
SCAFFI: An intrachip FPGA asynchronous interface based on hard macros

Julian Pontes, Rafael Soares, Ewerson Carvalho, Fernando Moraes, Ney Calazans

Faculty of Informatics, PUCRS, Porto Alegre, Brazil

email: {jpontes, rsoares, ecarvalho, moraes, calazans}@inf.pucrs.br

Abstract

Building fully synchronous VLSI circuits is becom-

ing less viable as circuit geometries evolve. However,

before the adoption of purely asynchronous strategies

in VLSI design, globally asynchronous, locally syn-

chronous (GALS) design approaches should take over.

The design of circuits using complex field programma-

ble components like state of the art FPGAs follows this

same trend. In GALS design, a critical step is the defi-

nition of asynchronous interfaces between synchronous

regions. This paper proposes SCAFFI, a new asyn-

chronous interface to interconnect modules inside

FPGAs. The interface is based on clock stretching

techniques to avoid metastability. Differently from

other interfaces, it can use both logic levels for stretch-

ing and do not require the use of arbiters. Also, com-

pactness of the implementation is enhanced by the use

of dedicated FPGA hard macros. A GALS version im-

plementation of an RSA cryptography core demon-

strates the use of SCAFFI.

1 Introduction

It is undisputable that non-synchronous design

methodologies for digital systems offer a series of ad-

vantages when compared to the widespread synchro-

nous design style. Among the advantages is a potential

for lower power consumption and average case per-

formance. Nonetheless, the design simplification pro-

vided by synchronous design and the automated tools

support have, for a long time, made the choice between

synchronous and non-synchronous design easy in favor

of the former. Nowadays, the picture is changing, due

to increasing problems of clocking billion-gate designs

at gigahertz operating frequencies. A chip can no

longer be crossed by an electric signal in one clock

period [1]. Also, the power implied by a global clock

distribution tree dominates chip power dissipation [2].

The division of a digital system into modules con-

trolled each by a different clock domain allows reduc-

ing the problems faced by nanoscale circuits.

Using multiple synchronous modules asynchro-

nously connected is called Globally Asynchronous,

Locally Synchronous (GALS) design [3]. Synchronous

techniques are promptly applicable at module level,

and the interface design becomes a new design task.

The development of GALS systems in modern

commercial FPGAs is possible, since most devices

count more than one clock domain. Indeed, high end

devices contain several dozen clock domains. How-

ever, primitives necessary to build GALS asynchronous

interfaces are not directly available in such devices.

While some FPGA architectures were proposed to sup-

port asynchronous circuit design, most targeted a par-

ticular design style and so far none of these are viable

commercial products. Previous works proposed tech-

niques to implement asynchronous or GALS systems in

commercial FPGAs, e.g. [4][5][6]. This work proposes

Stretchable Clock Asynchronous Flexible FPGA Inter-

face (SCAFFI), a flexible interface to support the con-

struction of GALS systems in FPGAs.

The rest of this paper is organized as follows. Sec-

tion 2 gives basic definitions and reviews proposals of

asynchronous interfaces that can be implemented on

commercial FPGAs. Section 3 describes SCAFFI de-

sign. Section 4 addresses how hard macros can be used

to support SCAFFI implementation. An RSA core us-

ing SCAFFI is the subject of Section 5. Conclusions

and directions for future work appear in Section 6.

2 Asynchronous interfaces in FPGAs

The design of asynchronous interfaces in FPGAs is

complex, since these devices were conceived to support

synchronous design only. Thus, FPGAs lack asynchro-

nous design primitives such as arbiters and synchroniz-

ers and do not allow, as ASICs do, that these be con-

structed at the layout level.

The design of asynchronous circuits in general and

asynchronous interfaces in particular assumes the re-

spect of timing restrictions. The nature of these restric-

tions varies according to the adopted asynchronous

design style. An asynchronous interface design style

comprises choices of: (i) communication protocol, (ii)

data encoding, and (iii) synchronization strategy.

The simplest communication protocol is the explicit

handshake between a sender and a receiver. It can be

implemented using edge or level signaling, respectively

named 2-phase and 4-phase handshake.

1-4244-1258-7/07/$25.00 ©2007 IEEE 541

A commonly used data encoding scheme in asyn-

chronous systems is the same used in practically any

synchronous system, the binary or single track encod-

ing. Here, a wire represents exactly one bit of informa-

tion. An asynchronous communication interface em-

ploying single track encoding associated to a hand-

shake protocol defines a communication mechanism

called bundled data, where data availability/validity is

indicated by an explicit request signal (Req) and data

reception is signaled by an explicit acknowledgement

signal (Ack). This implies that data bus signals must be

delayed by an amount of time smaller than the Req sig-

nal. Alternatively, the controller generating the Req

must be designed so that Req only occurs after a stable

data value is available at the input of the Receiver.

To eliminate/reduce bundle data constraints,

schemes that carry validity information inside data can

be used. These encodings allow developing communi-

cation protocols where it is not necessary to impose

timing restrictions on control signals, apart from the

isochronic fork restriction [7]. Such encoding schemes

are called delay insensitive (DI) encodings or codes.

GALS systems need a synchronization mechanism.

This encompasses defining a safe data sampling proc-

ess for synchronous islands to acquire data from an

asynchronous environment. Safeness is defined with

regard to metastability avoidance or confinement. The

most commonly employed synchronization strategy

consists in using two series flip-flops clocked by the

receiver. This does not eliminate metastability, but

drastically reduces the probability that its occurrence

result in synchronization failures. Ginosar [8] presents

several variations of this strategy and analyzes the in-

fluence of each in the robustness and correctness of the

interface. A problem with this approach is the in-

creased data transfer latency.

Using pausible clocks can eliminate the risk of me-

tastability at the interface. The clock of each communi-

cating synchronous module is paused (or stretched)

before the data transfer, and then restarted when data is

stable. Clock stretching is the task of an arbiter or mu-

tual exclusion (ME) element. ME devices usually em-

ploy RS latches and specially built filter devices. Mut-

tersbach et al. [9] and Moore et al. [10] present GALS

communication interfaces proposals for ASICs.

Few works proposed GALS communication inter-

faces for FPGAs [5][6]. The main problem here is the

implementation of metastability-free mutual exclusion.

Najibi et al. [6] implemented a GALS system using as

ME device an RS latch. To avoid metastability, they

propose that the clock stretching request signal cross a

latch sensitive to the high logic level. However, this

method only transfers the risk of metastability from the

arbiter to the latch itself. In another work, Moore and

Robinson [5] present an arbiter that can be imple-

mented in commercial FPGAs. The arbiter has its own

clock, and its structure is a variation of the series two

flip-flops approach. Request and the system clock must

be synchronized with the arbiter clock, so that arbitra-

tion succeeds. Interfaces based on this arbiter present

reduced throughput compared to two flip-flops.

3 SCAFFI: a new interface proposal

This Section presents the architecture of a new inter-

face, called SCAFFI, which is useful to overcome some

disadvantages pointed out on previously proposed in-

terfaces. SCAFFI is point-to-point, unidirectional and

supports both bundled data and delay or quasi-delay

insensitive (QDI) communication styles. Two instances

of SCAFFI can provide a bidirectional communication

interface. Sections 3.1 through 3.3 discuss this architec-

ture. For more reliable data transmission, the basic de-

sign can be improved with additional modules. Section

3.4 explores this.

3.1 Basic architecture - bundled data style

The SCAFFI basic architecture is depicted in Fig. 1.

Physically, it occupies part of a Sender and part of a

Receiver sharing a data communication channel.

SCAFFI employs clock stretching techniques.

SR AR

SA AA

Data

Clock

 2-Phase 4-Phase

Clock

SR

SA

 2-Phase

Stretcher Stretcher

RS RSAS AS

 Legend:
 SR – Synchronous Request AR – Asynchronous Request RS – Request Stretch

 SA – Synchronous Acknowledge AA – Asynchronous Acknowledge AS - Acknowledge Stretch

Sender ReceiverSCAFFI

Fig. 1. Structure of SCAFFI, showing the Sender and

Receiver sides of the interface.

The basic architecture supports bundled data com-

munication, leading to a small footprint interface

adapted to short-range connections. Output and Input

Ports employ 2-phase handshake between them and the

neighbor synchronous island (respectively, Sender and

Receiver in Fig. 1), to improve local communication.

These same ports communicate with one another using

a 4-phase handshake, to improve robustness.

542

3.2 The stretcher

The clock stretching technique of the GALS inter-

faces proposed in [5] and [6] employs a ME mecha-

nism to decide when executing clock stretching. If ME

is used to control stretching, the clock can only be

paused at one of its logic levels, either at 0 or at 1. If

the requisition occurs when the clock is at the other

logic level, stretching can only occur in the next half of

a cycle, which adds unneeded delay to communication.

SCAFFI uses a stretcher to eliminate MEs, allowing

stretching to occur at any logic level. The stretcher is

depicted in Fig. 2. It has two control signals and a Clock

output. The control signals are input Req and output

Ack, respectively connected to SCAFFI RS and AS sig-

nals. The stretcher consists in a ring oscillator con-

trolled by a multiplexer (mux).

1
0

Fig. 2. Structure of the stretcher. The oscillator ring in-

cludes D3, the inverter, D2, the mux and the C-element.

The mux Req input controls the ring oscillator feed-

back path. Starting at the Clock output, this path crosses

the delay element D3, the inverter, the delay element

D2, the mux and the C-element, before returning to its

starting point. The mux and C-element have hazard free

implementations for fundamental mode operation.

Glitches may occur at the mux output, but D2 is di-

mensioned to ensure these glitches do not propagate to

the Clock output. This occurs because every possible

mux glitch is produced when either D2 or the C-element

output transition near some assertion or deassertion of

Req. However, these can only change when the lower

input of the C-element is stable, due to D2 or C-element

delays. A glitch may cause the C-element to transition,

but only once. After that, the C-element works as a

glitch filter. ASIC Spice simulations of this circuit and

the FPGA implementation showed identical behaviors.

Both, stretch high and low clock levels.

Whenever Req is unasserted (Req=0), the Clock out-

put oscillates at a frequency controlled by the dimen-

sioning of D3. When Req is asserted, the mux and the

C-element keep the Clock output logic level stable (ei-

ther at 0 or 1), performing the stretch. Finally, D1 is

dimensioned to produce the Ack output only after the

Clock output is stable, taking longer than the combined

delay of the mux and the C-element.

3.3 SCAFFI input and output ports

SCAFFI Input and Output Ports have burst mode

specifications depicted in Fig. 3. This specification was

implemented as a hazard-free circuit using the MINI-

MALIST tool [11].

Fig. 3. Burst mode specification for SCAFFI Ports.

The resulting hazard-free logic equations for these

controllers appear in Table 1. Signal Y0 corresponds to

the internal feedback line of each controller.

Table 1. Equations for Input and Output Port behaviors.

Output Port InPUT Port

00 ** YSRYSRAARS ++= ARRS =

00 ****** YAAASSRYAAASSRAR +=
 ARASSAYASSASR *** 0 ++=

ASSRYASYSRSA *** 00 ++=
00 *** YARSAASYSAAA ++=

000 *** YAAYSRAASRY ++=
 00 *** YARARASSAY +=

The behavior of SCAFFI is illustrated by the wave-

forms of the timing simulation of Fig. 4, which depicts

a single data transmission taking place. To illustrate the

local use of 2-phase protocols, the simulation shows

communication with Ports initially at state 5. State 0

would be another possible starting point.

The simulation depicts the Input and Output Ports

behavior. Signals are listed in ascending assertion or-

der, illustrating the interface modules behavior. A data

transmission starts when the Sender inserts information

at the Data lines and asserts a synchronous requisition

(SR-), asking the Output Port to start a communication.

This action triggers the sequence of control signal as-

sertions to asynchronously transmit data through

SCAFFI. At the Sender side, the initial transitions are

SR- � RS+ � AS+ � AR+ � SA-. After this sequence,

the Sender clock is paused and data to transmit is

543

available and stable. Actions on the Receiver side fol-

low, where the sequence AR+=RS+�AS+�AA+�SR-

takes place. Next, the Receiver clock is paused and a

synchronous request is placed on the Receiver. This

later cannot respond immediately to the request, since

its clock is paused. However, transition AA+ triggers the

Output port to produce AR- (Output port, transition 7 to

8), releasing the Receiver clock to restart oscillating

(marked by Producer AS-). Thus, when the Receiver

clock restarts, its synchronous request signal SR is as-

suredly stable. Follows data consumption at the Re-

ceiver side, controlled by the control sequence SA-

�AA- and clock restart at the Sender side, with the se-

quence AA-�RS-�AS-. At the next rising edge of the

Sender clock, a new transmission can already start.

20.2ns

50MHz

78MHz

Clock

Stretching 5.5ns

20ns

Fig. 4. Example timing simulation of a data transmission

using SCAFFI. AR and AA signals are repeated for

Sender and Receiver, to ease reference. RS is the same as

Receiver signal AR (see Table 1). Ports start at state 5.

Fig. 4 also contains typical quantitative data for a

SCAFFI implementation for a XC3S200-4 Spartan3

Xilinx FPGA. For a Sender working at 50MHz and a

Receiver at 78MHz, Sender stretching is around 20ns,

and Receiver stretching is only 5.5ns. The time to

transmit a single data is 20.2ns from the start of the

handshake (SR-) until data is available to the Receiver.

This is sufficient to ensure that bundle data constraints

are met. However, some time is needed until the re-

ceiver clock is restarted. Conceptually, less than twice

the Sender clock period is enough for any transmission

to take place, but this is influenced by the

sender/receiver frequency relationship. For this case,

SCAFFI achieves a throughput of 31 MegaWords/s,

nearly 4 times the throughput achievable with series

flip-flop synchronizers using 2-phase handshake.

3.4 Dual rail SCAFFI

Two modules that need to communicate asynchro-

nously may be far apart. This reduces the feasibility of

using bundled data interfaces, since it is difficult to

guarantee that request signals always have a delay

longer than all data lines. The situation is especially

critical for wide channels expected in deep submicron

technologies, due to delay dispersion caused by effects

like crosstalk. One way to consider such effects is using

DI interfaces. SCAFFI is based on a module library

with components that allow implementing point to

point delay insensitive interfaces by using dual rail data

transmission. The basic SCAFFI can be enhanced with

Single to Dual and Dual to Single rail converters in-

serted at Sender and Receiver sides, respectively. Fig. 5

depicts a dual rail SCAFFI interface.

Validity Detection

d0_t

...

d15

AA

C

C

C

d1_f

d15_t

d0

ARARSR

SA

SR

SA

d0

d1

d15

d1

Sender ReceiverDUAL RAIL SCAFFI

...

Fig. 5. Dual rail SCAFFI for distant Sender/Receiver

pairs. Stretchers were omitted for clarity purposes.

The asynchronous request AR is embedded within

dual rail data lines and Validity Detection generates the

receiver side version of AR. For wide n data bundles,

this can be a quite large macro, requiring n XOR gates

and a tree of C-elements. The AA signal is connected

as before. While the Single to Dual module is standard

HDL, the Dual to Single converter and the Validity

Detection module are hard macros.

A dual rail register in the library enables an addi-

tional enhancement to SCAFFI. It can be used to im-

plement SCAFFI with an associated asynchronous

FIFO. This is useful e.g. to create an efficient interface

between a synchronous and a dual rail QDI module.

4 The hard macro library

Hard macros are a step further in controlling FPGA

synthesis results, since a manually designed layout is

produced for critical parts of the design. They imply

enhanced control, and of course, increased design

complexity. Hard macros are not new to FPGA design.

They have been used, for example, by Martín-

Langerwerf et al. in [12] to reduce FPGA chip count

and synthesis runtime for video applications. The pre-

sent work employs hard macros for implementing

asynchronous primitives, enabling the use of non-

synchronous design techniques in FPGAs in a compact

544

way. To the knowledge of the Authors this is the first

work proposing hard macros for asynchronous design.

In Xilinx FPGAs, a physical hard macro is a module

created from FPGA primitive components like Look-

Up Tables (LUTs), flip-flops and wires. Hard macros

are specific for a given device of some family, but are

independent of device speed grade, and can be placed

in multiple positions and instantiated multiple times.

Hard macros can be created using the graphical layout

tool FPGA Editor, provided by Xilinx. In this work,

experimental hard macro libraries to support asynchro-

nous circuit design have been implemented for three

Xilinx FPGAs: Spartan-3 XC3S200 and Virtex-II

XC2V1000 and XC2V4000 devices.

Hard macros allow controlling net delays more pre-

cisely than the use of higher level constraints. For in-

stance, constraints allow specifying the maximum delay

of a net, but do not allow defining a delay relationship

among wires composing a net. This is fundamental to

safely implement both symmetric (as in SCAFFI Ports)

and asymmetric (as in C-element feedback) isochronic

forks. Once a hard macro layout respects an isochronic

fork constraint, every instance of it has this characteris-

tic. All hard macros in the library proposed have timing

constraints respected. The SCAFFI Output Port is a

hard macro built as depicted in Fig. 6.

F2

F1

XF3

F4

f(x1...xn)

G2

G1

YG3

G4

f(x1...xn)

G2

G1

YG3

G4

f(x1...xn)

F2

F1

XF3

F4

f(x1...xn)

G2

G1

YG3

G4

f(x1...xn)

F2

F1

XF3

F4

f(x1...xn)

F2

F1

XF3

F4

f(x1...xn)255ps

270ps

255ps

270ps

535ps

641ps

641ps

G2

G1

YG3

G4

f(x1...xn)

395ps

374ps

384ps

475ps

384ps

475psSR

AA

AS

RESET

SA

AR

RS

Y0

Y = G1

Y = G1

X = ~F1*F2

SLICE L

SLICE L

SLICE M

SLICE M

X = F1

Fig. 6. Example of library hard macro implementation,

the SCAFFI Output Port. For behavior, see Table 1.

The Output Port takes exactly one FPGA Configur-

able Logic Block (CLB) to implement. A CLB contains

four Slices, each with two 4-input LUTs. To achieve

the isochronic fork timing requirements in this macro,

every signal originating such a fork must have a single

entry point in the macro layout. This is obtained using

transparent LUTs, i.e. a LUT performing the identity

function (3 top LUTs at the left, in Fig. 6). The LUT

output feeds the isochronic fork net. Each fork output

delay can be computed within the FPGA Editor.

In Fig. 6 it is possible to note the four isochronic

forks with individual output delays marked (between L

and M slices). The way to define the best isochronic

fork layout is unfortunately a trial and error process,

because no method to compute these delays for all pos-

sibilities exists, but the amount of combinations is usu-

ally small. Also, the transparent LUTs add to the delay

of the hard macro, but this loss is usually offset by the

gains in the hard macro optimized layout.

5 RSA cryptography: a use case

The implementation of an RSA cryptography core

served to validate SCAFFI. It demonstrates the poten-

tial of non-synchronous design to save power compared

to synchronous implementations. The RSA core is an

IP that executes modular exponentiation. This opera-

tion is computed as a control loop, where each step

executes a modular multiplication. Multiplication oper-

ands and the result are 128-bit values.

Here, the proposed structure of the implementation

is implementing RSA as two modules interconnected

through SCAFFI: modular exponentiation (MX, the

Sender), and modular multiplication (MM, the Re-

ceiver). The application is described in VHDL and

SCAFFI is a just set of module instances written in

VHDL and taken from the hard macro library. The

synthesis environment just need to know which file

contains the library.

Given the sequential behavior of RSA, the GALS

implementation used a slightly modified version of

SCAFFI, that keeps the exponentiation clock paused

during multiplication. This has a major impact in low-

ering power. The SCAFFI interface follows loosely the

basic architecture presented in Fig. 1. Due to the appli-

cation characteristics, it is not necessary to use two

instances of SCAFFI for sending operands and receiv-

ing the multiplication result. Instead, the data bundle

includes two 128-bit buses from Sender to Receiver

and one 128-bit bus from Receiver to Sender. Sender

only generates an acknowledgement to the Receiver

after multiplication is finished and the 128-bit result is

stable on the Receiver to Sender bus.

545

The GALS RSA implementation was compared to a

synchronous RSA with equivalent functionality. Tim-

ing simulation helped validating the designs. These

were prototyped on the XC3S200 FPGA. Table 2 gives

maximum operating frequencies and clock loads for

both implementations, obtained from the post place and

route timing report.

Table 2. Maximum operating frequencies for RSA.

 Frequency(MHz) Clock Load

Synchronous 41.748 1368

Async. Exponentiation 157.953 694

Async. Multiplication 45.335 674

Table 3 shows area and power quantitative data for

the synchronous and GALS versions of RSA.

Table 3. FPGA area and power figures for RSA.

Power figures were obtained using the method pro-

posed in [13] to compute FPGA power consumption.

To enable applying the method, the prototyping board

was modified by adding a precision resistor in series

with the FPGA core power source. The synchronous

RSA uses a 40MHz operating frequency, close to its

maximum value. In the GALS RSA the MM module

operates at 40MHz, while MX operates at 72MHz.

This last value was chosen because it is slightly higher

than the frequency where the performance of the GALS

version equals the performance of the synchronous

version. For higher frequencies, the GALS RSA pre-

sents better performance than the synchronous RSA.

However, this performance gain is not significant, be-

cause 98% of the RSA execution time is spent execut-

ing modular multiplications. Results show that the

GALS RSA incurs in 12% area overhead and a reduc-

tion of 46.5% in power, compared to the synchronous

RSA version.

6 Conclusions

This paper proposed a new asynchronous interface

to enable GALS design style in FPGAs which is flexi-

ble enough to allow interconnecting a mix of synchro-

nous and QDI modules. SCAFFI relies on a hard macro

library providing FPGAs with efficient, compact and

low power asynchronous devices. The library devel-

opment process is complex and each implementation

contemplates only a single device size in a given device

family. However, a simple set of asynchronous devices

could be offered as part of FPGA vendor libraries,

enabling a large set of non-synchronous design styles to

be implemented on ordinary commercial FPGAs with

little effort other than writing HDL code.

Devised future works include the detailed compari-

son of previously proposed interfaces with SCAFFI and

an automated, parameterizable process for generating

specific SCAFFI interfaces. Improving the flexibility of

SCAFFI to support 1 of 4 encodings is under way. This

encoding takes as many wires per bit as the dual rail

encoding, but uses only half of the transitions to convey

the same information transfer, increasing power effi-

ciency. An asynchronous network on chip (NoC) based

on SCAFFI is also under implementation.

7 References

[1] R. Ho et al. “The future of wires”. Proceedings of the

IEEE, 89(4), Apr. 2001, pp. 490-504.

[2] M. Amde et al. “Asynchronous on-chip networks”. IEE

Proc. Comp. and Dig. Tech., 152(2), Mar. 2005, pp. 273-

283.

[3] D. Chapiro. “Globally Asynchronous Locally Synchro-

nous Systems”. PhD Thesis, Stanford University, 1984.

[4] Q. Ho et al. “Implementing asynchronous circuits on

LUT based FPGAs”. In: 12th FPL, 2002, pp. 36-45.

[5] S. Moore, P. Robinson. “Rapid Prototyping of Self-

timed Circuits”. In: 17th ICCD, 1998, pp. 360-365.

[6] M. Najibi et al. “Prototyping Globally Asynchronous

Locally Synchronous Circuits on Commercial Synchronous

FPGAs”. In: 16th RSP, 2005, pp. 63-69.

[7] A. Martin, M. Nystrom. “Asynchronous techniques for

system-on-chip design”. Proc. of the IEEE, 94(6), Jun. 2006.

[8] R. Ginosar. “Fourteen Ways to Fool Your Synchro-

nizer”. In: 9th ASYNC, 2003, pp. 89-96.

[9] J. Muttersbach et al. “Practical Design of Globally-

Asynchronous Locally-Synchronous Systems”. In: 6th

ASYNC, 2000, pp. 52-59.

[10] S. Moore et al. “Point to Point GALS Interconnect”. In:

8th ASYNC, 2002, pp. 69-75.

[11] M. Singh, S.M. Nowick. “Synthesis for Logical Ini-

tializability of Synchronous Finite-State Machines”. IEEE

Trans. on VLSI Systems, 8(5), Oct. 2000, pp. 542-557.

[12] J. Martín-Langerwerf et al. “Benefits of Macro-based

Multi-FPGA Partitioning for Video Processing Applica-

tions”. In: 13th RSP, 2002, pp. 60-65.

[13] J. Becker, et al. “Power estimation and power measure-

ment of Xilinx Virtex FPGAs: trade-offs and limitations”. In:

16th SBCCI, 2003, pp. 283- 288.

 LUTs Flip Flops Gates Power (mW)

Synchronous 1521 1367 21294 27.07

GALS 1562 1367 21549 14.48

546

