
Infrastructure for Dynamic Reconfigurable Systems:
Choices and Trade-offs

Leandro Möller, Rafael Soares, Ewerson Carvalho, Ismael Grehs, Ney Calazans, Fernando Moraes
{moller, rsoares, ecarvalho, grehs, calazans, moraes}@inf.pucrs.br

Pontifícia Universidade Católica do Rio Grande do Sul (FACIN-PUCRS)
Av. Ipiranga, 6681 - 90619-900 - Porto Alegre - BRASIL

ABSTRACT
Platform-based design is a method to implement complex SoCs,
avoiding chip design from scratch. A promising evolution of
platform-based design are MPSoC. Such generic architectures
might furnish enough performance for several classes of
embedded systems. An associated advantage of these architectures
is flexibility at the software level. In principle, hardware is not
flexible. Thus, dedicated IP blocks must be inserted before chip
design, or enough area can be reserved for them when using
reconfigurable blocks. Dynamic self-reconfigurable systems
(DSRSs) introduce flexibility to hardware. In DSRSs, IP blocks
are loaded according to application demand, reducing area, power
consumption and system cost. An MPSoC based platform,
associated with dynamic reconfiguration, provides both hardware
and software flexibility. This paper has two main goals. First, to
present the necessary infrastructure for DSRSs, identifying which
components are required in these systems, such as a configuration
controller, configuration ports and reconfigurable IP interfaces.
The second objective is to discuss practical implementations
choices and area-performance tradeoffs. The paper employs case
studies to access the advantages and problems related to different
implementations for the communication infrastructure (bus and
NoC), the configuration controller (hardware and software) and IP
interfaces (LUT and tristate based).

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Styles – advanced
technologies, algorithms implemented in hardware, VLSI (very
large scale integration).

General Terms
Design, Experimentation, Measurement, Performance, Theory,
Verification.

Keywords
Reconfigurable Architectures, Configuration Controllers, NoCs.

1. INTRODUCTION
Platform-based design [1] is a method to implement complex
SoCs, avoiding chip design from scratch. Usually, a platform-
based SoC includes one or more processors, a real-time operating
system, intellectual property (IP) blocks, memories and an
interconnection infrastructure. Depending on the platform type, it
is possible to customize it by adding hardware IPs, including
reconfigurable hardware blocks like FPGAs and/or writing
embedded software.

A promising evolution of platform-based design are MPSoC
based platforms, with systems composed by a set of processors
interconnected by a communication infrastructure. An advantage
of these architectures is flexibility at the software level. In
principle, hardware is not flexible. Thus, dedicated IP blocks must
be inserted before chip design, or enough area can be reserved for
them when using reconfigurable blocks.

Systems with multiple processors in a system on chip (MPSoC)
present as main characteristic software flexibility and the
performance of distributed systems. On the one hand using
homogeneous processors in MPSoCs guarantees task migration
facilities, on the other hand heterogeneous processors can provide
flexibility to the MPSoC to choose the most adaptable processor
to execute a certain task. One new degree of flexibility on
heterogeneous MPSoCs can be obtained by using reconfigurable
devices. These devices allow: (i) extending product life cycle; (ii)
updating hardware; (iii) building smaller products; (iv) migrating
tasks to hardware.

In order to accomplish (iii) and (iv) the reconfigurable device
must have the characteristic to be partially and dynamically
reconfigured. Systems that use this characteristic are called
Dynamically Reconfigurable Systems (DRSs). Another
characteristic that can speed up the reconfiguration at runtime is if
the reconfigurable device itself manages the hardware
substitution. In this case the system can be named Dynamically
Self Reconfigurable System (DSRS).

This paper has two main goals. First, to present the necessary
infrastructure for DSRSs, identifying which components are
required in these systems, such as a configuration controller,
configuration ports and reconfigurable IP interfaces. The second
objective is to discuss practical implementations choices and area-
performance tradeoffs.

The rest of the paper is organized as follows. Section 2 presents
concepts related to reconfigurable systems. Section 3 presents

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SBCCI'06, August 28–September 1, 2006, Minas Gerais, Brazil.
Copyright 2006 ACM 1-59593-479-0/06/0008...$5.00

44

related works in hardware infrastructure for DSRS, while Section
4 discusses choices and trade-offs among some of these works. A
comparison between two self reconfigurable infrastructures is the
subject of Section 5. Finally, Section 6 presents some conclusions
and future work.

2. CONCEPTUAL RECONFIGURABLE
ARCHITECTURE
The most widespread commercial ICs that use reconfigurable
hardware are the RAM-based FPGAs. These FPGAs can be
configured an unlimited number of times by storing a valid
configuration in its configuration memory. The process of writing
the configuration memory programs the FPGA resources (logic
functions, I/Os and interconnection points). A valid configuration
is a sequence of values that defines a coherent virtual structural
behavior of the hardware. The term configuration is also used to
define the process of writing the configuration memory, while the
term reconfiguration defines the process of rewriting the FPGA
configuration memory with another valid configuration.

Totally reconfigurable systems are systems that write the complete
device configuration memory in each reconfiguration step, in
contrast to the partially reconfigurable systems. Statically
reconfigurable systems are those that suspend the system
operation during the reconfiguration process, in contrast to the
dynamically reconfigurable systems (DRSs), which allow that part
of the system continues to operate throughout the reconfiguration
process. DRSs able to control their own reconfiguration process
are called dynamically self reconfigurable systems (DSRSs).
These systems must contain specific resources to control new
charges of configurations at runtime, as depicted in Figure 1.

...
...

Communication
Infrastructure

...

Fixed SoC area

SoC

Reconfigurable SoC area

R
ep

os
ito

ry

Reconfigurable

IP

Reconfigurable

IP

Configuration
Port

Fixed
IP

Fixed
IP

Configuration
Controller

Reconfigurable
Interface

Reconfigurable
Interface

Figure 1 – DSRS generic architecture.

Besides a set of fixed IPs (not reconfigurable) and the
communication medium, which are IPs that usually compose SoC
designs, there are a set of reconfigurable IPs and four other fixed
IPs: a Configuration Controller (CC), a Repository, a
Configuration Port (CP) and one Reconfigurable Interface (RI)
associated to each reconfigurable IP. The CC loads configurations
stored in a repository and, according to its scheduler, chooses one
reconfigurable IP to be substituted. Then, the configuration of a
reconfigurable IP is sent to the Configuration Port (CP) and the
system starts to be immediately updated. In DSRSs, the
Reconfigurable Interface (RI) is vital to implement a static routing
between a reconfigurable IP and the static part of the DSRS.

3. RELATED WORKS
The main challenges behind the design and implementation of
DSRSs lie in three main subjects depicted in the generic
architecture presented in Figure 1 and discussed in the following
Sections: the Configuration Controller (CC), the Reconfigurable
Interface (RI) and the Configuration Port (CP). The quality of the
CC and the CP dictates the applicability of a given DSRS. The
faster the reconfiguration process, the smaller time penalty is
imposed on the implemented application [2]. A careful design of
the RI is mandatory to enable reconfiguration to occur at runtime,
since transient values on this interface may provoke malfunction
of the whole system or even damage the device.

3.1 Configuration Controller
Ullmann [3] proposes a hardware task manager with real-time
constraints for DSRSs. This manager is implemented in software
and controls the reconfiguration process and context saving. This
task manager is also responsible to control the communication
among system modules and external devices (sensors and
actuators) through a CAN bus.

Resano [4] designed a scheduler using two techniques, named
Prefetch-Scheduling Technique and Replacement Technique. The
Prefetch-Scheduling Technique receives as input a set of tasks and
decides when they will be loaded from memory to be executed.
The main goal of this technique is to hide the time penalty to load
a reconfigurable IP by analyzing tasks interdependencies and
triggering earlier the reconfiguration process. The Replacement
Technique is responsible to increase the possibilities to reuse
critical tasks in favor of the global system performance.

Mignolet [5] presents an infrastructure for relocatable tasks
managing. In this system hardware tasks can have its context
interrupted and continue its processing in software, or vice-versa.
Given the nature of the target system, a unified communication is
needed. The communication among tasks is implemented trough
message exchange. The communication between two task can
happen in three distinct ways: (i) when both tasks are executing in
hardware, a NoC is used for communication; (ii) when both tasks
are executing in software (in the embedded processor), the
communication is implemented through an API; (iii) when a task
is executing in software and another in hardware, a Hardware
Abstraction Layer is used to implement the communication.

Griese [6] proposes a run-time reconfiguration manager. This
manager was implemented in hardware and it is responsible to
control and execute the reconfiguration process in a target
platform. Context switching and security mechanisms were also
implemented to prevent a possible unsuccessful reconfiguration.
Griese’s manager stores partial bitstreams in a host computer,
which communicates with the target platform through the PCI.

Carvalho [7] proposes a configuration controller named RSCM,
completely in hardware. It is composed by the following modules:
(i) Configuration Memory, stores all partial bitstreams used by the
system; (ii) Self-Configuration, controls the physical
reconfiguration process; (iii) Configuration Interface, sends
configuration data to the FPGA; (iv) Central Configuration
Control, receives requests to start the configuration process and
provides results in the form of status signals; (v) Reconfiguration
Monitor, detects situations where reconfigurations need to be

45

performed; (vi) Configuration Scheduler, determines which
configuration is the next to be configured.

3.2 Reconfigurable Interface
As stated earlier, a reconfigurable interface is necessary to
implement a static routing between a reconfigurable module and
the rest of the DSRS. The interface proposed by Palma [8] in 2002
uses two levels of tristate buffers in the input and output pins of
the reconfigurable modules. One level of tristates belongs to the
reconfigurable module and the other to the communication
medium. Due to the scarce number of tristates and the limited
number of routings that two tristate buffers can take, it is
necessary to manually verify if the modules to be exchanged have
the same routing. In order to reduce this manual step, Palma
employs a 1-bit data serial bus as communication medium.

Xilinx proposes in [9] a reconfigurable interface called Bus
Macro. This macro is composed by 8 tristate buffers and allows
the communication of 4 bits between a reconfigurable area and
the rest of the system. This macro simplified the routing
verification between two tristate buffers of Palma reconfigurable
interface.

Huebner [10] also proposes a reconfigurable interface called Bus
Macro (different from the Xilinx Bus Macro and herein named
Huebner macro), which is a static bus responsible to connect all
reconfigurable modules of the system. This reconfigurable
interface is composed by two unidirectional busses, each one
implemented by a set of CLBs configured as depicted in Figure 2.

Reconfigurable Module

 CLB

Input 1

Input 2

O
utput 1

O
utput 2

4

4

4 4

CLB

 Input 1

Input 2

Input 2 from
 M

odule

Select

Output 1

Output 2

Input 1 from
 M

odule

Sel

4

4
4

4
4

4

From predecessor module To successor module

Reconfigurable Module

(A) (B)
Figure 2 – Huebner’s macros: (A) Look-Up-Tables connect

through Input-Signal for communication from arbiter to
module macro; (B) Look-Up-Tables initialized as Multiplexer

for communication from module to arbiter.

3.3 Configuration Ports
The configuration ports used in DSRSs are usually the ones
provided by the manufacturers and can be accessed internally or
externally from the FPGA. In the case of Xilinx FPGAs, which
are used from works [3] to [10], there are three available ports:
JTAG, SelectMap and ICAP. JTAG is a serial interface, while the
two others can transmit 8-bits data in parallel (Virtex 4 ICAP has
a 32-bit configuration port). From these, only the ICAP is an
internal port and it can work at 66 MHz and 100 MHz (Virtex 4),
while SelectMap and JTAG can operate at 50 MHz and 33 MHz,
respectively.

From the presented works, only the work from Ullmann/Huebner
explicitly mention to use the fastest communication port, which
can be done by a specific hardware connected to the ICAP or

through the API implemented by Xilinx and available for
MicroBlaze [11] and PowerPC processors.

4. CHOICES AND TRADE-OFFS
This Section discusses design choices available for implementing
each element of a DSRS infrastructure, with emphasis on the cost-
benefit trade-offs involved in selecting each of these choices.

4.1 Repositories
DSRSs need to have access to repositories able to maintain a
potentially large number of partial configurations, in what is often
called configuration memory. Besides stocking partial
configurations, these repositories should offer fast access to its
contents for the DSRS such that application requirements be
satisfied. There are basically four device types available to use as
configuration memories: (i) memory internal to the reconfigurable
device, usually available as RAM blocks or BRAM; (ii) devices
external to the DSRS using static RAM technology, or SRAM;
(iii) devices external to the DSRS using PROM technology, such
as EPROM or Flash devices called generically PROM; (iv)
devices external to the DSRS using DRAM technology, such as
SDRAM and others. Table 1 presents a qualitative comparison
among these devices.

Table 1 – comparison of technologies applicable to build
DSRS configuration memories.

Memories Capacity Speed Controller Complexity Cost/Bit
BRAM + ++++ + +++
SRAM ++ +++ ++ ++
PROM ++ + ++++ ++
DRAM ++++ ++ +++ +

Applications using BRAMs to form a configuration memory need
to have a small number of small configurations, due to its limited
capacity. Limited applications that benefit from difference-based
[9] reconfiguration techniques are among those that can employ
this kind of repository.

SRAM and DRAM devices present a good compromise between
access speed and storage capacity. The former imply simpler
controllers added to the DSRSs, but are much more expensive per
bit than DRAMs. DRAMs, on the other hand have a low cost per
storage bit allowing to store more configurations, but a higher
area of the DSRS must be committed to implement its controller.

Contrary to the other three technologies PROMs have the
advantage of keeping configurations after turning the DSRS off.
They cost more per bit than DRAMs, but imply a simpler
procedure at the startup of the DSRS. Also, changing the contents
of the repository is more complicated than with the other
technologies.

4.2 Reconfigurable Interface
Three reconfigurable interfaces were presented in Section 3.2.
The main drawback of Palma´s work [8] is to manually route the
interface between the reconfigurable area and the fixed area. The
Xilinx Bus Macro [9] reduces manual routing, however, it also
uses tristate buffers, which are scarce resources in Xilinx FPGAs.

46

The use of such resources constrains the system design with
complex reconfigurable interfaces.

Huebner [10] points that the routing tool sometimes does not
respect the constraints set by the designer and crosses the
boundary between the reconfigurable module and the fixed part of
the system. Due to this problem Huebner developed a static bus
implemented with LUTs. One advantage of this approach is to
insulate computation from communication, thus preventing any
system interruption. However, this reconfigurable interface
imposes the use of a bus-based communication medium.

The present work proposes a new reconfigurable interface, based
in LUTs as Huebner’s macros, but with the difference to not
impose the use of a specific communication medium. The
reconfigurable interface is composed by two unidirectional
macros, depicted in Figure 3. The first one, named F2R, is
responsible to send data from the fixed part of the system to a
reconfigurable module, while the second one, named R2F,
implements the inverse direction of communication. Both macros
allow the parallel transmission of 8 bits. The F2R macro is
configured with the identity function, while the R2F uses a special
logic to prohibit transient switchings during the reconfiguration
process from reconfigurable to fixed areas.

 Macro F2R

CLB

LUT

LUT

in out

in out

Fixed
Area

Reconfigurable
Area

CLB

8

in

8

out

LUTs
configured with

the identity
function

(out in)

Slice

Macro R2F

CLB

LUT

LUT

out in

out in

Fixed
Area

Reconfigurable
Area

CLB

8

out

8

in

LUTs configured as
two input AND gate
(out in AND ctrl)

Slice

8

ctrl

ctrl

ctrl

(A) (B)
Figure 3 – Macros proposed in current work: (A) Fixed to

Reconfigurable; (B) Reconfigurable to Fixed.

4.3 Configuration Ports
As already stated in Section 3.3 the most popular devices used as
basis for implementing DSRSs are Xilinx FPGAs, specially the
Virtex and Spartan families. In these devices, the external JTAG
and SelectMap interfaces are alternatives for implementing
configuration ports for DRSs that are not self-reconfigurable,
where the configuration controller is located outside the DRS.
Although these interfaces can be used for building DSRS (by
using external wiring connecting some of the reconfigurable
device pins to them) most of these devices have available an
Internal Configuration Access Port, or ICAP. The ICAP usually
constitutes the best choice for supporting the construction of
DSRS, once it can be accessed from inside the reconfigurable
device by user logic.

4.4 Configuration Controller
DSRSs require an internal module to manage the internal
reconfiguration process, the configuration controller (CC). Section
3.1 already discussed some propositions of CCs available in the

literature. One of these is the RSCM [7]. Two versions of this CC
have been built by the Authors: (i) a version fully built in
hardware; (ii) a version developed mostly in software. Table 2
compares these two implementations qualitatively.

Table 2 – Qualitative comparison of the RSCM configuration
controller implementations.

Characteristic RSCM (hardware) RSCM-S (software)
Configuration Speed Milliseconds Milliseconds

Area Requires additional
hardware

If processor available,
small area overhead

(ICAP and macro
controllers required)

Easiness of
modification Complex / extra area Simple / software

modification

RSCM-S is in average three times slower than the RSCM
hardware. This disadvantage is related to the inefficiency of the
current API furnished by Xilinx to give access to ICAP. This API
requires the CC to fetch 512-word blocks of each partial
configuration and store these in a BRAM. Only after caching
these data, the API sends configuration data to the ICAP. The
RSCM sends data directly from an external memory to ICAP,
leading to smaller reconfiguration time.

The RSCM-S runs on an embedded 32-bit RISC designed by
Xilinx, MicroBlaze. The structure of RSCM-S includes, besides
the processor, peripheral device controllers, memory and a
communication medium. Obviously, if this infrastructure is
applied to the configuration control alone, the approach could
hardly be justified. However, assuming that most applications
today require the use of one or more processors inside the system,
and assuming some of these processors have spare time to
perform the configuration controller tasks, the additional hardware
in fact requires an area smaller than that needed by RSCM. Given
the assumptions above and if the application reconfiguration time
requirements are not too stringent, RSCM-S can be usefully
applied.

Another important aspect regarding the design of CCs is the
easiness for updating/adapting the CC to different applications.
When it is necessary to include additional functionalities to the
configuration controller, a software implementation is definitely
more flexible. Complex tasks can be easily accommodated
through programming. Examples of such functionalities are
bitstream compression and on-the-fly decompression,
configuration scheduling policies, and support to configuration
preemption. A hardware-only implementation as RSCM, would
require restructuring the CC design, realizing the CC re-synthesis
and would probably increase the area overhead of the controller.

5. DSRSs IMPLEMENTATIONS
This Section presents the implementation of two DSRSs case
studies. The first case study, depicted in Figure 4(A), employs: (i)
configuration controller implemented in software, RSCM-S; (ii)
partial bitstreams stored in internal BRAMs; (iii) ICAP
configuration port; (iv) Xilinx API to access ICAP; (v) OPB bus
as communication infrastructure. In contrast, the second case
study, illustrated in Figure 4(B) employs: (i) configuration
controller implemented in hardware, RSCM; (ii) partial bitstreams
stored in external SRAMs; (iii) ICAP configuration port; (iv)

47

direct access to the ICAP port through a dedicated hardware
controller; (v) Hermes NoC [12] as communication infrastructure.

Microblaze
Processor

Host
Communication

ICAP
Controller

Macro
Controller

ICAP

ILMB DLMB

O
P
B

B
U
S

Memory Buffer

Fixed SoC part
Reconfigurable

 SoC part

reconf.
 control

U
se

r
fu

nc
tio

n

M
A

C
R

O
S

Reconfigurable IP
O

PB
 to

 IP
IF

w

ra
pp

er

IP
IF

IP
IF

(A) bus-based architecture

01 11

00 10

Configuration
Memory

ICAP

Instruction /
Data Memory

Configuration
Controller

Host
Communication

NoC

M
A

C
R

O
S

Reconfigurable IP

U
se

r
fu

nc
tio

n

Fixed SoC part Reconfigurable
 SoC part

MR2
Processor

(B) NoC-based architecture

Figure 4 –DSRSs architectures.
Table 3 compares the area required to implement different
memory controllers and the typical capacity of such memories,
used to store partial bitstreams. Internal BRAM and external
SRAM are both static memories, requiring insignificant area to
implement their controllers. SDRAM require more complex
controllers, offering to users larger memory capacity. Typical
SRAM capacity, 1MB, is sufficient to store approximately ten
partial bitstreams in a XC2VP30 device. SDRAMs were not used
in the case studies as configuration repository due to the area to
implement this controller.

Table 3 – Area required to implement different memory
controllers and the typical capacity of each one.
Memory Type Slices (Area) Typical Capacity
BRAM 4 306KB (XC2VP30)
SRAM 8 1MB
SDRAM 373 64MB

In both experiments LUT-macros were used in the reconfigurable
interface. Huebner macros [10] are in fact a bus, restricting the
architecture. Macros developed by Xilinx [9] uses a larger area
when compared to the LUT-macros proposed in current work.
Figure 5 illustrates the difference: the Bus Macro consumes 6
CLB columns, being two in the fixed area and four in the
reconfigurable area; while the LUT-macro occupies only two
CLB columns, one at the fixed area and one at the reconfigurable
area. Another difference is the number of bits transported by each

macro: Bus Macro is 4-bit wide and LUT-macro 8-bit wide. The
advantages of LUT-macro justify its usage in both DSRSs case
studies.

o

i

i

i

i

Fixed Area Reconfigurable Area

o o o

1 CLB column

o

o

o

o

i

i

i

i

Fixed
Area

Reconfigurable
Area

(A)

(B)

Figure 5 – Physical implementation of macros configured to

communicate data from left to right: (A) Bus Macro [9];
(B) F2R Macro proposed in current work.

Another common choice in both experiments is the configuration
interface: ICAP port. The first case study uses the Xilinx API to
access the ICAP port, while the second case study uses a
dedicated module that was developed to access the ICAP port.
The Xilinx API is a slow process for two reasons: (i) a buffer is
inserted between the repository and the reconfiguration port; (ii)
the MicroBlaze processor controls all steps. The dedicated
hardware module implemented in the second case study acts as a
DMA controller. The processor indicates the address of the partial
bitstream in memory to the controller, which reads the words from
memory transferring them directly to the ICAP port.

It is used a partial bitstream with 5 CLB columns in a XC2VP30
device to compare the performance to reconfigure a partial
bitstream with both methods. The reconfiguration using the Xilinx
API consumed 34.76 ms and the dedicated hardware module 9.98
ms. Despite the fact the hardware module is in this
implementation is 3.5 faster, the software implementation has
several advantages, such as flexibility to implement/modify
features (e.g. scheduling, bitstream compression and context
switching) by only writing a new piece of code, without hardware
synthesis. The present disadvantage, high reconfiguration time, is
due to the Xilinx API responsible to access the ICAP module.
Write a new API to access the ICAP module is a feasible work,
which can reduce dramatically the reconfiguration time.

Table 4 compares the area to implement the configuration
controller in experiment 1 (with MicroBlaze) and experiment 2
(with dedicated hardware). If a processor is already available in
the system (as MicroBlaze or PowerPC), the area of the software
configuration controller represents the area of the ICAP Controller
and Macro Controller, resulting in 1.82% of FPGA area usage,
against 3.44% from configuration controller implemented in
hardware.

48

Table 4 – FPGA area report for two configuration controllers
implementations: (A) software; (B) hardware.

(A) Module
Number
of Slices

Number
of FFs

Percentage
of Slices

MicroBlaze 571 366 4.17%
MicroBlaze support 160 75 1.17%
ICAP Controller 151 155 1.1%
Macro Controller 99 136 0.72%
Total 981 732 7.16%

(B) Module Number
of Slices

Number
of FFs

Percentage
of Slices

MR 11 20 0.08%
EC 42 69 0.31%
CCC 71 97 0.52%
AC 130 236 0.95%
MC 216 329 1.58%
Total 470 751 3.44%

6. CONCLUSIONS
Architectures to implement reconfigurable systems have been
largely discussed in the literature recently. It is possible to
enumerate different ways to implement such systems, but one
common feature pervades in most works: the use of Xilinx
components. This work has discussed trade-offs and choices to
implement dynamic self-reconfigurable systems. Table 5
summarizes the proposed choices.

Table 5 – Recommended infrastructure choices for DSRSs.
Infrastructure Element Recommended Choice

Configuration Controller Software + new API (future work)
Reconfigurable Interface LUT-Macro

Repository External SRAM
Reconfigurable Port ICAP

Interconnection Infrastructure NoC (Scalability)

The experiments show that implementing the configuration
controller in software gives to the user more flexibility to
implement new algorithms (e.g. scheduling), allows to modify and
insert new functionalities (e.g. bitstream compression, context
switching) only writing a new piece of code, without hardware
synthesis. The present disadvantage, higher reconfiguration time,
is due to the Xilinx API responsible to access the ICAP module.
Write a new API to access the ICAP module is a feasible work,
which can reduce the reconfiguration time.

The reconfigurable interfaces should use LUT-macros, instead the
Xilinx Bus Macro, since they allow to implement wider interfaces
between modules, occupies less area, and can be easily adapted to
support insulation during the reconfiguration process.

It is recommended to use external static RAM to store the partial
bitstreams, since the controller to access these memories is very
simple, present a small access time, and the capacity of such
memories is sufficient to store several partial bitstreams. It is not
recommended to waste internal FPGA memory with partial
bitstreams, since the capacity of such memories is too small.

ICAP is the only available choice to implement the
reconfiguration port without employing external circuitry. Ports as

JTAG and SelectMAP may be used, but they require external
components.

Few works employ network-on-chip infrastructure as
communication infrastructure. NoCs are the recommended option,
mainly due to the scalability, essential feature in future SoCs.

These choices define a reference architecture for reconfigurable
architectures research. Short-term work includes: improve the
configuration controller implemented in software, with a faster
access to the ICAP and include bitstream decompression to reduce
the memory requirements. Future work includes evaluate the
control protocols necessary to include reconfigurable IPs in a
NoC, and link hardware reconfiguration to operating systems
(OS), enabling OS to schedule both hardware and software tasks.

7. ACKNOWLEDGMENTS
This research was supported partially by CNPq (Brazilian
Research Agency), project 307655/2003-2.

8. REFERENCES
[1] Keutzer, K.; et al. “System-Level Design: Orthogonalization

of Concerns and Platform-Based Design”. IEEE
Transactions on CAD of Integrated Circuits and Systems, v.
19(12), pp. 1523-1543, 2000.

[2] Wirthlin, M.; Hutchings, B. “Improving Functional Density
Through Run-Time Constant Propagation”. In: FPGA’97,
pp. 86-92.

[3] Ullmann, M.; et al. “An FPGA Run-Time System for
Dynamical On-Demand Reconfiguration”. In: IPDPS’04, pp.
135-142.

[4] Resano, J.; et al. “Specific Scheduling Support to Minimize
the Reconfiguration Overhead of Dynamically
Reconfigurable Hardware”. In: DAC’04, pp. 119-121.

[5] Mignolet, J.; et al. “Infrastructure for Design and
Management of Relocatable Tasks in a Heterogeneous
Reconfigurable System-On-Chip”. In: DATE’03, pp. 986-
991.

[6] Griese, B.; et al. “Hardware Support for Dynamic
reconfiguration in Reconfigurable SoC Architectures”. In:
FPL’04, pp. 842-846.

[7] Carvalho, E.; Calazans, N.; Moraes, F.; Mesquita, D.
“Reconfiguration Control for Dynamically Reconfigurable
Systems”. In: DCIS’04, pp 405-410.

[8] Palma, J.; Mello, A.; Möller, L.; Moraes, F.; Calazans, N.
“Core Communication Interface for FPGAs”. In: SBCCI’02,
pp. 183-188.

[9] Lim, D.; Peattie, M. “Two Flows for Partial
Reconfiguration: Module Based or Small Bit
Manipulations”. Xilinx Application Note 290 (v1.0), 2002.

[10] Huebner, M.; Becker, T.; Becker, J. “Real-Time LUT-Based
Network Topologies for Dynamic and Partial FPGA Self-
Reconfiguration”. In: SBCCI’04, pp. 28-32.

[11] Xilinx, Inc. “MicroBlaze Processor Reference Guide”.
Reference Guide v4.0 edition, Aug. 2004, 132 pages.

[12] Moraes, F. et al. “Hermes: an Infrastructure for Low Area
Overhead Packet-switching Networks on Chip”. Integration,
the VLSI Journal, v.38(1), 2004, pp. 69-93.

49

