

MultiNoC: A Multiprocessing System Enabled by a Network on Chip

Aline Mello, Leandro Möller, Ney Calazans, Fernando Moraes
Faculdade de Informática – PUCRS -Av. Ipiranga, 6681, Porto Alegre, Brazil

{mello, moller, calazans, moraes}@inf.pucrs.br

Abstract

The MultiNoC system implements a programmable on-
chip multiprocessing platform built on top of an efficient,
low area overhead intra-chip interconnection scheme. The
employed interconnection structure is a Network on Chip,
or NoC. NoCs are emerging as a viable alternative to
increasing demands on interconnection architectures, due
to the following characteristics: (i) energy efficiency and
reliability; (ii) scalability of bandwidth, when compared
to traditional bus architectures; (iii) reusability; (iv) dis-
tributed routing decisions. An external host computer
feeds MultiNoC with application instructions and data.
After this initialization procedure, MultiNoC executes
some algorithm. After finishing execution of the algo-
rithm, output data can be read back by the host. Sequen-
tial or parallel algorithms conveniently adapted to the
MultiNoC structure can be executed. The main motivation
to propose this design is to enable the investigation of
current trends to increase the number of embedded proc-
essors in SoCs, leading to the concept of “sea of proces-
sors” systems.

1. Design Overview

This work presents the implementation of multiproces-
sing systems, connected through a NoC. According to
ITRS estimation, in 2012, SoCs will have hundreds of IP
cores, operating at clock frequencies near 10 GHz. In this
context, a Network-on-Chip (NoC) [1] appears as a possi-
ble solution for future on-chip interconnections. A NoC is
an on-chip network composed by IP cores connected to
routers, which are interconnected by communication
channels. Another motivation to present this design is the
current trend to increase the number of embedded proces-
sors in SoCs, leading to the concept of “sea of processors”
systems [6].

MultiNoC comprises four IP cores connected to the
NoC, as illustrated in Figure 1:

• 2 R8 embedded processors. R8 is a load-store 16-bit
processor architecture, containing a 16x16 bit register
file, and supporting execution of 36 distinct instruc-

tions. Each R8 processor has an attached local mem-
ory for program and data (1K 16-bit words), acting as
a unified cache.

• 1 memory IP, implemented with 4 BlockRAMs, re-
sulting in a capacity of 1024 16-bit words.

• 1 RS-232 serial IP, providing bi-directional commu-
nication with a host computer.

The MultiNoC system is a NUMA (non-uniform mem-
ory access) architecture, in which each processor has its
own local memory, but can also have access to memory
owned by other processors, or to remote memory.

The external interface of the MultiNoC system com-
prises 4 signals: (i) reset, responsible to initialize the Mul-
tiNoC system; (ii) clock, a basic synchronization signal;
(iii) tx, data from the host computer to the MultiNoC sys-
tem; (iv) rx, data from the MultiNoC system to the host
computer.

MultiNoC System

Serial
IP 00

RS-232 protocol

HERMES NOC

Memory
IP 11

(1k Word)

Spartan-IIe FPGA

Processor 1
IP 01

Processor 2
IP 10

1k Word
Memory

rxtx

Host computer

Router
00

Router
01

Router
11

Router
10

R8
Processor

1k Word
Memory

R8
Processor

Figure 1: MultiNoC system block diagram.

The limitations imposed to the current version of the
system arise from the employed FPGA area restrictions,
as well as from the choice of using serial low cost, low
performance external communication. The approach can
be extended to any number of processor IPs and/or mem-
ory IPs, using the natural scalability of NoCs. It can also
be adapted to faster external interface protocols, such as
USB, PCI, Firewire, etc.

2. Detailed description

The next Sections present in detail each of the Multi-
NoC IP cores.

1530-1591/05 $20.00 © 2005 IEEE

2.1. Hermes IP core

The Hermes NoC employs packet switching, a com-
munication mechanism in which packets are individually
routed between cores, with no previously established
communication path [5]. The wormhole packet switching
mode is used to avoid the need for large buffer spaces [9].
The routing algorithm defines the path taken by a packet
between the source and the destination. The deterministic
XY routing algorithm is employed.

The Hermes NoC follows a mesh topology, justified to
facilitate routing, IP cores placement and chip layout
generation. The routers in MultiNoC use an 8-bit flit size,
and the number of flits in a packet is fixed at 2(flit size in bits).
The first and the second flits of a packet are header infor-
mation, being respectively the address of the target router,
named header flit, and the number of flits in the packet
payload. An asynchronous handshake protocol is used
between neighbor routers. The physical interface between
routers is composed by the following signals:
• tx: control signal indicating data availability;
• data_out: data to be sent;
• ack_tx: control signal indicating successful data re-

ception.
• rx: control signal indicating data availability;
• data_in: data to be received;
• ack_rx: control signal indicating successful data re-

ception.
The router, shown in Figure 2, is the main component

of a NoC, responsible for providing transfer of packets
between IPs [10]. The router has a single, centralized
control logic and up to five bi-directional ports: East,
West, North, South and Local. Each port has an input
buffer for temporary storage of packets. The Local port
establishes the communication between the router and its
local IP. The other ports connect the routers to their
neighbor routers.

N

L

W

S

E Control
Logic

B

B B

B

B

Figure 2: Hermes router architecture.

B indicates input buffers.

The control logic implements the routing and arbitra-
tion algorithms. When a router receives a header flit, arbi-
tration is performed, and if the incoming packet request is
granted, an XY routing algorithm is executed to connect
the input port data to the correct output port. If the chosen
port is busy, the header flit, as well as all subsequent flits
of this packet, will be blocked in the input buffers. The
routing request for this packet will remain active until a

connection is established in some future execution of the
procedure in this router. When the XY routing algorithm
finds a free output port to use, the connection between the
input port and the output port is established. After routing
all flits of the packet, connection is closed. At the operat-
ing frequency of 50MHz, with a word size (flit) of 8 bits
the theoretical peak throughput of each Hermes router is
1Gbits/s.

A router can establish up to five connections simulta-
neously. Arbitration logic is used to grant access to an
output port when one or more input ports require a con-
nection at the same time. A round-robin arbitration
scheme is used to avoid starvation.

When a flit is blocked in a given router, the perform-
ance of the network is affected, since several flits belong-
ing to the same packet may be blocked in several interme-
diate routers. To lessen the performance loss, a 2-flit
buffer is added to each input router port, reducing the
number of routers affected by the blocked flits. Larger
buffers can provide enhanced NoC performance. Multi-
NoC employs small buffers to cope with FPGA area re-
strictions. The inserted buffers work as circular FIFOs.

The minimal latency in clock cycles to transfer a
packet from source to destination is given by:

() 2
1

×+= � =
PRlatency

n

i i

where: n is the number of routers in the communication
path (source and target included), Ri is the time required
by the routing algorithm at each router (at least 7 clock
cycles), and P is the packet size. This number is multi-
plied by 2 because each flit requires at least 2 clock cycles
to be sent, due to the handshake protocol.

The Hermes NoC in the MultiNoC system internally
supports nine distinct packet formats, which define a set
of services offered by the communication network to the
IP Cores connected to it. The packets denominations/
functions are:
1. read from memory, is used to request data from

memory;
2. read return, response for a read request from mem-

ory;
3. write in memory, is used to store data into some

memory of the system;
4. activate processor, initiates the processor, that then

starts executing instructions from the first position of
its local memory;

5. printf, is used by processors to send data to the host
computer;

6. scanf, is used by processors to request user input data
from the host computer;

7. scanf return, receives the requested input data from
the host computer;

8. notify, is used to wake up a processor that has been
blocked by a wait command;

9. wait, blocks a processor until being notified.

2.2. Serial IP core

The Serial IP Core is responsible to provide communi-
cation between the user working in a host computer and
the modules of the system connected through the NoC.
This communication is performed by an RS-232 protocol
standard serial interface.

Figure 3 presents the Serial IP external interface. The
signals at the top of the figure connect the module with
the host computer. The signals at the bottom connect the
module with the NoC. The function of each signal is:
• rxd: receives data serially from the host computer.
• txd: sends data serially to the host computer.
• tx, data_out, ack_tx, rx , data_in, ack_rx: interface

with the HERMES NoC.

Serial IP

txd rxd

tx data_out ack_tx data_in ack_rx rx

8 8
Figure 3: Serial IP external interface.

The basic function of the Serial IP is to assemble and
disassemble packets. When information comes from the
host computer, the Serial IP creates a valid NoC packet.
When a packet is received from the NoC it must be disas-
sembled, and sent serially to the host computer.

The Serial IP accepts seven commands. Four com-
mands are handled by the host computer: (i) read from
memory; (ii) write to memory; (iii) activate processor; (iv)
scanf return. The other three commands accepted by the
serial IP come from the HERMES NoC to the host com-
puter: (i) printf; (ii) scanf; (iii) read return.

2.3. Memory IP core

The Memory IP core provides storage for data and/or
instructions, and can be accessed through the processor-
memory bus or through the NoC. Three Memory IP cores
are used in the MultiNoC system: two are internally con-
nected to an R8 processor to form the processor IP core
and one is an independently accessible remote memory.

Each Memory IP contains 4 BlockRAM modules, each
organized as 1024 4-bit words, and control logic to arbi-
trate the access to the memory banks. Figure 4 shows the
external interface of the Memory IP core and the Block-
RAMs organization. The access to the memory banks is
done in parallel, reading and writing 16-bit words. This
access may be done by the processor interface or the NoC
interface. The processor interface is not existent in the
remote memory IP core.

The memory IP external interface is composed by the
following signals:

• clock: system clock (not shown in Figure 4).
• reset: when asserted, initializes the control logic (not

shown in Figure 4).
• addressCore: system address provided to this IP (not

shown in Figure 4).
• tx, data_out, ack_tx, rx , data_in, ack_rx: interface

with the HERMES NoC
• interface with the processor:

- ceR8: enables the memory to read/write operations.
- rwR8: read or write operation selection.
- addrR8: processor address bus (16-bit).
- dinR8: processor input data bus (16-bit).
- doutR8: processor output data bus (16-bit).
- busyNoCR8: signals to the memory banks that an

operation of the processor with the Hermes NoC is
under way (e.g. I/O, read/write).

- busyNoCMem: signals to the processor that an op-
eration of the memory with the Hermes NoC is un-
der way (e.g. return read).

MEMORY IP

tx data_out ack_tx data_in ack_rx rx

we
en
addr
di do

din(15:12)
dout(15:12)

we
en
addr
di

RAM0 RAM2 RAM3
ceR8
rwR8

addrR8

dinR8
doutR8

busyNoCR8
busyNoCMem

do

din(11:8)
dout(11:8)

we
en
addr
di

RAM1

do

din(7:4)
dout(7:4)

we
en
addr

do

din(3:0)
dout(3:0)

Pr
oc

es
so

r
In

te
rf

ac
e

NoC Interface

di

Figure 4: Memory IP block diagram.

The busyNoCR8 and busyNoCMem are responsible to
prevent the processor and the memory from using the
same interface with the NoC simultaneously. The highest
priority to access the memory banks is given to the proc-
essor.

2.4. Processor IP core

The Processor IP external interface, as well as its two
main internal modules, is presented in Figure 5. The Proc-
essor IP includes the R8 soft core processor [2]; a Mem-
ory IP, acting as a unified cache; control logic responsible
for interfacing these modules to the HERMES NoC. The
R8 soft core processor was chosen due to its simplicity,
low area footprint and flexibility to be modified.

The R8 processor is a 16-bit Von Neumann architec-
ture (unified instruction/data memory), with a CPI (Clocks
Per Instruction) between 2 and 4.. The datapath contains
16 general purpose registers, an instruction register (IR),
program counter (PC), stack pointer (SP), and 4 status
flags (negative, zero, carry and overflow).

R8
Processor

dinR8
doutR8
addrR8
waitR8
haltR8

ce
rw

MEMORY IP

tx data_out ack_tx data_in ack_rx rx

we
en
addr
di do

RAM0 RAM3 ceR8
rwR8

addrR8

doutR8
dinR8

busyNoCR8
busyNoCMem

we
en
addr

dodi

...

PROCESSOR IP
tx data_out ack_tx data_in ack_rx rx

Figure 5: Processor IP block diagram.

The Processor IP control logic commands the execu-
tion of the R8 processor, putting it in wait state each time
the processor executes a load-store instruction (see waitR8
signal in Figure 5). Load-store operations can access: (i)
the local memory; (ii) a remote memory; (iii) I/O devices;
(iv) other processors, for synchronization purposes. The
next 3 Sections detail these different access modes.

Memory Accesses
To determine which device of the MultiNoC system the

R8 processor is accessing by load-store instructions, ad-
dress ranges were defined to each memory. The address
ranges for the MultiNoC system are presented in Figure 6.

 if(address>=0 && address<1024){

 globalAddress = address;
 addressCore=1; //local memory
}
else if(address>=1024 && address<2048){
 globalAddress = 1024 - address;
 addressCore=2; //other processor
}
else if(address>=2048 && address<3072){
 globalAddress = 2048 - address;
 addressCore=3; //remote memory
}

01
02
03
04
05
06
07
08
09
10
11
12

Figure 6: C code illustrating the access to

local/remote memories. The Processor IP control
logic arbitrates which memory block is accessed.

I/O Operations
The I/O operations are mapped to the FFFFh memory

address. Thus, when the ST instruction is executed the
printf is performed and when the LD instruction is exe-
cuted the scanf is performed.

Synchronization Operations
Multiprocessor systems require synchronization

mechanisms among processors to implement distributed
applications. The synchronization among processors can
be done through shared memory or explicit message ex-
change. The second mechanism was chosen due to the use
of NoCs,.

The Processor IP control logic implements the wait and
notify commands, both memory-mapped. The wait com-
mand is responsible to block the execution of the proces-

sor until the reception of a notify command. The wait
command is identified through the execution of a store
instruction (ST) at address FFFEH with the number of the
processor that will restart the processor executing ST with
a notify command. The notify command is identified
through the execution of ST at address FFFDH with the
number of the processor that will be restarted.

For example, when the R8 processor with address 1
executes the instruction “ST R3, R1, R2” (R3=2, R1=0,
R2=FFFEH), the Processor IP control logic pauses the R8
processor until receiving a packet with a notify command
from the IP with address 2. The R8 processor with address
2 should execute “ST R3, R1, R2” (R3=1, R1=0,
R2=FFFDH) to create the notify command.

3. System prototyping

The target device is a Spartan-IIe XC2S200E [11]. The
MultiNoC system uses 98% of the available slices and
78% of the LUTs. It is important to stress the value of
floorplanning in designs using most of the FPGA surface.
This generates a complex optimization problem that had
to be solved. The use of synthesis and implementation
options alone was not sufficient to make the design fit in
the restricted area of the XC2S200E device. Even multiple
choices of alternate synthesis parameters could not handle
the 98% occupation of the design adequately. Figure 7
illustrates the MultiNoC system floorplan design that
enabled physical synthesis to be successful.

Figure 7: MultiNoC design floorplan.

The reasoning behind the placement design of the IPs
is justified as follows:
• the NoC IP is placed in the middle of the FPGA, of-

fering easy access to it from all IPs in the system;
• the Serial IP is placed next to the I/O pins responsible

for the data transmission/reception to reduce global
wire length and routing congestion;

• the Processor IPs are placed in the left/right side of
the FPGA, near to the corresponding BlockRAMs for
the same reason of the previous item;

• the Memory IP (the smallest IP) is placed in the re-
maining area.

The original clock of the prototyping board, 50MHz,
was divided by two, using a clkdll component. The fre-
quency was reduced, due to the delay estimated by the
timing analysis tool, 21.23 MHz. Despite the fact that the
employed frequency is higher (25 MHz), the circuit
worked correctly.

The NoC area can be seen to be an important part of
the design when compared to the other IPs. In fact, NoCs
trade increased bandwidth (and thus performance) for
increased area. However, NoCs are in principle designed
for much bigger systems than this prototype. It is not
uncommon to consider that NoCs are a feasible communi-
cation medium for systems containing more than a hun-
dred IPs (e.g. 10x10 NoCs) [8]. When more area is avail-
able, the IPs connected to the NoC can increase in area
and functionality. The router surface will remain constant
and the NoC dimensions will scale less than the IPs, be-
coming a very small fraction of the whole system, typi-
cally less than 10 or 5%.

4. System execution

Figure 8 illustrates the data flow to execute the Multi-
NoC system. The main steps of this flow are detailed
below.
• Simulate the Assembly Code. The R8 Simulator envi-

ronment [3] allows writing, simulating and debugging
assembly code, generating automatically the object
code that must be opened in the current version of the
Serial software to send it to the R8 processor. Unfor-
tunately, the R8 Simulator is not able to simulate a
multiprocessed application.

• Start the Serial Software. The Serial software [4]
enables the host computer to communicate with the
Spartan-IIe device.

• Synchronize SW/HW. The MultiNoc system must
receive from the Serial software the host computer
baud rate, to correctly receive/send data. This is
achieved transmitting the value 55H to the MultiNoc
system.

• Send Generated Object Code. The text file obtained
after the application simulation is sent to the MultiNoc
system using the Serial software.

• Fill Memory Contents. Optionally, data may be also
sent to the remote memory or the local memories of
the MultiNoC. This process of sending data to the
memory is similar to sending the object code to the
instruction memory.

• Activate Processors. The system is now ready to
execute the application, since program and data are
stored. This action is achieved by sending a specific
command through the Serial software (activate proc-
essor command).

Figure 8: MultiNoC system flow diagram.

• I/O Operations. In order to execute I/O operations,
the Serial software has interaction monitors for each
processor. Figure 9(2) presents a monitor with in-
put/output operations indicating the result of an appli-
cation execution.

1
2

Figure 9: Two ways of debugging the MultiNoC
system: 1) read operation; 2) printf operation.

• Debug. There are two ways of verifying the prototype
correct functionality. One is directly reading memory
values (step 1 in Figure 9) and the other is using printf
instructions executed by some processor (step 2 in
Figure 9). Printf instructions are part of the applica-
tion code and can help verifying intermediate values.

Memory reads can be used to verify the memory con-
tents at the end of the execution. In the example pre-
sented in Figure 9, the user has typed “00 01 01 00
20”, meaning a read operation (00) from P1 processor
local memory (01), reading just one memory position
(01) and starting at address 0020H.

The software of Figure 9 is used for basic communica-

tion with MultiNoC system. More complex applications
have been developed. One example is a parallel edge
detection which uses the basic functions of the Serial
software to construct more powerful user interfaces. For
demonstration purposes, consider the GUI presented in
Figure 10. In this application the host computer sends an
image line, after what each embedded processor computes
one gradient (gx and gy). Next, that embedded processor
adds gx and gy and notifies the host, which receives the
processed line, and sends a new line to the MultiNoC
system.

Figure 10: Parallel edge detection GUI.

5. Conclusions and future work

The MultiNoC system is in fact an exercise of imple-
menting and making available a design platform on top of
which applications can be effectively and rapidly proto-
typed. This is indeed a recently proposed new design
paradigm called platform based design, as opposed to
existing paradigms, system level design and component
based design [7].

Future research with the MultiNoC system includes the
development of a multiprocessor simulator. This tool is
important to detect distributed application errors and to
synchronize software running on different processors.
Another important tool is a C compiler to automatically
generate R8 assembly code, allowing faster software im-
plementation.

Mapping the MultiNoC system in a larger FPGA de-
vice would allow increasing the NoC dimension and the
number of IPs connected to it. This new system can be
composed by more instances of the presented pre-
designed and pre-verified IP cores, adopting the concept
of design reuse, or by implementing new IP cores. In-
creasing the number of identical IPs enhances the parallel-
ism degree. On the other hand, increasing the amount of

different IPs contributes with new functionalities to the
MultiNoC system.

One of the current research foci is on partial and dy-
namic reconfiguration applied to the MultiNoC system.
Partial and dynamic reconfiguration allows, for example,
that the IP cores position be modified in execution at run-
time, favoring the IPs communication with improved
throughput. Reconfiguration can also be used to reduce
system area consumption through insertion and removal
of IP cores on demand.

The MultiNoC system can be very useful to under-
graduate/graduate students for learning concepts arising in
hardware description languages, distributed systems, par-
allel processing hardware development environments,
prototyping designs and applying digital systems concepts
to related disciplines. Additionally, the MultiNoC system
has a low area overhead, being able to be prototyped in
small devices, decreasing the cost to be acquired in large
numbers for academic laboratories.

6. Acknowledgements

This research has been partially funded by CNPq
through grants 550009/2003-5 and 307665/2003-2.

7. References

[1] Benini, L.; De Micheli, G. “Networks on chips: a new SoC
paradigm”. IEEE Computer, v. 35(1), 2002, pp. 70-78.

[2] GAPH - Hardware Design Support Group. R8 Processor:
Architecture and Organization. http://www.inf.pucrs.br/
~gaph/Projects/R8/public/R8_arq_spec_eng.pdf.

[3] GAPH - Hardware Design Support Group. R8Simulator.
http://www.inf.pucrs.br/~gaph/homepage/download/softwar
e/simulatorR8.zip.

[4] GAPH - Hardware Design Support Group. Serial Software.
http://www.inf.pucrs.br/~gaph/homepage/download/softwar
e/SerialSoftware.zip.

[5] Guerrier. P.; Greiner. A. “A generic architecture for on-chip
packet-switched interconnections”. In: Design, Automation
and Test in Europe (DATE), 2000, pp. 250-256.

[6] Henkel, J. “Closing the SoC Design Gap”. IEEE Computer,
v. 36(9), 2003, pp. 119-121.

[7] Keutzer, K.; Newton, A.R.; Rabaey, J.M.; Sangiovanni-
Vincentelli, A. “System-level design: orthogonalization of
concerns and platform-based design”. IEEE Transactions
on CAD of Integrated Circuits and Systems, v. 19(12),
2000, pp. 1523-1543.

[8] Kumar, S.; et al. “A Network on Chip Architecture and
Design Methodology”. In: IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), 2002, pp. 105-112.

[9] Mohapatra, P.; “Wormhole routing techniques for directly
connected multicomputer systems”. ACM Computing Sur-
veys, v. 30(3), 1998, pp. 374-410.

[10] Rijpkema, E.; Goossens, K; Wielage, P. “A Router Archi-
tecture for Networks on Silicon”. In: 2nd Workshop on Em-
bedded Systems (PROGRESS), 2001, pp. 181-188.

[11] Xilinx, Inc. http://www.xilinx.com.

	Main Page
	DF'05
	Front Matter
	Table of Contents
	Author Index

	DATE'05

