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Abstract 
Networks-on-chip (NoCs) are an emergent 

communication infrastructure, which can be designed to 
deal with growing system complexity and technology 
evolution. The efficient use of NoCs needs techniques for 
application cores mapping, allowing reducing the message 
latency and consequently the overall execution time. To 
obtain mappings that fulfill the requirements during high-
level design, appropriate models for NoCs and application 
cores become mandatory. High abstraction levels modeling 
may lead to unreliable estimates. On the other hand, 
detailed models may imply complex algorithms and high 
computational effort, with unacceptable computation time 
to get satisfactory results. NoC modeling for latency 
estimation requires capturing some infrastructure 
characteristics like topology and routing policies. 
Application cores models have to capture the application 
behavior, in terms of computation and/or communication. 
For instance, communication weighted models (CWM) and 
communication dependence model (CDM) consider only 
application communication aspects. However, the 
communication dependence and computation model 
(CDCM) consider both aspects of an application. This work 
compares these three models, according to their algorithm 
complexity and accuracy to model the application 
performance. We show that depending on the application 
characteristics, one of the models can be more suitable 
than the others. 

1 Introduction 
New technologies allow that many millions of 

transistors be integrated onto a single chip and thus enable 
the implementation of complex systems-on-chip (SoCs). 
These systems need special communication resources to 
handle very tight design requirements. Many designers 
propose to change from the mainstream synchronous design 
paradigm to a globally asynchronous and locally 
synchronous (GALS) design paradigm [1]. GALS design 
method divide the application into synchronous domains 
placed inside a limited region, which is usually called tile. 
An asynchronous communication resource provides the 
communication between these tiles. A network-on-chip 
(NoC) is an infrastructure essentially composed by a set of 
routers interconnected by point-to-point communication 
channels. NoCs are easily adapted to implement systems 

based on the GALS paradigm. NoC channels can be 
designed to provide an asynchronous communication 
protocol between synchronous domains. In addition, NoCs 
provide high scalability, reusability, reliability, and efficient 
energy consumption [2]. 

Consider a SoC implemented with GALS paradigm, 
composed by n cores and employing a NoC as 
communication infrastructure. The application-mapping 
problem consists in finding an association of each core to a 
tile (a mapping) such that some cost function is minimized. 
In general, this mapping problem allows n! possible 
solutions. Given future SoCs with hundreds of tiles [3], 
exhaustive search into all solutions’ space will rapidly 
become unfeasible. Thus, the optimal implementation of 
such SoCs requires efficient mapping strategies and sound 
application models. Some mapping strategies have been 
proposed. For example, [4] and [5] propose two different 
strategies with the same application model. We call this 
model communication weighted model (CWM), since it 
takes into account the overall volume of communication 
between each pair of cores. [6] compares CWM with 
communication dependence model (CDM), since CDM 
considers also the communication timing. [7] compares 
CWM with communication dependence and computation 
model (CDCM), which considers the communication timing 
and also the computation quantity. CDM and CDCM can 
lead to a better mapping than the ones achieved with CWM. 
However, it still needs to be verified the exact strength and 
weaknesses of each model in capturing applications 
behaviors, as well as their algorithm complexity. To clarify 
these issues, this paper evaluates the modeling effect in the 
application-mapping task, aiming to reduce the overall 
execution time of an application running on a mesh NoC 
architecture. 

The remaining of the paper is organized as follows. 
Section 2 discusses related work. Section 3 defines 
application models for the mapping problem. Section 4 
describes and compares algorithms and models. Section 5 
presents experimental results and Section 6 presents some 
conclusions. 

2 Related Work 
Hu and Marculescu [4] propose a model called 

application characterization graph (APCG), which is a 
way of capturing the communication weight of a given 



application. Murali and De Micheli [5], propose a model 
similar to that in [4], which is represented by a structure 
called core graph. Both works, whose models are classified 
here as CWM, are used to achieve mappings that minimize 
some design constraints, like energy consumption and 
average communication delay. 

In all approaches that use the CWM strategy, essential 
information regarding the instant of time that messages are 
exchanged is lost, compromising some mapping results. 

The authors of [6] propose a model that captures the 
communication volume and dependence. This model allows 
describing applications more accurately than the previous 
model, generating mappings with less overall execution 
time. The same authors introduce in [7] a new model that 
captures not only the communication volume and 
dependence, but also the computation quantity. The joint 
effect of computation and communication leads to better 
mappings, because contentions can be better estimated and 
then avoided. 

This work evaluates application models aiming to 
compare their associated complexities and algorithms. 

3 Problem Formulation 
The problem of mapping application cores onto NoCs is 

a complex one. The designer splits the application tasks 
into cores. Each core behavior can be modeled by its 
computation and communication characteristics. This 
Section gives a formulation of the mapping problem in 
terms of graph structures and proposed models. 

3.1 Graph Definitions 
Definition 1: A communication weighted graph (CWG) is a 
directed graph <C, W>. The set of vertices 
C = {c1, c2…, cn} represents the set of cores in one 
application. Let wab be the number of bits of all packets sent 
from a core ca to a core cb. Then, the set of edges W is 
{(ca, cb) | ca, cb ∈ C and wab � 0}, and each edge is labeled 
with the value wab. 

W represents all communications between application 
cores, and CWG informs the relative communication 
volume of the application. This is similar to the definitions 
of APCG [4] and core graph [5]. 

Definition 2: A communication dependence graph (CDG) 
is a directed graph <V, D> [6]. Let C be a set of cores of a 
given application and let vq = (ca, cb, wab) be the q-th 
message sent from core ca to core cb with bit volume wab. 
V = {v1, v2, …, vk} denotes the set of all messages between 
all cores and corresponds to the set of CDG vertices. There 
are also two special vertices named START and END. START 
does not depend on any vertex, and no vertex depends on 

END. D = {(vi, vj) | vi, vj ∈ V} represents the set of message 
dependences, corresponding to the set edges. 

CDG represents all core communication of a given 
application. Edges are non-valued, and the edge direction 
denotes that the message contained into the target vertex 
depends on the origin vertex. In other words, the target 
vertex is communication dependent on the origin vertex. 

Definition 3: The communication dependence and 
computation graph (CDCG) is a directed graph <P, D> [7]. 
CDCG has definition similar to CDG, the difference 
consisting on the CDCG vertices (P), which contain the 
computation quantity besides the messages exchanged 
between each pair of application cores. Elements of P are 4-
tuples pabq = (ca, cb, taq, wabq), where ca, cb ∈ C, and pabq is 
the q-th message sent from ca to cb. Messages contain wabq 
bits that are transmitted after the computation time (taq) of 
the originating core (ca) has elapsed. 

The use of these models for solving the mapping 
problem is evaluated onto a NoC with mesh topology using 
wormhole, deterministic XY routing algorithm [8]. n tiles 
compose an instance of this NoC. Figure 1 (a) depicts the 
structure of this NoC, where each tile (τ) contains a router 
(r) and a local core (c). Figure 1 (b) shows that each router 
connects up to 5 external I/O channels and each channel has 
buffered inputs and unbuffered outputs. The local channel 
is devoted to provide communication with the local core. 
The remaining channels provide inter-router 
communication. 
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Figure 1 – NoC mesh topology (a) and its router (b). 

Definition 4: A communication resource graph (CRG) is a 
directed graph <Γ, L>, where the vertex set is the set of tiles 
Γ = {τ1, τ2, …, τn}, and the edge set L = {(τi, τj), ∀τi,τj ∈ Γ} 
designates the set of routing paths from τi to τj. 

The value n is again the total number of tiles and is 
equal to the product of the two NoC dimensions, ϕ and ω. 
CRG edges and vertices represent physical links and tiles of 
the target architecture, respectively. 

Figure 2 illustrates the above definitions using a 
hypothetical application with four IP cores, exchanging a 
total of six messages, in a 2×2 NoC. 

Figure 2(a) depicts one possible CDCG where 



P = {pEA1 = (E, A, 10, 20), pEA2 = (E, A, 20, 15), pAF1 = (A, 
F, 6, 15), …} and D = {(START, pEA1), (pEA1, pEA2), (pAB1, 
pAF1), …}. Figure 2(b) depicts the correspondent CDG for 
the chosen CDCG, where P = {pEA1 = (E, A, 20), pEA2 = (E, 
A, 15), pAF1 = (A, F, 15), …} and the same D of CDCG. 
Figure 2(c) shows a CWG, where C = {A, B, E, F}, the 
edge labels are wAB = 15, wAF = 15, wBF = 40, wEA = 35, 
wFB = 15 and the set W can be extracted easily from the 
figure. Figure 2(d) depicts an arbitrary mapping of C onto 
de NoC, corresponding to a CRG as follows: CRG = <{τ1, 
τ2, τ3, τ4}, {(τ1, τ2), (τ2, τ1), (τ1, τ3), (τ3, τ1), (τ2, τ4), (τ4, τ2), 
(τ3, τ4), (τ4, τ3)}>. 
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Figure 2 – (a) CDCG, (b) CDG, (c) CWG, (d) CRG. 

3.2 Timing Models 
To estimate the execution time of the application, this 

section presents a timing model for XY deterministic 
algorithm with wormhole routing. The total message delay 
is composed by the routing delay and by the payload delay. 
The routing delay is the time spent to create the 
communication path, which is determined during the traffic 
of the first flit. The payload delay depends only on the 
number of the remaining flits. Let nab be the number of flits 
of a message sent from ca to cb. Let λ be the period of a 
clock cycle, and let tr be the number of cycles needed for 
routing decision. In addition, let tl be the number of cycles 
needed to transmit a flit through a link (between tiles or 
between core and router). The routing delay (dRij) and the 
payload delay (dPij) from τi to τj, are given by equations (1) 
and (2), respectively, considering that a packet goes 
through η routers without contention. Contentions are not 
expressed here, since they can only be determined by the 
knowledge of the overall messages timing. 

(1) dRij = (η × (tr + tl) + tl) × λ 

(2) dPij = (tl × (nab - 1)) × λ 

The total message delay (dij), obtained from the sum of 

(dRij) and (dPij), is expressed by Equation (3). All 
algorithms use dij to compute the latency of a message. 

(3) dij = (η × (tr + tl) + tl × nab) × λ 

4 Mapping Algorithms 
We implemented an algorithm that mix simulated 

annealing [9] and simulated evolution [10]. This algorithm 
is called external algorithm since it works as a shell that 
calls three mapping cost algorithms (ModelMapping 
function), one for each model. Figure 3 depicts the external 
algorithm. 

1. m ap ←  InitialR andom M apping 
2 . cost ←  M odelM apping 
3 . if cost <  savedC ost 
 savedM ap ←  m ap 
 savedC ost ←  cost 
 elsif cost <  savedC ost +  tem perature 
 SaveM apping (savedM ap, savedC ost) 
 savedM ap ←  m ap 
 savedC ost ←  cost 
4 . m ap ←  R andom M apping(tem perature) 
5 . tem perature ←  tem perature –  1  
6 . if tem perature >  0  
 go to  step 2  
7 . savedM ap, savedC ost ←  B estM apping 
8 . m ap ←  R andom M apping(1) 
9 . cost ←  M odelM apping 
10 . if cost <  savedC ost 
 savedM ap ←  m ap 
 savedC ost ←  cost 
11 . iteration ←  iteration –  1  
12 . if iteration >  0  
 go to  step 8  
13 . end  

Figure 3 – External mapping algorithm. 

The algorithm starts with an initial random mapping 
associating cores to tiles; it then evaluates the mapping 
cost, executing the specific algorithm for each model; and 
searches for a new mapping that reduces the computed cost, 
until reaching a stop condition. For all algorithms, the 
mapping cost is computed by the ModelMapping function, 
which depends on the model and the infrastructure. The 
external algorithm is divided in two sets of steps: (i) from 
step 1 to 6 - the algorithm accepts mappings worse than 
previous ones, but always, saving the best mappings in 
SaveMappings list. The acceptance level and the degree of 
variations between mappings are reduced with a 
temperature parameter. This procedure searches for the best 
mappings trying to avoid local minima. (ii) from step 7 to 
13 - the second part of the algorithm starts searching for the 
best mapping of the saved mappings list and tries to find a 
better one by a smaller grain search method, which 
produces mappings that change only one association 
between tiles and cores in each execution loop. 



4.1 CWM Mapping Algorithm 
The CWM algorithm is a ModelMapping function of the 

external algorithm. This algorithm starts selecting a source 
vertex. For each source vertex, all output edges are visited 
to find the target vertex and the number of bits transmitted. 
It proceeds until no unvisited vertices are left. When an 
edge is visited, the number of bits transmitted, and the 
source and target vertices are informed to the function that 
maps them onto the NoC graph (CRGMapping function). 
Figure 4 (a) depicts the ModelMapping function of CWM. 

1. sourceVertex ← SearchSource 
2. if sourceVertex = NULL 
 go to step 7 
3. targetVertex, bits ← SearchTarget 
4. if targetVertex = NULL 
 go to step 1 
5. time ← CRGMapping(sourceVertex, 

  targetVertex, bits) 
6. go to step 3 
7. return time 

for x of source to x of target 
for y of source to y of target 

time ←TimeOfResource 
return time 

(a) ModelMapping of CWM (b) CRGMapping 
  

Figure 4 – (a) ModelMapping function for CWM 
mapping, and (b) CRG mapping algorithm. 

The effective CWG mapping onto CRG is performed 
according to the XY routing algorithm, and is called 
CRGMapping. It receives source and target vertices, since 
it allows associating the CWG vertices with the XY 
physical places, allowing computing the communication 
path. Figure 4 (b) describes this algorithm. TimeOfResource 
is the delay of the message according to the timing model. 

CWM model enables to compute only the time spent in 
the communication infrastructure. TimeOfResource cannot 
compute contentions, since CWM model does not model 
any kind of timing information. 

4.2 CDM Mapping Algorithm 
CDM improves CWM, as it considers message 

dependence. Dependent messages cannot be concurrent. On 
the other hand, independent messages can be sent at the 
same time, and consequently may lead to contentions, if 
they share a given communication resource. Message 
contention implies larger execution time. The goal of CDM 
algorithms is to search for mappings that minimize the 
sharing of communication resources for concurrent 
messages. 

The ModelMapping function of CDM is implemented 
by firstly setting dependences in all vertices, i.e. all 
dependence paths are searched, and for all vertices found in 
the paths there is a dependence list to annotate the 
predecessor vertices. Each vertex has also an integer to 
store its dependence level. CRG can execute vertices with 
the same dependence level at the same time, because there 
is no dependence relation between them. Figure 5 (a) shows 

these steps, which are performed only once and are used 
during all mappings. 

from Start to End Vertex 
 search all paths 
  SetDependenceLevel 
  NoteDependeces 

1. dependence ← 0 
2. if dependence = DependenceLevel(End) 
 return time 
3. vertex ← SearchVertices(dependence) 
4. if vertex = NULL 
 go to step 6 
5. time ← CRGMapping(vertex) 
6. go to step 3 
7. dependence ← dependence + 1 
8. go to step 2 

(a) Dependence settings (b) ModelMapping of CDM 
  
Figure 5 – ModelMapping function for CDM mapping. 

The ModelMapping function uses the dependence level 
to execute CDG over CRG. The algorithm stops when it 
reaches the dependence level of END vertex, returning the 
computed execution time. For each dependence level, all 
vertices are mapped onto CRG, i.e. the message contained 
into the vertex is computed into CRG according to the 
CRGMapping described in Figure 4 (b). However, the 
CRGMapping only receives a vertex as parameter, since the 
CDG vertex contains the source and target vertices, and the 
number of bits transmitted. The TimeOfResource function 
computes all independent messages as concurrent. Thus, the 
algorithm considers that these messages will be contained 
in the routing buffers, increasing the execution time. 
Because of that, mappings with many contentions can be 
avoided. Figure 5 (b) depicts the CDM ModelMapping 
function. When all vertices at the same dependence level 
are executed, a dependence control variable is incremented 
and the process is repeated. 

4.3 CDCM Mapping Algorithm 
CDCM improves CDM by adding the tasks computation 

time. It changes the algorithm focus. While CDM tries to 
avoid contentions by a pessimistic approach - “if messages 
are not dependent, either the mapping avoids resource 
sharing or messages will cause contentions”, CDCM can 
more effectively compute the exact time slice of each 
message. Thus, even independent messages can concur for 
the same resource without causing contentions, because 
resources are shared at different moments of time. 

The CDCM ModelMapping function is implemented by 
firstly setting the dependences level of each vertex, 
similarly to CDM. However, there is no list of 
dependences, since the dependence knowledge is only 
necessary to compute the dependence levels. Dependence 
levels with computation time define a total ordering of 
messages. 

The CDCM ModelMapping function is similar to that of 
CDM, depicted in Figure 5 (b). The only difference is in the 
accounting of task computation time. The main difference 



between CDCM and CDM algorithms relies on the 
TimeOfResource function. Because of the exact knowledge 
of message time slice, message contentions are only 
computed if the messages concur for a same resource at the 
same time. This approach reduces the number of “false” 
possible contentions, enabling the algorithm to explore 
mappings reducing contentions that really will occur. 

4.4 Algorithms Comparison 
The essential difference between the models is that 

CWM and CDM is not able to estimate application 
execution time. CWM cannot evaluate message contention 
either. The main advantages of CWM are (i) easy extraction 
of application core graph (CWG), since it can be done by 
simulation techniques; and (ii) low computational 
complexity. The automatic extraction of CDM and CDCM 
core graphs are harder tasks, since simulations only allow 
extracting possible message orderings, but not the desired 
message dependence information. Therefore, CDGs and 
CDCGs are normally described by hand, increasing error 
susceptibility. 

The main drawback of CDM and CDCM algorithms is 
that in real embedded applications, the number of messages 
exchanged between cores is much larger than the number of 
cores. Since vertices of CDG and CDCG represent message 
exchanges between cores and each vertex of CWG 
represents just a core, CDGs and CDCGs are naturally 
larger than CWGs. 

CWM algorithms are less complex, because this only 
informs direction and quantity of bits transmitted. CDM 
and CDCM algorithms are more complex, since they have 
to deal with message dependences. However, the CDM 
algorithm is the most complex one, because its pessimistic 
approach needs to compute lists of dependences for all 
vertices, and these lists have to be recomputed each time a 
vertex is evaluated. 

When a message has more bits than the lower level 
protocols allows, it is broke into several packets. Messages 
with more than one packet can be interleaved, in the NoC 
resources making difficult high-level contention estimation, 
even for models like CDCM. On the other hand, the 
pessimistic approach of CDM tends to avoid this kind of 
contentions, since the associated algorithm searches for 
mappings that avoid the concurrency of all independent 
messages, and dependent messages cannot have interleaved 
packets. 

5 Experimental Results 
In order to compare the models, hypothetical 

applications with special characteristics were used as 
benchmarks. The chosen application characteristics are 
computation versus communication and message 

dependence versus message concurrency. The applications 
comprise create two set of benchmarks whose purposes are 
to evaluate the models accuracy in finding mappings that 
reduce the overall execution time. One set compares 
computation versus communication and another one 
compares dependence versus concurrency. The benchmarks 
contain applications that vary all characteristics from 0% to 
100%. Both benchmarks include 9 applications, with an 
average of 18 vertices, and were built over the CDCM 
model, since CDM and CWM can be automatically 
extracted from CDCM with an auxiliary tool. The 
hypothetical applications aim to evaluate a large range of 
characteristics combinations, which can be matched with 
real applications. An assumption is that if the characteristics 
of a real application match the characteristics of a 
hypothetical one, the best model found during the mapping 
process also matches. Therefore, the designer has just to 
evaluate the characteristics of its application to choose the 
best model for its purpose. 

5.1 Concurrence and Dependence Evaluation 
It is not trivial to determine how much an application is 

message concurrent or message dependent. Since there are 
many variables involved to quantify these characteristics, 
this work proposes a heuristics that proportionally relate 
graph dependence (gd) with graph concurrency (gc). 

Let n be the number of vertices of an application graph, 
and let vd(v) be the list of vertices that vertex v depends on. 
Then, gd is computed with by the sum of the vd of all n 
vertices as depicted by Equation (4). 

(4) gd = �
=

n

i
ivvd

1
)(  

Let cc(v) be the set of all concurrency combinations of 
vertex v, i.e. all combinations of vertices that may execute 
concurrently with vertex v. Equation (5) depicts CC, which 
is the set union of the ccs of all n vertices. The value gc is 
the cardinality of CC. We assume this because CC 
represents all possible concurrence combinations. Equation 
(6) shows the computation of gc. 

(5) CC = cc(v1) ∪ cc(v2) ∪ … ∪ cc(vn) 

(6) gc = / CC / 

The adopted heuristics estimates concurrency and 
dependency percentages through the application of 
Equation (7). Note that in (7) the increase of concurrency 
implies the decrease of dependence and vice-versa. 

(7) gd_gc = %100*
gdgc

gd

+
 

Equations (4), (6) and (7) are exemplified in Figure 6 



and Table 1, which present a simple example of 
hypothetical application graph. Figure 6 shows a 
hypothetical application composed by six vertices V = {V1, 
V2, V3, V4, V5, V6} representing messages, besides START 
and END special vertices. In the right side of each vertex, 
there is a list of dependences. For instance, vertex V5 
depends on vertices START, V1 and V3, and vertex END 
depends on the execution of all vertices described in the 
graph. When its dependences are solved the application 
execution is finished. 
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V2 V1 

V4 
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START, V1 

START START 

START, V1 

START, V1, V3 START, V1, V2, V4 

START, V1, V2, V3, V4, V5, V6 
 

Figure 6 – Comparison of concurrency versus 
dependence of a hypothetical application graph. 

Table 1 illustrates the concurrency combinations of all 
vertices of Figure 6. 

Table 1 – Concurrence combinations of all vertex of the 
hypothetical application graph showed in Figure 6. 

cc(V1) { (V1,V2) } 
cc(V2) { (V2,V3,V4), (V2,V4,V5), (V1,V2), (V2,V3), (V2,V4), (V2,V5) } 
cc(V3) { (V2,V3), (V3,V4), (V3,V6), (V2,V3,V4) } 
cc(V4) { (V2, V4), (V3,V4), (V4,V5), (V2,V3,V4), (V2,V4,V5), } 
cc(V5) { (V5,V6), (V4,V5), (V2,V4,V5) } 
cc(V6) { (V3,V6), (V5,V6) } 
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Figure 7 – Average latency reduction achieved with 
mappings of CWM, CDM and CDCM models, when 
concurrency and dependence variations are concerned. 

Applying Equation (5) gives CC = {(V1,V2), (V2,V3), 
(V2,V4), (V2,V5), (V3,V4), (V3,V6), (V4,V5), (V5,V6), 
(V2,V3,V4), (V2,V4,V5) }. Next, applying Equation (6) 

gc = / CC / = 10. In addition, applying Equation (4) 
gd = 20, is obtained. Finally, applying Equation (7) gives 
gd_gc = 66,67%. The interpretation is that this application 
is more dependent than concurrent. Using a benchmark 
with applications that do not consider computation and 
varies the dependence from 0% to 100%, and the opposite 
situation for concurrency, the results of Figure 7 are 
obtained. 

Without considering computation, CDM and CDCM 
lead to identical results. However, it is possible to observe 
that CDM and CDCM, when compared to CWM, present a 
linear increase in latency reduction with the increase of 
dependence. All models have similar results only with 
applications with gd_gc lower than 12,5%. 

5.2 Computation and Communication Evaluation 
In order to comparatively evaluate computation and 

communication, all vertices of the hypothetical applications 
were assigned with an amount of message bits and an 
amount of computation time. We use a heuristic based on a 
Normal distribution, avoiding that the relation between 
these application characteristics be masked by discrepant 
values. 

Let si be the i-th sample, µ be the medium value of the 
samples computed by Equation (8), and σ be the deviation 
assumed (we consider 30%), which is computed by 
Equation (9). Then, Equation (10) computes the average of 
the considered samples (ω). 
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The graph computation time (gct) is obtained by 
applying Equation (10), considering that each sample is 
equal to the computation time of each vertex. 

Since it is not possible to precisely estimate the time 
spent by the communication before mapping, we use a 
heuristics based on probabilistic traffic evaluation and NoC 
size. To define the probabilistic parameters, a practical 
observation was used. Quality mappings aimed at latency 
reduction obtain, in average, communication paths, which 
take less 20% of the average communication time (mtc). 
The mtc value is computed by the average size of paths and 



the time spent in each path according to Section 3.2. The 
reduction to less than 20% happens because cores with high 
communication rate are placed in neighbor tiles. 

Let fs be a function that calculates the number of flits 
according to the number of bits, and let wij be the number of 
bits transmitted from core i to core j. Then, to estimate the 
time caused by communication between these cores (tij), we 
apply Equation (11). 

(11) tij = fs(wij)* mtc * 0.2 

The time spent by graph communication (tgc) is 
obtained by applying Equation (10), considering that each 
sample is equal to the time spent by the message 
communication, described in each vertex. 

Similarly, to display dependence versus concurrency, 
we use Equation (12) to estimate the relative percentage 
between communication and computation. 

(12) tgc_gct = %100*
tgcgct

tgc

+
 

In computation versus communication comparison, all 
hypothetical applications of the benchmark are adjusted to 
have around 50% dependency and 50% concurrency. Figure 
8 shows the results for computation versus communication 
variations. 
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Figure 8 – Average latency reduction achieved with 
mappings of CWM, CDM and CDCM models, when 
computation and communication are concerned. 

As it can be observed in Figure 8, the maximum latency 
reduction is achieved for balanced applications – 50% 
communication and 50% computation - using CDCM. This 
justifies the model efficiency to capture the expressiveness 
of computations in the application. However, when the 
application is dominated either by communication or by 
computation, the results for CDM and CDCM are similar. 
This happens because in both situations, communication 
volume drives the mapping algorithm, and both models 
capture the communication behavior with similar 
expressiveness. 

6 Conclusions and Future Work 
This paper addresses the problem of mapping 

applications onto NoCs, based on different models to 
express application behavior. Three models were compared 
– CWM, CDCM and CDM – each having different 
capacities to express the relationship among several 
applications characteristics, such as communication versus 
computation and dependence versus concurrence. A model 
to estimate the relative dominance of an application 
characteristic over another is proposed and justified. 

A set of experiments were conducted, based on 
hypothetical benchmarks. The proposed relative dominance 
models was used to show how the merits of application 
models (CDM, CDCM, CWM) can be evaluated. The 
experiments exemplify the optimization of latency, but the 
proposed models can be extended to deal with other 
communication parameters. 

As future improvements, the authors expect to evaluate 
typical embedded applications, such as multimedia. The 
authors believe that this has the potential to obtain insights 
on important characteristics of application behavior. 
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