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Abstract - The increasing complexity of SoCs makes networks 
on chip (NoC) a promising substitute for busses and dedicated 
wires interconnection schemes. However, new tools need to be 
developed to integrate NoC interconnection architectures and IP 
cores into SoCs. Such tools have to fulfill three main 
requirements: (i) automated NoC generation; (ii) automated 
production of NoC-IP core interfaces; (iii) seamless analysis of 
NoC traffic parameters. The objective of this paper is to present 
the MAIA framework, which includes functions to address all 
these requirements. NoCs generated by the MAIA framework 
have been used to successfully prototype SoCs in FPGAs.  

1. Introduction 

The increasing complexity of Systems-on-Chip drives the 
research of new intra-chip interconnection architectures. 
Traditional on-chip interconnection architectures, such as 
dedicated wires and shared busses, can be considered 
inefficient for future SoCs. Dedicated wires present poor 
reusability and flexibility, while shared busses transmit only 
one word per clock cycle and offer limited scalability.  

According to ITRS estimation, in 2012, SoCs will have 
hundreds of hardware blocks (called IP cores), operating at 
clock frequencies near 10 GHz. In this context, a Network on 
Chip (NoC) appears as a possible solution for future on-chip 
interconnections. A NoC is an on-chip network [1] composed 
by cores connected to routers, and routers interconnected by 
communication channels. 

Shared bus architectures are the current dominant on-chip 
communication structure used in SoCs. Consequently, CAD 
tools are available to support shared bus architectures. NoC 
design requires new features, such as support for different 
switching modes, routing algorithms, and message packets 
segmentation and reassembly procedures [1][2][3].  

It is important to develop tools for NoC generation and 
verification, due to the expected relevance of NoCs in future 
SoCs. The objective of this paper is to present a framework 
which allows exploring and optimizing SoC designs 
employing the HERMES1 NoC [4].  

The objective of this paper is to present the MAIA 
framework for NoC generation and verification. MAIA can 
generate different traffic patterns, for different load 
conditions and source/target pairs. Using the generated traffic 
and the automatically produced simulation scripts, it is 
possible to validate and evaluate the NoC and the associated 
SoC using commercial tools such as the Modelsim simulator. 
MAIA can also generate OCP (Open Core Protocol) network 
interfaces (NIs). While generating NIs, the tool is capable of 
                                                           
1 In Greek mythology, HERMES is the messenger of Gods, son of MAIA and ZEUS.  
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supporting different communication models.  
Finally, MAIA contains a module named traffic analyzer. 

It verifies if all packets were correctly received, and 
generates basic statistic data concerning time do deliver 
packets. Besides, this module can be used to validate the NoC 
internal implementation. 

This paper is organized as follows. Section 2 presents 
related works in NoC design space exploration. The main 
features of the HERMES infrastructure are briefly presented 
in Section 3. Section 4 details MAIA main features. Section 5 
presents how the MAIA framework can be used to evaluate 
the performance of different NoC configurations. Section 6 
presents conclusions and directions for future work. 

2. Related Work 

Several research groups have proposed techniques to specify, 
simulate and generate NoCs. Some of these try to adapt 
generic network simulators to the intra-chip environment, 
while others propose NoC specific tools. This Section 
reviews several such efforts, including: (i) NoCSim, (ii) 
OPNET, (iii) Kogel framework, (iv) NoCGEN, (v) NS-2, (vi) 
OCCN, (vii) Pestana environment, and (viii) NOCIC. 

NoCSim is a NoC simulator based on IP cores 
communicating through a packet switching network. 
NoCSim generates limited forms of statistic traffic, using 
Constant Bit Rate and random Poisson distributions [4].  

OPNET [6] is a general purpose network simulator used 
to simulate NoC-based architectures [7]. OPNET presented 
some disadvantages to modeling NoCs, including that: (i) it 
does not allow setting a time unit smaller than 1 second; (ii) 
distance between nodes in the network is measured in meters 
only; (iii) OPNET assumes asynchronous communication.  

NS-2 is another general purpose network simulator that 
gives support to describing the network topology, the 
communication protocols, routing algorithms and traffic (e.g. 
random traffic) [8]. NS-2 provides simulation traces for 
interpreting results and provides NAM (Network AniMator), 
a graphic aid to observe network message flow. 

Kogel et al. [9], proposed a modular framework for 
system level exploration of the on-chip interconnection 
architecture. This framework is able to capture performance 
effects (like latency and throughput) of different on-chip 
architectures like shared bus and NoC topologies.  

NoCGEN creates VHDL NoC descriptions used for 
simulations and synthesis [10]. This tool employs a set of 
parameterizable templates to build routers, with variable 
number of ports, routing algorithms, data width and buffer 
depth. Besides NoC parameterization, it presents a mixed 
SystemC/VHDL simulation environment. 



 

 

Another framework for NoC modeling and simulation is 
the OCCN [11]. OCCN enables the creation of NoC at 
different abstraction levels, protocol refinement, design space 
exploration, and NoC components development and 
verification based on a communication API [11].  

Pestana presents in [12] a NoC simulator based on user-
generated XML files that describe a NoC topology, the IP to 
NoC mapping and the interconnection details. The simulator 
also allows describing traffic generators to evaluate NoCs.  

Finally, the NOCIC tool allows estimating performance 
and power for NoC structures using a set of design 
parameters simulated with HSPICE tools [13].  

The MAIA framework has some features in common with 
NoCGEN, including automated traffic and network 
generation. One significant difference between MAIA and 
the previously reviewed works is that the latter are centered 
on the network itself, with little reference on how to map NIs 
to the rest of the SoC. An exception is [12]. MAIA 
automatically generates the NIs, using the OCP standard [14].  

3. HERMES Network-on-Chip 

HERMES is an infrastructure used to implement low area 
overhead packet-switching NoCs for different topologies, flit 
sizes, buffer size, routing algorithms, and flow control 
strategies [4]. It supports the implementation of the three 
lower OSI-RM layers, namely physical, data link and 
network. Initially, HERMES is based on NoCs using only 
wormhole routing. 

The basic component of this infrastructure is the router. It 
contains a centralized control logic module, responsible for 
arbitration and routing, and up to five bi-directional ports 
(East, West, North, South, and Local). Each port has an input 
buffer for temporary storage of flits. The Local port connects 
the router and its local IP core.   

Two flow control strategies are available: handshake 
protocol and credit based. When a 4-phase asynchronous 
handshake protocol is used, the external router interface is 
composed by six signals: rx, ack_rx and data_in for input and 
tx, ack_tx and data_out for output. When credit based flow 
control is used, a transmission clock is sent to the receiver 
and a credit signal is asserted from the receiver to the 
transmitter indicating available buffer space. Signal ack_rx 
does not exist in this case. This flow control algorithm 
enables implementing GALS networks. 

Several instances of NoC-based systems were 
successfully prototyped in FPGAs [4]. An example system 
contains two simple 16-bit processors, an embedded memory 
and an interface IP core to provide communication with a 
host processor. It is estimated that a 5x5 HERMES-based 
system can be implemented in a 4-million gate device, with 
the same small 16-bit processor connected to the Local port 
of each router. 

4. MAIA Features 

The design of NoCs is an error prone process, even if 
routers and IP to NIs are assumed given. This is due to the 
large number of wires used to connect routers among them 
and IP cores to routers. Each router has a set of control and 
data signals that amount to more than a 100 wires. The 
primary function of MAIA is to build NoCs from param-
eterizable templates. Fig. 1 shows the MAIA design flow.  
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Fig. 1 – MAIA framework structure and execution flow. 

Three steps compose the design flow:  
(i) NoC specification and generation comprise: (1) selection 

of the network parameters; (2) selection of the external 
interface – native or OCP; (3) selection of the 
communication model; (4) selection of the IP type, if 
OCP interface is selected. After parameter selection, all 
VHDL and C files are created. A UNIX script is created  
as well, to start simulation. 

(ii) Traffic generation produces the packet files, according to 
chosen parameters as described in Section 4.3. 

(iii) Traffic analysis creates traffic analysis reports. 
 
Fig. 2 displays the primary graphical interface of MAIA. 

The visualization area (1) represents a 4x4 mesh network 
composed by routers with master-slave OCP NIs. The NI 
type is individually chosen, on a router by router basis. The 
second region (2) allows the user to select network 
parameters. These are used to configure the VHDL 
implementation files. The third region (3) contains menus 
used to start simulation, traffic generation and traffic 
analysis. The fourth region (4) presents messages resulting 
from execution of user operations. 
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Fig. 2 – MAIA framework graphical user interface. 

The main contribution of the MAIA design flow is to 
relieve the user from worrying about the NoC structure and 
its internal functionality, i.e. enabling the use of NoCs as a 
generic communication IP core – a NoC-IP. It also simplifies 
the interconnection of IP cores to the NoC. The only 
requirement imposed on the MAIA user is to know in 
advance the structure of the transactions supported by the NIs 
at the network boundaries. 



 

 

4.1. Network Generation 

The NoC components in the Model Library can be described 
in RTL VHDL, RTL SystemC and Transaction Level (TL) 
SystemC. The integration of parameterizable SystemC 
components is an ongoing work. All results presented in this 
paper regard VHDL models only. Currently, the following 
parameters can be chosen by the MAIA user: (i) network 
topology, (ii) routing algorithm, (iii) flit width, (iv) buffer 
size, (v) network structure, and (vi) control flow strategy. To 
parameterize the NoC, a set of tokens are inserted in the 
VHDL code, such as: (i) $flit_size$, (ii) $buff_depth$, and 
(iii) $router_no$. 

Network ports and associated buffers, can be 
automatically by MAIA, depending on the network topology 
and specific router position. For example, in a mesh topology 
some buffers of routers at the edges of the network are 
always eliminated. Consider the upper left router in a mesh 
network. The North and East buffers are suppressed, 
contributing to reduce the overall interconnect area. Today, 
MAIA supports three NoC topologies: mesh, torus and ring.  

Two other parameters affect network performance: flow-
control strategies (handshake or credit based protocols are 
supported) and routing algorithms. Deadlock free routing 
algorithms for torus and ring topologies are not yet available. 
Virtual channel support that can be used to build these is 
another ongoing work. For mesh topologies, four routing 
algorithms are available: pure XY, west-first, north-last and 
negative-first [3].  

4.2. Network Interfaces Generation 

A NoC is formed by two main components: routers and NIs. 
The NI is responsible for packet segmentation and 
reassembly. NIs should be designed taking into account the 
communication model.  

Since a NoC-based SoC is similar to a parallel processing 
system in communication structure, it is possible to employ 
classical communication models from the latter domain. The 
Uniform Memory Access (UMA) model is not useful in the 
intra-chip domain. Accordingly, MAIA only supports two 
other communication models: non-uniform memory access 
(NUMA) and no-remote memory access (NORMA). 

The NUMA communication model assumes all IP cores 
connected to the NoC share a single address space. 
Communication then takes place using memory-mapped I/O 
operations. This model is adequate for fast migration of 
legacy IP cores to NoC-based SoCs, once most bus 
architecture-based systems assume this communication 
model. The NORMA communication model does not assume 
the existence of a global address map. Communication is 
achieved directly, through the exchange of messages between 
IP cores. In a NORMA SoC, IP cores are independent, 
providing services to other IP cores. However, the NI may 
have to deal with the overhead of adapting its IP core 
communication paradigm. 

The IP core-NI interface can be either proprietary or 
standard. A proprietary interface reduces the reusability of 
the network but may improve its performance. A standard 
interface has opposite characteristics. The user can choose the 
native HERMES interface or an OCP interface. OCP defines 
a point-to-point interface between two IP cores. One of these 
operates as master and the other as slave [14]. Only the 

master sends commands to initiate transactions. The slave 
answers to the commands, receiving data from or sending 
data to the master. Typical master IP cores are processors, 
while a memory is often a slave IP core.  

Using a standard interface does not change the way IP 
cores are developed, since they will still be exchanging the 
same information with its environment, as predicted by its 
specification. The form how this exchange occurs is by 
means of a standard industry-accepted procedure, as occurs 
with the PCI standard for microcomputer manufacturers. 
Thereby, IP cores reusability is higher and design time can be 
reduced, since IP core integration occurs at higher levels of 
abstraction, becoming a simpler process. 

NIs generated from MAIA templates (master, slave and 
master-slave) have been certified using the CoreCreator tool 
[14], and prototyped in Xilinx FPGAs.  

4.3. Traffic Generation and Analysis 

The MAIA framework Traffic generation is responsible for 
testbench and traffic files generation. Traffic files contain 
packets, which are read by the IPs connected to the NoC. 
Files are generated in one of four formats: (i) VHDL 
testbenches for the native interface; (ii) C/VHDL testbenches 
for the native interface; (iii) C/VHDL testbenches for the 
OCP interface; and (iv) STL (Sonics Transaction Language) 
format, to be used in the CoreCreator tool [14].  

The following parameters define a traffic: (i) network 
load [2]; (ii) number of packets each IP core sends; (iii) 
number of flits in each packet; (iv) flit size; (v) the target IP 
core, which can be random or fixed. According to these 
parameters, a set of input files is created. During simulation, 
another set of files is generated, containing the received 
packets and their respective time stamps (time spent by a 
packet to be transmitted from source to destination). 

The files generated during simulation are read by the 
Traffic analysis module, which produces a report file. This 
report file presents some traffic analysis results, such as: (i) 
total number of received packets; (ii) average time to deliver 
the packets, in clock cycles; (iii) total time to deliver all 
packets, in clock cycles; (iv) the average, minimal, maximal 
and standard deviation time to deliver a packet, in clock 
cycles; and (v) the total simulation time, in seconds.   

5. NoC Design Space Exploration 

Using the MAIA framework, the performance of routing 
algorithms, the effect of buffer sizes and of external 
interfaces was evaluated.  

All generated NoCs case studies have a 4 x 4 mesh 
topology, with a flit size equal to 16. The following structural 
parameters were varied: routing algorithm (XY and negative 
first, NF); buffer size (4 and 8 flits); external interface (native 
and OCP). Three randomly generated traffics were used, each 
with a fixed load of 70%. Table 1 presents these traffic 
characteristics. All examples employ a NORMA 
communication model. 

Fig. 3 (a) illustrates the performance evaluation for 
different buffer sizes and routing algorithms, for different 
traffic conditions, using the HERMES native interface. On 
the other hand, Fig. 3 (b) reproduces the results obtained 
when using OCP interfaces.  



 

 

Table 1 – Case study traffic characteristics (4 x 4 mesh). 
 # of packets per 

router 
# of flits per 

packet 
Total # of flits 

Traffic 1 100 100 160,000 
Traffic 2 20 500 160,000 
Traffic 3 500 10 80,000 

 
Hermes NoC with native interface

0

10000

20000
30000
40000

50000
60000

70000
80000

90000
100000

NF-B4 NF-B8 XY-B4 XY-B8

Routing Algorithm and Buffer size (B)

N
um

be
r o

f c
lo

ck
s 

cy
cl

es

traffic1 traffic 2 traffic 3   

Mesh 4x4 with OCP NI 

0
20000
40000
60000
80000

100000
120000
140000
160000

NF-B4 NF-B8 XY-B4 XY-B8

Routing Algorithm and Buffer size (B)

N
um

be
r o

f c
lo

ck
s 

cy
cl

es

traffic 1 traffic 2
 

(a) using HERMES NI. (b) using OCP interface. 
Fig. 3 - Performance evaluation for different buffer sizes and 

routing algorithms, for different traffic conditions. 

Some conclusions of these results are: 
(i) routing algorithms: the performance of the XY routing 

algorithm was consistently superior to the NF algorithm. 
(ii) buffer size: a very small advantage is observed when 

buffer size is equal to 8. Since NoC area is dominated by 
the buffer size, in this experiment, buffers with size 8 are 
oversized and unnecessary [4]. 

(iii) traffic conditions: in adaptive algorithms (NF), the use of 
smaller packets (traffic 1) improves the performance over 
larger ones (traffic 2), since packets can explore 
alternative paths in the network when blocking 
conditions arrive. An opposite behavior is observed in 
the deterministic algorithm (XY), where the performance 
of large packets is superior. The expected time to deliver 
all packets of traffic 3 would be half of that for traffic 1 
or 2, since the number of flits to transmit is reduced to 
half. The overhead due to frequent routing/arbitration 
operations (small packets) reduces this performance. 
A more extensive set of experiments showed that, in 

terms of total clock cycles to deliver all packets, deterministic 
XY routing is consistently faster than the other three partially 
adaptive algorithms. The latter can potentially speed up the 
time to deliver individual packets. However, globally, results 
point out to performance poorer than that of the XY 
algorithm. Glass and Ni [3], suggest that reducing the number 
of turns that a message takes may reduce blocking and hence 
improve performance. This is justified because adaptive 
routing tends to concentrate traffic in the center of the 
network, increasing the number of blocked paths. The North-
last algorithm presents a small advantage over the XY 
algorithm for 30% traffic load and small packets (10 and 100 
flits). This situation leads to a reduced number of blocked 
paths and the availability of idle time between packets. As the 
XY algorithm cannot explore different paths, even when they 
are available, adaptive algorithms have a potential advantage 
in this case. 

Fig. 3 (b) illustrates the performance when using the OCP 
interface. This Figure also showed that buffer size 8 is 
oversized and that the XY algorithm showed superior 
performance over NF. The most import result concerning Fig. 
3 (b) is the cost of adding a standard NI. As already 
mentioned, standard interfaces have the advantage of 

improving reuse (plug-and-play feature). On the other hand, 
performance is penalized. Comparing Fig. 3 (a) to Fig. 3 (b), 
packets are delivered to their targets almost 50% faster in the 
NoC without OCP NI. Currently, OCP interfaces are attached 
and adapted to the native NoC interface using a dedicated 
finite state machine. The OCP interface cost could be 
significantly reduced if the NoC Local port directly 
implemented the OCP protocol, suppressing the native NoC 
interface. Therefore, router adaptation is not necessary. This 
option simplifies the design process and can reduce the NI 
area overhead. This can be justified because fewer states are 
necessary to packet segmentation and reassembly.  

6. Conclusions and Future works 

The MAIA CAD framework is useful to generate and 
evaluate NoCs with varying architectural parameters.  

Ongoing work includes: (i) SystemC modeling; (ii) 
virtual channels implementation to give support to QoS and 
deadlock free algorithm in torus topologies; (iii) more 
elaborate statistical traffic models generation. 

Future versions of the MAIA framework will include: (i) 
a library of IP blocks that can be configured by the user to 
enable SoC generation and simulation; (ii) a module for 
enabling more thorough traffic analyses using real traffic, 
such as video streaming; (iii) new NoC architectures, such as 
irregular meshes of multiple IPs per router. 
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