] Aldec, Inc. Active-HDL 5.1. 2001. Available at http://
www.aldec.com/ActiveHDL/default.htm

[15] Virtual Computer Corporation Inc. The Virtual
Workbench. 2000. Available at http://www.vcc.com/
vw.html.

http://public.itrs.net/
http://www.atmel.com/dyn/resources/prod_ documents/doc2818.pdf
http://www.atmel.com/dyn/resources/prod_ documents/doc2818.pdf
http://www.xilinx.com/xapp /xapp151.pdf
http://www.xilinx.com/xapp /xapp151.pdf
http://www.opencores.org/wishbone
http://www.chips.ibm.com/products/
http:// www.aldec.com/ActiveHDL/default.htm
http:// www.aldec.com/ActiveHDL/default.htm
http://www.vcc.com/ vw.html
http://www.vcc.com/ vw.html

	Introduction
	Requirements for hard IP core reuse
	FPGA support to partial reconfiguration
	Element Addressing

	Availability of floorplanning tools
	Partial bitstream generation
	IP core communication interface
	I/O pins virtualization

	Communication interface
	Controller implementation
	Send and receive modules
	Case study

	Preliminary results
	Functional validation
	Partial bitstream generation
	Core unifier tool

	Conclusions and future work
	References

