
Models for Embedded Application Mapping onto NoCs: Timing Analysis

César Marcon, Márcio Kreutz, Altamiro Susin
GME – Instituto de Informática – UFRGS

Av. B. Gonçalves, 9500 - Porto Alegre, RS, Brazil
{marcon, kreutz, susin}@inf.ufrgs.br

Ney Calazans
PPGCC – Faculdade de Informática – PUCRS
Av. Ipiranga, 6681 - Porto Alegre, RS, Brazil

calazans@inf.pucrs.br

Abstract
Networks-on-chip (NoCs) are an emergent

communication infrastructure, which can be designed to
deal with growing system complexity and technology
evolution. The efficient use of NoCs needs techniques for
application cores mapping, allowing reducing the message
latency and consequently the overall execution time. To
obtain mappings that fulfill the requirements during high-
level design, appropriate models for NoCs and application
cores become mandatory. High abstraction levels modeling
may lead to unreliable estimates. On the other hand,
detailed models may imply complex algorithms and high
computational effort, with unacceptable computation time
to get satisfactory results. NoC modeling for latency
estimation requires capturing some infrastructure
characteristics like topology and routing policies.
Application cores models have to capture the application
behavior, in terms of computation and/or communication.
For instance, communication weighted models (CWM) and
communication dependence model (CDM) consider only
application communication aspects. However, the
communication dependence and computation model
(CDCM) consider both aspects of an application. This work
compares these three models, according to their algorithm
complexity and accuracy to model the application
performance. We show that depending on the application
characteristics, one of the models can be more suitable
than the others.

1 Introduction
New technologies allow that many millions of

transistors be integrated onto a single chip and thus enable
the implementation of complex systems-on-chip (SoCs).
These systems need special communication resources to
handle very tight design requirements. Many designers
propose to change from the mainstream synchronous design
paradigm to a globally asynchronous and locally
synchronous (GALS) design paradigm [1]. GALS design
method divide the application into synchronous domains
placed inside a limited region, which is usually called tile.
An asynchronous communication resource provides the
communication between these tiles. A network-on-chip
(NoC) is an infrastructure essentially composed by a set of
routers interconnected by point-to-point communication
channels. NoCs are easily adapted to implement systems

based on the GALS paradigm. NoC channels can be
designed to provide an asynchronous communication
protocol between synchronous domains. In addition, NoCs
provide high scalability, reusability, reliability, and efficient
energy consumption [2].

Consider a SoC implemented with GALS paradigm,
composed by n cores and employing a NoC as
communication infrastructure. The application-mapping
problem consists in finding an association of each core to a
tile (a mapping) such that some cost function is minimized.
In general, this mapping problem allows n! possible
solutions. Given future SoCs with hundreds of tiles [3],
exhaustive search into all solutions’ space will rapidly
become unfeasible. Thus, the optimal implementation of
such SoCs requires efficient mapping strategies and sound
application models. Some mapping strategies have been
proposed. For example, [4] and [5] propose two different
strategies with the same application model. We call this
model communication weighted model (CWM), since it
takes into account the overall volume of communication
between each pair of cores. [6] compares CWM with
communication dependence model (CDM), since CDM
considers also the communication timing. [7] compares
CWM with communication dependence and computation
model (CDCM), which considers the communication timing
and also the computation quantity. CDM and CDCM can
lead to a better mapping than the ones achieved with CWM.
However, it still needs to be verified the exact strength and
weaknesses of each model in capturing applications
behaviors, as well as their algorithm complexity. To clarify
these issues, this paper evaluates the modeling effect in the
application-mapping task, aiming to reduce the overall
execution time of an application running on a mesh NoC
architecture.

The remaining of the paper is organized as follows.
Section 2 discusses related work. Section 3 defines
application models for the mapping problem. Section 4
describes and compares algorithms and models. Section 5
presents experimental results and Section 6 presents some
conclusions.

2 Related Work
Hu and Marculescu [4] propose a model called

application characterization graph (APCG), which is a
way of capturing the communication weight of a given

application. Murali and De Micheli [5], propose a model
similar to that in [4], which is represented by a structure
called core graph. Both works, whose models are classified
here as CWM, are used to achieve mappings that minimize
some design constraints, like energy consumption and
average communication delay.

In all approaches that use the CWM strategy, essential
information regarding the instant of time that messages are
exchanged is lost, compromising some mapping results.

The authors of [6] propose a model that captures the
communication volume and dependence. This model allows
describing applications more accurately than the previous
model, generating mappings with less overall execution
time. The same authors introduce in [7] a new model that
captures not only the communication volume and
dependence, but also the computation quantity. The joint
effect of computation and communication leads to better
mappings, because contentions can be better estimated and
then avoided.

This work evaluates application models aiming to
compare their associated complexities and algorithms.

3 Problem Formulation
The problem of mapping application cores onto NoCs is

a complex one. The designer splits the application tasks
into cores. Each core behavior can be modeled by its
computation and communication characteristics. This
Section gives a formulation of the mapping problem in
terms of graph structures and proposed models.

3.1 Graph Definitions
Definition 1: A communication weighted graph (CWG) is a
directed graph <C, W>. The set of vertices
C = {c1, c2…, cn} represents the set of cores in one
application. Let wab be the number of bits of all packets sent
from a core ca to a core cb. Then, the set of edges W is
{(ca, cb) | ca, cb ∈ C and wab � 0}, and each edge is labeled
with the value wab.

W represents all communications between application
cores, and CWG informs the relative communication
volume of the application. This is similar to the definitions
of APCG [4] and core graph [5].

Definition 2: A communication dependence graph (CDG)
is a directed graph <V, D> [6]. Let C be a set of cores of a
given application and let vq = (ca, cb, wab) be the q-th
message sent from core ca to core cb with bit volume wab.
V = {v1, v2, …, vk} denotes the set of all messages between
all cores and corresponds to the set of CDG vertices. There
are also two special vertices named START and END. START
does not depend on any vertex, and no vertex depends on

END. D = {(vi, vj) | vi, vj ∈ V} represents the set of message
dependences, corresponding to the set edges.

CDG represents all core communication of a given
application. Edges are non-valued, and the edge direction
denotes that the message contained into the target vertex
depends on the origin vertex. In other words, the target
vertex is communication dependent on the origin vertex.

Definition 3: The communication dependence and
computation graph (CDCG) is a directed graph <P, D> [7].
CDCG has definition similar to CDG, the difference
consisting on the CDCG vertices (P), which contain the
computation quantity besides the messages exchanged
between each pair of application cores. Elements of P are 4-
tuples pabq = (ca, cb, taq, wabq), where ca, cb ∈ C, and pabq is
the q-th message sent from ca to cb. Messages contain wabq
bits that are transmitted after the computation time (taq) of
the originating core (ca) has elapsed.

The use of these models for solving the mapping
problem is evaluated onto a NoC with mesh topology using
wormhole, deterministic XY routing algorithm [8]. n tiles
compose an instance of this NoC. Figure 1 (a) depicts the
structure of this NoC, where each tile (τ) contains a router
(r) and a local core (c). Figure 1 (b) shows that each router
connects up to 5 external I/O channels and each channel has
buffered inputs and unbuffered outputs. The local channel
is devoted to provide communication with the local core.
The remaining channels provide inter-router
communication.

(a)

r1,1
c1,1

τ1
r2,1

c2,1

τ2
rϕ,1

cϕ,1

τϕ

r1,2
c1,2

τϕ+1
r2,2

c2,2

τϕ+2
rϕ,2

cϕ,2

τ2.ϕ

r1,ω
c1,ω

τ(ω-1).ϕ+1
r2,ω

c2,ω

τ(ω-1).ϕ+2
rϕ,ω

cϕ,ω

τω.ϕ

ϕ tiles

ω
til

es

SOUTH CHANNEL
E

A
ST

 C
H

A
N

N
E

L

W
E

ST
 C

H
A

N
N

E
L

LOCAL CHANNEL

INPUT
BUFFERS

NORTH CHANNEL

router

(b)
Figure 1 – NoC mesh topology (a) and its router (b).

Definition 4: A communication resource graph (CRG) is a
directed graph <Γ, L>, where the vertex set is the set of tiles
Γ = {τ1, τ2, …, τn}, and the edge set L = {(τi, τj), ∀τi,τj ∈ Γ}
designates the set of routing paths from τi to τj.

The value n is again the total number of tiles and is
equal to the product of the two NoC dimensions, ϕ and ω.
CRG edges and vertices represent physical links and tiles of
the target architecture, respectively.

Figure 2 illustrates the above definitions using a
hypothetical application with four IP cores, exchanging a
total of six messages, in a 2×2 NoC.

Figure 2(a) depicts one possible CDCG where

P = {pEA1 = (E, A, 10, 20), pEA2 = (E, A, 20, 15), pAF1 = (A,
F, 6, 15), …} and D = {(START, pEA1), (pEA1, pEA2), (pAB1,
pAF1), …}. Figure 2(b) depicts the correspondent CDG for
the chosen CDCG, where P = {pEA1 = (E, A, 20), pEA2 = (E,
A, 15), pAF1 = (A, F, 15), …} and the same D of CDCG.
Figure 2(c) shows a CWG, where C = {A, B, E, F}, the
edge labels are wAB = 15, wAF = 15, wBF = 40, wEA = 35,
wFB = 15 and the set W can be extracted easily from the
figure. Figure 2(d) depicts an arbitrary mapping of C onto
de NoC, corresponding to a CRG as follows: CRG = <{τ1,
τ2, τ3, τ4}, {(τ1, τ2), (τ2, τ1), (τ1, τ3), (τ3, τ1), (τ2, τ4), (τ4, τ2),
(τ3, τ4), (τ4, τ3)}>.

(d) (c)

A 15

15

B

F E

15
35

40

B E

A F
τ3

τ1 τ2

τ4

(b)

START

 15
B A 20

A E 40
F B

 15
F A 15

A E

 15
B F

END (a)

START

 15
B A

tA: 6
 20

A E
tE: 10

 40
F B

tB: 10

 15
F A

tA: 6
 15

A E
tE: 20

 15
B F

tF: 6
END

Figure 2 – (a) CDCG, (b) CDG, (c) CWG, (d) CRG.

3.2 Timing Models
To estimate the execution time of the application, this

section presents a timing model for XY deterministic
algorithm with wormhole routing. The total message delay
is composed by the routing delay and by the payload delay.
The routing delay is the time spent to create the
communication path, which is determined during the traffic
of the first flit. The payload delay depends only on the
number of the remaining flits. Let nab be the number of flits
of a message sent from ca to cb. Let λ be the period of a
clock cycle, and let tr be the number of cycles needed for
routing decision. In addition, let tl be the number of cycles
needed to transmit a flit through a link (between tiles or
between core and router). The routing delay (dRij) and the
payload delay (dPij) from τi to τj, are given by equations (1)
and (2), respectively, considering that a packet goes
through η routers without contention. Contentions are not
expressed here, since they can only be determined by the
knowledge of the overall messages timing.

(1) dRij = (η × (tr + tl) + tl) × λ

(2) dPij = (tl × (nab - 1)) × λ

The total message delay (dij), obtained from the sum of

(dRij) and (dPij), is expressed by Equation (3). All
algorithms use dij to compute the latency of a message.

(3) dij = (η × (tr + tl) + tl × nab) × λ

4 Mapping Algorithms
We implemented an algorithm that mix simulated

annealing [9] and simulated evolution [10]. This algorithm
is called external algorithm since it works as a shell that
calls three mapping cost algorithms (ModelMapping
function), one for each model. Figure 3 depicts the external
algorithm.

1. m ap ← InitialR andom M apping
2 . cost ← M odelM apping
3 . if cost < savedC ost
 savedM ap ← m ap
 savedC ost ← cost
 elsif cost < savedC ost + tem perature
 SaveM apping (savedM ap, savedC ost)
 savedM ap ← m ap
 savedC ost ← cost
4 . m ap ← R andom M apping(tem perature)
5 . tem perature ← tem perature – 1
6 . if tem perature > 0
 go to step 2
7 . savedM ap, savedC ost ← B estM apping
8 . m ap ← R andom M apping(1)
9 . cost ← M odelM apping
10 . if cost < savedC ost
 savedM ap ← m ap
 savedC ost ← cost
11 . iteration ← iteration – 1
12 . if iteration > 0
 go to step 8
13 . end

Figure 3 – External mapping algorithm.

The algorithm starts with an initial random mapping
associating cores to tiles; it then evaluates the mapping
cost, executing the specific algorithm for each model; and
searches for a new mapping that reduces the computed cost,
until reaching a stop condition. For all algorithms, the
mapping cost is computed by the ModelMapping function,
which depends on the model and the infrastructure. The
external algorithm is divided in two sets of steps: (i) from
step 1 to 6 - the algorithm accepts mappings worse than
previous ones, but always, saving the best mappings in
SaveMappings list. The acceptance level and the degree of
variations between mappings are reduced with a
temperature parameter. This procedure searches for the best
mappings trying to avoid local minima. (ii) from step 7 to
13 - the second part of the algorithm starts searching for the
best mapping of the saved mappings list and tries to find a
better one by a smaller grain search method, which
produces mappings that change only one association
between tiles and cores in each execution loop.

4.1 CWM Mapping Algorithm
The CWM algorithm is a ModelMapping function of the

external algorithm. This algorithm starts selecting a source
vertex. For each source vertex, all output edges are visited
to find the target vertex and the number of bits transmitted.
It proceeds until no unvisited vertices are left. When an
edge is visited, the number of bits transmitted, and the
source and target vertices are informed to the function that
maps them onto the NoC graph (CRGMapping function).
Figure 4 (a) depicts the ModelMapping function of CWM.

1. sourceVertex ← SearchSource
2. if sourceVertex = NULL
 go to step 7
3. targetVertex, bits ← SearchTarget
4. if targetVertex = NULL
 go to step 1
5. time ← CRGMapping(sourceVertex,

 targetVertex, bits)
6. go to step 3
7. return time

for x of source to x of target
for y of source to y of target

time ←TimeOfResource
return time

(a) ModelMapping of CWM (b) CRGMapping

Figure 4 – (a) ModelMapping function for CWM
mapping, and (b) CRG mapping algorithm.

The effective CWG mapping onto CRG is performed
according to the XY routing algorithm, and is called
CRGMapping. It receives source and target vertices, since
it allows associating the CWG vertices with the XY
physical places, allowing computing the communication
path. Figure 4 (b) describes this algorithm. TimeOfResource
is the delay of the message according to the timing model.

CWM model enables to compute only the time spent in
the communication infrastructure. TimeOfResource cannot
compute contentions, since CWM model does not model
any kind of timing information.

4.2 CDM Mapping Algorithm
CDM improves CWM, as it considers message

dependence. Dependent messages cannot be concurrent. On
the other hand, independent messages can be sent at the
same time, and consequently may lead to contentions, if
they share a given communication resource. Message
contention implies larger execution time. The goal of CDM
algorithms is to search for mappings that minimize the
sharing of communication resources for concurrent
messages.

The ModelMapping function of CDM is implemented
by firstly setting dependences in all vertices, i.e. all
dependence paths are searched, and for all vertices found in
the paths there is a dependence list to annotate the
predecessor vertices. Each vertex has also an integer to
store its dependence level. CRG can execute vertices with
the same dependence level at the same time, because there
is no dependence relation between them. Figure 5 (a) shows

these steps, which are performed only once and are used
during all mappings.

from Start to End Vertex
 search all paths
 SetDependenceLevel
 NoteDependeces

1. dependence ← 0
2. if dependence = DependenceLevel(End)
 return time
3. vertex ← SearchVertices(dependence)
4. if vertex = NULL
 go to step 6
5. time ← CRGMapping(vertex)
6. go to step 3
7. dependence ← dependence + 1
8. go to step 2

(a) Dependence settings (b) ModelMapping of CDM

Figure 5 – ModelMapping function for CDM mapping.

The ModelMapping function uses the dependence level
to execute CDG over CRG. The algorithm stops when it
reaches the dependence level of END vertex, returning the
computed execution time. For each dependence level, all
vertices are mapped onto CRG, i.e. the message contained
into the vertex is computed into CRG according to the
CRGMapping described in Figure 4 (b). However, the
CRGMapping only receives a vertex as parameter, since the
CDG vertex contains the source and target vertices, and the
number of bits transmitted. The TimeOfResource function
computes all independent messages as concurrent. Thus, the
algorithm considers that these messages will be contained
in the routing buffers, increasing the execution time.
Because of that, mappings with many contentions can be
avoided. Figure 5 (b) depicts the CDM ModelMapping
function. When all vertices at the same dependence level
are executed, a dependence control variable is incremented
and the process is repeated.

4.3 CDCM Mapping Algorithm
CDCM improves CDM by adding the tasks computation

time. It changes the algorithm focus. While CDM tries to
avoid contentions by a pessimistic approach - “if messages
are not dependent, either the mapping avoids resource
sharing or messages will cause contentions”, CDCM can
more effectively compute the exact time slice of each
message. Thus, even independent messages can concur for
the same resource without causing contentions, because
resources are shared at different moments of time.

The CDCM ModelMapping function is implemented by
firstly setting the dependences level of each vertex,
similarly to CDM. However, there is no list of
dependences, since the dependence knowledge is only
necessary to compute the dependence levels. Dependence
levels with computation time define a total ordering of
messages.

The CDCM ModelMapping function is similar to that of
CDM, depicted in Figure 5 (b). The only difference is in the
accounting of task computation time. The main difference

between CDCM and CDM algorithms relies on the
TimeOfResource function. Because of the exact knowledge
of message time slice, message contentions are only
computed if the messages concur for a same resource at the
same time. This approach reduces the number of “false”
possible contentions, enabling the algorithm to explore
mappings reducing contentions that really will occur.

4.4 Algorithms Comparison
The essential difference between the models is that

CWM and CDM is not able to estimate application
execution time. CWM cannot evaluate message contention
either. The main advantages of CWM are (i) easy extraction
of application core graph (CWG), since it can be done by
simulation techniques; and (ii) low computational
complexity. The automatic extraction of CDM and CDCM
core graphs are harder tasks, since simulations only allow
extracting possible message orderings, but not the desired
message dependence information. Therefore, CDGs and
CDCGs are normally described by hand, increasing error
susceptibility.

The main drawback of CDM and CDCM algorithms is
that in real embedded applications, the number of messages
exchanged between cores is much larger than the number of
cores. Since vertices of CDG and CDCG represent message
exchanges between cores and each vertex of CWG
represents just a core, CDGs and CDCGs are naturally
larger than CWGs.

CWM algorithms are less complex, because this only
informs direction and quantity of bits transmitted. CDM
and CDCM algorithms are more complex, since they have
to deal with message dependences. However, the CDM
algorithm is the most complex one, because its pessimistic
approach needs to compute lists of dependences for all
vertices, and these lists have to be recomputed each time a
vertex is evaluated.

When a message has more bits than the lower level
protocols allows, it is broke into several packets. Messages
with more than one packet can be interleaved, in the NoC
resources making difficult high-level contention estimation,
even for models like CDCM. On the other hand, the
pessimistic approach of CDM tends to avoid this kind of
contentions, since the associated algorithm searches for
mappings that avoid the concurrency of all independent
messages, and dependent messages cannot have interleaved
packets.

5 Experimental Results
In order to compare the models, hypothetical

applications with special characteristics were used as
benchmarks. The chosen application characteristics are
computation versus communication and message

dependence versus message concurrency. The applications
comprise create two set of benchmarks whose purposes are
to evaluate the models accuracy in finding mappings that
reduce the overall execution time. One set compares
computation versus communication and another one
compares dependence versus concurrency. The benchmarks
contain applications that vary all characteristics from 0% to
100%. Both benchmarks include 9 applications, with an
average of 18 vertices, and were built over the CDCM
model, since CDM and CWM can be automatically
extracted from CDCM with an auxiliary tool. The
hypothetical applications aim to evaluate a large range of
characteristics combinations, which can be matched with
real applications. An assumption is that if the characteristics
of a real application match the characteristics of a
hypothetical one, the best model found during the mapping
process also matches. Therefore, the designer has just to
evaluate the characteristics of its application to choose the
best model for its purpose.

5.1 Concurrence and Dependence Evaluation
It is not trivial to determine how much an application is

message concurrent or message dependent. Since there are
many variables involved to quantify these characteristics,
this work proposes a heuristics that proportionally relate
graph dependence (gd) with graph concurrency (gc).

Let n be the number of vertices of an application graph,
and let vd(v) be the list of vertices that vertex v depends on.
Then, gd is computed with by the sum of the vd of all n
vertices as depicted by Equation (4).

(4) gd = �
=

n

i
ivvd

1
)(

Let cc(v) be the set of all concurrency combinations of
vertex v, i.e. all combinations of vertices that may execute
concurrently with vertex v. Equation (5) depicts CC, which
is the set union of the ccs of all n vertices. The value gc is
the cardinality of CC. We assume this because CC
represents all possible concurrence combinations. Equation
(6) shows the computation of gc.

(5) CC = cc(v1) ∪ cc(v2) ∪ … ∪ cc(vn)

(6) gc = / CC /

The adopted heuristics estimates concurrency and
dependency percentages through the application of
Equation (7). Note that in (7) the increase of concurrency
implies the decrease of dependence and vice-versa.

(7) gd_gc = %100*
gdgc

gd

+

Equations (4), (6) and (7) are exemplified in Figure 6

and Table 1, which present a simple example of
hypothetical application graph. Figure 6 shows a
hypothetical application composed by six vertices V = {V1,
V2, V3, V4, V5, V6} representing messages, besides START
and END special vertices. In the right side of each vertex,
there is a list of dependences. For instance, vertex V5
depends on vertices START, V1 and V3, and vertex END
depends on the execution of all vertices described in the
graph. When its dependences are solved the application
execution is finished.

END

START

V2 V1

V4

V6

V3

V5

START, V1

START START

START, V1

START, V1, V3 START, V1, V2, V4

START, V1, V2, V3, V4, V5, V6

Figure 6 – Comparison of concurrency versus
dependence of a hypothetical application graph.

Table 1 illustrates the concurrency combinations of all
vertices of Figure 6.

Table 1 – Concurrence combinations of all vertex of the
hypothetical application graph showed in Figure 6.

cc(V1) { (V1,V2) }
cc(V2) { (V2,V3,V4), (V2,V4,V5), (V1,V2), (V2,V3), (V2,V4), (V2,V5) }
cc(V3) { (V2,V3), (V3,V4), (V3,V6), (V2,V3,V4) }
cc(V4) { (V2, V4), (V3,V4), (V4,V5), (V2,V3,V4), (V2,V4,V5), }
cc(V5) { (V5,V6), (V4,V5), (V2,V4,V5) }
cc(V6) { (V3,V6), (V5,V6) }

3
0

78
68

59

47

30
22

14

3

-5

5

15

25

35

45

55

65

75

0 12,5 25 37,5 50 62,5 75 87,5 100

CWM
CDM / CDCM

Latency reduction (%)

gd_gc

Figure 7 – Average latency reduction achieved with
mappings of CWM, CDM and CDCM models, when
concurrency and dependence variations are concerned.

Applying Equation (5) gives CC = {(V1,V2), (V2,V3),
(V2,V4), (V2,V5), (V3,V4), (V3,V6), (V4,V5), (V5,V6),
(V2,V3,V4), (V2,V4,V5) }. Next, applying Equation (6)

gc = / CC / = 10. In addition, applying Equation (4)
gd = 20, is obtained. Finally, applying Equation (7) gives
gd_gc = 66,67%. The interpretation is that this application
is more dependent than concurrent. Using a benchmark
with applications that do not consider computation and
varies the dependence from 0% to 100%, and the opposite
situation for concurrency, the results of Figure 7 are
obtained.

Without considering computation, CDM and CDCM
lead to identical results. However, it is possible to observe
that CDM and CDCM, when compared to CWM, present a
linear increase in latency reduction with the increase of
dependence. All models have similar results only with
applications with gd_gc lower than 12,5%.

5.2 Computation and Communication Evaluation
In order to comparatively evaluate computation and

communication, all vertices of the hypothetical applications
were assigned with an amount of message bits and an
amount of computation time. We use a heuristic based on a
Normal distribution, avoiding that the relation between
these application characteristics be masked by discrepant
values.

Let si be the i-th sample, µ be the medium value of the
samples computed by Equation (8), and σ be the deviation
assumed (we consider 30%), which is computed by
Equation (9). Then, Equation (10) computes the average of
the considered samples (ω).

(8)
n

n
s

i
i�

== 1
µ

(9) σ- = µ * 0.7 and σ+= µ * 1.3

(10)
ni s

n
 s

i

i i

≤≤∀−<<−

−<<−

+−

=
+−�

=
1//

1

σµσµ

σµσµ

ω

The graph computation time (gct) is obtained by
applying Equation (10), considering that each sample is
equal to the computation time of each vertex.

Since it is not possible to precisely estimate the time
spent by the communication before mapping, we use a
heuristics based on probabilistic traffic evaluation and NoC
size. To define the probabilistic parameters, a practical
observation was used. Quality mappings aimed at latency
reduction obtain, in average, communication paths, which
take less 20% of the average communication time (mtc).
The mtc value is computed by the average size of paths and

the time spent in each path according to Section 3.2. The
reduction to less than 20% happens because cores with high
communication rate are placed in neighbor tiles.

Let fs be a function that calculates the number of flits
according to the number of bits, and let wij be the number of
bits transmitted from core i to core j. Then, to estimate the
time caused by communication between these cores (tij), we
apply Equation (11).

(11) tij = fs(wij)* mtc * 0.2

The time spent by graph communication (tgc) is
obtained by applying Equation (10), considering that each
sample is equal to the time spent by the message
communication, described in each vertex.

Similarly, to display dependence versus concurrency,
we use Equation (12) to estimate the relative percentage
between communication and computation.

(12) tgc_gct = %100*
tgcgct

tgc

+

In computation versus communication comparison, all
hypothetical applications of the benchmark are adjusted to
have around 50% dependency and 50% concurrency. Figure
8 shows the results for computation versus communication
variations.

3

15

24
28 27

32 31 32

3233
3938

53
48

26

6

0

10

20

30

40

50

60

12,5 25 37,5 50 62,5 75 87,5 100

CWM
CDM
CDCM

Latency reduction (%)

tgc_gct

Figure 8 – Average latency reduction achieved with
mappings of CWM, CDM and CDCM models, when
computation and communication are concerned.

As it can be observed in Figure 8, the maximum latency
reduction is achieved for balanced applications – 50%
communication and 50% computation - using CDCM. This
justifies the model efficiency to capture the expressiveness
of computations in the application. However, when the
application is dominated either by communication or by
computation, the results for CDM and CDCM are similar.
This happens because in both situations, communication
volume drives the mapping algorithm, and both models
capture the communication behavior with similar
expressiveness.

6 Conclusions and Future Work
This paper addresses the problem of mapping

applications onto NoCs, based on different models to
express application behavior. Three models were compared
– CWM, CDCM and CDM – each having different
capacities to express the relationship among several
applications characteristics, such as communication versus
computation and dependence versus concurrence. A model
to estimate the relative dominance of an application
characteristic over another is proposed and justified.

A set of experiments were conducted, based on
hypothetical benchmarks. The proposed relative dominance
models was used to show how the merits of application
models (CDM, CDCM, CWM) can be evaluated. The
experiments exemplify the optimization of latency, but the
proposed models can be extended to deal with other
communication parameters.

As future improvements, the authors expect to evaluate
typical embedded applications, such as multimedia. The
authors believe that this has the potential to obtain insights
on important characteristics of application behavior.

References
[1] A. Iyer and D. Marculescu. Power and performance

evaluation of globally asynchronous locally synchronous
processors. ISCA, pp.158-168, May 2002.

[2] W. Dally and B. Towles. Route packets, not wires: on-
chip interconnection networks. DAC, pp.684-689, June
2001.

[3] S. Kumar et al. A network on chip architecture and design
methodology. ISVLSI, pp.105-112, April 2002.

[4] J. Hu and R. Marculescu. Energy-aware mapping for tile-
based NoC architectures under performance constraints.
ASP-DAC, pp.233-239, January 2003.

[5] S. Murali and G. De Micheli. Bandwidth-constrained
mapping of cores onto NoC architectures. DATE, pp.896-
901, February 2004.

[6] C. Marcon et al. Time and Energy Efficient Mapping of
Embedded Applications onto NoCs. ASP-DAC, January
2005.

[7] C. Marcon et al. Exploring NoC Mapping Strategies: An
Energy and Timing Aware Technique. DATE, pp. 502-
507, March 2005.

[8] F. Moraes et al. HERMES: an Infrastructure for Low Area
Overhead Packet-switching Networks on Chip.
Integration, the VLSI Journal, v. 38, n. 1, p. 69-93,
October 2004.

[9] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, Science 220
pp.671-680, 1983

[10] L. Fogel. Intelligence through Simulated Evolution: Forty
Years of Evolutionary Programming, Wiley-Interscience,
July 1999.

