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ABSTRACT 
Platform-based design is a method to implement complex SoCs, 
avoiding chip design from scratch. A promising evolution of 
platform-based design are MPSoC. Such generic architectures 
might furnish enough performance for several classes of 
embedded systems. An associated advantage of these architectures 
is flexibility at the software level. In principle, hardware is not 
flexible. Thus, dedicated IP blocks must be inserted before chip 
design, or enough area can be reserved for them when using 
reconfigurable blocks. Dynamic self-reconfigurable systems 
(DSRSs) introduce flexibility to hardware. In DSRSs, IP blocks 
are loaded according to application demand, reducing area, power 
consumption and system cost. An MPSoC based platform, 
associated with dynamic reconfiguration, provides both hardware 
and software flexibility. This paper has two main goals. First, to 
present the necessary infrastructure for DSRSs, identifying which 
components are required in these systems, such as a configuration 
controller, configuration ports and reconfigurable IP interfaces. 
The second objective is to discuss practical implementations 
choices and area-performance tradeoffs. The paper employs case 
studies to access the advantages and problems related to different 
implementations for the communication infrastructure (bus and 
NoC), the configuration controller (hardware and software) and IP 
interfaces (LUT and tristate based). 

Categories and Subject Descriptors 
B.7.1 [Integrated Circuits]: Types and Design Styles – advanced 
technologies, algorithms implemented in hardware, VLSI (very 
large scale integration). 

General Terms 
Design, Experimentation, Measurement, Performance, Theory, 
Verification. 

Keywords 
Reconfigurable Architectures, Configuration Controllers, NoCs. 

1. INTRODUCTION 
Platform-based design [1] is a method to implement complex 
SoCs, avoiding chip design from scratch. Usually, a platform-
based SoC includes one or more processors, a real-time operating 
system, intellectual property (IP) blocks, memories and an 
interconnection infrastructure. Depending on the platform type, it 
is possible to customize it by adding hardware IPs, including 
reconfigurable hardware blocks like FPGAs and/or writing 
embedded software. 

A promising evolution of platform-based design are MPSoC 
based platforms, with systems composed by a set of processors 
interconnected by a communication infrastructure. An advantage 
of these architectures is flexibility at the software level. In 
principle, hardware is not flexible. Thus, dedicated IP blocks must 
be inserted before chip design, or enough area can be reserved for 
them when using reconfigurable blocks.  

Systems with multiple processors in a system on chip (MPSoC) 
present as main characteristic software flexibility and the 
performance of distributed systems. On the one hand using 
homogeneous processors in MPSoCs guarantees task migration 
facilities, on the other hand heterogeneous processors can provide 
flexibility to the MPSoC to choose the most adaptable processor 
to execute a certain task. One new degree of flexibility on 
heterogeneous MPSoCs can be obtained by using reconfigurable 
devices. These devices allow: (i) extending product life cycle; (ii) 
updating hardware; (iii) building smaller products; (iv) migrating 
tasks to hardware.  

In order to accomplish (iii) and (iv) the reconfigurable device 
must have the characteristic to be partially and dynamically 
reconfigured. Systems that use this characteristic are called 
Dynamically Reconfigurable Systems (DRSs). Another 
characteristic that can speed up the reconfiguration at runtime is if 
the reconfigurable device itself manages the hardware 
substitution. In this case the system can be named Dynamically 
Self Reconfigurable System (DSRS).  

This paper has two main goals. First, to present the necessary 
infrastructure for DSRSs, identifying which components are 
required in these systems, such as a configuration controller, 
configuration ports and reconfigurable IP interfaces. The second 
objective is to discuss practical implementations choices and area-
performance tradeoffs. 

The rest of the paper is organized as follows. Section 2 presents 
concepts related to reconfigurable systems. Section 3 presents 
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related works in hardware infrastructure for DSRS, while Section 
4 discusses choices and trade-offs among some of these works. A 
comparison between two self reconfigurable infrastructures is the 
subject of Section 5. Finally, Section 6 presents some conclusions 
and future work. 

2. CONCEPTUAL RECONFIGURABLE 
ARCHITECTURE  
The most widespread commercial ICs that use reconfigurable 
hardware are the RAM-based FPGAs. These FPGAs can be 
configured an unlimited number of times by storing a valid 
configuration in its configuration memory. The process of writing 
the configuration memory programs the FPGA resources (logic 
functions, I/Os and interconnection points). A valid configuration 
is a sequence of values that defines a coherent virtual structural 
behavior of the hardware. The term configuration is also used to 
define the process of writing the configuration memory, while the 
term reconfiguration defines the process of rewriting the FPGA 
configuration memory with another valid configuration. 

Totally reconfigurable systems are systems that write the complete 
device configuration memory in each reconfiguration step, in 
contrast to the partially reconfigurable systems. Statically 
reconfigurable systems are those that suspend the system 
operation during the reconfiguration process, in contrast to the 
dynamically reconfigurable systems (DRSs), which allow that part 
of the system continues to operate throughout the reconfiguration 
process. DRSs able to control their own reconfiguration process 
are called dynamically self reconfigurable systems (DSRSs). 
These systems must contain specific resources to control new 
charges of configurations at runtime, as depicted in Figure 1.  
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Figure 1 – DSRS generic architecture. 

 

Besides a set of fixed IPs (not reconfigurable) and the 
communication medium, which are IPs that usually compose SoC 
designs, there are a set of reconfigurable IPs and four other fixed 
IPs: a Configuration Controller (CC), a Repository, a 
Configuration Port (CP) and one Reconfigurable Interface (RI) 
associated to each reconfigurable IP. The CC loads configurations 
stored in a repository and, according to its scheduler, chooses one 
reconfigurable IP to be substituted. Then, the configuration of a 
reconfigurable IP is sent to the Configuration Port (CP) and the 
system starts to be immediately updated. In DSRSs, the 
Reconfigurable Interface (RI) is vital to implement a static routing 
between a reconfigurable IP and the static part of the DSRS. 

3. RELATED WORKS 
The main challenges behind the design and implementation of 
DSRSs lie in three main subjects depicted in the generic 
architecture presented in Figure 1 and discussed in the following 
Sections: the Configuration Controller (CC), the Reconfigurable 
Interface (RI) and the Configuration Port (CP). The quality of the 
CC and the CP dictates the applicability of a given DSRS. The 
faster the reconfiguration process, the smaller time penalty is 
imposed on the implemented application [2]. A careful design of 
the RI is mandatory to enable reconfiguration to occur at runtime, 
since transient values on this interface may provoke malfunction 
of the whole system or even damage the device.  

3.1 Configuration Controller 
Ullmann [3] proposes a hardware task manager with real-time 
constraints for DSRSs. This manager is implemented in software 
and controls the reconfiguration process and context saving. This 
task manager is also responsible to control the communication 
among system modules and external devices (sensors and 
actuators) through a CAN bus. 

Resano [4] designed a scheduler using two techniques, named 
Prefetch-Scheduling Technique and Replacement Technique. The 
Prefetch-Scheduling Technique receives as input a set of tasks and 
decides when they will be loaded from memory to be executed. 
The main goal of this technique is to hide the time penalty to load 
a reconfigurable IP by analyzing tasks interdependencies and 
triggering earlier the reconfiguration process. The Replacement 
Technique is responsible to increase the possibilities to reuse 
critical tasks in favor of the global system performance. 

Mignolet [5] presents an infrastructure for relocatable tasks 
managing. In this system hardware tasks can have its context 
interrupted and continue its processing in software, or vice-versa. 
Given the nature of the target system, a unified communication is 
needed. The communication among tasks is implemented trough 
message exchange. The communication between two task can 
happen in three distinct ways: (i) when both tasks are executing in 
hardware, a NoC is used for communication; (ii) when both tasks 
are executing in software (in the embedded processor), the 
communication is implemented through an API; (iii) when a task 
is executing in software and another in hardware, a Hardware 
Abstraction Layer is used to implement the communication. 

Griese [6] proposes a run-time reconfiguration manager. This 
manager was implemented in hardware and it is responsible to 
control and execute the reconfiguration process in a target 
platform. Context switching and security mechanisms were also 
implemented to prevent a possible unsuccessful reconfiguration. 
Griese’s manager stores partial bitstreams in a host computer, 
which communicates with the target platform through the PCI. 

Carvalho [7] proposes a configuration controller named RSCM, 
completely in hardware. It is composed by the following modules: 
(i) Configuration Memory, stores all partial bitstreams used by the 
system; (ii) Self-Configuration, controls the physical 
reconfiguration process; (iii) Configuration Interface, sends 
configuration data to the FPGA; (iv) Central Configuration 
Control, receives requests to start the configuration process and 
provides results in the form of status signals; (v) Reconfiguration 
Monitor, detects situations where reconfigurations need to be  
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performed; (vi) Configuration Scheduler, determines which 
configuration is the next to be configured. 

3.2 Reconfigurable Interface 
As stated earlier, a reconfigurable interface is necessary to 
implement a static routing between a reconfigurable module and 
the rest of the DSRS. The interface proposed by Palma [8] in 2002 
uses two levels of tristate buffers in the input and output pins of 
the reconfigurable modules. One level of tristates belongs to the 
reconfigurable module and the other to the communication 
medium. Due to the scarce number of tristates and the limited 
number of routings that two tristate buffers can take, it is 
necessary to manually verify if the modules to be exchanged have 
the same routing. In order to reduce this manual step, Palma 
employs a 1-bit data serial bus as communication medium. 

Xilinx proposes in [9] a reconfigurable interface called Bus 
Macro. This macro is composed by 8 tristate buffers and allows 
the communication of 4 bits between a reconfigurable area and 
the rest of the system. This macro simplified the routing 
verification between two tristate buffers of Palma reconfigurable 
interface. 

Huebner [10] also proposes a reconfigurable interface called Bus 
Macro (different from the Xilinx Bus Macro and herein named 
Huebner macro), which is a static bus responsible to connect all 
reconfigurable modules of the system. This reconfigurable 
interface is composed by two unidirectional busses, each one 
implemented by a set of CLBs configured as depicted in Figure 2. 
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3.3 Configuration Ports 
The configuration ports used in DSRSs are usually the ones 
provided by the manufacturers and can be accessed internally or 
externally from the FPGA. In the case of Xilinx FPGAs, which 
are used from works [3] to [10], there are three available ports: 
JTAG, SelectMap and ICAP. JTAG is a serial interface, while the 
two others can transmit 8-bits data in parallel (Virtex 4 ICAP has 
a 32-bit configuration port). From these, only the ICAP is an 
internal port and it can work at 66 MHz and 100 MHz (Virtex 4), 
while SelectMap and JTAG can operate at 50 MHz and 33 MHz, 
respectively. 

From the presented works, only the work from Ullmann/Huebner 
explicitly mention to use the fastest communication port, which 
can be done by a specific hardware connected to the ICAP or  

through the API implemented by Xilinx and available for 
MicroBlaze [11] and PowerPC processors.  

4. CHOICES AND TRADE-OFFS 
This Section discusses design choices available for implementing 
each element of a DSRS infrastructure, with emphasis on the cost-
benefit trade-offs involved in selecting each of these choices. 

4.1 Repositories 
DSRSs need to have access to repositories able to maintain a 
potentially large number of partial configurations, in what is often 
called configuration memory. Besides stocking partial 
configurations, these repositories should offer fast access to its 
contents for the DSRS such that application requirements be 
satisfied. There are basically four device types available to use as 
configuration memories: (i) memory internal to the reconfigurable 
device, usually available as RAM blocks or BRAM; (ii) devices 
external to the DSRS using static RAM technology, or SRAM; 
(iii) devices external to the DSRS using PROM technology, such 
as EPROM or Flash devices called generically PROM; (iv) 
devices external to the DSRS using DRAM technology, such as 
SDRAM and others. Table 1 presents a qualitative comparison 
among these devices. 
 

Table 1 – comparison of technologies applicable to build 
DSRS configuration memories. 

Memories Capacity Speed Controller Complexity Cost/Bit 
BRAM + ++++ + +++ 
SRAM ++ +++ ++ ++ 
PROM ++ + ++++ ++ 
DRAM ++++ ++ +++ + 

 

Applications using BRAMs to form a configuration memory need 
to have a small number of small configurations, due to its limited 
capacity. Limited applications that benefit from difference-based 
[9] reconfiguration techniques are among those that can employ 
this kind of repository.  

SRAM and DRAM devices present a good compromise between 
access speed and storage capacity. The former imply simpler 
controllers added to the DSRSs, but are much more expensive per 
bit than DRAMs. DRAMs, on the other hand have a low cost per 
storage bit allowing to store more configurations, but a higher 
area of the DSRS must be committed to implement its controller.  

Contrary to the other three technologies PROMs have the 
advantage of keeping configurations after turning the DSRS off. 
They cost more per bit than DRAMs, but imply a simpler 
procedure at the startup of the DSRS. Also, changing the contents 
of the repository is more complicated than with the other 
technologies. 

4.2 Reconfigurable Interface 
Three reconfigurable interfaces were presented in Section 3.2. 
The main drawback of Palma´s work [8] is to manually route the 
interface between the reconfigurable area and the fixed area. The 
Xilinx Bus Macro [9] reduces manual routing, however, it also 
uses tristate buffers, which are scarce resources in Xilinx FPGAs.  
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The use of such resources constrains the system design with 
complex reconfigurable interfaces.  

Huebner [10] points that the routing tool sometimes does not 
respect the constraints set by the designer and crosses the 
boundary between the reconfigurable module and the fixed part of 
the system. Due to this problem Huebner developed a static bus 
implemented with LUTs. One advantage of this approach is to 
insulate computation from communication, thus preventing any 
system interruption. However, this reconfigurable interface 
imposes the use of a bus-based communication medium. 

The present work proposes a new reconfigurable interface, based 
in LUTs as Huebner’s macros, but with the difference to not 
impose the use of a specific communication medium. The 
reconfigurable interface is composed by two unidirectional 
macros, depicted in Figure 3. The first one, named F2R, is 
responsible to send data from the fixed part of the system to a 
reconfigurable module, while the second one, named R2F, 
implements the inverse direction of communication. Both macros 
allow the parallel transmission of 8 bits. The F2R macro is 
configured with the identity function, while the R2F uses a special 
logic to prohibit transient switchings during the reconfiguration 
process from reconfigurable to fixed areas. 
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4.3 Configuration Ports 
As already stated in Section 3.3 the most popular devices used as 
basis for implementing DSRSs are Xilinx FPGAs, specially the 
Virtex and Spartan families. In these devices, the external JTAG 
and SelectMap interfaces are alternatives for implementing 
configuration ports for DRSs that are not self-reconfigurable, 
where the configuration controller is located outside the DRS. 
Although these interfaces can be used for building DSRS (by 
using external wiring connecting some of the reconfigurable 
device pins to them) most of these devices have available an 
Internal Configuration Access Port, or ICAP. The ICAP usually 
constitutes the best choice for supporting the construction of 
DSRS, once it can be accessed from inside the reconfigurable 
device by user logic. 

4.4 Configuration Controller 
DSRSs require an internal module to manage the internal 
reconfiguration process, the configuration controller (CC). Section 
3.1 already discussed some propositions of CCs available in the 

literature. One of these is the RSCM [7]. Two versions of this CC 
have been built by the Authors: (i) a version fully built in 
hardware; (ii) a version developed mostly in software. Table 2 
compares these two implementations qualitatively. 

Table 2 – Qualitative comparison of the RSCM configuration 
controller implementations. 

Characteristic RSCM (hardware) RSCM-S (software) 
Configuration Speed Milliseconds Milliseconds 

Area Requires additional 
hardware 

If processor available, 
small area overhead 

(ICAP and macro 
controllers required) 

Easiness of 
modification Complex / extra area Simple / software 

modification 
 

RSCM-S is in average three times slower than the RSCM 
hardware. This disadvantage is related to the inefficiency of the 
current API furnished by Xilinx to give access to ICAP. This API 
requires the CC to fetch 512-word blocks of each partial 
configuration and store these in a BRAM. Only after caching 
these data, the API sends configuration data to the ICAP. The 
RSCM sends data directly from an external memory to ICAP, 
leading to smaller reconfiguration time. 

The RSCM-S runs on an embedded 32-bit RISC designed by 
Xilinx, MicroBlaze. The structure of RSCM-S includes, besides 
the processor, peripheral device controllers, memory and a 
communication medium. Obviously, if this infrastructure is 
applied to the configuration control alone, the approach could 
hardly be justified. However, assuming that most applications 
today require the use of one or more processors inside the system, 
and assuming some of these processors have spare time to 
perform the configuration controller tasks, the additional hardware 
in fact requires an area smaller than that needed by RSCM. Given 
the assumptions above and if the application reconfiguration time 
requirements are not too stringent, RSCM-S can be usefully 
applied. 

Another important aspect regarding the design of CCs is the 
easiness for updating/adapting the CC to different applications. 
When it is necessary to include additional functionalities to the 
configuration controller, a software implementation is definitely 
more flexible. Complex tasks can be easily accommodated 
through programming. Examples of such functionalities are 
bitstream compression and on-the-fly decompression, 
configuration scheduling policies, and support to configuration 
preemption. A hardware-only implementation as RSCM, would 
require restructuring the CC design, realizing the CC re-synthesis 
and would probably increase the area overhead of the controller. 

5. DSRSs IMPLEMENTATIONS 
This Section presents the implementation of two DSRSs case 
studies. The first case study, depicted in Figure 4(A), employs: (i) 
configuration controller implemented in software, RSCM-S; (ii) 
partial bitstreams stored in internal BRAMs; (iii) ICAP 
configuration port; (iv) Xilinx API to access ICAP; (v) OPB bus 
as communication infrastructure. In contrast, the second case 
study, illustrated in Figure 4(B) employs: (i) configuration 
controller implemented in hardware, RSCM; (ii) partial bitstreams 
stored in external SRAMs; (iii) ICAP configuration port; (iv)  
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direct access to the ICAP port through a dedicated hardware 
controller; (v) Hermes NoC [12] as communication infrastructure. 
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Figure 4 –DSRSs architectures. 
Table 3 compares the area required to implement different 
memory controllers and the typical capacity of such memories, 
used to store partial bitstreams. Internal BRAM and external 
SRAM are both static memories, requiring insignificant area to 
implement their controllers. SDRAM require more complex 
controllers, offering to users larger memory capacity. Typical 
SRAM capacity, 1MB, is sufficient to store approximately ten 
partial bitstreams in a XC2VP30 device. SDRAMs were not used 
in the case studies as configuration repository due to the area to 
implement this controller. 

Table 3 – Area required to implement different memory 
controllers and the typical capacity of each one. 
Memory Type Slices (Area) Typical Capacity 
BRAM 4 306KB (XC2VP30) 
SRAM 8 1MB 
SDRAM 373 64MB 

 

In both experiments LUT-macros were used in the reconfigurable 
interface. Huebner macros [10] are in fact a bus, restricting the 
architecture. Macros developed by Xilinx [9] uses a larger area 
when compared to the LUT-macros proposed in current work. 
Figure 5 illustrates the difference: the Bus Macro consumes 6 
CLB columns, being two in the fixed area and four in the 
reconfigurable area; while the LUT-macro occupies only two 
CLB columns, one at the fixed area and one at the reconfigurable 
area. Another difference is the number of bits transported by each 

macro: Bus Macro is 4-bit wide and LUT-macro 8-bit wide. The 
advantages of LUT-macro justify its usage in both DSRSs case 
studies. 
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Figure 5 – Physical implementation of macros configured to 

communicate data from left to right: (A) Bus Macro [9];  
(B) F2R Macro proposed in current work.  

Another common choice in both experiments is the configuration 
interface: ICAP port. The first case study uses the Xilinx API to 
access the ICAP port, while the second case study uses a 
dedicated module that was developed to access the ICAP port. 
The Xilinx API is a slow process for two reasons: (i) a buffer is 
inserted between the repository and the reconfiguration port; (ii) 
the MicroBlaze processor controls all steps. The dedicated 
hardware module implemented in the second case study acts as a 
DMA controller. The processor indicates the address of the partial 
bitstream in memory to the controller, which reads the words from 
memory transferring them directly to the ICAP port. 

It is used a partial bitstream with 5 CLB columns in a XC2VP30 
device to compare the performance to reconfigure a partial 
bitstream with both methods. The reconfiguration using the Xilinx 
API consumed 34.76 ms and the dedicated hardware module 9.98 
ms. Despite the fact the hardware module is in this 
implementation is 3.5 faster, the software implementation has 
several advantages, such as flexibility to implement/modify 
features (e.g. scheduling, bitstream compression and context 
switching) by only writing a new piece of code, without hardware 
synthesis. The present disadvantage, high reconfiguration time, is 
due to the Xilinx API responsible to access the ICAP module. 
Write a new API to access the ICAP module is a feasible work, 
which can reduce dramatically the reconfiguration time. 

Table 4 compares the area to implement the configuration 
controller in experiment 1 (with MicroBlaze) and experiment 2 
(with dedicated hardware). If a processor is already available in 
the system (as MicroBlaze or PowerPC), the area of the software 
configuration controller represents the area of the ICAP Controller 
and Macro Controller, resulting in 1.82% of FPGA area usage, 
against 3.44% from configuration controller implemented in 
hardware. 
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Table 4 – FPGA area report for two configuration controllers 
implementations: (A) software; (B) hardware.  

(A) Module 
Number 
of Slices 

Number 
of FFs 

Percentage 
of Slices 

MicroBlaze 571 366 4.17% 
MicroBlaze support 160 75 1.17% 
ICAP Controller 151 155 1.1% 
Macro Controller 99 136 0.72% 
Total 981 732 7.16% 

 

(B) Module Number 
of Slices 

Number 
of FFs 

Percentage 
of Slices 

MR 11 20 0.08% 
EC 42 69 0.31% 
CCC 71 97 0.52% 
AC 130 236 0.95% 
MC 216 329 1.58% 
Total 470 751 3.44% 

 

6. CONCLUSIONS 
Architectures to implement reconfigurable systems have been 
largely discussed in the literature recently. It is possible to 
enumerate different ways to implement such systems, but one 
common feature pervades in most works: the use of Xilinx 
components. This work has discussed trade-offs and choices to 
implement dynamic self-reconfigurable systems. Table 5 
summarizes the proposed choices. 

Table 5 – Recommended infrastructure choices for DSRSs. 
Infrastructure Element Recommended Choice 

Configuration Controller Software + new API (future work) 
Reconfigurable Interface LUT-Macro 

Repository External SRAM 
Reconfigurable Port ICAP 

Interconnection Infrastructure NoC (Scalability) 
 

The experiments show that implementing the configuration 
controller in software gives to the user more flexibility to 
implement new algorithms (e.g. scheduling), allows to modify and 
insert new functionalities (e.g. bitstream compression, context 
switching) only writing a new piece of code, without hardware 
synthesis. The present disadvantage, higher reconfiguration time, 
is due to the Xilinx API responsible to access the ICAP module. 
Write a new API to access the ICAP module is a feasible work, 
which can reduce the reconfiguration time. 

The reconfigurable interfaces should use LUT-macros, instead the 
Xilinx Bus Macro, since they allow to implement wider interfaces 
between modules, occupies less area, and can be easily adapted to 
support insulation during the reconfiguration process. 

It is recommended to use external static RAM to store the partial 
bitstreams, since the controller to access these memories is very 
simple, present a small access time, and the capacity of such 
memories is sufficient to store several partial bitstreams. It is not 
recommended to waste internal FPGA memory with partial 
bitstreams, since the capacity of such memories is too small. 

ICAP is the only available choice to implement the 
reconfiguration port without employing external circuitry. Ports as  

JTAG and SelectMAP may be used, but they require external 
components. 

Few works employ network-on-chip infrastructure as 
communication infrastructure. NoCs are the recommended option, 
mainly due to the scalability, essential feature in future SoCs. 

These choices define a reference architecture for reconfigurable 
architectures research. Short-term work includes: improve the 
configuration controller implemented in software, with a faster 
access to the ICAP and include bitstream decompression to reduce 
the memory requirements. Future work includes evaluate the 
control protocols necessary to include reconfigurable IPs in a 
NoC, and link hardware reconfiguration to operating systems 
(OS), enabling OS to schedule both hardware and software tasks. 
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