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Abstract 

Electronic equipments with higher performance, lower 

power consumption, and smaller size motivate the research 

for more efficient design methods. Platform-based design is 

a method to implement complex SoCs that avoids design 

from scratch. Usually, a platform-based designed SoC 

includes one or more processors, a real-time operating 

system, intellectual property (IP) blocks, memories and an 

interconnection infrastructure. An associated advantage of 

processor is flexibility at the software level. Hardware is 

not flexible. Thus, dedicated IP blocks must be inserted at 

design time. An alternative is to provide the platform with 

reconfigurable hardware blocks with sufficient capacity to 

implement any envisaged dedicated IP block. Dynamic self-

reconfigurable systems (DSRSs) introduce flexibility to 

hardware. In DSRSs, IP blocks are loaded according to 

application demand, an approach that potentially reduces 

area, power consumption and total system cost.  

1. Introduction 
 

Platform-based design  [1] is a method to implement 

complex SoCs, avoiding chip design from scratch. Several 

IPs other than processors compose SoCs. Examples are 

communication interfaces, memory controllers and 

hardware accelerators. These IPs as well as processor may 

be implemented directly in silicon or using reconfigurable 

hardware technology. Using the second option, it becomes 

possible to: (i) improve system performance, by migrating 

critical tasks to hardware; (ii) build products in smaller 

devices, thus reducing costs; (iii) extend product life cycle; 

(iv) update hardware after system manufacturing. 

In order to accomplish (i) and (ii), reconfigurable 

hardware must allow partial and dynamic reconfiguration. 

Systems using these characteristics are called Dynamically 

Reconfigurable Systems (DRSs). The main drawback of 

DRSs is their reconfiguration time. To minimize this 

drawback, DRSs may be built with the capacity to manage 

their own reconfiguration process. This can be achieved 

through the availability of internal reconfiguration ports. 

Such systems are named Dynamic Self-Reconfigurable 

Systems (DSRSs)  [2]. DSRSs are the target architecture of 

this work. 

One natural implementation choice for DSRSs are 

dedicated ASICs, with embedded reconfigurable areas. As 

the goal of this paper is to propose an infrastructure for 

DSRS, fine-grain reconfigurable FPGAs are used here as a 

device platform for proof-of-concept purposes. Current 

FPGAs are clearly limited in terms of useful silicon area, 

since most of the silicon area is used for programming 

purposes. In addition, DSRSs may waste a significant 

amount of this useful silicon to implement the necessary 

infrastructure. Despite these drawbacks, FPGAs are 

certainly adequate to prototype the infrastructure proposed 

herein, serving to demonstrate its benefits, gains and 

limitations. 

An important issue in current SoC design is the 

implementation of its communication infrastructure. 

Present SoCs require using scalable communication 

infrastructures, with shorter wires to minimize power 

consumption  [3]. Networks on chip (NoCs) are an 

alternative to busses, with several advantages, as stated in 

 [4]. However, few works  [5] have suggested mixing 

reconfigurable IPs and NoCs. 

This paper has four goals. First, to propose an 

infrastructure for DSRSs, identifying which are its required 

components. The second goal is to present a 

straightforward design flow supporting DSRSs. The third 

goal is to describe a NoC actively supporting the process of 

partial and dynamic IP reconfiguration. The last goal is to 

depict proof-of-concept case studies, comparing area 

overhead and reconfiguration time. 

The rest of this paper is organized as follows. A 

discussion about DSRS implementation alternatives is the 

subject of Section  2. Section  3 presents the Artemis NoC 

architecture. Section  4 presents a practical design flow to 

build DSRSs. Section  5 presents and compares two DSRS 

case studies. Finally, Section  6 presents some conclusions 

and directions for future work. 

2. DSRS Infrastructure 



 

This Section discusses choices and trade-offs associated 

to the DSRS infrastructure, making a parallel with existent 

works and recommending implementation choices for each 

internal component. Figure 1 depicts these components in a 

DSRS conceptual architecture. The communication 

infrastructure is presented in Section  3. 
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Figure 1 - DSRS conceptual architecture. 

2.1. Repositories 
 

DSRSs need to have access to repositories able to store a 

potentially large number of partial configurations, often 

called configuration memory. Besides stocking partial 

configurations, these repositories should offer fast access to 

its contents, to satisfy application requirements. There are 

basically four device types available to use as configuration 

memories: (i) memory internal to the reconfigurable 

device, usually available as RAM blocks or BRAMs; (ii) 

devices external to the DSRS using static RAM 

technology, or SRAMs; (iii) devices external to the DSRS 

using PROM technology, such as EPROM or Flash devices 

called generically PROMs; (iv) devices external to the 

DSRS using DRAM technology, such as SDRAM.  

Applications using BRAMs as repository may support 

small number of configurations and/or only small 

configurations, due to its limited capacity. Applications 

that benefit from difference-based  [6] reconfiguration 

techniques are among those able to employ this kind of 

repository.  

SRAM and DRAM devices present a good compromise 

between access speed and storage capacity. The former 

imply simpler controllers added to the DSRSs, but are 

much more expensive per bit than DRAMs. DRAMs, on 

the other hand, have a low cost per storage bit, allowing 

storing more configurations. However, a higher area of the 

DSRS must be committed to implement its controller.  

Contrary to the other three technologies, PROMs have 

the advantage of keeping configurations after turning the 

DSRS off. They cost more per bit than DRAMs, but imply 

a simpler procedure at startup of the DSRS. Also, changing 

the contents of the repository is more complicated than 

with the other technologies. 

2.2. Reconfigurable Interface 
A reconfigurable interface is necessary to implement the 

communication between a reconfigurable IP and the rest of 

the DSRS. The interface proposed by Palma et al.  [7] uses 

two levels of tristate buffers in the input and output pins of 

the reconfigurable IPs. One level of tristates belongs to the 

reconfigurable IP and the other to the communication 

infrastructure. Manual routing verification and manual 

routing corrections are required, to ensure correct 

connection between IPs. To reduce manual routing, Palma 

employs a 1-bit data serial bus as communication 

infrastructure. 

Lim and Peattie propose a reconfigurable interface 

called Bus Macro  [6], which employs 8 tristate buffers. 

Each macro allows the simultaneous exchange of 4 bits 

between a reconfigurable area and another area, fixed or 

reconfigurable. The advantage of this macro is that it 

reduces manual routing. However, it also uses tristate 

buffers, which are scarce resources in Xilinx FPGAs. The 

use of such resources overconstrains designs with complex 

reconfigurable interfaces. 

Huebner et al.  [8] propose a reconfigurable interface 

called Bus Macro (distinct from the Xilinx Bus Macro, and 

herein named Huebner macro). This macro is a static bus 

used to connect all reconfigurable IPs of the system. This 

reconfigurable interface is composed by two unidirectional 

busses, one to communicate the reconfigurable area with 

the fixed area and another to communicate in the inverse 

direction. Each macro allows the simultaneous 

transmission of 8 bits from a reconfigurable area to another 

area, fixed or reconfigurable.  

2.3. Configuration Ports 
 

The external JTAG and SelectMap interfaces are 

alternatives for implementing configuration ports for DRSs 

that are not self-reconfigurable, where the configuration 

controller is located outside the DRS. Although these 

interfaces can be used for building DSRS (using external 

wiring connecting some of the reconfigurable device pins 

to them) most Xilinx devices have available an Interal 

Configuration Access Port (ICAP). The ICAP usually 

constitutes the best choice for building DSRSs, since user 

logic can reach it from inside the reconfigurable device. 

2.4. Configuration Controller 
 

The Authors of this paper have built two versions of 

Configuration Controller (CC): (i) a pure hardware version 

(CC-H); (ii) a mostly software version (CC-S). Table 1 

compares these two implementations qualitatively. 

CC-S is three times slower than the CC-H. This 

disadvantage is related to the inefficiency of the current 

API furnished by Xilinx to give access to ICAP. This API 

requires the CC-S to fetch 512-word blocks of each partial 

configuration and store these in a BRAM. Only after 

caching these data, the API sends configuration data to the 

ICAP. The CC-H sends data directly from an external 

memory to ICAP, leading to smaller reconfiguration time. 



 

CC-S runs on an embedded 32-bit RISC processor 

designed by Xilinx, MicroBlaze. The structure of CC-S 

also includes peripheral device controllers, memory and a 

communication infrastructure. If configuration control is 

the only task assigned to this infrastructure, the approach 

could hardly be justified. However, assuming that most 

applications today require the use of one or more 

processors inside the system, and assuming some of these 

processors have spare time to perform the CC tasks, the 

additional hardware for configuration control requires less 

area than CC-H. Given the assumptions above and if the 

application reconfiguration time requirements are not too 

stringent, CC-S can be usefully applied. 

Table 1 – Comparison of two CC implementations. 

Characteristic CC-H  CC-S 

Configuration 
Speed 

Milliseconds Milliseconds 

Area 
Requires 
additional 
hardware 

If processor available,  
small area overhead  

(ICAP and macro controllers) 

Modification 
easiness  

Complex / 
extra area 

Simple / modifying software 

 

Another important aspect regarding the design of CCs is 

the easiness for updating/adapting the CC to different 

applications. When it is necessary to include additional 

functionalities to the CC, a software implementation is 

definitely more adequate. Complex tasks can be easily 

implemented through programming. Examples of such 

functionalities are configuration compression and on-the-

fly decompression, on-the-fly decryption, configuration 

scheduling policies, and support to configuration 

preemption. A hardware-only implementation such as CC-

H would require restructuring the CC design, realizing the 

CC re-synthesis and would probably increase the area 

overhead of the controller. 

2.5. DSRS Infrastructure  
 

Table 2 presents some recommended infrastructure 

choices for DSRSs. Software configuration controllers 

allow greater flexibility. It is possible to overcome its 

higher reconfiguration time disadvantage by rewriting the 

API to access the ICAP module, or by adding a small 

hardware module to directly manage ICAP. 
 

Table 2 - DSRSs recommended infrastructure. 

Infrastructure Element Recommended Choice 

Configuration Controller Software 

Reconfigurable Interface LUT-Macro 

Repository External SRAM 

Reconfigurable Port ICAP 

Communication Infrastructure NoC 
 

A recommended choice for the reconfigurable interface 

is to use LUT-macros. Macros developed by Xilinx  [6] use 

a larger area when compared to the LUT-macros proposed 

in current work (Section  3.2). The Xilinx Bus Macro 

consumes CLBs from 6 distinct CLB columns, being two 

in the fixed area and four in the reconfigurable area. 

Meanwhile, LUT-macros occupy CLBs of only two CLB 

columns, one at the fixed area and one at the reconfigurable 

area. Another difference is the number of bits transported 

by each macro: a Xilinx Bus Macro is 4-bit wide and LUT-

macro allows 8-bit wide transfers. CLB columns used for 

both macros have reduced usability, due to placement and 

routing restrictions imposed by the macros on both fixed 

and reconfigurable areas  [6]. 

Another recommendation is to use external static RAM 

to store partial configurations, since the controller to access 

these memories is very simple, present a small access time, 

and the capacity of such memories is sufficient to store 

several partial configurations. It is not advisable to waste 

internal FPGA memory with partial configurations, since 

the capacity of such memories is too small.  

3. Artemis NoC 
 

The last component of the proposed DSRS infrastructure 

discussed here is the communication infrastructure. As 

stated before, NoCs are good choices due to their 

scalability, increased parallelism and short-range wires that 

reduce power consumption. This work proposes Artemis, a 

NoC that supports specific reconfiguration services and is 

based in the Hermes NoC  [9]. This Section describes the 

modifications carried out in Hermes to allow its use in 

DSRSs. 

The partial reconfiguration process may produce 

glitches in the interface between the IP under 

reconfiguration and the rest of the device. These glitches 

may introduce spurious data into the NoC, causing 

malfunctions or even circuit blocking. In addition, packets 

transmitted to an area suffering reconfiguration, must be 

discarded, since it is typically impossible to know if these 

packets are targeted to the previous configuration in this 

area or to the next reconfiguration. To avoid such 

problems, a set of services must be added to the NoC to 

enable its use in DSRSs. 

Three services are implemented in Artemis: (i) 

reconfigurable area insulation; (ii) packet discarding; (iii) 

reconfigurable area reconnection. Hermes passed through 

the addition of two functionalities to support these services: 

(i) definition of control packets, enabling IPs to send 

packets to routers, not only to other IPs; (ii) capacity to 

disconnect/connect routers from its associated 

reconfigurable area. These functionalities are detailed in 

the next Sections. 

3.1. Control packets: structure and function 
 

The addition of two sideband signals per port to the 

original Hermes router serves to differentiate control 

packets from data packets. These signals, depicted in 

Figure 2, are ctrl_in and ctrl_out. For each flit sent by 

data_out, the ctrl_out is asserted together with tx if the flit 

is a control packet. The target router receives flits 



 

analogously, using data_in, rx and ctrl_in signals. 

When the reconfigurable area is insulated, the router 

discards any data packets sent to the area under 

reconfiguration. Insulation also protects the network, since 

during reconfiguration transients can occur in the 

reconfigurable interface. If such signals are considered, 

spurious data may enter the NoC. Transients were indeed 

observed in hardware by measuring the router-IP interface 

with a logic analyzer during reconfiguration. These events 

may signal a false packet to the router, with unpredictable 

outcomes. Once the new IP is configured, a control packet 

reconnects IP and router, enabling normal operation. 
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Figure 2 – Interface between Artemis routers. 

The reception and forwarding of control and data 

packets are similar. The major change in the router is the 

addition of one bit at each position of the input buffer. This 

is required to propagate the value of the ctrl_out signal to 

the reconfigurable IP router. When the control packet 

arrives at its destination router, it decodes and executes the 

corresponding operation. 
 

3.2. Reconfigurable IP to router interface 
 

This work proposes a new reconfigurable interface that 

does not impose the use of a specific communication 

infrastructure. This interface uses LUTs. Two 

unidirectional macros compose the reconfigurable 

interface, as depicted in Figure 3. The first one, named 

F2R, is responsible to send data from the fixed part of the 

system to a reconfigurable IP, while the second one, named 

R2F, implements the communication in the inverse 

direction. Both macros allow the simultaneous transmission 

of 8 data bits. The F2R macro is an identity function, while 

the R2F uses a special logic to avoid transient glitches 

during the reconfiguration process from reconfigurable to 

fixed areas. 
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Figure 3 – Proposed macros: (a) F2R; (b) R2F. 

The complete interface between the Artemis router and a 

reconfigurable IP appears in Figure 4. It uses two R2F 

macros to connect 10 bits from right to left and two F2R 

macros to connect 11 bits in the inverse direction. The 

interface between the router and the reconfigurable IP does 

not contain the ctrl_in and ctrl_out signals because 

reconfigurable IPs neither send nor receive control packets. 

The reset is a global signal used to initialize the entire 

system. The router asserts the reconf signal to initialize the 

reconfigurable core connected to the local port. The 

reconf_n signal in Figure 4 connects to the control signal in 

Figure 3, controlling the connection from the router to the 

reconfigurable core. 
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Figure 4 – Router to reconfigurable core interface. 

4. Design Flow for DRS 
 

The layout of reconfigurable IPs shares some properties: 

(i) logic of a reconfigurable region must lie inside it 

(achieved with placement restrictions); (ii) wires of a 

reconfigurable region must lie inside it (achieved with 

routing restrictions); (iii) fixed communication interface 

with the rest of the DRS. Next Sections details the main 

design flow steps to implement a DRS/DSRS. 
 

4.1. Reconfigurable interfaces insertion 
 

To enable the use of reconfigurable IPs, it is necessary 

to impose two restrictions in reconfigurable interfaces: 

reconfigurable IPs sharing the same region must present 

identical interfaces (in terms of number and type of signals) 

and identical placement of interface pins. One way to 

define reconfigurable interface pins is to insert pre-defined 

feedthrough components, named macros. Figure 5(a) 

illustrates a system with one fixed IP, two reconfigurable 

IPs and macros defining the interface pins. Macros are 

inserted in the system description (e.g. VHDL or Verilog). 
 

4.2. Placement constraints 
 

The second step is to constrain the placement of IPs and 

macros, as presented in Figure 5(b). A floorplanner tool 

may constrain the placement and shape of the system IPs 

(fixed and reconfigurable IPs), as well as the placement of 

macros. Standard place and route follows the constraints 

insertion.  



 

4.3. Routing verification / modification 
 

In the current generation of Xilinx physical synthesis 

tools, floorplanning restrictions do not have influence on 

the routing tool. As illustrated in Figure 5(b), some wires 

can still cross reconfigurable region boundaries. If this 

situation occurs, the associated signal can be disconnected 

after a reconfiguration step, possibly causing a system 

malfunction. This situation pervades all reconfigurable 

design flows, including Xilinx Modular Design. In this 

case, the designer must either reroute the wire(s) crossing 

the interfaces (manually or automatically) or go back to the 

previous step, to try different placement constraints. The 

final routing must be similar to the one presented in Figure 

5(c), where no wire crosses a reconfigurable interface. One 

noticeable exception to this rule is the global clock signals, 

which can safely cross the whole chip. 
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Figure 5 – DRS flow proposed in this work. 

4.4. Partial configurations generation  
 

Partial configurations, or partial bitstreams, are a set of 

bits used to configure a DRS. Partial bitstream generation 

is done by extracting a section of a total bitstream, 

corresponding to a reconfigurable region. This is illustrated 

in Figure 5(d). It is important to include part of the macro 

component in partial bitstreams to connect the 

reconfigurable core to the fixed part of the DRS. The 

method used here to generate partial bitstreams is 

straightforward, a one-phase flow. Assignment of another 

core to the same region requires partially repeating the flow 

for each core, while keeping the same placement 

constraints. Two tools may generate partial bitstreams. The 

first one is the proprietary Xilinx tool, BitGen, with 

specific commands to define the coordinates of the 

reconfigurable core. The second tool, compatible with all 

Virtex-II (Pro) devices, was developed by the authors. 

4.5. Core relocation 
 

Two situations require to partially repeating the DRS 

flow. The first one arrives with the assignment of different 

cores to the same reconfigurable region. The second one 

arrives with the assignment of the same core to different 

reconfigurable regions. It is possible to avoid the second 

situation if the same bitstream can be loaded at different 

regions. This procedure is named relocation  [10]. A core 

originally synthesized for one reconfigurable region can be 

moved to another one, without re-synthesis. Core 

relocation also reduces the memory requirements to store 

partial bitstreams, diminishing system cost. 

5. Case Studies 
 

This Section presents the implementation of two proof-

of-concept DSRS case studies and their comparison.  Table 

3 details the characteristics of the OPB-based (Figure 6) 

and Artemis-based (Figure 7) case studies. These case 

studies allow DSRS design space exploration, evaluating 

benefits, gains and limitations of each infrastructure 

element. 
 

Table 3 - Case studies implementation characteristic 

Infrastructure 
Element 

OPB-based 
DSRS 

Artemis-based 
DSRS 

Configuration 
Controller 

Software (CC-S) Hardware (CC-H) 

Reconfigurable 
Interface 

LUT-Macro LUT-Macro 

Repository Internal BRAM External SRAM 

Reconfigurable 
Port 

ICAP + Xilinx 
API 

ICAP + dedicated 
hardware 

Communication 
Infrastructure 

OPB Bus Artemis NoC  

 

5.1. OPB-based DSRS Description 
 

The OPB-based DSRS contains a Microblaze processor, 

running an application and the configuration controller 

(CC-S). The system also contains several IPs connected to 

the OPB bus, as shown in Figure 6. 

The design flow to synthesize this DSRS requires 

additional steps w.r.t. the one presented in Section  4. A 

similar flow is also used in  [11]. The steps to build the 

OPB-based DSRS are: 

• Build an initial system, using the Embedded 

Development Kit (EDK) with the Xilinx IPs and the 

reconfigurable IP (user function + macros + OPB 

wrapper); 

• Insert macros to insulate the user function from the 

fixed part (Section  4.1).  These macros are located 

between the IPIF interface and the user function (the 

user module template generated by EDK offers to the 

user an interface simpler than the OPB bus, named 

IPIF). Even if IPIF is simpler than OPB, it has 80 



 

signals (36 from left to right, 44 from right to left), 

requiring 11 macros (5 R2F macros, 6 F2R macros), 

complicating floorplaning and routing steps; 

• Generate the system netlist with EDK, exporting it to 

ISE (Integrated Software Environment); 

• Execute the logic synthesis, followed by floorplanning 

(Section  4.2) and physical synthesis (Section  4.3). The 

result of this step is the complete bitstream of the SoC; 

• Import results back to EDK for software generation. 

The binary code is finally added to the complete 

bitstream. 
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Figure 6 – The OPB-based DSRS structure. 

The above steps are repeated for each reconfigurable IP. 

Partial bitstreams (Section  4.4) are extracted from the 

obtained complete bitstreams. The OPB-based DSRS was 

prototyped in a Memec Insight platform with a Virtex-II 

Pro XC2VP30 device.  

OPB-based DSRSs have two drawbacks: bus-based 

communication and limited internal repository. 

Additionally, the design flow is quite complex, since two 

software environments are used: EDK and ISE. However, 

this simple case study allows reconfiguration time 

evaluation using the Xilinx API to access the ICAP 

module, and the area consumed to implement the 

reconfiguration infrastructure. 
 

5.2. Artemis-based DSRS Description 
 

The Artemis-based DSRS contains a 2x2 NoC used as 

communication infrastructure and several IPs as illustrated 

in Figure 7. The MR2 processor is a 32-bit RISC processor, 

based in a load-store MIPS architecture, with 27 distinct 

instructions, a 32x32 register file, non-pipelined. The 

processor uses four internal 18 Kbits RAM blocks as 

instruction and data memories, providing 1K words in each 

memory. Three different arithmetic IP modules can be used 

as reconfigurable IPs: “mult” (multiplies two 16-bit 

operators), “div” (divides one 16-bit operator by a 16-bit 

operator) and “sqrt” (extracts the square root of a 32-bit 

operator).  

The processor is the system master. Memory mapped 

instructions access reconfigurable IPs. The following 

system operating protocol is used: 

• the processor sends a packet to the CC, informing the 

identification of the desired IP. 

• the CC (i) receives the reconfiguration request; (ii) 

selects a reconfigurable area where to configure the 

requested IP (if more than one reconfigurable area is 

available); (iii) sends a packet to disconnect 

communication between the router and the selected 

reconfigurable area; (iv) read the specific bitstream, 

transmitting it to ICAP. 

• After reconfiguration, the CC sends a packet to 

reconnect communication between router and the 

configured IP. A second packet is sent to the processor 

with the network address where the IP was configured.  
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Figure 7 – Artemis-based DSRS.  

The Artemis-based DSRS was also prototyped in a 

Memec Insight platform with a Virtex-II Pro XC2VP30 

device. The design flow used to synthesize this DSRS 

employs the straightforward flow presented in Section  4. 

This is simpler than the flow used for the OPB-based 

DSRS, since only the ISE environment needs to be used.  

Except for the configuration controller, this DSRS 

follows the recommended choices to implement DSRS. 

The configuration controller is implemented in hardware, 

favoring performance, but reducing flexibility. 
 

5.3. Infrastructure comparison 
 

A common choice for both experiments presented is the 

use of LUT macros. LUT macros were employed in the 

OPB-based DSRS due to the number of bits in the 

reconfigurable interface (80), therefore reducing the 

number of CLB rows when compared to Xilinx Bus 

Macros. The LUT macros had to be extended to occupy 4 

CLB columns each to achieve successful interface routing. 

The Artemis-based DSRS has a less complex interface (21 

bits), using four LUT macros, exactly as presented in 

Figure 4, and occupying only 2 CLB columns each. 

A second common choice in both experiments is the 

ICAP configuration port. The first case study uses the 

Xilinx API to access the ICAP port, while the second case 

study uses a dedicated module developed to access the 

ICAP port.  As already mentioned, the Xilinx API is slower 

than dedicated hardware due to current buffering 

requirements. Table 4 compares the partial bitstream sizes 

and reconfiguration times. 

The third column presents partial bitstream sizes. Partial 

bitstreams of the OPB-based DSRS occupy 10 CLB 

columns, while for the Artemis-based DSRS they occupy 6 



 

CLB columns
1
. It is possible to store partial bitstreams of 

the OPB-based DSRS in internal BRAMs because a simple 

compression algorithm was applied to partial bitstreams, 

based on zeroes/ones counting. On-the-fly software 

decompression is executed before sending bitstreams to the 

ICAP controller. There is no time penalty in this 

decompression, due to the algorithm simplicity. The 

Artemis-based DSRS stores partial bitstreams in a 1 Mbyte 

external SRAM. The Artemis-based DSRS stores up to 10 

partial bitstreams, without compression, while the OPB-

based DSRS is able to store only 2 partial bitstreams using 

compression. 
 

Table 4 – Reconfiguration times
†
 for OPB and 

Artemis based DSRS case studies.  

Partial Bitstream Size Reconf. Time 
Case 
Study Module Name 

Size 
(Kbytes) 

CC-H CC-S 

Minimal 
Reconf. 

Time 

OPB-
based 

Arith. 1 / 2 182,180 - 63.55 3.64 

Multiply 99,644 9,98 34.76* 1.99 

Divider 96,428 9,65 33.63* 1.93 
Artemis
-based 

Square Root 101,988 10,21 35.57* 2.04 

†Times are expressed in milliseconds and reconfigurations run at 50MHz. 

*Estimated, using data from the OPB-based system. 
 

The fourth and fifth columns present the reconfiguration 

time using the CC-H and CC-S configuration controllers. 

The CC-H reconfiguration time is in average three times 

faster than CC-S, considering the NoC protocol. 

Reconfiguration times were measured using two methods: 

internal FPGA timers and a logic analyzer. 

The sixth column presents the minimal reconfiguration 

time, assuming it would be possible to transmit one partial 

bitstream byte per clock cycle (at 50 MHz). This column 

shows that it is not possible to work with reconfiguration 

times below 1 ms in current case studies, with 

reconfigurable IPs using 6 to 10 CLB columns. With more 

complex reconfigurable IPs, reconfigurable area is 

expected to increase consequently increasing the 

reconfiguration time. 

Figure 8 details the reconfiguration time for the divider 

IP. The reconfiguration time, 9.65 ms, is equivalent to 

482,500 clock cycles. Observe that 99.94 % of this 

reconfiguration time is spent by the reconfiguration process 

itself (Figure 8(c)), with a very small time spent in the NoC 

with control packets.  

After reconfiguration, the protocol to access the 

reconfigurable IP comprises three steps: (i) creation and 

transmission of a packet with the operators to the 

reconfigurable IP; (ii) creation and transmission of a read 

packet to receive results; (iii) reception of the result packet 

from the reconfigurable IP. Typical time spent in each step 

is 173, 141 and 117 clock cycles respectively. As the 

reconfigurable IPs are very simple in this case study, once 

                                                           
1
 Different bitstream sizes for the same number of CLB columns 

exists because partial bitstreams are generated by Bitgen, which 

uses the multi-frame write feature. 

the read request arrives at the reconfigurable IP, the packet 

with the results is sent immediately to the source IP, 

totalizing in average 439 clock cycles (sum of the time 

spent in each step). This protocol can be simplified by 

eliminating the read packet (141 cycles), sending the 

answer from the reconfigurable IP directly to the source IP. 
 

 

 

(a) packet from a source IP to the CC asking a new reconfigurable IP 
(b) CC processing time and packet to the reconfigurable area to disconnect it 
(c) reconfiguration time 
(d) packet from the CC to the  new reconfigurable IP reconnecting  it 
(e) packet from the CC to the  source IP with the reconfigurable IP address 
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Figure 8 – Reconfiguration protocol timing, in clock 
cycles, for Artemis-based DSRS. 

At 50 MHz, 10 ms represent 500,000 clock cycles.  This 

reconfiguration time can be hidden by: (i) executing 

complex computations in hardware; (ii) pre-fetching 

reconfigurable IPs to later use; (iii) reusing the same 

reconfigurable IPs during a time longer than the execution 

in software plus the time to configure the IP into the DSRS. 

With such strategies, the reconfiguration time has minimal 

impact in DSRS performance. For example, if a given 

function executed in hardware is 500 clock cycles faster 

than an equivalent software implementation, after 1,000 

consecutive executions the hardware implementation 

displays superior performance. This can be easily achieved 

with image processing algorithms, where the same 

operation is repeated thousands of times. 

For these proof-of-concept case studies, the average 

execution time for the equivalent software implementation 

is 26% slower (in average 600 clock cycles against 439 

clock cycles). This difference in favor of the hardware 

implementation, 161 cycles, is not yet sufficient to 

demonstrate performance gains for the proposed 

infrastructure, but clearly shows its viability. Some 

application portions (typically loops) may benefit from this 

approach, given they consume at least 1,000 clock cycles in 

the embedded processor and are repeatedly used. 

Table 5 and Table 6 compare the area to implement both 

DSRSs. The first analysis concerns the configuration 

controller (CC) area overhead. The CC-H uses 494 slices. 

The CC-S uses 821 slices (Microblaze, ICAP and macro 

controllers). However, if a processor is already available in 

the system (such as MicroBlaze), the area of the CC-S 

represents the area of the ICAP and macro controllers, 

resulting in 250 slices. As processors are ubiquitous in 

actual SoCs, a software CC represents the implementation 

option with smaller area overhead. 

The area of the Artemis-NoC is 1167 slices (Table 5), 

representing in average 290 slices per router. For this case 

study, this area represents an important overhead. In 

practice, when using real IPs, an area overhead of 5-10% 

per IP is expected, justifying the use of NoCs in DSRSs. 

Comparing the router area to the Gecko platform  [5], 

Gecko routers consume 611 slices (router plus network 

interfaces, data and control). 
 



 

Table 5 - Artemis-based DSRS area report (XC2VP30) 

# Slices (total: 13696) # FF (total: 27392) 
IP 

Total Percentage Total Percentage 

Serial 316 2.31% 279 1.02% 

Processor 1001 7.31% 555 2.03% 

CC (CC) 494 3.61% 294 1.07% 

Artemis NoC 1167 8.52% 959 3.50% 

DIV (reconf IP) 183 1.34% 259 0.95% 

MULT (reconf IP) 172 1.26% 259 0.95% 

SQRT (reconf IP) 223 1.63% 269 0.98% 
 

Table 6 - OPB-based DSRS area report (XC2VP30). 

# Slices (total: 13696) # FF (total: 27392) 
IP 

Total Percentage Total Percentage 

MicroBlaze 571 4.17 366 1.34 

MicroBlaze Perip. 160 1.17 75 0.27 

MicroBlaze OPB 90 0.66 11 0.04 

ICAP Controller 151 1.10 155 0.57 

Macro Controller 99 0.72 136 0.50 

Arith1  (reconf IP) 128 0.93 168 0.61 

Arith2  (reconf IP) 128 0.93 168 0.61 

6. Conclusion and Future Work 
 

The main contribution of this work is the proposal of a 

conceptual DSRS architecture, summarized in Table 2, 

centered on the use of a NoC interconnection. The 

implementation of two proof-of-concept case studies 

demonstrates the viability of the proposed DSRS 

architecture, even if none of the case studies follow all 

recommendations. However, each recommendation in the 

Table was implemented and evaluated by at least one of the 

case studies. To support the development of the proposed 

DSRS architecture, the paper advanced two additional 

contributions: (i) a suggestion of a straightforward DSRS 

design flow; (ii) the design of a specific NoC supporting 

partial and dynamic hardware reconfiguration. 

The ideal implementation choice for this DSRS 

architecture is dedicated ASICs with embedded 

reconfigurable areas. Nonetheless, partial and dynamic 

reconfigurable FPGAs were used to successfully prototype 

the architecture. The main advantage of the suggested flow 

is a reduced number of steps compared to other flows 

proposed in the literature, such as Modular Design. The 

proposed flow employs new macros, which guarantee the 

correct operation of the rest of the system during 

reconfiguration, avoiding the use of tristate buffers, 

components scarcely available in Virtex FPGAs. Also, the 

new macros enable the use of communication architectures 

other than busses to link reconfigurable modules to other 

parts of the system. To support dynamic IPs 

reconfiguration, the paper showed the need to add services 

to ordinary NoCs. Three needed services were identified: 

IP insulation, packets discarding and IP reconnection. 

These services were implemented over the existing Hermes 

NoC, resulting in the Artemis NoC, which supports DSRS. 

The case studies evaluation helped to identify the area 

overhead incurred by the proposed infrastructure and the 

reconfiguration time. The addition of a Configuration 

Controller in a SoC represents a small area overhead (1.82 

to 3.61% of the available slices for XC2VP30 device), 

while providing a greater flexibility to the system. The 

addition of hardware flexibility to a SoC enables to 

implement the same function both in software and in 

hardware. The user or the operating system may select the 

implementation according to performance requirements. 

The experiments allowed to observe that, independently of 

the fact that reconfiguration is controlled in software or 

hardware, IP reconfiguration time is always above 2 ms for 

current FPGA technologies (measured times were between 

9.65 ms and 63.55 ms). This represents an average value of 

500,000 clock cycles. The time measured to send data to 

the reconfigurable IP, and to receive data from it, through 

the NoC is around 439 clock cycles. Performance gains can 

be easily obtained in loops with small/medium complexity 

(1,000 clock cycles) or more complex IPs.  
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