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Abstract 
 

Building fully synchronous VLSI circuits is becom-

ing less viable as circuit geometries evolve. However, 

before the adoption of purely asynchronous strategies 

in VLSI design, globally asynchronous, locally syn-

chronous (GALS) design approaches should take over. 

The design of circuits using complex field programma-

ble components like state of the art FPGAs follows this 

same trend. In GALS design, a critical step is the defi-

nition of asynchronous interfaces between synchronous 

regions. This paper proposes SCAFFI, a new asyn-

chronous interface to interconnect modules inside 

FPGAs. The interface is based on clock stretching 

techniques to avoid metastability. Differently from 

other interfaces, it can use both logic levels for stretch-

ing and do not require the use of arbiters. Also, com-

pactness of the implementation is enhanced by the use 

of dedicated FPGA hard macros. A GALS version im-

plementation of an RSA cryptography core demon-

strates the use of SCAFFI. 

1 Introduction 

It is undisputable that non-synchronous design 

methodologies for digital systems offer a series of ad-

vantages when compared to the widespread synchro-

nous design style. Among the advantages is a potential 

for lower power consumption and average case per-

formance. Nonetheless, the design simplification pro-

vided by synchronous design and the automated tools 

support have, for a long time, made the choice between 

synchronous and non-synchronous design easy in favor 

of the former. Nowadays, the picture is changing, due 

to increasing problems of clocking billion-gate designs 

at gigahertz operating frequencies. A chip can no 

longer be crossed by an electric signal in one clock 

period [1]. Also, the power implied by a global clock 

distribution tree dominates chip power dissipation [2]. 

The division of a digital system into modules con-

trolled each by a different clock domain allows reduc-

ing the problems faced by nanoscale circuits. 

Using multiple synchronous modules asynchro-

nously connected is called Globally Asynchronous, 

Locally Synchronous (GALS) design [3]. Synchronous 

techniques are promptly applicable at module level, 

and the interface design becomes a new design task. 

The development of GALS systems in modern 

commercial FPGAs is possible, since most devices 

count more than one clock domain. Indeed, high end 

devices contain several dozen clock domains. How-

ever, primitives necessary to build GALS asynchronous 

interfaces are not directly available in such devices. 

While some FPGA architectures were proposed to sup-

port asynchronous circuit design, most targeted a par-

ticular design style and so far none of these are viable 

commercial products. Previous works proposed tech-

niques to implement asynchronous or GALS systems in 

commercial FPGAs, e.g. [4][5][6]. This work proposes 

Stretchable Clock Asynchronous Flexible FPGA Inter-

face (SCAFFI), a flexible interface to support the con-

struction of GALS systems in FPGAs. 

The rest of this paper is organized as follows. Sec-

tion 2 gives basic definitions and reviews proposals of 

asynchronous interfaces that can be implemented on 

commercial FPGAs. Section 3 describes SCAFFI de-

sign. Section 4 addresses how hard macros can be used 

to support SCAFFI implementation. An RSA core us-

ing SCAFFI is the subject of Section 5. Conclusions 

and directions for future work appear in Section 6. 

2 Asynchronous interfaces in FPGAs 

The design of asynchronous interfaces in FPGAs is 

complex, since these devices were conceived to support 

synchronous design only. Thus, FPGAs lack asynchro-

nous design primitives such as arbiters and synchroniz-

ers and do not allow, as ASICs do, that these be con-

structed at the layout level.  

The design of asynchronous circuits in general and 

asynchronous interfaces in particular assumes the re-

spect of timing restrictions. The nature of these restric-

tions varies according to the adopted asynchronous 

design style. An asynchronous interface design style 

comprises choices of: (i) communication protocol, (ii) 

data encoding, and (iii) synchronization strategy. 

The simplest communication protocol is the explicit 

handshake between a sender and a receiver. It can be 

implemented using edge or level signaling, respectively 

named 2-phase and 4-phase handshake. 
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A commonly used data encoding scheme in asyn-

chronous systems is the same used in practically any 

synchronous system, the binary or single track encod-

ing. Here, a wire represents exactly one bit of informa-

tion. An asynchronous communication interface em-

ploying single track encoding associated to a hand-

shake protocol defines a communication mechanism 

called bundled data, where data availability/validity is 

indicated by an explicit request signal (Req) and data 

reception is signaled by an explicit acknowledgement 

signal (Ack). This implies that data bus signals must be 

delayed by an amount of time smaller than the Req sig-

nal. Alternatively, the controller generating the Req 

must be designed so that Req only occurs after a stable 

data value is available at the input of the Receiver. 

To eliminate/reduce bundle data constraints, 

schemes that carry validity information inside data can 

be used. These encodings allow developing communi-

cation protocols where it is not necessary to impose 

timing restrictions on control signals, apart from the 

isochronic fork restriction [7]. Such encoding schemes 

are called delay insensitive (DI) encodings or codes.  

GALS systems need a synchronization mechanism. 

This encompasses defining a safe data sampling proc-

ess for synchronous islands to acquire data from an 

asynchronous environment. Safeness is defined with 

regard to metastability avoidance or confinement. The 

most commonly employed synchronization strategy 

consists in using two series flip-flops clocked by the 

receiver. This does not eliminate metastability, but 

drastically reduces the probability that its occurrence 

result in synchronization failures. Ginosar [8] presents 

several variations of this strategy and analyzes the in-

fluence of each in the robustness and correctness of the 

interface. A problem with this approach is the in-

creased data transfer latency. 

Using pausible clocks can eliminate the risk of me-

tastability at the interface. The clock of each communi-

cating synchronous module is paused (or stretched) 

before the data transfer, and then restarted when data is 

stable. Clock stretching is the task of an arbiter or mu-

tual exclusion (ME) element. ME devices usually em-

ploy RS latches and specially built filter devices. Mut-

tersbach et al. [9] and Moore et al. [10] present GALS 

communication interfaces proposals for ASICs. 

Few works proposed GALS communication inter-

faces for FPGAs [5][6]. The main problem here is the 

implementation of metastability-free mutual exclusion. 

Najibi et al. [6] implemented a GALS system using as 

ME device an RS latch. To avoid metastability, they 

propose that the clock stretching request signal cross a 

latch sensitive to the high logic level. However, this 

method only transfers the risk of metastability from the 

arbiter to the latch itself. In another work, Moore and 

Robinson [5] present an arbiter that can be imple-

mented in commercial FPGAs. The arbiter has its own 

clock, and its structure is a variation of the series two 

flip-flops approach. Request and the system clock must 

be synchronized with the arbiter clock, so that arbitra-

tion succeeds. Interfaces based on this arbiter present 

reduced throughput compared to two flip-flops. 

3 SCAFFI: a new interface proposal 

This Section presents the architecture of a new inter-

face, called SCAFFI, which is useful to overcome some 

disadvantages pointed out on previously proposed in-

terfaces. SCAFFI is point-to-point, unidirectional and 

supports both bundled data and delay or quasi-delay 

insensitive (QDI) communication styles. Two instances 

of SCAFFI can provide a bidirectional communication 

interface. Sections 3.1 through 3.3 discuss this architec-

ture. For more reliable data transmission, the basic de-

sign can be improved with additional modules. Section 

3.4 explores this. 

3.1 Basic architecture - bundled data style 

The SCAFFI basic architecture is depicted in Fig. 1. 

Physically, it occupies part of a Sender and part of a 

Receiver sharing a data communication channel. 

SCAFFI employs clock stretching techniques. 

SR AR

SA AA

Data

Clock

 2-Phase 4-Phase

Clock

SR

SA

 2-Phase

Stretcher Stretcher

RS RSAS AS

 Legend:
 SR – Synchronous Request AR – Asynchronous Request RS – Request Stretch

 SA – Synchronous Acknowledge AA – Asynchronous Acknowledge AS - Acknowledge Stretch

Sender ReceiverSCAFFI

 
Fig. 1. Structure of SCAFFI, showing the Sender and 

Receiver sides of the interface. 

The basic architecture supports bundled data com-

munication, leading to a small footprint interface 

adapted to short-range connections. Output and Input 

Ports employ 2-phase handshake between them and the 

neighbor synchronous island (respectively, Sender and 

Receiver in Fig. 1), to improve local communication. 

These same ports communicate with one another using 

a 4-phase handshake, to improve robustness. 
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3.2 The stretcher 

The clock stretching technique of the GALS inter-

faces proposed in [5] and [6] employs a ME mecha-

nism to decide when executing clock stretching. If ME 

is used to control stretching, the clock can only be 

paused at one of its logic levels, either at 0 or at 1. If 

the requisition occurs when the clock is at the other 

logic level, stretching can only occur in the next half of 

a cycle, which adds unneeded delay to communication.  

SCAFFI uses a stretcher to eliminate MEs, allowing 

stretching to occur at any logic level. The stretcher is 

depicted in Fig. 2. It has two control signals and a Clock 

output. The control signals are input Req and output 

Ack, respectively connected to SCAFFI RS and AS sig-

nals. The stretcher consists in a ring oscillator con-

trolled by a multiplexer (mux).  

1
0

 
Fig. 2. Structure of the stretcher. The oscillator ring in-

cludes D3, the inverter, D2, the mux and the C-element.  

The mux Req input controls the ring oscillator feed-

back path. Starting at the Clock output, this path crosses 

the delay element D3, the inverter, the delay element 

D2, the mux and the C-element, before returning to its 

starting point. The mux and C-element have hazard free 

implementations for fundamental mode operation. 

Glitches may occur at the mux output, but D2 is di-

mensioned to ensure these glitches do not propagate to 

the Clock output. This occurs because every possible 

mux glitch is produced when either D2 or the C-element 

output transition near some assertion or deassertion of 

Req. However, these can only change when the lower 

input of the C-element is stable, due to D2 or C-element 

delays. A glitch may cause the C-element to transition, 

but only once. After that, the C-element works as a 

glitch filter. ASIC Spice simulations of this circuit and 

the FPGA implementation showed identical behaviors. 

Both, stretch high and low clock levels. 

Whenever Req is unasserted (Req=0), the Clock out-

put oscillates at a frequency controlled by the dimen-

sioning of D3. When Req is asserted, the mux and the 

C-element keep the Clock output logic level stable (ei-

ther at 0 or 1), performing the stretch. Finally, D1 is 

dimensioned to produce the Ack output only after the 

Clock output is stable, taking longer than the combined 

delay of the mux and the C-element. 

3.3 SCAFFI input and output ports 

SCAFFI Input and Output Ports have burst mode 

specifications depicted in Fig. 3. This specification was 

implemented as a hazard-free circuit using the MINI-

MALIST tool [11]. 

 
Fig. 3. Burst mode specification for SCAFFI Ports. 

The resulting hazard-free logic equations for these 

controllers appear in Table 1. Signal Y0 corresponds to 

the internal feedback line of each controller. 

Table 1. Equations for Input and Output Port behaviors. 

Output Port InPUT Port 

00 ** YSRYSRAARS ++=  ARRS =  

00 ****** YAAASSRYAAASSRAR +=
 ARASSAYASSASR *** 0 ++=

 

ASSRYASYSRSA *** 00 ++=  
00 *** YARSAASYSAAA ++=
 

000 *** YAAYSRAASRY ++=
 00 *** YARARASSAY +=  

 

The behavior of SCAFFI is illustrated by the wave-

forms of the timing simulation of Fig. 4, which depicts 

a single data transmission taking place. To illustrate the 

local use of 2-phase protocols, the simulation shows 

communication with Ports initially at state 5. State 0 

would be another possible starting point. 

The simulation depicts the Input and Output Ports 

behavior. Signals are listed in ascending assertion or-

der, illustrating the interface modules behavior. A data 

transmission starts when the Sender inserts information 

at the Data lines and asserts a synchronous requisition 

(SR-), asking the Output Port to start a communication. 

This action triggers the sequence of control signal as-

sertions to asynchronously transmit data through 

SCAFFI. At the Sender side, the initial transitions are 

SR- � RS+ � AS+ � AR+ � SA-. After this sequence, 

the Sender clock is paused and data to transmit is 
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available and stable. Actions on the Receiver side fol-

low, where the sequence AR+=RS+�AS+�AA+�SR- 

takes place. Next, the Receiver clock is paused and a 

synchronous request is placed on the Receiver. This 

later cannot respond immediately to the request, since 

its clock is paused. However, transition AA+ triggers the 

Output port to produce AR- (Output port, transition 7 to 

8), releasing the Receiver clock to restart oscillating 

(marked by Producer AS-). Thus, when the Receiver 

clock restarts, its synchronous request signal SR is as-

suredly stable. Follows data consumption at the Re-

ceiver side, controlled by the control sequence SA-

�AA- and clock restart at the Sender side, with the se-

quence AA-�RS-�AS-. At the next rising edge of the 

Sender clock, a new transmission can already start. 

 

20.2ns 

50MHz 

78MHz 

Clock 

Stretching 5.5ns 

20ns 

 
Fig. 4. Example timing simulation of a data transmission 

using SCAFFI. AR and AA signals are repeated for 

Sender and Receiver, to ease reference. RS is the same as 

Receiver signal AR (see Table 1). Ports start at state 5. 

Fig. 4 also contains typical quantitative data for a 

SCAFFI implementation for a XC3S200-4 Spartan3 

Xilinx FPGA. For a Sender working at 50MHz and a 

Receiver at 78MHz, Sender stretching is around 20ns, 

and Receiver stretching is only 5.5ns. The time to 

transmit a single data is 20.2ns from the start of the 

handshake (SR-) until data is available to the Receiver. 

This is sufficient to ensure that bundle data constraints 

are met. However, some time is needed until the re-

ceiver clock is restarted. Conceptually, less than twice 

the Sender clock period is enough for any transmission 

to take place, but this is influenced by the 

sender/receiver frequency relationship. For this case, 

SCAFFI achieves a throughput of 31 MegaWords/s, 

nearly 4 times the throughput achievable with series 

flip-flop synchronizers using 2-phase handshake. 

3.4 Dual rail SCAFFI 

Two modules that need to communicate asynchro-

nously may be far apart. This reduces the feasibility of 

using bundled data interfaces, since it is difficult to 

guarantee that request signals always have a delay 

longer than all data lines. The situation is especially 

critical for wide channels expected in deep submicron 

technologies, due to delay dispersion caused by effects 

like crosstalk. One way to consider such effects is using 

DI interfaces. SCAFFI is based on a module library 

with components that allow implementing point to 

point delay insensitive interfaces by using dual rail data 

transmission. The basic SCAFFI can be enhanced with 

Single to Dual and Dual to Single rail converters in-

serted at Sender and Receiver sides, respectively. Fig. 5 

depicts a dual rail SCAFFI interface.  

Validity Detection

d0_t

...

d15

AA

C

C

C

d1_f

d15_t

d0

ARARSR

SA

SR

SA

d0

d1

d15

d1

Sender ReceiverDUAL RAIL SCAFFI

...

 
Fig. 5. Dual rail SCAFFI for distant Sender/Receiver 

pairs. Stretchers were omitted for clarity purposes. 

The asynchronous request AR is embedded within 

dual rail data lines and Validity Detection generates the 

receiver side version of AR. For wide n data bundles, 

this can be a quite large macro, requiring n XOR gates 

and a tree of C-elements. The AA signal is connected 

as before. While the Single to Dual module is standard 

HDL, the Dual to Single converter and the Validity 

Detection module are hard macros.  

A dual rail register in the library enables an addi-

tional enhancement to SCAFFI. It can be used to im-

plement SCAFFI with an associated asynchronous 

FIFO. This is useful e.g. to create an efficient interface 

between a synchronous and a dual rail QDI module. 

4 The hard macro library 

Hard macros are a step further in controlling FPGA 

synthesis results, since a manually designed layout is 

produced for critical parts of the design. They imply 

enhanced control, and of course, increased design 

complexity. Hard macros are not new to FPGA design. 

They have been used, for example, by Martín-

Langerwerf et al. in [12] to reduce FPGA chip count 

and synthesis runtime for video applications. The pre-

sent work employs hard macros for implementing 

asynchronous primitives, enabling the use of non-

synchronous design techniques in FPGAs in a compact 
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way. To the knowledge of the Authors this is the first 

work proposing hard macros for asynchronous design.  

In Xilinx FPGAs, a physical hard macro is a module 

created from FPGA primitive components like Look-

Up Tables (LUTs), flip-flops and wires. Hard macros 

are specific for a given device of some family, but are 

independent of device speed grade, and can be placed 

in multiple positions and instantiated multiple times. 

Hard macros can be created using the graphical layout 

tool FPGA Editor, provided by Xilinx. In this work, 

experimental hard macro libraries to support asynchro-

nous circuit design have been implemented for three 

Xilinx FPGAs: Spartan-3 XC3S200 and Virtex-II 

XC2V1000 and XC2V4000 devices.  

Hard macros allow controlling net delays more pre-

cisely than the use of higher level constraints. For in-

stance, constraints allow specifying the maximum delay 

of a net, but do not allow defining a delay relationship 

among wires composing a net. This is fundamental to 

safely implement both symmetric (as in SCAFFI Ports) 

and asymmetric (as in C-element feedback) isochronic 

forks. Once a hard macro layout respects an isochronic 

fork constraint, every instance of it has this characteris-

tic. All hard macros in the library proposed have timing 

constraints respected. The SCAFFI Output Port is a 

hard macro built as depicted in Fig. 6. 
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Fig. 6. Example of library hard macro implementation, 

the SCAFFI Output Port. For behavior, see Table 1. 

The Output Port takes exactly one FPGA Configur-

able Logic Block (CLB) to implement. A CLB contains 

four Slices, each with two 4-input LUTs. To achieve 

the isochronic fork timing requirements in this macro, 

every signal originating such a fork must have a single 

entry point in the macro layout. This is obtained using 

transparent LUTs, i.e. a LUT performing the identity 

function (3 top LUTs at the left, in Fig. 6). The LUT 

output feeds the isochronic fork net. Each fork output 

delay can be computed within the FPGA Editor. 

In Fig. 6 it is possible to note the four isochronic 

forks with individual output delays marked (between L 

and M slices). The way to define the best isochronic 

fork layout is unfortunately a trial and error process, 

because no method to compute these delays for all pos-

sibilities exists, but the amount of combinations is usu-

ally small. Also, the transparent LUTs add to the delay 

of the hard macro, but this loss is usually offset by the 

gains in the hard macro optimized layout. 

5 RSA cryptography: a use case 

The implementation of an RSA cryptography core 

served to validate SCAFFI. It demonstrates the poten-

tial of non-synchronous design to save power compared 

to synchronous implementations. The RSA core is an 

IP that executes modular exponentiation. This opera-

tion is computed as a control loop, where each step 

executes a modular multiplication. Multiplication oper-

ands and the result are 128-bit values. 

Here, the proposed structure of the implementation 

is implementing RSA as two modules interconnected 

through SCAFFI: modular exponentiation (MX, the 

Sender), and modular multiplication (MM, the Re-

ceiver). The application is described in VHDL and 

SCAFFI is a just set of module instances written in 

VHDL and taken from the hard macro library. The 

synthesis environment just need to know which file 

contains the library. 

Given the sequential behavior of RSA, the GALS 

implementation used a slightly modified version of 

SCAFFI, that keeps the exponentiation clock paused 

during multiplication. This has a major impact in low-

ering power. The SCAFFI interface follows loosely the 

basic architecture presented in Fig. 1. Due to the appli-

cation characteristics, it is not necessary to use two 

instances of SCAFFI for sending operands and receiv-

ing the multiplication result. Instead, the data bundle 

includes two 128-bit buses from Sender to Receiver 

and one 128-bit bus from Receiver to Sender. Sender 

only generates an acknowledgement to the Receiver 

after multiplication is finished and the 128-bit result is 

stable on the Receiver to Sender bus. 
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The GALS RSA implementation was compared to a 

synchronous RSA with equivalent functionality. Tim-

ing simulation helped validating the designs. These 

were prototyped on the XC3S200 FPGA. Table 2 gives 

maximum operating frequencies and clock loads for 

both implementations, obtained from the post place and 

route timing report. 

Table 2. Maximum operating frequencies for RSA. 

 Frequency(MHz) Clock Load 

Synchronous 41.748 1368 

Async. Exponentiation 157.953 694 

Async. Multiplication 45.335 674 

 

Table 3 shows area and power quantitative data for 

the synchronous and GALS versions of RSA. 

Table 3. FPGA area and power figures for RSA. 

 

Power figures were obtained using the method pro-

posed in [13] to compute FPGA power consumption. 

To enable applying the method, the prototyping board 

was modified by adding a precision resistor in series 

with the FPGA core power source. The synchronous 

RSA uses a 40MHz operating frequency, close to its 

maximum value. In the GALS RSA the MM module 

operates at 40MHz, while MX operates at 72MHz. 

This last value was chosen because it is slightly higher 

than the frequency where the performance of the GALS 

version equals the performance of the synchronous 

version. For higher frequencies, the GALS RSA pre-

sents better performance than the synchronous RSA. 

However, this performance gain is not significant, be-

cause 98% of the RSA execution time is spent execut-

ing modular multiplications. Results show that the 

GALS RSA incurs in 12% area overhead and a reduc-

tion of 46.5% in power, compared to the synchronous 

RSA version. 

6 Conclusions 

This paper proposed a new asynchronous interface 

to enable GALS design style in FPGAs which is flexi-

ble enough to allow interconnecting a mix of synchro-

nous and QDI modules. SCAFFI relies on a hard macro 

library providing FPGAs with efficient, compact and 

low power asynchronous devices. The library devel-

opment process is complex and each implementation 

contemplates only a single device size in a given device 

family. However, a simple set of asynchronous devices 

could be offered as part of FPGA vendor libraries, 

enabling a large set of non-synchronous design styles to 

be implemented on ordinary commercial FPGAs with 

little effort other than writing HDL code. 

Devised future works include the detailed compari-

son of previously proposed interfaces with SCAFFI and 

an automated, parameterizable process for generating 

specific SCAFFI interfaces. Improving the flexibility of 

SCAFFI to support 1 of 4 encodings is under way. This 

encoding takes as many wires per bit as the dual rail 

encoding, but uses only half of the transitions to convey 

the same information transfer, increasing power effi-

ciency. An asynchronous network on chip (NoC) based 

on SCAFFI is also under implementation. 
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 LUTs Flip Flops Gates Power (mW) 

Synchronous 1521 1367 21294 27.07 

GALS 1562 1367 21549 14.48 
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