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Abstract 

 
A widely used approach to avoid network intrusion 

is SNORT, an open source Network Intrusion Detec-

tion System (NIDS). This work describes SPP-NIDS, a 

architecture for intrusion detection supporting SNORT 

rules. SPP-NIDS is attractive to real-world network 

intrusion detection, due to its scalability, flexibility and 

performance features. A parameterizable cluster of 

simple processors provides system scalability. Hard-

ware NIDSs described in the literature often employ 

hardwired comparators to verify if the incoming net-

work traffic has data potentially containing intrusion 

attacks. Such NIDSs must be re-synthesized when a 

new set of rules is available, which happens frequently. 

In SPP-NIDS, the rule set defining network intrusion 

patterns is stored in RAM, enabling its straightforward 

upgrade. The proposed system, when implemented in a 

2-million gate FPGA is able to work at a 100 Mbps 

network data rate, using the complete set of SNORT 

rules. If more performance is required, it suffices to 

scale the system, by adding extra processors. 

 

1 Introduction 
 

The threats to the goods of an enterprise by means 

of network attacks (also known as network intrusion) 

increase proportionally to the increase of the depend-

ency of these enterprises on computer networks. The 

geometric growth of people and enterprises connected 

to the Internet and the facility of use of networks are 

not factors contributing to reduce this problem [1]. 

A widely used approach to avoid network intrusion 

is SNORT [2], an open source packet sniffer and 

packet logger network intrusion detection system (or 

NIDS), commonly located after a firewall, trying to 

detect complex network attacks [3]. SNORT works by 

comparing character patterns present in the network 

traffic to patterns defined by a set of rules, using pat-

tern-matching algorithms. Employing off-the-shelf 

processors and/or general purpose computers based on 

standard Instruction Set Architectures for building 

NIDS cannot guarantee that all known rules can be 

timely verified, given the high throughput of current 

networks and the intrinsically sequential processing of 

these architectures. 

The enhanced performance of electronic systems 

furthers research and development of specific system 

architectures to meet the performance requirements of 

computer networks. One domain where the need for 

such architectures is acute is network security systems. 

Real world NIDSs present deficiencies, most of 

these related to sub-dimensioning and bad use of de-

vices dedicated to prevent network intrusion. For ex-

ample:  

• NIDSs require high performance equipments and 

algorithms. They must be capable of searching and 

processing huge amounts of data at high through-

put - sub-dimensioning here is not acceptable. 

• NIDSs require frequent updates in their knowledge 

bases - some flexibility to recognize new types of 

attacks is also recommendable. 

Given this picture, the importance of employing 

NIDSs, the need to use them correctly and their high 

performance exigency degree it is possible to depict the 

best choices to implement NIDSs as those presenting 

the following features: 

• Specialization - the designer of a NIDS may re-

strict himself/herself to provide computing power 

only to the pattern detection related tasks; 

• Parallelism - a NIDS design is expected to provide 

the maximum possible amount of parallel comput-

ing power, and possibly some way to guarantee 

support to the dynamic expansion of the system; 

• Adaptability - a NIDS knowledge base must be 

easily expandable on the fly. 

This work presents the SPP-NIDS, a system built 

with the above features defined as design requirements. 



The rest of the paper is organized as follows. Sec-

tion 2 presents related works in specialized NIDS. Sec-

tion 3 presents the main features of the SPP-NIDS sys-

tem, while Section 4 details the system modules. Sec-

tions 5 and 6 present prototyping results and system 

validation, respectively. Section 7 concludes this paper. 

 

2 Related Work 
 

Cho [4] implements 32-bit hardwired comparators 

in parallel. The synthesis frequency obtained for an 

Altera EP20K was 90 MHz, and multiplying it by 32, 

they argue their system is able to sustain 2.88 Gbps. 

The system was designed to process only 105 SNORT 

rules. This implementation can achieve high throughput 

for a small number of rules, however it is not scalable 

neither flexible. Sourdins [5] implements an architec-

ture similar to Cho, using a register tree to improve 

performance. According to the authors, their architec-

ture can be used in a 10 Gbps network. Backer [6] im-

plements unary comparators. The key idea is the fact 

that the SNORT rules contains only 100 different 

bytes, enabling the implementation of simpler com-

parators. Carver [7] uses a different approach. Regular 

expressions are employed to reduce area and improve 

performance. They employ 8-bit comparators, and can 

achieve 1Gbps throughput. 

The Snort version 2.0 includes the work of Coit [8], 

which improves the performance using the Boyer-

Moore algorithm. Attig [9] uses hash functions genera-

tors, Bloom filters and a limitation of 26 characters per 

rule to detect matches. 

Three common characteristics exist in the previous 

works: (i) limited number of rules, below the 2124 ex-

isting rules of the SNORT v 2.11; (ii) limited size of 

the rules; (iii) limited characters. The proposed archi-

tecture, SPP-NIDS, does not have such limitations. 

Even if the achieved throughput is inferior to the hard-

wired 32-bit comparators, SPP-NIDS considers not 

only the rule processing, but also the treatment of the 

attacks. 

 

3 SPP-NIDS: Platform and Prototyping 
 

Figure 1 depicts the block diagram of the SPP-

NIDS and its external interfaces. SPP-NIDS is a plat-

form with an architecture composed by an IDS control-

ler processor (named MR2 [12]), an attached dedicated 

reconfigurable coprocessor, a host processor and inter-

faces to a link connecting external and internal net-

works.  

The main part of the system is the dedicated co-

processor, named GIOIA, designed for performing 

SNORT rules pattern matching. GIOIA is a cluster of 

very simple custom identical processors, each of them 

named picoCPU. Configuring the amount of picoCPUs 

in GIOIA it is possible to satisfy specific IDS perform-

ance requirements, in a scalable way.  

The cluster is reconfigurable because it allows 

downloading a distinct set of SNORT rules to each 

picoCPU. This can be changed at every detection cycle 

for all picoCPUs. Each picoCPU serially applies all 

rules contained in its configuration to every IP packet it 

receives. 

 

 
Figure 1. SPP-NIDS architecture block  

diagram. 

 
Besides the cluster of picoCPUs, GIOIA contains: 

(i) one match register for each picoCPU; (ii) an inter-

rupt generator; (iii) a bus responsible to carry the 

SNORT rules and the network data to the picoCPUs. 

After applying rules to data coming from the external 

network, a picoCPU either detects a suspicious pattern 

or not. In the first case, it writes data about the rule that 

triggered the matching in its match register. Otherwise, 

it remains idle until the next data coming from the net-

work. The interrupt generator performs a daisy-chain 

search through all match registers. If any match occurs, 

it interrupts the IDS controller CPU. 

The host processor is typically an external equip-

ment (a PC or workstation) responsible for initializing 

the IDS Controller processor and the GIOIA cluster. 

The first hardware prototype of this platform was 

targeted to the Digilent Spartan-3 System Board [10], 

with a 3-picoCPU cluster. Due to the input/output re-

strictions imposed by this prototyping platform, a series 

of adaptations of the SPP-NIDS architecture were 

needed. 

First, the Spartan-3 System Board does not contain 

a built-in network interface, such as an Ethernet PHY 

module. Thus, the behavior of the network is emulated 

by using part of the MR2 data memory to contain IP 

packets that are read by specialized software routines 



running in the MR2 processor. This memory is imple-

mented with FPGA internal Block RAMs. A next ver-

sion of this prototype implementation will leave the 

task of generating network packets to the host proces-

sor, to increase flexibility. 

Another feature of the implemented prototype is 

that the host processor is in fact a PC computer linked 

to the prototyping platform through a serial interface, 

using a RS-232 compatible protocol. This interface 

enables the host to reset and to hold the MR2 proces-

sor. In addition, it allows the host to load the MR2 in-

struction memory with the GIOIA cluster management 

software and load the MR2 data memory with SNORT 

rules to be applied by the picoCPUs and IP packets to 

emulate the network behavior. The host also uses this 

interface to receive information about potential inva-

sion attempts in IP packets. 

 

4 Detailed Description 
 

Figure 2 presents the structure of the implemented 

prototype of the SPP-NIDS platform. The GIOIA clus-

ter is mapped on the processor data memory. In this 

way, memory read and memory write MR2 instructions 

provide access to the cluster.  
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Figure 2 - Structure of the SPP-NIDS  

prototype. 
 

4.1 The GIOIA Cluster 
 

The set of rules in SNORT [11] is updated very of-

ten. Table 1 illustrates the number of rules on a per 

protocol basis for SNORT version 2.11. The larger set 

of rules belongs to the TCP protocol, and these rules 

are further subdivided in sub-classes, resulting in ap-

proximately six hundred rules for the largest sub-class. 

Thus, an IDS for this version of SNORT and support-

ing the most stringent demands of rule application must 

be capable of comparing each network input character 

against at least six hundred rules in the time available 

between the reception of two characters. This limit 

establishes a minimum design performance requirement 

on the GIOIA cluster. 

 

Table 1 - Number of rules by protocol,  

SNORT v. 2.11. 
Protocol Number of rules 

TCP 1784 

UDP 165 

IP 44 

ICMP 131 

TOTAL 2124 

 

The cluster has 3 sets of signals, implementing 3 

distinct interfaces: (i) a configuration interface, to load 

SNORT rules in the cluster; (ii) a packet interface, to 

receive network input data; (iii) an intrusion detection 

interface or simply intrusion interface, to inform the 

IDS controller CPU about rule matching. Figure 3 pre-

sents the external interface and the internal organiza-

tion of the GIOIA cluster, abstracting the configuration 

interface.  

The cluster packet interface can only receive a new 

character when all picoCPUs are available to process 

this new character. The wire gimme is used to signal 

this availability. This is why an important point in the 

cluster design is to balance the number of rules distrib-

uted to each picoCPU. 

When a picoCPU detects an attack, it asserts signal 

rule_match, setting the match flip-flop (one of M1 to 

Mn). Setting a given match flip-flop provokes the as-

sertion of the busy signal of the corresponding pi-

coCPU, holding it. The cluster control unit sweeps the 

match flip-flops data in a daisy chain, looking for a 

picoCPU that has detected an attack. When this occurs, 

an interrupt signal is sent to the MR2, the attack code 

(named matchcode) is stored in a cluster register (not 

shown Figure 3) and the picoCPU is released through 

signal clear. Note that after the interrupt request is as-

serted, the picoCPU that detected the attack is back to 

normal operation. The maximum time a picoCPU is 

hold from applying its attack detection algorithm in 

clock cycles is equal to the number of picoCPUs in the 

cluster minus one.  

 



 

Figure 3 - Cluster internal organization and 

interface to the IDS controller CPU through the 

cluster wrapper. 

 

4.2 The GIOIA Cluster Wrapper 
 

The cluster wrapper has the function of adapting the 

cluster signals to IDS controller CPU data bus, as illus-

trated in Figure 4. This bus allows access to the three 

cluster interfaces.  

The cluster configuration process, responsible to 

load the SNORT rules into the picoCPUs, takes place 

with the MR2 writing data to the wrapper internal reg-

ister bank. After detecting a write operation on the con-

figuration registers, the wrapper generates a pulse on 

signal config_en. The same procedure is followed for 

sending network input data to the cluster. A write op-

eration in the registers allocated to perform packet data 

transmission to the cluster generates pulses in signals 

take (indicates packet data) and is_proto (indicates the 

protocol of a new packet). It is important to point that 

there is no need for the MR2 to initialize control regis-

ters, this action is undertaken by the wrapper. 

The current implementation collects attack data us-

ing polling and not interrupts as described above. The 

MR2 software monitors the attack detection register 

and, once this is found to contain positive attack data, 

executes the attack treatment actions. Once the detec-

tion process is initiated, the MR2 asserts a pulse in the 

int_ack signal to release the cluster control. A future 

implementation of the system will substitute this by the 

interrupt mechanism described above. 
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Figure 4 - Cluster wrapper structure. 

 

4.3 The PicoCPU 
 

The function of a picoCPU is to verify if certain 

patterns (SNORT rules) occur in some section of the 

input network traffic. PicoCPUs store in an internal 

RAM patterns against which the network traffic must 

be compared. The use of RAM to store patterns confers 

the property of reconfigurability to picoCPUs. Since 

SNORT is an evolving set of rules [11] this is an im-

portant feature of the SPP-NIDS platform. Every time 

SNORT releases new rules, these can be immediately 

accounted for in SPP-NIDS by just adding these new 

rules to the MR2 data memory. 

The picoCPU implements in hardware a two-nested 

loop. The external loop is responsible for sampling one 

by one the characters of a packet. The internal loop 

compares each character against one of the bytes in 

every rule assigned to this picoCPU. One of four pos-

sible situations may occur during the comparison of a 

sampled character with a given byte of some rule:  

1. no match, being the rule pointer at the start of the 

rule; 

2. match, without reaching the end of the rule, in 

which case the rule pointer must be advanced;  

3. no match, but the comparing rule must have its 

pointer reset to its starting position ;  

4. match, being the pointer at the last character of the 

rule. 

The standard situation is item one above, which is 

executed in a single clock cycle. Situations 2 and 3 take 

two clock cycles each. Situation 4 corresponds to rule 

matching. The treatment of this situation depends on 

the IDS controller CPU and on the cluster size. Since 

detections are bufferized, there is little performance 

penalty involved in case of attack detection, as already 

discussed at the end of Section 4.1. 

Equation 1 defines the picoCPU throughput, in 

Mbps. 

rt

p
np

f
T

*

8*
=    (1) 

where: 



• f, the picoCPU frequency; 

• 8, the picoCPU word size; 

• pt, represents the average time to process each 

character in a packet, in clock cycles; 

• nr, the number of rules each picoCPU compares 

against each character. 

 

As a case study, considers f=200 MHz, pt=1.5, 

nr=20. Data throughput (Tp) exceeds 53 Mbps. Assum-

ing the most stringent rule set treatment requirement 

established in Section 4.1, 600 rules, a cluster with 30 

picoCPUs operating in parallel is able to support the 

same performance computed for a single picoCPU, i.e., 

53 Mbps. 

 

4.4 Serial IP 
 

The Serial IP Core is responsible to provide com-

munication between the user working in a host com-

puter and the intrusion detection system. This commu-

nication is performed by an RS-232 protocol standard 

serial interface.  

The host computer is used to send: (i) the software 

to be used by the MR2 processor; (ii) the rules to the 

picoCPUs; (iii) the network flow - characters to be 

compared. The host computer receives from the system 

the number of attacks and the number of rules generat-

ing them. 

 

4.5 MR2 CPU 
 

The SPP-NIDS IDS controller CPU is called MR2. 

MR2 [12] is a 32-bit Harvard processor that partially 

implements the MIPS 2000 instruction set architecture. 

It is responsible for loading each picoCPU memory 

with patterns, as well as for controlling and monitoring 

GIOIA. It is also responsible for interacting with the 

host processor, and with the external and internal net-

works. 

 

5 System Prototyping  
 

The target device is the Spartan3 XC3S200. The 

SPP-NIDS system uses 62.58% of the available LUTs, 

26.13% of the available flip-flops and 100% of the 

available BRAMs. Table 2 presents the area results 

after logic synthesis. The area of the three main macro 

modules (MR2 processor, serial IP and GIOIA cluster) 

is detailed. The Table also presents the area of each 

picoCPU (3 in this implementation). Note that this 

block is very small (150 LUTS, 102 flip-flops and 1 

BRAM), enabling to implement large clusters, when 

more BRAMs are available. 

 

Table 2 - Leonardo area report. 
 LUTS FFs BRAM 

picoCPU 150 102 1 

Main macro modules    

MR2 processor 1169 274 9 

Serial IP 323 243 0 

GIOIA cluster 753 583 3 

Other small blocks 158 39 0 

TOTAL 2403 1139 12 

Available in the device 3840  4359  12 

Utilization 62.58%  26.13
%  

100.00% 

 

Figure 5 displays the SPP-NIDS floorplanning after 

placement and routing. The placement of each macro 

block was constrained using the floorplanning tool, 

enabling to obtain an optimized routing. 
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 Figure 5 - SPP-NIDS floorplanning after place-

ment and routing. 

 

6 System Validation 
 

To compile the SNORT rules the user employs the 

RuleWizard tool (Figure 6), developed in the context 

of this work. The tool compiles the ASCII description 

of the SNORT rules, generating: (i) set of rules to be 

stored in each picoCPU; (ii) random attack vectors. 

 



 
Figure 6 - RuleWizard tool. 

 

The application developed for the MR2 processor is 

responsible to: (i) initialize the contents of the pi-

coCPUs memories; (ii) send data packets to the cluster; 

(iii) monitor attacks. This application is merged to the 

data obtained with the RuleWizard tool, resulting in the 

MR2 objected code. 

Before executing the system in the FPGA, it can be 

simulated using the ModelSim tool. Figure 8 displays 

how to identify the individual alerts for each picoCPU, 

through signal match. Observe in Figure 8 that each 

picoCPU detects four matches: rules {1,7,9,6} in pi-

coCPU1; rules {1,6,A,8} in picoCPU2; rules 

{1,12,B,10} in picoCPU3.  

In the upper part of the Figure 8 we can observe the 

signal intreq/detected signaling an alert to the MR2 

CPU. The signal intack releases the cluster control. 

Note also the busy signal at each picoCPU. Each pi-

coCPU waits in average two clock cycles after a rule 

matching. 

The hardware validation starts by downloading the 

SPP-NIDS bitstream into the prototyping board. A sec-

ond tool developed in the context of this work enables 

the user to start the SPP-NIDS system and collect the 

resulting attacks from the prototyping board. Figure 7 

illustrates the trigged rules. Compare this result to the 

waveforms of Figure 8, where each picoCPU has de-

tected four rules. The set of rules detect in simulation 

are the same of the ones obtained in the hardware exe-

cution, showing the correct system operation. 

 

 
Figure 7 - Triggered Rules. 

 
Figure 8 - SPP-NIDS Functional validation. 
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7 Conclusions and Future Works 
 

This work presented a proof-of-concept NIDS 

based on the SNORT rules. This system, named SPP-

NIDS, combines flexibility and performance. Flexibil-

ity comes from the use of embedded memories to store 

the rules, instead to hardwired comparators, as found in 

the literature [4][5]. Performance comes from the spa-

tial parallelism of the picoCPUs. Using a two-million 

gate FPGA it is possible to construct a cluster with 40 

picoCPUs. Such cluster could easily work at 100 

Mbps, verifying every packet in a 100 Mbps Ethernet 

flow. 

Future work in the SPP-NIDS includes: (i) connect 

the alert interface to the CPU interrupt signal; (ii) con-

nect the packet interface to a realistic network inter-

face, e.g. Ethernet; (iii) migrate to a system with two 

embedded CPUs, one for network input data prepara-

tion for the GIOIA cluster and the second one for intru-

sion detection treatment; (iv) work with an heterogene-

ous cluster, with specialized picoCPUs. 

It is also possible to convert this proof-of-concept 

prototype in a real product. For example, considers the 

two PowerPC Virtex-II Pro XCVP30 device. A MAC 

IP and one PPC can be used to obtain network input 

data, execute the basic SNORT procedures, and send 

the packets to the GIOIA cluster. The second PPC may 

process the cluster alerts and send them, for example, 

to a firewall. 
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