
Energy and Latency Evaluation of NoC Topologies

Marcio Kreutz1, Cesar Marcon1,2, Luigi Carro1, Ney Calazans2 and Altamiro A. Susin1
GME – Informática – UFRGS1 - Porto Alegre, RS, Brazil – PUCRS2 - Porto Alegre, RS, Brazil

[kreutz, marcon,carro]@inf.ufrgs.br, calazans@inf.pucrs.br, susin@eletro.ufrgs.br

Abstract — Mapping applications onto different networks-on-
chip (NoCs) topologies is done by mapping processing cores on
local ports of routers considering requirements like latency
and energy consumption. In this work, an algorithm devoted to
evaluate different topologies is proposed. The evaluation starts
with an application model called Application Communication
Pattern (ACP), which specifies tasks with the computation load
and communication profile. ACP focuses on communication
aspects and is an appropriate model to obtain mappings that
comply with application requirements. ACP allows fast
analysis over many NoC topologies, helping the system
designer to evaluate the communication performance of a
NoC-based system; this performance strongly depends on the
placement of the cores, and it is computationally hard to find
the optimal placement.

I. INTRODUCTION
Future billion transistors Systems-on-Chip (SoCs) will allow

the development of new applications, which will work in a
distributed way and require reusable communication architectures
offering scalable bandwidth and parallelism. Networks-on-Chip
(NoCs) emerge as a potential tile-based architecture to meet such
requirements. NoCs are communication infrastructures composed
by a set of routers interconnected by communication channels,
which can provide asynchronous communication between
synchronous domains. An important issue for NoC-based system
designers will be to find a solution of the communications-to-
network mapping problem in order to satisfy the communication
requirements.

In the upcoming years, a NoC is expected to accommodate
more than 10 x 10 tiles [1]. The search for appropriate models and
algorithms for mappings problems becomes mandatory. The
efficient implementation of tile-based architectures requires
efficient mapping strategies. This paper introduces the Application
Communication Pattern (ACP), a model that enables to capture not
only the communication capacity, but also the communication
ordering. We use ACP to evaluate latency and energy consumption
on different NoC topologies. The goal is to find, among regular and
irregular NoC topologies, the one that better fits the application
requirements. This will help on the design space exploration for
NoCs at earlier stages of design.

II. RELATED WORK
Hu and Marculescu [2] showed that mapping algorithms reduce

over 60% of energy consumption when compared to ad hoc
mapping solutions. Murali and De Micheli, in [3], implement a
similar solution. The focus of their papers is to present an algorithm
that maps the cores onto mesh NoC architecture under bandwidth
constraints, aiming to minimize the energy consumption and the

average communication delay. We emphasize that application
models, as the one presented in [2][3], omit essential information to
estimate the latency of the application, since these models do not
consider precisely the time where each communication take place.
The knowledge of the communication ordering leads to the ACP
model (presented in this paper), which aims for a better mapping
solution with low extra computational effort, if compared to
previous models.

Murali and De Micheli [4] extend the work presented in [3], by
the introduction of a tool called SUNMAP. SUNMAP built inside a
predefined library of topologies and uses a multi-objective function,
which encompasses average communication delay, area and energy
consumption. The main objective of the tool is to select
automatically the best topology for a given application and to
generate a mapping of cores onto that topology.

Hu and Marculescu [5] introduce a model that captures
communication and computation scheduling, which is represented
by communication task graph (CTG). CTG allows obtaining more
accurate results than the one presented in [2][3], since it takes into
account the effects of the traffic dynamics. However, while the
input data of ACP is easily extracted through the application
simulation, CTG implies an extra effort, since the designer has to
describe the application and also its computation and
communication scheduling.

Our approach uses ACP, which models the messages ordering
and traffic load. Similarly to [4], this paper explores the design
space for NoC topologies, however, we employ analytical energy
models in the search for an optimized topology. In addition, we
extend the work with the analysis of the effects of the tile size in the
energy consumption.

III. PROBLEM FORMULATION
Given a distributed application, we can state our mapping

problem as the task of minimizing the latency and energy
consumption by determining the better place for cores on different
NoC topologies. The solution for this problem relies in a very
complex task, because more than one variable is considered
concurrently in the search space: core place, topology and tile size.

It is assumed an application whose tasks were previously
mapped onto a set of cores, so we envision a scenario where
functions are distributed among a number of cores in a SoC.

We have defined an application communication pattern (ACP)
to represent the semantics of communicating cores.
Communications can be mainly described by the relationships
among the cores, by the parallelism among messages exchanges and
by the order in which the communications must occur. To model
such behavior, it is possible to define a data structure like a “list of
sets”, where each element of a “time tag list” points to a set of
messages.

Definition 1: An ACP is a list of sets. Let C = {c1, c2, …, cn} be the
set of application cores, and bq ∈ � the number of bits of the q-th
message. Then mijq = (ci, cj, bijq) | ci, cj ∈ C is the q-th message from
core ci to core cj with bijq bits. Let M = {mijq | ci, cj ∈ C} be the set
of all messages between application cores and m be a subset of M.
ACP = {(t, m) | t ∈ ���m ⊂ M} represents an ordered list of
message sets, such that t is a time tag that marks the start time of all
messagens of m.

The communication architectures can also be modeled as a
graph, whose vertices represent tiles and the set of oriented edges
express all the links given by the network topology. This data
structure is defined as the communication resource graph (CRG).

Definition 2: A CRG = <Γ, L> is a directed graph, where
Γ = {τ1, τ2, …, τp} denotes the set of tiles, corresponding to the set
of CRG vertices, and L = {(τi, τj) | τi, τj ∈ Γ} designates the set of
links from τi to τj, corresponding to the set of CRG edges. The way
the edges are connected represents the network topology. Each
directed edge lij = (τi, τj) has associated a structure sij composed by
parameters that expresses the link characteristics in a given
topology, such as a link width.

Figure 1 illustrates the above definitions through a hypothetical
application with four cores C = {a, b, c, d}, six messages, and a 2x2
NoC. Figure 1(a) depicts an ACP = {(t1, {(a, b, 15), (c, a, 20)}), (t2,
{(c, a, 15), (a, d, 15), (b, d, 40)}), (t3, {(d, b, 15)})}. Figure 1(b)
depicts a CRG with an arbitrary valid mapping of C onto CRG,
generating the following association: {(τ1, b), (τ2, a), (τ3, d), (τ4, c)}.

 Start

(a) (b)

 15
b a

b a

c d

τ3

τ1 τ2

τ4

t1

t2

t3

End

 20
a c

 40
d b

 15
d a

 15
a c

 15
b d

Figure 1 – ACP (a) and CRG (b) examples

For each application message, it is necessary to find in the CRG
a path between its sender and receiver vertices in order to determine
if the bandwidth offered by this path matches that one required by
the application.

Definition 3: A path pij = (τi, liy, …, τw, lwj, τj) is an alternating
sequence of CRG vertices and edges, to transport a message from
core ci to core cj. A path is formed according to the routing strategy
implemented in the network tiles the CRG represent. pij may also
correspond to an indirect path in an irregular topology, for instance,
a path that uses a router of level two in a fat-tree topology.

Finally, in order to find a valid mapping, one must map each
message of the ACP to links and local ports associated to tiles of the
CRG.

Definition 4: Given a CRG, for each mijq ∈ ACP there exists a
corresponding pij ∈ CRG, i.e. there is a mapping function
F: ACP → CRG such that ∀ mijq ∈ ACP ∃ pij ∈ CRG.

A. Energy Model
This work uses an energy model similar to the ones presented in

[2][3], and extends those concepts to estimate energy for different
topologies. We use the same concept of bit energy Ebit to estimate

the dynamic energy consumption for each bit. Ebit is split into: bit
dynamic energy consumed on the buffers (EBbit), on the logic gates
of each switch (ESbit); and on the links between tiles (ELbit), which
is directly proportional to tile dimension. Because of the strong
topological dependence to compute ESbit, EBbit and ELbit, we
define α as a function to estimate the total sum of ESbit and EBbit
and ϕ to estimate ELbit. Equation 1 computes the dynamic energy
consumed by a single bit traversing the NoC, from tile τi to tile τj -
where communicating cores were previously mapped - and TOP
represents the topology selected for evaluation.

Ebitij TOP = αTOP(i, j, EBbit, ESbit) + ϕTOP(i, j, ELbit) (1)

To estimate mesh, folded torus and fat-tree NoC topologies, we
assume some considerations for all topologies: (i) the router area is
insignificant front of the core area; and (ii) all tiles are regular and
with the same square dimensions. These considerations allow
estimating the energy consumption for each topology, permitting a
comparative evaluation of each layout at earlier design stages.

Assuming (ii), Figure 2(a) depicts that vertical and horizontal
links have the same size, i.e. lmV = lmH = l. Since ELbit is
proportional to l size, for mesh topology function ϕ of equation 1
can be approximated to equation 2, where η corresponds to the
number of routers through which the bit passes from tile i to tile j.

ϕMESH(i, j, ELbit) = (η-1) ELbit (2)

Assuming (ii) Figure 2(b) depicts that ltm = l, and as a result of
(i) if lr << lτ, than ltM ≅ 2l making equation 3 an approximation of
function ϕ for folded torus topology.

ϕTORUS(i, j, ELbit) = (2 or 1) × (η-1) ELbit (3)

ESbit and EBbit of mesh and folded torus topologies are
similarly estimated since routers are the same. Then, the function α
of equation 1 can be approximated to equation 4.

αMESH_OR_TORUS(i, j, EBbit, ESbit) = η (ESbit + EBbit) (4)

τ1

lτ lr

lmH

lmV

τ1 τ2

τ5 τ6

lr

lτ ltm

ltM

Mesh topology (a) Folded torus topology (b)

Figure 2 – Partial view of NoCs

The irregularity of fat-tree topology implies paths with different
sizes and consequently different ELbit. For instance, Figure 3 shows
the minimum paths size among one router of level one and all
routers of level-two of a fat-tree topology with sixteen tiles.
Considering the depicted routing layout and assuming (i) and (ii)
la ≅ l/2, lb ≅ l, lc ≅ l and ld ≅ 2l. For instance, ELbit is proportional
to 3l (2 la and 2 lb), when the path uses a router of level one in the
same tile of the router of level two. On the other hand, ELbit is
negligible, if the routing does not use routers of level two. The
function α of equation 1 can be approximated to equation 5 for fat-
tree topology.

αTREE(i, j, EBbit, ESbit) = (0, 3, 4 or 5) ELbit (5)

The routing inside a level one fat-tree router implies the use of a
buffer and a switch that consumes – in average – double energy
than the switches of mesh or folded torus topologies. This happen

because switches and buffers of routers from level 1 must provide a
path for packets coming from the upper level as well a form the
same router. When a router of level two is used, there are three
buffering and switching stages: one for each level, and for the
target. In this case, equation 6 represents ESbit and EBbit
computation.

τ5 τ6 τ7 τ8

lr

la

lb

lc

la la la

lb lb lb

ld

τ9 τ10 τ11 τ12

τ1 τ2 τ3 τ4

lr

l

l

Figure 3 – Partial view of a NoC with fat-tree topology. It is depicted 2
level one and 4 level two routers (shaded)

αTREE(i, j, EBbit, ESbit) = (1 or 3) ESbit + (2 or 4) EBbit (6)

The complete Ebitij can be estimated by equations 7, 8 and 9, for
mesh, folded torus and fat-tree topologies, respectively.

Ebitij MESH = η (ESbit + EBbit) + (η-1) (7)

Ebitij TORUS = η (ESbit + EBbit) + (2 or 1) (η-1) ELbit (8)

EbitijTREE = (1 or 3) ESbit + (2 or 4) EBbit + (0, 3, 4 or 5) ELbit (9)

Let nijq be the total amount of bits of a message mijq ∈ M going
from ci to cj. Then, for all topologies, Ebitq = nijq × Ebitij. Equation
10 gives the total amount of NoC dynamic energy consumption
(EDyNoC), which computes all bit traffic of all k messages.

EDyNoC = �
=

k

q
qbitE

0

 (10)

Given this energy model, an evaluation algorithm can be
developed to optimize NoC topologies regarding energy
consumption. In the next section our strategy to
optimization and the associated algorithm are detailed.

IV. EVALUATING MAPPING ONTO NOC TOPOLOGIES
The problem of mapping cores onto NoC topologies is an

instance of the set covering problem (SCP) which is proven to be
NP-complete [9]. The search space grows exponentially with the
system size: even for a 4x4 NoC there are 16! possible mappings.
To solve the problem we adopt the Tabu Search (TS) algorithm
[7], since it has been used to solve many covering problems in
many different areas [8]. Figure 4 depicts the pseudo-code for the
TS algorithm, where t stands for one step of the algorithm, k is the
cost function for energy consumption and latency, Y is the set of
all possible solutions and nt is the total number of iterations the
algorithm should execute.

The general strategy of TS is to explore, from a set of p
resources S = (1, 2, …, p), all possible moves from the current
solution to a neighboring one. The move leading to a neighboring
solution can be accepted, even if this results in a deterioration of the
objective function. To prevent the search process from cycling, a
Tabu list (T) is used to store the last moves for a certain number of
iterations (nt). Thus, all solutions, which can be obtained by
applying a move stored in T, are excluded from the search. An
aspiration criterion allows overriding the Tabu status of a move, for
instance, if the move leads to a new best solution. The OPTIMUM
function selects a best move among a set of neighbors solutions.

Tabu_Search(resources S) {
 select an initial solution:

 y ∈ Y e y* = y; T = ∅

1 if (S(y)–T) == ∅
 stop;
 else
 t = t + 1;

 select best y = OPTIMUM(s(y): s ∈ S(y)-T);
 if k(y) < k(y*) // y* → best solution
 y* = y;
 if t > nt
 stop;
 else
 update T;
 go to 1;
}

Figure 4 – Pseudo code for a Tabu Search algorithm

The S set is made equal to cores places, where each new
solution (a move) in the search space means a core swapping, which
changes the source and destination for communications; S = {c2, c4,
c8, …, cn}; where S[0] = c2 means that core c2 is placed on the tile 0.

The values for latency and energy consumption may vary for
each application execution, due to network contentions. Due to its
unpredictable behavior, contentions can only be obtained at
execution time. We developed a simulator that simulates C++
models for generic components of NoC routers. By simulating a
CRG for a target NoC, a system designer can observe how NoC
components behave when they send and receive application
messages. The NoC simulator is used to evaluate each mapping
given by each step in the TS algorithm.

A simulation step stands for all messages sent concurrently by
the application at each instant of time t, according to the Definition
1. Since the TS algorithm simulates the communications for each
solution found by the OPTIMUM function, it was necessary to
develop a simulator, which could run as fast as possible. This is the
reason because all NoC components were described in C++,
accompanying with a dedicated simulator.

We have modeled direct (torus and mesh) and indirect (fat-tree)
topologies for evaluation. For direct topologies, it was employed the
handshake flow control, a deterministic and source-based routing
strategy (XY routing), wormhole packet switching, round-robin
arbitration and input buffering. The fat-tree NoC differs in the
routing policy, which is partially adaptive – to send messages to the
second level of the tree structure – and partially static, the address
of the destination node is conceived before a message is sent. These
settings are commonly used for NoCs, so they can represent typical
NoCs considered for SoCs design.

V. EXPERIMENTAL RESULTS
To corroborate the efficiency of the proposed TS-based

algorithm we have tested three applications running on three
different NoC topologies: a 4x4 mesh, a 4x4 folded torus and a fat-
tree with 16 terminals. Communication channels width was set to
32 bits and the length of messages vary stochastically between 100
and 800 bytes. The first application is a mathematical application
that calculates the Romberg integration [9]; the second one is an 8-
point Fast Fourier Transform (FFT) [10]; the third one is an “image
processing” application for object recognition in a video frame.

The results for latency and energy Tabu-based optimization are
given in Figure 5 and Figure 6, respectively. Figure 5 shows that the
folded torus and fat-tree topologies could be better optimized for all
applications due to higher level of parallelism offered in
comparison to the mesh topology. The sequential accesses to a
memory and to a central processor in the image application increase
the latency of folded torus topology when compared to fat-tree
topology. Its reduced number of hops justifies the best result of fat-

tree topology.

When energy consumption is taken into account, the mesh
structure presented best results, as outlined in Figure 6. The reason
for that relies on the shorter wires length a mesh structure has, in
comparison to others. For the image application, an optimal result
could be achieved for the fat-tree topology, because the energy
consumption is nearly as good as the one achieved for the mesh.
The reason for that relies on the fact that for this structure the TS
algorithm could find the best local minima, which implies in lower
switching activities, as well as lower usage of the longer wires.

5
3

15

5
3

16

4
6

12

0
2
4
6
8

10

12
14
16
18

FFT Romberg Image

cycles(avg) mesh torus fat-tree

Figure 5 – Latency Optimization

We conclude that, by taking an intersection between latency
and energy consumption results, the fat-tree is the better choice for
executing the image application.

233
255

230

175

132140 133140

192

0

50

100

150

200

250

300

FFT Romberg Image

energy(mJ) mesh torus fat-tree

Figure 6 – Energy Optimization

Although the folded torus topology has presented good results
regarding latency for all applications, it is not a good choice when
energy consumption is critical. A good trade-off between latency
and energy consumption could be found for the mesh topology,
because it has – in average – about 10% lower performance, but
35% lower energy consumption. Another interesting experiment
regards on tiles area overhead. The area of a tile can be enlarged to
accommodate the area of the target core. This may increase the
length (and capacity load) of communication wires used to connect
them, which lead to new values for ELbit (defined in section III.A).
In Figure 7, it is outlined the results achieved by running the
Romberg application for tiles 2, 4 and 8 times larger than the ones
previously tested.

175
255

140
278

452

222

485

888

396

898

1714

742

0
200
400
600
800

1000
1200
1400
1600
1800

mesh torus fat-tree

energy
(mJ)

1x EL 2x EL 4x EL 8x EL

Figure 7 – Latency optimization for different tiles size

As previously shown in Figure 6, the mesh topology can

achieve the best results for energy consumption, regardless of the
area of tile it is mapped to. Another interesting point concerns the
fact that all topologies tested, suffer proportionally the same penalty
– in energy consumption – for longer wires in communication
channels: the bigger ELbit is, the higher is the energy consumption
at the same proportion for all topologies. Therefore, if bigger cores
replace the original ones, the NoC optimized and selected to run the
application will remain the same.

Finally, regarding simulation performance, for all Tabu
executions, it needed not more than two or three seconds to find an
optimal solution in a system composed by a 1 GHz Pentium IV
machine with 512 MHz of memory. Therefore, the simulator allows
larger applications to be explored in affordable time.

VI. CONCLUSIONS AND FUTURE WORK
In this work, we have presented an approach to evaluate NoC

topologies, which is based on a simulation engine and on a Tabu-
based heuristic optimization algorithm. Since NoCs architectural
components exploration turn to a huge design space to be inspected,
we have chosen to employ a heuristic algorithm to evaluate
different network topologies. This was made with the objective of
network concurrency exploration, in order to find a structure that
could better optimize latency and energy consumption. To do that,
an analytical energy model was developed, which is able to capture
energy consumption estimations for regular and irregular
topologies. The design exploration proposed encompasses NoC
concurrency evaluation by simulating applications messages on
different topologies and by mapping processor cores in a way that
reduces NoC contentions.

We showed that the algorithm employed can find optimal
solutions for regular and irregular topologies in an affordable time.
In addition, this paper shows that fat-tree topology is a strong
candidate to fulfill the latency constraints for many applications,
while mesh topology achieves the less energy consumption, and for
a image processing application the best trade-off between latency
and energy consumption is obtained with fat-tree topology.

As future works, we plan to continuously improve the heuristic
by adding processor cores execution times in order to evaluate not
only the communication subsystem, but also a complete SoC.

REFERENCES
[1] S. Kumar et al. A Network on Chip Architecture and Design

Methodology. IEEE Computer Society Annual Symposium on
VLSI, pp.105-112, April 2002.

[2] J. Hu and R. Marculescu. Energy-Aware Mapping for Tile-based
NoC Architectures under Performance Constraints. ASP-DAC,
pp.233-239, January 2003.

[3] S. Murali and G. De Micheli. Bandwidth-Constrained Mapping of
Cores onto NoC Architectures. DATE, pp.896-901, February 2004.

[4] S. Murali and G. De Micheli. SUNMAP: A Tool for Automatic
Topology Selection and Generation for NoCs. DAC, pp.914-919,
June 2004.

[5] J. Hu and R. Marculescu. Energy-aware communication and task
scheduling for network-on-chip architectures under real-time
constraints. DATE, pp.234-239, February 2004.

[6] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman and Co. 1979.

[7] F. Glover. Tabu search – Part I. ORSA Journal on Computing. vol.
1, pp.190-206, 1989.

[8] F. Glover. Tabu search – Part II. ORSA Journal on Computing.
vol. 1, pp.4-32, 1990.

[9] R. Burden and J. D. Faires – Study Guide for Numerical Analysis,
McGraw-Hill, New York, 2001.

[10] M. Quinn – Parallel Computing- Theory and Practice, McGraw-
Hill, New York, 1994.

