

MAIA – A Framework for Networks on Chip Generation and Verification

Luciano Ost1, Aline Mello1, José Palma2, Fernando Moraes1, Ney Calazans1
1FACIN-PUCRS

Av. Ipiranga, 6681 - Porto Alegre – 90619-900 – BRAZIL
{ost, alinev, moraes, calazans}@inf.pucrs.br

2II - UFRGS
Caixa Postal 15064- 91501-970 - Porto Alegre – BRAZIL

jcspalma@inf.ufrgs.br

Abstract - The increasing complexity of SoCs makes networks
on chip (NoC) a promising substitute for busses and dedicated
wires interconnection schemes. However, new tools need to be
developed to integrate NoC interconnection architectures and IP
cores into SoCs. Such tools have to fulfill three main
requirements: (i) automated NoC generation; (ii) automated
production of NoC-IP core interfaces; (iii) seamless analysis of
NoC traffic parameters. The objective of this paper is to present
the MAIA framework, which includes functions to address all
these requirements. NoCs generated by the MAIA framework
have been used to successfully prototype SoCs in FPGAs.

1. Introduction

The increasing complexity of Systems-on-Chip drives the
research of new intra-chip interconnection architectures.
Traditional on-chip interconnection architectures, such as
dedicated wires and shared busses, can be considered
inefficient for future SoCs. Dedicated wires present poor
reusability and flexibility, while shared busses transmit only
one word per clock cycle and offer limited scalability.

According to ITRS estimation, in 2012, SoCs will have
hundreds of hardware blocks (called IP cores), operating at
clock frequencies near 10 GHz. In this context, a Network on
Chip (NoC) appears as a possible solution for future on-chip
interconnections. A NoC is an on-chip network [1] composed
by cores connected to routers, and routers interconnected by
communication channels.

Shared bus architectures are the current dominant on-chip
communication structure used in SoCs. Consequently, CAD
tools are available to support shared bus architectures. NoC
design requires new features, such as support for different
switching modes, routing algorithms, and message packets
segmentation and reassembly procedures [1][2][3].

It is important to develop tools for NoC generation and
verification, due to the expected relevance of NoCs in future
SoCs. The objective of this paper is to present a framework
which allows exploring and optimizing SoC designs
employing the HERMES1 NoC [4].

The objective of this paper is to present the MAIA
framework for NoC generation and verification. MAIA can
generate different traffic patterns, for different load
conditions and source/target pairs. Using the generated traffic
and the automatically produced simulation scripts, it is
possible to validate and evaluate the NoC and the associated
SoC using commercial tools such as the Modelsim simulator.
MAIA can also generate OCP (Open Core Protocol) network
interfaces (NIs). While generating NIs, the tool is capable of

1 In Greek mythology, HERMES is the messenger of Gods, son of MAIA and ZEUS.

This work was partially funded by grant 550009/03-5, from CNPq, Brazil.

supporting different communication models.
Finally, MAIA contains a module named traffic analyzer.

It verifies if all packets were correctly received, and
generates basic statistic data concerning time do deliver
packets. Besides, this module can be used to validate the NoC
internal implementation.

This paper is organized as follows. Section 2 presents
related works in NoC design space exploration. The main
features of the HERMES infrastructure are briefly presented
in Section 3. Section 4 details MAIA main features. Section 5
presents how the MAIA framework can be used to evaluate
the performance of different NoC configurations. Section 6
presents conclusions and directions for future work.

2. Related Work

Several research groups have proposed techniques to specify,
simulate and generate NoCs. Some of these try to adapt
generic network simulators to the intra-chip environment,
while others propose NoC specific tools. This Section
reviews several such efforts, including: (i) NoCSim, (ii)
OPNET, (iii) Kogel framework, (iv) NoCGEN, (v) NS-2, (vi)
OCCN, (vii) Pestana environment, and (viii) NOCIC.

NoCSim is a NoC simulator based on IP cores
communicating through a packet switching network.
NoCSim generates limited forms of statistic traffic, using
Constant Bit Rate and random Poisson distributions [4].

OPNET [6] is a general purpose network simulator used
to simulate NoC-based architectures [7]. OPNET presented
some disadvantages to modeling NoCs, including that: (i) it
does not allow setting a time unit smaller than 1 second; (ii)
distance between nodes in the network is measured in meters
only; (iii) OPNET assumes asynchronous communication.

NS-2 is another general purpose network simulator that
gives support to describing the network topology, the
communication protocols, routing algorithms and traffic (e.g.
random traffic) [8]. NS-2 provides simulation traces for
interpreting results and provides NAM (Network AniMator),
a graphic aid to observe network message flow.

Kogel et al. [9], proposed a modular framework for
system level exploration of the on-chip interconnection
architecture. This framework is able to capture performance
effects (like latency and throughput) of different on-chip
architectures like shared bus and NoC topologies.

NoCGEN creates VHDL NoC descriptions used for
simulations and synthesis [10]. This tool employs a set of
parameterizable templates to build routers, with variable
number of ports, routing algorithms, data width and buffer
depth. Besides NoC parameterization, it presents a mixed
SystemC/VHDL simulation environment.

Another framework for NoC modeling and simulation is
the OCCN [11]. OCCN enables the creation of NoC at
different abstraction levels, protocol refinement, design space
exploration, and NoC components development and
verification based on a communication API [11].

Pestana presents in [12] a NoC simulator based on user-
generated XML files that describe a NoC topology, the IP to
NoC mapping and the interconnection details. The simulator
also allows describing traffic generators to evaluate NoCs.

Finally, the NOCIC tool allows estimating performance
and power for NoC structures using a set of design
parameters simulated with HSPICE tools [13].

The MAIA framework has some features in common with
NoCGEN, including automated traffic and network
generation. One significant difference between MAIA and
the previously reviewed works is that the latter are centered
on the network itself, with little reference on how to map NIs
to the rest of the SoC. An exception is [12]. MAIA
automatically generates the NIs, using the OCP standard [14].

3. HERMES Network-on-Chip

HERMES is an infrastructure used to implement low area
overhead packet-switching NoCs for different topologies, flit
sizes, buffer size, routing algorithms, and flow control
strategies [4]. It supports the implementation of the three
lower OSI-RM layers, namely physical, data link and
network. Initially, HERMES is based on NoCs using only
wormhole routing.

The basic component of this infrastructure is the router. It
contains a centralized control logic module, responsible for
arbitration and routing, and up to five bi-directional ports
(East, West, North, South, and Local). Each port has an input
buffer for temporary storage of flits. The Local port connects
the router and its local IP core.

Two flow control strategies are available: handshake
protocol and credit based. When a 4-phase asynchronous
handshake protocol is used, the external router interface is
composed by six signals: rx, ack_rx and data_in for input and
tx, ack_tx and data_out for output. When credit based flow
control is used, a transmission clock is sent to the receiver
and a credit signal is asserted from the receiver to the
transmitter indicating available buffer space. Signal ack_rx
does not exist in this case. This flow control algorithm
enables implementing GALS networks.

Several instances of NoC-based systems were
successfully prototyped in FPGAs [4]. An example system
contains two simple 16-bit processors, an embedded memory
and an interface IP core to provide communication with a
host processor. It is estimated that a 5x5 HERMES-based
system can be implemented in a 4-million gate device, with
the same small 16-bit processor connected to the Local port
of each router.

4. MAIA Features

The design of NoCs is an error prone process, even if
routers and IP to NIs are assumed given. This is due to the
large number of wires used to connect routers among them
and IP cores to routers. Each router has a set of control and
data signals that amount to more than a 100 wires. The
primary function of MAIA is to build NoCs from param-
eterizable templates. Fig. 1 shows the MAIA design flow.

G
enerated files

NoC specification and generation

NoC
configuration

M
od

el

Li
br

ar
y

FL
I

Li
br

ar
y

NI
configuration

NoC
generation

NoC and NI
generation

NoC
testbench
generation

NI testbench
generation

NoC simulation
(Active-HDL or

ModelSim)

Simulation
script

NoC-IP
(black box)

Analysis `
result

NoC
verification

Traffic analysis

Input filesInput filesInput files
Traffic generation

 FLI traffic
(normal/OCP/

STL)

Input files
Input filesOutput

files

Fig. 1 – MAIA framework structure and execution flow.

Three steps compose the design flow:
(i) NoC specification and generation comprise: (1) selection

of the network parameters; (2) selection of the external
interface – native or OCP; (3) selection of the
communication model; (4) selection of the IP type, if
OCP interface is selected. After parameter selection, all
VHDL and C files are created. A UNIX script is created
as well, to start simulation.

(ii) Traffic generation produces the packet files, according to
chosen parameters as described in Section 4.3.

(iii) Traffic analysis creates traffic analysis reports.

Fig. 2 displays the primary graphical interface of MAIA.

The visualization area (1) represents a 4x4 mesh network
composed by routers with master-slave OCP NIs. The NI
type is individually chosen, on a router by router basis. The
second region (2) allows the user to select network
parameters. These are used to configure the VHDL
implementation files. The third region (3) contains menus
used to start simulation, traffic generation and traffic
analysis. The fourth region (4) presents messages resulting
from execution of user operations.

1

2

3

4

Fig. 2 – MAIA framework graphical user interface.

The main contribution of the MAIA design flow is to
relieve the user from worrying about the NoC structure and
its internal functionality, i.e. enabling the use of NoCs as a
generic communication IP core – a NoC-IP. It also simplifies
the interconnection of IP cores to the NoC. The only
requirement imposed on the MAIA user is to know in
advance the structure of the transactions supported by the NIs
at the network boundaries.

4.1. Network Generation

The NoC components in the Model Library can be described
in RTL VHDL, RTL SystemC and Transaction Level (TL)
SystemC. The integration of parameterizable SystemC
components is an ongoing work. All results presented in this
paper regard VHDL models only. Currently, the following
parameters can be chosen by the MAIA user: (i) network
topology, (ii) routing algorithm, (iii) flit width, (iv) buffer
size, (v) network structure, and (vi) control flow strategy. To
parameterize the NoC, a set of tokens are inserted in the
VHDL code, such as: (i) $flit_size$, (ii) $buff_depth$, and
(iii) $router_no$.

Network ports and associated buffers, can be
automatically by MAIA, depending on the network topology
and specific router position. For example, in a mesh topology
some buffers of routers at the edges of the network are
always eliminated. Consider the upper left router in a mesh
network. The North and East buffers are suppressed,
contributing to reduce the overall interconnect area. Today,
MAIA supports three NoC topologies: mesh, torus and ring.

Two other parameters affect network performance: flow-
control strategies (handshake or credit based protocols are
supported) and routing algorithms. Deadlock free routing
algorithms for torus and ring topologies are not yet available.
Virtual channel support that can be used to build these is
another ongoing work. For mesh topologies, four routing
algorithms are available: pure XY, west-first, north-last and
negative-first [3].

4.2. Network Interfaces Generation

A NoC is formed by two main components: routers and NIs.
The NI is responsible for packet segmentation and
reassembly. NIs should be designed taking into account the
communication model.

Since a NoC-based SoC is similar to a parallel processing
system in communication structure, it is possible to employ
classical communication models from the latter domain. The
Uniform Memory Access (UMA) model is not useful in the
intra-chip domain. Accordingly, MAIA only supports two
other communication models: non-uniform memory access
(NUMA) and no-remote memory access (NORMA).

The NUMA communication model assumes all IP cores
connected to the NoC share a single address space.
Communication then takes place using memory-mapped I/O
operations. This model is adequate for fast migration of
legacy IP cores to NoC-based SoCs, once most bus
architecture-based systems assume this communication
model. The NORMA communication model does not assume
the existence of a global address map. Communication is
achieved directly, through the exchange of messages between
IP cores. In a NORMA SoC, IP cores are independent,
providing services to other IP cores. However, the NI may
have to deal with the overhead of adapting its IP core
communication paradigm.

The IP core-NI interface can be either proprietary or
standard. A proprietary interface reduces the reusability of
the network but may improve its performance. A standard
interface has opposite characteristics. The user can choose the
native HERMES interface or an OCP interface. OCP defines
a point-to-point interface between two IP cores. One of these
operates as master and the other as slave [14]. Only the

master sends commands to initiate transactions. The slave
answers to the commands, receiving data from or sending
data to the master. Typical master IP cores are processors,
while a memory is often a slave IP core.

Using a standard interface does not change the way IP
cores are developed, since they will still be exchanging the
same information with its environment, as predicted by its
specification. The form how this exchange occurs is by
means of a standard industry-accepted procedure, as occurs
with the PCI standard for microcomputer manufacturers.
Thereby, IP cores reusability is higher and design time can be
reduced, since IP core integration occurs at higher levels of
abstraction, becoming a simpler process.

NIs generated from MAIA templates (master, slave and
master-slave) have been certified using the CoreCreator tool
[14], and prototyped in Xilinx FPGAs.

4.3. Traffic Generation and Analysis

The MAIA framework Traffic generation is responsible for
testbench and traffic files generation. Traffic files contain
packets, which are read by the IPs connected to the NoC.
Files are generated in one of four formats: (i) VHDL
testbenches for the native interface; (ii) C/VHDL testbenches
for the native interface; (iii) C/VHDL testbenches for the
OCP interface; and (iv) STL (Sonics Transaction Language)
format, to be used in the CoreCreator tool [14].

The following parameters define a traffic: (i) network
load [2]; (ii) number of packets each IP core sends; (iii)
number of flits in each packet; (iv) flit size; (v) the target IP
core, which can be random or fixed. According to these
parameters, a set of input files is created. During simulation,
another set of files is generated, containing the received
packets and their respective time stamps (time spent by a
packet to be transmitted from source to destination).

The files generated during simulation are read by the
Traffic analysis module, which produces a report file. This
report file presents some traffic analysis results, such as: (i)
total number of received packets; (ii) average time to deliver
the packets, in clock cycles; (iii) total time to deliver all
packets, in clock cycles; (iv) the average, minimal, maximal
and standard deviation time to deliver a packet, in clock
cycles; and (v) the total simulation time, in seconds.

5. NoC Design Space Exploration

Using the MAIA framework, the performance of routing
algorithms, the effect of buffer sizes and of external
interfaces was evaluated.

All generated NoCs case studies have a 4 x 4 mesh
topology, with a flit size equal to 16. The following structural
parameters were varied: routing algorithm (XY and negative
first, NF); buffer size (4 and 8 flits); external interface (native
and OCP). Three randomly generated traffics were used, each
with a fixed load of 70%. Table 1 presents these traffic
characteristics. All examples employ a NORMA
communication model.

Fig. 3 (a) illustrates the performance evaluation for
different buffer sizes and routing algorithms, for different
traffic conditions, using the HERMES native interface. On
the other hand, Fig. 3 (b) reproduces the results obtained
when using OCP interfaces.

Table 1 – Case study traffic characteristics (4 x 4 mesh).
 # of packets per

router
of flits per

packet
Total # of flits

Traffic 1 100 100 160,000
Traffic 2 20 500 160,000
Traffic 3 500 10 80,000

Hermes NoC with native interface

0

10000

20000
30000
40000

50000
60000

70000
80000

90000
100000

NF-B4 NF-B8 XY-B4 XY-B8

Routing Algorithm and Buffer size (B)

N
um

be
r o

f c
lo

ck
s

cy
cl

es

traffic1 traffic 2 traffic 3

Mesh 4x4 with OCP NI

0
20000
40000
60000
80000

100000
120000
140000
160000

NF-B4 NF-B8 XY-B4 XY-B8

Routing Algorithm and Buffer size (B)

N
um

be
r o

f c
lo

ck
s

cy
cl

es

traffic 1 traffic 2

(a) using HERMES NI. (b) using OCP interface.
Fig. 3 - Performance evaluation for different buffer sizes and

routing algorithms, for different traffic conditions.

Some conclusions of these results are:
(i) routing algorithms: the performance of the XY routing

algorithm was consistently superior to the NF algorithm.
(ii) buffer size: a very small advantage is observed when

buffer size is equal to 8. Since NoC area is dominated by
the buffer size, in this experiment, buffers with size 8 are
oversized and unnecessary [4].

(iii) traffic conditions: in adaptive algorithms (NF), the use of
smaller packets (traffic 1) improves the performance over
larger ones (traffic 2), since packets can explore
alternative paths in the network when blocking
conditions arrive. An opposite behavior is observed in
the deterministic algorithm (XY), where the performance
of large packets is superior. The expected time to deliver
all packets of traffic 3 would be half of that for traffic 1
or 2, since the number of flits to transmit is reduced to
half. The overhead due to frequent routing/arbitration
operations (small packets) reduces this performance.
A more extensive set of experiments showed that, in

terms of total clock cycles to deliver all packets, deterministic
XY routing is consistently faster than the other three partially
adaptive algorithms. The latter can potentially speed up the
time to deliver individual packets. However, globally, results
point out to performance poorer than that of the XY
algorithm. Glass and Ni [3], suggest that reducing the number
of turns that a message takes may reduce blocking and hence
improve performance. This is justified because adaptive
routing tends to concentrate traffic in the center of the
network, increasing the number of blocked paths. The North-
last algorithm presents a small advantage over the XY
algorithm for 30% traffic load and small packets (10 and 100
flits). This situation leads to a reduced number of blocked
paths and the availability of idle time between packets. As the
XY algorithm cannot explore different paths, even when they
are available, adaptive algorithms have a potential advantage
in this case.

Fig. 3 (b) illustrates the performance when using the OCP
interface. This Figure also showed that buffer size 8 is
oversized and that the XY algorithm showed superior
performance over NF. The most import result concerning Fig.
3 (b) is the cost of adding a standard NI. As already
mentioned, standard interfaces have the advantage of

improving reuse (plug-and-play feature). On the other hand,
performance is penalized. Comparing Fig. 3 (a) to Fig. 3 (b),
packets are delivered to their targets almost 50% faster in the
NoC without OCP NI. Currently, OCP interfaces are attached
and adapted to the native NoC interface using a dedicated
finite state machine. The OCP interface cost could be
significantly reduced if the NoC Local port directly
implemented the OCP protocol, suppressing the native NoC
interface. Therefore, router adaptation is not necessary. This
option simplifies the design process and can reduce the NI
area overhead. This can be justified because fewer states are
necessary to packet segmentation and reassembly.

6. Conclusions and Future works

The MAIA CAD framework is useful to generate and
evaluate NoCs with varying architectural parameters.

Ongoing work includes: (i) SystemC modeling; (ii)
virtual channels implementation to give support to QoS and
deadlock free algorithm in torus topologies; (iii) more
elaborate statistical traffic models generation.

Future versions of the MAIA framework will include: (i)
a library of IP blocks that can be configured by the user to
enable SoC generation and simulation; (ii) a module for
enabling more thorough traffic analyses using real traffic,
such as video streaming; (iii) new NoC architectures, such as
irregular meshes of multiple IPs per router.

7. References
[1] Benini L. et al. Networks on chips: a new SoC paradigm.

IEEE Computer, 35(1). 2002, pp. 70-78.
[2] Andriahantenaina, A. et al. SPIN: a Scalable, Packet

Switched, On-Chip Micro-network. In. DATE’03. 2003, pp.
70-73.

[3] Glass, C. et al. The Turn Model for Adaptive Routing.
Journal of the Association for Computing Machinery, v. 41(5).
1994, pp. 874-902.

[4] Moraes, F. et al. HERMES: an Infrastructure for Low Area
Overhead Packet-switching Networks on Chip. Integration
VLSI Journal, 2004. Accepted for publication, in print.

[5] Whelihan, D. The NOCsim Simulator Users Guide. 2003.
http://www.ece.cmu.edu/~djw2/NOCsim/NOCsim2.3.pdf.

[6] http://www.opnet.com
[7] Xu, J. et al. A Case Study in Networks-on-Chip Design for

Embedded Video. In: DATE’04. 2004, pp. 770-775.
[8] Sun, Y-R. et al. Simulation and Evaluation for a Network on

Chip Architecture Using Ns-2, In: 20th IEEE Norchip
Conference. 2002.

[9] Kogel, T. et al. A Modular Simulation Framework for
Architectural Exploration of On-Chip Interconnection
Networks. In: CODES/ISSS. 2003, pp. 7- 12.

[10] Chan, J. et al. NoCGEN: A Template Based Reuse
Methodology for Networks on Chip Architecture. In:
VLSI’04. 2004, pp 717-720.

[11] Coppola, M. et al. OCCN: A Network-On-Chip Modeling
and Simulation Framework. In: DATE’04. 2004, pp. 174-
179.

[12] Pestana, S. et al. Cost-Performance Trade-offs in Networks
on Chip:A Simulation-Based Approach. In: DATE’04. 2004,
pp. 764-769.

[13] Venkatraman, V. et al. NoCIC: A Spice-based Interconnect
Planning Tool Emphasizing Aggressive On-Chip
Interconnect Circuit Methods. In: SLIP’04 2004, pp.69- 75.

[14] OCP-IP. Open Core Protocol Specification – Version 2.0.
Available at: http://www.ocpip.org/.

