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Abstract 

The MultiNoC system implements a programmable on-
chip multiprocessing platform built on top of an efficient, 
low area overhead intra-chip interconnection scheme. The 
employed interconnection structure is a Network on Chip, 
or NoC. NoCs are emerging as a viable alternative to 
increasing demands on interconnection architectures, due 
to the following characteristics: (i) energy efficiency and 
reliability; (ii) scalability of bandwidth, when compared 
to traditional bus architectures; (iii) reusability; (iv) dis-
tributed routing decisions. An external host computer 
feeds MultiNoC with application instructions and data. 
After this initialization procedure, MultiNoC executes 
some algorithm. After finishing execution of the algo-
rithm, output data can be read back by the host. Sequen-
tial or parallel algorithms conveniently adapted to the 
MultiNoC structure can be executed. The main motivation 
to propose this design is to enable the investigation of 
current trends to increase the number of embedded proc-
essors in SoCs, leading to the concept of “sea of proces-
sors” systems.  
 

1. Design Overview 

This work presents the implementation of multiproces-
sing systems, connected through a NoC. According to 
ITRS estimation, in 2012, SoCs will have hundreds of IP 
cores, operating at clock frequencies near 10 GHz. In this 
context, a Network-on-Chip (NoC) [1] appears as a possi-
ble solution for future on-chip interconnections. A NoC is 
an on-chip network composed by IP cores connected to 
routers, which are interconnected by communication 
channels. Another motivation to present this design is the 
current trend to increase the number of embedded proces-
sors in SoCs, leading to the concept of “sea of processors” 
systems [6]. 

MultiNoC comprises four IP cores connected to the 
NoC, as illustrated in Figure 1:  

• 2 R8 embedded processors. R8 is a load-store 16-bit 
processor architecture, containing a 16x16 bit register 
file, and supporting execution of 36 distinct instruc-

tions. Each R8 processor has an attached local mem-
ory for program and data (1K 16-bit words), acting as 
a unified cache. 

• 1 memory IP, implemented with 4 BlockRAMs, re-
sulting in a capacity of 1024 16-bit words. 

• 1 RS-232 serial IP, providing bi-directional commu-
nication with a host computer. 

The MultiNoC system is a NUMA (non-uniform mem-
ory access) architecture, in which each processor has its 
own local memory, but can also have access to memory 
owned by other processors, or to remote memory. 

The external interface of the MultiNoC system com-
prises 4 signals: (i) reset, responsible to initialize the Mul-
tiNoC system; (ii) clock, a basic synchronization signal; 
(iii) tx, data from the host computer to the MultiNoC sys-
tem; (iv) rx, data from the MultiNoC system to the host 
computer. 
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Figure 1: MultiNoC system block diagram. 

The limitations imposed to the current version of the 
system arise from the employed FPGA area restrictions, 
as well as from the choice of using serial low cost, low 
performance external communication. The approach can 
be extended to any number of processor IPs and/or mem-
ory IPs, using the natural scalability of NoCs. It can also 
be adapted to faster external interface protocols, such as 
USB, PCI, Firewire, etc. 

2. Detailed description 

The next Sections present in detail each of the Multi-
NoC IP cores. 
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2.1. Hermes IP core 

The Hermes NoC employs packet switching, a com-
munication mechanism in which packets are individually 
routed between cores, with no previously established 
communication path [5]. The wormhole packet switching 
mode is used to avoid the need for large buffer spaces [9]. 
The routing algorithm defines the path taken by a packet 
between the source and the destination. The deterministic 
XY routing algorithm is employed. 

The Hermes NoC follows a mesh topology, justified to 
facilitate routing, IP cores placement and chip layout 
generation. The routers in MultiNoC use an 8-bit flit size, 
and the number of flits in a packet is fixed at 2(flit size in bits). 
The first and the second flits of a packet are header infor-
mation, being respectively the address of the target router, 
named header flit, and the number of flits in the packet 
payload. An asynchronous handshake protocol is used 
between neighbor routers. The physical interface between 
routers is composed by the following signals: 
• tx: control signal indicating data availability; 
• data_out: data to be sent;  
• ack_tx: control signal indicating successful data re-

ception. 
• rx: control signal indicating data availability; 
• data_in: data to be received; 
• ack_rx: control signal indicating successful data re-

ception. 
The router, shown in Figure 2, is the main component 

of a NoC, responsible for providing transfer of packets 
between IPs [10]. The router has a single, centralized 
control logic and up to five bi-directional ports: East, 
West, North, South and Local. Each port has an input 
buffer for temporary storage of packets. The Local port 
establishes the communication between the router and its 
local IP. The other ports connect the routers to their 
neighbor routers.  
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Figure 2: Hermes router architecture.  

B indicates input buffers. 

The control logic implements the routing and arbitra-
tion algorithms. When a router receives a header flit, arbi-
tration is performed, and if the incoming packet request is 
granted, an XY routing algorithm is executed to connect 
the input port data to the correct output port. If the chosen 
port is busy, the header flit, as well as all subsequent flits 
of this packet, will be blocked in the input buffers. The 
routing request for this packet will remain active until a 

connection is established in some future execution of the 
procedure in this router. When the XY routing algorithm 
finds a free output port to use, the connection between the 
input port and the output port is established. After routing 
all flits of the packet, connection is closed. At the operat-
ing frequency of 50MHz, with a word size (flit) of 8 bits 
the theoretical peak throughput of each Hermes router is 
1Gbits/s. 

A router can establish up to five connections simulta-
neously. Arbitration logic is used to grant access to an 
output port when one or more input ports require a con-
nection at the same time. A round-robin arbitration 
scheme is used to avoid starvation.  

When a flit is blocked in a given router, the perform-
ance of the network is affected, since several flits belong-
ing to the same packet may be blocked in several interme-
diate routers. To lessen the performance loss, a 2-flit 
buffer is added to each input router port, reducing the 
number of routers affected by the blocked flits. Larger 
buffers can provide enhanced NoC performance. Multi-
NoC employs small buffers to cope with FPGA area re-
strictions. The inserted buffers work as circular FIFOs. 

The minimal latency in clock cycles to transfer a 
packet from source to destination is given by: 
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where: n is the number of routers in the communication 
path (source and target included), Ri is the time required 
by the routing algorithm at each router (at least 7 clock 
cycles), and P is the packet size. This number is multi-
plied by 2 because each flit requires at least 2 clock cycles 
to be sent, due to the handshake protocol. 

The Hermes NoC in the MultiNoC system internally 
supports nine distinct packet formats, which define a set 
of services offered by the communication network to the 
IP Cores connected to it. The packets denominations/ 
functions are: 
1. read from memory, is used to request data from 

memory; 
2. read return, response for a read request from mem-

ory; 
3. write in memory, is used to store data into some 

memory of the system; 
4. activate processor, initiates the processor, that then 

starts executing instructions from the first position of 
its local memory; 

5. printf, is used by processors to send data to the host 
computer; 

6. scanf, is used by processors to request user input data 
from the host computer; 

7. scanf return, receives the requested input data from 
the host computer; 

8. notify, is used to wake up a processor that has been 
blocked by a wait command; 

9. wait, blocks a processor until being notified. 



 

2.2. Serial IP core 

The Serial IP Core is responsible to provide communi-
cation between the user working in a host computer and 
the modules of the system connected through the NoC. 
This communication is performed by an RS-232 protocol 
standard serial interface.  

Figure 3 presents the Serial IP external interface. The 
signals at the top of the figure connect the module with 
the host computer. The signals at the bottom connect the 
module with the NoC. The function of each signal is: 
• rxd: receives data serially from the host computer. 
• txd: sends data serially to the host computer. 
• tx, data_out, ack_tx, rx , data_in, ack_rx: interface 

with the HERMES NoC. 
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Figure 3: Serial IP external interface. 

The basic function of the Serial IP is to assemble and 
disassemble packets. When information comes from the 
host computer, the Serial IP creates a valid NoC packet. 
When a packet is received from the NoC it must be disas-
sembled, and sent serially to the host computer. 

The Serial IP accepts seven commands. Four com-
mands are handled by the host computer: (i) read from 
memory; (ii) write to memory; (iii) activate processor; (iv) 
scanf return. The other three commands accepted by the 
serial IP come from the HERMES NoC to the host com-
puter: (i) printf; (ii) scanf; (iii) read return.  

2.3. Memory IP core 

The Memory IP core provides storage for data and/or 
instructions, and can be accessed through the processor-
memory bus or through the NoC. Three Memory IP cores 
are used in the MultiNoC system: two are internally con-
nected to an R8 processor to form the processor IP core 
and one is an independently accessible remote memory.  

Each Memory IP contains 4 BlockRAM modules, each 
organized as 1024 4-bit words, and control logic to arbi-
trate the access to the memory banks. Figure 4 shows the 
external interface of the Memory IP core and the Block-
RAMs organization. The access to the memory banks is 
done in parallel, reading and writing 16-bit words. This 
access may be done by the processor interface or the NoC 
interface. The processor interface is not existent in the 
remote memory IP core. 

The memory IP external interface is composed by the 
following signals: 

• clock: system clock (not shown in Figure 4). 
• reset: when asserted, initializes the control logic (not 

shown in Figure 4). 
• addressCore: system address provided to this IP (not 

shown in Figure 4). 
• tx, data_out, ack_tx, rx , data_in, ack_rx: interface 

with the HERMES NoC  
• interface with the processor: 

- ceR8: enables the memory to read/write operations. 
- rwR8: read or write operation selection.  
- addrR8: processor address bus (16-bit). 
- dinR8: processor input data bus (16-bit). 
- doutR8: processor output data bus (16-bit).  
- busyNoCR8: signals to the memory banks that an 

operation of the processor with the Hermes NoC is 
under way (e.g. I/O, read/write). 

- busyNoCMem: signals to the processor that an op-
eration of the memory with the Hermes NoC is un-
der way (e.g. return read). 
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Figure 4: Memory IP block diagram. 

The busyNoCR8 and busyNoCMem are responsible to 
prevent the processor and the memory from using the 
same interface with the NoC simultaneously. The highest 
priority to access the memory banks is given to the proc-
essor. 

2.4. Processor IP core 

The Processor IP external interface, as well as its two 
main internal modules, is presented in Figure 5. The Proc-
essor IP includes the R8 soft core processor [2]; a Mem-
ory IP, acting as a unified cache; control logic responsible 
for interfacing these modules to the HERMES NoC. The 
R8 soft core processor was chosen due to its simplicity, 
low area footprint and flexibility to be modified. 

The R8 processor is a 16-bit Von Neumann architec-
ture (unified instruction/data memory), with a CPI (Clocks 
Per Instruction) between 2 and 4.. The datapath contains 
16 general purpose registers, an instruction register (IR), 
program counter (PC), stack pointer (SP), and 4 status 
flags (negative, zero, carry and overflow). 
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Figure 5: Processor IP block diagram. 

The Processor IP control logic commands the execu-
tion of the R8 processor, putting it in wait state each time 
the processor executes a load-store instruction (see waitR8 
signal in Figure 5). Load-store operations can access: (i) 
the local memory; (ii) a remote memory; (iii) I/O devices; 
(iv) other processors, for synchronization purposes. The 
next 3 Sections detail these different access modes. 

Memory Accesses 
To determine which device of the MultiNoC system the 

R8 processor is accessing by load-store instructions, ad-
dress ranges were defined to each memory. The address 
ranges for the MultiNoC system are presented in Figure 6. 

 
 if(address>=0 && address<1024 ){ 

 globalAddress = address; 
 addressCore=1; //local memory 
} 
else if(address>=1024 && address<2048){ 
 globalAddress = 1024 - address; 
 addressCore=2; //other processor 
} 
else if(address>=2048 && address<3072){ 
 globalAddress = 2048 - address; 
 addressCore=3; //remote memory 
} 
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Figure 6: C code illustrating the access to  

local/remote memories. The Processor IP control 
logic arbitrates which memory block is accessed.  

I/O Operations 
The I/O operations are mapped to the FFFFh memory 

address. Thus, when the ST instruction is executed the 
printf is performed and when the LD instruction is exe-
cuted the scanf is performed. 

Synchronization Operations 
Multiprocessor systems require synchronization 

mechanisms among processors to implement distributed 
applications. The synchronization among processors can 
be done through shared memory or explicit message ex-
change. The second mechanism was chosen due to the use 
of NoCs,. 

The Processor IP control logic implements the wait and 
notify commands, both memory-mapped. The wait com-
mand is responsible to block the execution of the proces-

sor until the reception of a notify command. The wait 
command is identified through the execution of a store 
instruction (ST) at address FFFEH with the number of the 
processor that will restart the processor executing ST with 
a notify command. The notify command is identified 
through the execution of ST at address FFFDH with the 
number of the processor that will be restarted. 

For example, when the R8 processor with address 1 
executes the instruction “ST R3, R1, R2” (R3=2, R1=0, 
R2=FFFEH), the Processor IP control logic pauses the R8 
processor until receiving a packet with a notify command 
from the IP with address 2. The R8 processor with address 
2 should execute “ST R3, R1, R2” (R3=1, R1=0, 
R2=FFFDH) to create the notify command.  

3. System prototyping  

The target device is a Spartan-IIe XC2S200E [11]. The 
MultiNoC system uses 98% of the available slices and 
78% of the LUTs. It is important to stress the value of 
floorplanning in designs using most of the FPGA surface. 
This generates a complex optimization problem that had 
to be solved. The use of synthesis and implementation 
options alone was not sufficient to make the design fit in 
the restricted area of the XC2S200E device. Even multiple 
choices of alternate synthesis parameters could not handle 
the 98% occupation of the design adequately. Figure 7 
illustrates the MultiNoC system floorplan design that 
enabled physical synthesis to be successful.  

 
Figure 7: MultiNoC design floorplan. 

The reasoning behind the placement design of the IPs 
is justified as follows: 
• the NoC IP is placed in the middle of the FPGA, of-

fering easy access to it from all IPs in the system; 
• the Serial IP is placed next to the I/O pins responsible 

for the data transmission/reception to reduce global 
wire length and routing congestion; 

• the Processor IPs are placed in the left/right side of 
the FPGA, near to the corresponding BlockRAMs for 
the same reason of the previous item; 

• the Memory IP (the smallest IP) is placed in the re-
maining area. 



 

The original clock of the prototyping board, 50MHz, 
was divided by two, using a clkdll component. The fre-
quency was reduced, due to the delay estimated by the 
timing analysis tool, 21.23 MHz. Despite the fact that the 
employed frequency is higher (25 MHz), the circuit 
worked correctly. 

The NoC area can be seen to be an important part of 
the design when compared to the other IPs. In fact, NoCs 
trade increased bandwidth (and thus performance) for 
increased area. However, NoCs are in principle designed 
for much bigger systems than this prototype. It is not 
uncommon to consider that NoCs are a feasible communi-
cation medium for systems containing more than a hun-
dred IPs (e.g. 10x10 NoCs) [8]. When more area is avail-
able, the IPs connected to the NoC can increase in area 
and functionality. The router surface will remain constant 
and the NoC dimensions will scale less than the IPs, be-
coming a very small fraction of the whole system, typi-
cally less than 10 or 5%. 

4. System execution 

Figure 8 illustrates the data flow to execute the Multi-
NoC system. The main steps of this flow are detailed 
below. 
• Simulate the Assembly Code. The R8 Simulator envi-

ronment [3] allows writing, simulating and debugging 
assembly code, generating automatically the object 
code that must be opened in the current version of the 
Serial software to send it to the R8 processor. Unfor-
tunately, the R8 Simulator is not able to simulate a 
multiprocessed application. 

• Start the Serial Software. The Serial software [4] 
enables the host computer to communicate with the 
Spartan-IIe device. 

• Synchronize SW/HW. The MultiNoc system must 
receive from the Serial software the host computer 
baud rate, to correctly receive/send data. This is 
achieved transmitting the value 55H to the MultiNoc 
system. 

• Send Generated Object Code. The text file obtained 
after the application simulation is sent to the MultiNoc 
system using the Serial software. 

• Fill Memory Contents. Optionally, data may be also 
sent to the remote memory or the local memories of 
the MultiNoC. This process of sending data to the 
memory is similar to sending the object code to the 
instruction memory.  

• Activate Processors. The system is now ready to 
execute the application, since program and data are 
stored. This action is achieved by sending a specific 
command through the Serial software (activate proc-
essor command). 

 
Figure 8: MultiNoC system flow diagram.  

• I/O Operations. In order to execute I/O operations, 
the Serial software has interaction monitors for each 
processor. Figure 9(2) presents a monitor with in-
put/output operations indicating the result of an appli-
cation execution. 
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Figure 9: Two ways of debugging the MultiNoC 
system: 1) read operation; 2) printf operation. 

• Debug. There are two ways of verifying the prototype 
correct functionality. One is directly reading memory 
values (step 1 in Figure 9) and the other is using printf 
instructions executed by some processor (step 2 in 
Figure 9). Printf instructions are part of the applica-
tion code and can help verifying intermediate values. 



 

Memory reads can be used to verify the memory con-
tents at the end of the execution. In the example pre-
sented in Figure 9, the user has typed “00 01 01 00 
20”, meaning a read operation (00) from P1 processor 
local memory (01), reading just one memory position 
(01) and starting at address 0020H. 

 
The software of Figure 9 is used for basic communica-

tion with MultiNoC system. More complex applications 
have been developed. One example is a parallel edge 
detection which uses the basic functions of the Serial 
software to construct more powerful user interfaces. For 
demonstration purposes, consider the GUI presented in 
Figure 10. In this application the host computer sends an 
image line, after what each embedded processor computes 
one gradient (gx and gy). Next, that embedded processor 
adds gx and gy and notifies the host, which receives the 
processed line, and sends a new line to the MultiNoC 
system.  

 

 
Figure 10: Parallel edge detection GUI. 

5. Conclusions and future work 

The MultiNoC system is in fact an exercise of imple-
menting and making available a design platform on top of 
which applications can be effectively and rapidly proto-
typed. This is indeed a recently proposed new design 
paradigm called platform based design, as opposed to 
existing paradigms, system level design and component 
based design [7]. 

Future research with the MultiNoC system includes the 
development of a multiprocessor simulator. This tool is 
important to detect distributed application errors and to 
synchronize software running on different processors. 
Another important tool is a C compiler to automatically 
generate R8 assembly code, allowing faster software im-
plementation. 

Mapping the MultiNoC system in a larger FPGA de-
vice would allow increasing the NoC dimension and the 
number of IPs connected to it. This new system can be 
composed by more instances of the presented pre-
designed and pre-verified IP cores, adopting the concept 
of design reuse, or by implementing new IP cores. In-
creasing the number of identical IPs enhances the parallel-
ism degree. On the other hand, increasing the amount of 

different IPs contributes with new functionalities to the 
MultiNoC system. 

One of the current research foci is on partial and dy-
namic reconfiguration applied to the MultiNoC system. 
Partial and dynamic reconfiguration allows, for example, 
that the IP cores position be modified in execution at run-
time, favoring the IPs communication with improved 
throughput. Reconfiguration can also be used to reduce 
system area consumption through insertion and removal 
of IP cores on demand.  

The MultiNoC system can be very useful to under-
graduate/graduate students for learning concepts arising in 
hardware description languages, distributed systems, par-
allel processing hardware development environments, 
prototyping designs and applying digital systems concepts 
to related disciplines. Additionally, the MultiNoC system 
has a low area overhead, being able to be prototyped in 
small devices, decreasing the cost to be acquired in large 
numbers for academic laboratories. 
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