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Abstract — Mapping applications onto different networks-on-
chip (NoCs) topologies is done by mapping processing cores on 
local ports of routers considering requirements like latency 
and energy consumption. In this work, an algorithm devoted to 
evaluate different topologies is proposed. The evaluation starts 
with an application model called Application Communication 
Pattern (ACP), which specifies tasks with the computation load 
and communication profile. ACP focuses on communication 
aspects and is an appropriate model to obtain mappings that 
comply with application requirements. ACP allows fast 
analysis over many NoC topologies, helping the system 
designer to evaluate the communication performance of a 
NoC-based system; this performance strongly depends on the 
placement of the cores, and it is computationally hard to find 
the optimal placement. 

I. INTRODUCTION 
Future billion transistors Systems-on-Chip (SoCs) will allow 

the development of new applications, which will work in a 
distributed way and require reusable communication architectures 
offering scalable bandwidth and parallelism. Networks-on-Chip 
(NoCs) emerge as a potential tile-based architecture to meet such 
requirements. NoCs are communication infrastructures composed 
by a set of routers interconnected by communication channels, 
which can provide asynchronous communication between 
synchronous domains. An important issue for NoC-based system 
designers will be to find a solution of the communications-to-
network mapping problem in order to satisfy the communication 
requirements. 

In the upcoming years, a NoC is expected to accommodate 
more than 10 x 10 tiles [1]. The search for appropriate models and 
algorithms for mappings problems becomes mandatory. The 
efficient implementation of tile-based architectures requires 
efficient mapping strategies. This paper introduces the Application 
Communication Pattern (ACP), a model that enables to capture not 
only the communication capacity, but also the communication 
ordering. We use ACP to evaluate latency and energy consumption 
on different NoC topologies. The goal is to find, among regular and 
irregular NoC topologies, the one that better fits the application 
requirements. This will help on the design space exploration for 
NoCs at earlier stages of design. 

II. RELATED WORK 
Hu and Marculescu [2] showed that mapping algorithms reduce 

over 60% of energy consumption when compared to ad hoc 
mapping solutions. Murali and De Micheli, in [3], implement a 
similar solution. The focus of their papers is to present an algorithm 
that maps the cores onto mesh NoC architecture under bandwidth 
constraints, aiming to minimize the energy consumption and the 

average communication delay. We emphasize that application 
models, as the one presented in [2][3], omit essential information to 
estimate the latency of the application, since these models do not 
consider precisely the time where each communication take place. 
The knowledge of the communication ordering leads to the ACP 
model (presented in this paper), which aims for a better mapping 
solution with low extra computational effort, if compared to 
previous models. 

Murali and De Micheli [4] extend the work presented in [3], by 
the introduction of a tool called SUNMAP. SUNMAP built inside a 
predefined library of topologies and uses a multi-objective function, 
which encompasses average communication delay, area and energy 
consumption. The main objective of the tool is to select 
automatically the best topology for a given application and to 
generate a mapping of cores onto that topology. 

Hu and Marculescu [5] introduce a model that captures 
communication and computation scheduling, which is represented 
by communication task graph (CTG). CTG allows obtaining more 
accurate results than the one presented in [2][3], since it takes into 
account the effects of the traffic dynamics. However, while the 
input data of ACP is easily extracted through the application 
simulation, CTG implies an extra effort, since the designer has to 
describe the application and also its computation and 
communication scheduling. 

Our approach uses ACP, which models the messages ordering 
and traffic load. Similarly to [4], this paper explores the design 
space for NoC topologies, however, we employ analytical energy 
models in the search for an optimized topology. In addition, we 
extend the work with the analysis of the effects of the tile size in the 
energy consumption. 

III. PROBLEM FORMULATION 
Given a distributed application, we can state our mapping 

problem as the task of minimizing the latency and energy 
consumption by determining the better place for cores on different 
NoC topologies. The solution for this problem relies in a very 
complex task, because more than one variable is considered 
concurrently in the search space: core place, topology and tile size. 

It is assumed an application whose tasks were previously 
mapped onto a set of cores, so we envision a scenario where 
functions are distributed among a number of cores in a SoC. 

We have defined an application communication pattern (ACP) 
to represent the semantics of communicating cores. 
Communications can be mainly described by the relationships 
among the cores, by the parallelism among messages exchanges and 
by the order in which the communications must occur. To model 
such behavior, it is possible to define a data structure like a “list of 
sets”, where each element of a “time tag list” points to a set of 
messages. 



Definition 1: An ACP is a list of sets. Let C = {c1, c2, …, cn} be the 
set of application cores, and bq ∈ � the number of bits of the q-th 
message. Then mijq = (ci, cj, bijq) | ci, cj ∈ C is the q-th message from 
core ci to core cj with bijq bits. Let M = {mijq | ci, cj ∈ C} be the set 
of all messages between application cores and m be a subset of M. 
ACP = {(t, m) | t ∈ ���m ⊂ M} represents an ordered list of 
message sets, such that t is a time tag that marks the start time of all 
messagens of m. 

The communication architectures can also be modeled as a 
graph, whose vertices represent tiles and the set of oriented edges 
express all the links given by the network topology. This data 
structure is defined as the communication resource graph (CRG). 

Definition 2: A CRG = <Γ, L> is a directed graph, where 
Γ = {τ1, τ2, …, τp} denotes the set of tiles, corresponding to the set 
of CRG vertices, and L = {(τi, τj) | τi, τj ∈ Γ} designates the set of 
links from τi to τj, corresponding to the set of CRG edges. The way 
the edges are connected represents the network topology. Each 
directed edge lij = (τi, τj) has associated a structure sij composed by 
parameters that expresses the link characteristics in a given 
topology, such as a link width. 

Figure 1 illustrates the above definitions through a hypothetical 
application with four cores C = {a, b, c, d}, six messages, and a 2x2 
NoC. Figure 1(a) depicts an ACP  = {(t1, {(a, b, 15), (c, a, 20)}), (t2, 
{(c, a, 15), (a, d, 15), (b, d, 40)}), (t3, {(d, b, 15)})}. Figure 1(b) 
depicts a CRG with an arbitrary valid mapping of C onto CRG, 
generating the following association: {(τ1, b), (τ2, a), (τ3, d), (τ4, c)}. 
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Figure 1 – ACP (a) and CRG (b) examples 

For each application message, it is necessary to find in the CRG 
a path between its sender and receiver vertices in order to determine 
if the bandwidth offered by this path matches that one required by 
the application. 

Definition 3: A path pij = (τi, liy, …, τw, lwj, τj) is an alternating 
sequence of CRG vertices and edges, to transport a message from 
core ci to core cj. A path is formed according to the routing strategy 
implemented in the network tiles the CRG represent. pij may also 
correspond to an indirect path in an irregular topology, for instance, 
a path that uses a router of level two in a fat-tree topology. 

Finally, in order to find a valid mapping, one must map each 
message of the ACP to links and local ports associated to tiles of the  
CRG. 

Definition 4: Given a CRG, for each mijq ∈ ACP there exists a 
corresponding pij ∈ CRG, i.e. there is a mapping function 
F: ACP → CRG such that ∀ mijq ∈ ACP ∃ pij ∈ CRG.  

A. Energy Model 
This work uses an energy model similar to the ones presented in 

[2][3], and extends those concepts to estimate energy for different 
topologies. We use the same concept of bit energy Ebit to estimate 

the dynamic energy consumption for each bit. Ebit is split into: bit 
dynamic energy consumed on the buffers (EBbit), on the logic gates 
of each switch (ESbit); and on the links between tiles (ELbit), which 
is directly proportional to tile dimension. Because of the strong 
topological dependence to compute ESbit, EBbit and ELbit, we 
define α as a function to estimate the total sum of ESbit and EBbit 
and ϕ to estimate ELbit. Equation 1 computes the dynamic energy 
consumed by a single bit traversing the NoC, from tile τi to tile τj - 
where communicating cores were previously mapped - and TOP 
represents the topology selected for evaluation. 

Ebitij TOP = αTOP(i, j, EBbit, ESbit) + ϕTOP(i, j, ELbit) (1) 

To estimate mesh, folded torus and fat-tree NoC topologies, we 
assume some considerations for all topologies: (i) the router area is 
insignificant front of the core area; and (ii) all tiles are regular and 
with the same square dimensions. These considerations allow 
estimating the energy consumption for each topology, permitting a 
comparative evaluation of each layout at earlier design stages. 

Assuming (ii), Figure 2(a) depicts that vertical and horizontal 
links have the same size, i.e. lmV = lmH = l. Since ELbit is 
proportional to l size, for mesh topology function ϕ of equation 1 
can be approximated to equation 2, where η corresponds to the 
number of routers through which the bit passes from tile i to tile j. 

ϕMESH(i, j, ELbit) = (η-1) ELbit (2) 

Assuming (ii) Figure 2(b) depicts that ltm = l, and as a result of 
(i) if lr << lτ, than ltM ≅ 2l making equation 3 an approximation of 
function ϕ for folded torus topology. 

ϕTORUS(i, j, ELbit) = (2 or 1) × (η-1) ELbit (3) 

ESbit and EBbit of mesh and folded torus topologies are 
similarly estimated since routers are the same. Then, the function α 
of equation 1 can be approximated to equation 4. 

αMESH_OR_TORUS(i, j, EBbit, ESbit) = η (ESbit + EBbit) (4) 

 

τ1 

lτ lr 

lmH 

lmV 

 

 

τ1 τ2 

τ5 τ6 

lr 

lτ ltm 

ltM

 
Mesh topology (a) Folded torus topology (b) 

Figure 2 – Partial view of NoCs 

The irregularity of fat-tree topology implies paths with different 
sizes and consequently different ELbit. For instance, Figure 3 shows 
the minimum paths size among one router of level one and all 
routers of level-two of a fat-tree topology with sixteen tiles. 
Considering the depicted routing layout and assuming (i) and (ii) 
la ≅ l/2, lb ≅ l, lc ≅ l and ld ≅ 2l. For instance, ELbit is proportional 
to 3l (2 la and 2 lb), when the path uses a router of level one in the 
same tile of the router of level two. On the other hand, ELbit is 
negligible, if the routing does not use routers of level two. The 
function α of equation 1 can be approximated to equation 5 for fat-
tree topology. 

αTREE(i, j, EBbit, ESbit) = (0, 3, 4 or 5) ELbit (5) 

The routing inside a level one fat-tree router implies the use of a 
buffer and a switch that consumes – in average – double energy 
than the switches of mesh or folded torus topologies. This happen 



because switches and buffers of routers from level 1 must provide a 
path for packets coming from the upper level as well a form the 
same router. When a router of level two is used, there are three 
buffering and switching stages: one for each level, and for the 
target. In this case, equation 6 represents ESbit and EBbit 
computation. 
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Figure 3 – Partial view of a NoC with fat-tree topology. It is depicted 2 
level one and 4 level two routers (shaded) 

αTREE(i, j, EBbit, ESbit) = (1 or 3) ESbit + (2 or 4) EBbit (6) 

The complete Ebitij can be estimated by equations 7, 8 and 9, for 
mesh, folded torus and fat-tree topologies, respectively. 

Ebitij MESH = η (ESbit + EBbit) + (η-1) (7) 

Ebitij TORUS = η (ESbit + EBbit) + (2 or 1) (η-1) ELbit (8) 

EbitijTREE = (1 or 3) ESbit + (2 or 4) EBbit + (0, 3, 4 or 5) ELbit (9) 

Let nijq be the total amount of bits of a message mijq ∈ M going 
from ci to cj. Then, for all topologies, Ebitq = nijq × Ebitij. Equation 
10 gives the total amount of NoC dynamic energy consumption 
(EDyNoC), which computes all bit traffic of all k messages. 

EDyNoC = �
=

k

q
qbitE

0

 (10) 

Given this energy model, an evaluation algorithm can be 
developed to optimize NoC topologies regarding energy 
consumption. In the next section our strategy to 
optimization and the associated algorithm are detailed. 

IV. EVALUATING MAPPING ONTO NOC TOPOLOGIES 
The problem of mapping cores onto NoC topologies is an 

instance of the set covering problem (SCP) which is proven to be 
NP-complete [9]. The search space grows exponentially with the 
system size: even for a 4x4 NoC there are 16! possible mappings. 
To solve the problem we adopt the Tabu Search (TS) algorithm 
[7], since it has been used to solve many covering problems in 
many different areas [8]. Figure 4 depicts the pseudo-code for the 
TS algorithm, where t stands for one step of the algorithm, k is the 
cost function for energy consumption and latency, Y is the set of 
all possible solutions and nt is the total number of iterations the 
algorithm should execute. 

The general strategy of TS is to explore, from a set of p 
resources S = (1, 2, …, p), all possible moves from the current 
solution to a neighboring one. The move leading to a neighboring 
solution can be accepted, even if this results in a deterioration of the 
objective function. To prevent the search process from cycling, a 
Tabu list (T) is used to store the last moves for a certain number of 
iterations (nt). Thus, all solutions, which can be obtained by 
applying a move stored in T, are excluded from the search. An 
aspiration criterion allows overriding the Tabu status of a move, for 
instance, if the move leads to a new best solution. The OPTIMUM 
function selects a best move among a set of neighbors solutions. 

Tabu_Search(resources S)  { 
   select an initial solution: 

       y ∈ Y e y* = y; T = ∅ 

1  if (S(y)–T) == ∅ 
       stop; 
   else 
       t = t + 1; 

   select best y = OPTIMUM(s(y): s ∈ S(y)-T); 
   if k(y) < k(y*)  // y* → best solution 
      y* = y; 
   if t > nt 
     stop; 
   else  
      update T; 
   go to 1; 
} 

 
Figure 4 – Pseudo code for a Tabu Search algorithm 

The S set is made equal to cores places, where each new 
solution (a move) in the search space means a core swapping, which 
changes the source and destination for communications; S = {c2, c4, 
c8, …, cn}; where S[0] = c2 means that core c2 is placed on the tile 0. 

The values for latency and energy consumption may vary for 
each application execution, due to network contentions. Due to its 
unpredictable behavior, contentions can only be obtained at 
execution time. We developed a simulator that simulates C++ 
models for generic components of NoC routers. By simulating a 
CRG for a target NoC, a system designer can observe how NoC 
components behave when they send and receive application 
messages. The NoC simulator is used to evaluate each mapping 
given by each step in the TS algorithm. 

A simulation step stands for all messages sent concurrently by 
the application at each instant of time t, according to the Definition 
1. Since the TS algorithm simulates the communications for each 
solution found by the OPTIMUM function, it was necessary to 
develop a simulator, which could run as fast as possible. This is the 
reason because all NoC components were described in C++, 
accompanying with a dedicated simulator. 

We have modeled direct (torus and mesh) and indirect (fat-tree) 
topologies for evaluation. For direct topologies, it was employed the 
handshake flow control, a deterministic and source-based routing 
strategy (XY routing), wormhole packet switching, round-robin 
arbitration and input buffering. The fat-tree NoC differs in the 
routing policy, which is partially adaptive – to send messages to the 
second level of the tree structure – and partially static, the address 
of the destination node is conceived before a message is sent. These 
settings are commonly used for NoCs, so they can represent typical 
NoCs considered for SoCs design. 

V. EXPERIMENTAL RESULTS 
To corroborate the efficiency of the proposed TS-based 

algorithm we have tested three applications running on three 
different NoC topologies: a 4x4 mesh, a 4x4 folded torus and a fat-
tree with 16 terminals. Communication channels width was set to 
32 bits and the length of messages vary stochastically between 100 
and 800 bytes. The first application is a mathematical application 
that calculates the Romberg integration [9]; the second one is an 8-
point Fast Fourier Transform (FFT) [10]; the third one is an “image 
processing” application for object recognition in a video frame. 

The results for latency and energy Tabu-based optimization are 
given in Figure 5 and Figure 6, respectively. Figure 5 shows that the 
folded torus and fat-tree topologies could be better optimized for all 
applications due to higher level of parallelism offered in 
comparison to the mesh topology. The sequential accesses to a 
memory and to a central processor in the image application increase 
the latency of folded torus topology when compared to fat-tree 
topology. Its reduced number of hops justifies the best result of fat-



tree topology. 

When energy consumption is taken into account, the mesh 
structure presented best results, as outlined in Figure 6. The reason 
for that relies on the shorter wires length a mesh structure has, in 
comparison to others. For the image application, an optimal result 
could be achieved for the fat-tree topology, because the energy 
consumption is nearly as good as the one achieved for the mesh. 
The reason for that relies on the fact that for this structure the TS 
algorithm could find the best local minima, which implies in lower 
switching activities, as well as lower usage of the longer wires. 
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Figure 5 – Latency Optimization 

We conclude that, by taking an intersection between latency 
and energy consumption results, the fat-tree is the better choice for 
executing the image application. 
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Figure 6 – Energy Optimization 

Although the folded torus topology has presented good results 
regarding latency for all applications, it is not a good choice when 
energy consumption is critical. A good trade-off between latency 
and energy consumption could be found for the mesh topology, 
because it has – in average – about 10% lower performance, but 
35% lower energy consumption. Another interesting experiment 
regards on tiles area overhead. The area of a tile can be enlarged to 
accommodate the area of the target core. This may increase the 
length (and capacity load) of communication wires used to connect 
them, which lead to new values for ELbit (defined in section III.A). 
In Figure 7, it is outlined the results achieved by running the 
Romberg application for tiles 2, 4 and 8 times larger than the ones 
previously tested. 
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Figure 7 – Latency optimization for different tiles size 

As previously shown in Figure 6, the mesh topology can 

achieve the best results for energy consumption, regardless of the 
area of tile it is mapped to. Another interesting point concerns the 
fact that all topologies tested, suffer proportionally the same penalty 
– in energy consumption – for longer wires in communication 
channels: the bigger ELbit is, the higher is the energy consumption 
at the same proportion for all topologies. Therefore, if bigger cores 
replace the original ones, the NoC optimized and selected to run the 
application will remain the same. 

Finally, regarding simulation performance, for all Tabu 
executions, it needed not more than two or three seconds to find an 
optimal solution in a system composed by a 1 GHz Pentium IV 
machine with 512 MHz of memory. Therefore, the simulator allows 
larger applications to be explored in affordable time. 

VI. CONCLUSIONS AND FUTURE WORK 
In this work, we have presented an approach to evaluate NoC 

topologies, which is based on a simulation engine and on a Tabu-
based heuristic optimization algorithm. Since NoCs architectural 
components exploration turn to a huge design space to be inspected, 
we have chosen to employ a heuristic algorithm to evaluate 
different network topologies. This was made with the objective of 
network concurrency exploration, in order to find a structure that 
could better optimize latency and energy consumption. To do that, 
an analytical energy model was developed, which is able to capture 
energy consumption estimations for regular and irregular 
topologies. The design exploration proposed encompasses NoC 
concurrency evaluation by simulating applications messages on 
different topologies and by mapping processor cores in a way that 
reduces NoC contentions. 

We showed that the algorithm employed can find optimal 
solutions for regular and irregular topologies in an affordable time. 
In addition, this paper shows that fat-tree topology is a strong 
candidate to fulfill the latency constraints for many applications, 
while mesh topology achieves the less energy consumption, and for 
a image processing application the best trade-off between latency 
and energy consumption is obtained with fat-tree topology. 

As future works, we plan to continuously improve the heuristic 
by adding processor cores execution times in order to evaluate not 
only the communication subsystem, but also a complete SoC. 
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