

A NoC-based Infrastructure to Enable Dynamic Self Reconfigurable Systems

Leandro Möller1, Ismael Grehs2, Ewerson Carvalho2, Rafael Soares2, Ney Calazans2, Fernando Moraes2

1 Darmstadt University of Technology – Institute of Microelectronic Systems

Karlstr. 15, 64283 Darmstadt, Germany

moller@mes.tu-darmstadt.de

2
 Catholic University of Rio Grande do Sul (FACIN-PUCRS)

Av. Ipiranga, 6681 - Prédio 16 - 90619-900 - Porto Alegre - RS - BRASIL

{grehs, ecarvalho, rsoares, calazans, moraes}@inf.pucrs.br

Abstract

Electronic equipments with higher performance, lower

power consumption, and smaller size motivate the research

for more efficient design methods. Platform-based design is

a method to implement complex SoCs that avoids design

from scratch. Usually, a platform-based designed SoC

includes one or more processors, a real-time operating

system, intellectual property (IP) blocks, memories and an

interconnection infrastructure. An associated advantage of

processor is flexibility at the software level. Hardware is

not flexible. Thus, dedicated IP blocks must be inserted at

design time. An alternative is to provide the platform with

reconfigurable hardware blocks with sufficient capacity to

implement any envisaged dedicated IP block. Dynamic self-

reconfigurable systems (DSRSs) introduce flexibility to

hardware. In DSRSs, IP blocks are loaded according to

application demand, an approach that potentially reduces

area, power consumption and total system cost.

1. Introduction

Platform-based design [1] is a method to implement

complex SoCs, avoiding chip design from scratch. Several

IPs other than processors compose SoCs. Examples are

communication interfaces, memory controllers and

hardware accelerators. These IPs as well as processor may

be implemented directly in silicon or using reconfigurable

hardware technology. Using the second option, it becomes

possible to: (i) improve system performance, by migrating

critical tasks to hardware; (ii) build products in smaller

devices, thus reducing costs; (iii) extend product life cycle;

(iv) update hardware after system manufacturing.

In order to accomplish (i) and (ii), reconfigurable

hardware must allow partial and dynamic reconfiguration.

Systems using these characteristics are called Dynamically

Reconfigurable Systems (DRSs). The main drawback of

DRSs is their reconfiguration time. To minimize this

drawback, DRSs may be built with the capacity to manage

their own reconfiguration process. This can be achieved

through the availability of internal reconfiguration ports.

Such systems are named Dynamic Self-Reconfigurable

Systems (DSRSs) [2]. DSRSs are the target architecture of

this work.

One natural implementation choice for DSRSs are

dedicated ASICs, with embedded reconfigurable areas. As

the goal of this paper is to propose an infrastructure for

DSRS, fine-grain reconfigurable FPGAs are used here as a

device platform for proof-of-concept purposes. Current

FPGAs are clearly limited in terms of useful silicon area,

since most of the silicon area is used for programming

purposes. In addition, DSRSs may waste a significant

amount of this useful silicon to implement the necessary

infrastructure. Despite these drawbacks, FPGAs are

certainly adequate to prototype the infrastructure proposed

herein, serving to demonstrate its benefits, gains and

limitations.

An important issue in current SoC design is the

implementation of its communication infrastructure.

Present SoCs require using scalable communication

infrastructures, with shorter wires to minimize power

consumption [3]. Networks on chip (NoCs) are an

alternative to busses, with several advantages, as stated in

 [4]. However, few works [5] have suggested mixing

reconfigurable IPs and NoCs.

This paper has four goals. First, to propose an

infrastructure for DSRSs, identifying which are its required

components. The second goal is to present a

straightforward design flow supporting DSRSs. The third

goal is to describe a NoC actively supporting the process of

partial and dynamic IP reconfiguration. The last goal is to

depict proof-of-concept case studies, comparing area

overhead and reconfiguration time.

The rest of this paper is organized as follows. A

discussion about DSRS implementation alternatives is the

subject of Section 2. Section 3 presents the Artemis NoC

architecture. Section 4 presents a practical design flow to

build DSRSs. Section 5 presents and compares two DSRS

case studies. Finally, Section 6 presents some conclusions

and directions for future work.

2. DSRS Infrastructure

This Section discusses choices and trade-offs associated

to the DSRS infrastructure, making a parallel with existent

works and recommending implementation choices for each

internal component. Figure 1 depicts these components in a

DSRS conceptual architecture. The communication

infrastructure is presented in Section 3.

Reconfigurable
Interface

Reconfigurable
Interface

Repository

Configuration
Port

...

Fixed
IP

Fixed
IP

...

Reconfigurable
IP

Reconfigurable
IP

Communication
Infrastructure

...

Fixed SoC area

SoC

Reconfigurable SoC area

Configuration
Controller

Figure 1 - DSRS conceptual architecture.

2.1. Repositories

DSRSs need to have access to repositories able to store a

potentially large number of partial configurations, often

called configuration memory. Besides stocking partial

configurations, these repositories should offer fast access to

its contents, to satisfy application requirements. There are

basically four device types available to use as configuration

memories: (i) memory internal to the reconfigurable

device, usually available as RAM blocks or BRAMs; (ii)

devices external to the DSRS using static RAM

technology, or SRAMs; (iii) devices external to the DSRS

using PROM technology, such as EPROM or Flash devices

called generically PROMs; (iv) devices external to the

DSRS using DRAM technology, such as SDRAM.

Applications using BRAMs as repository may support

small number of configurations and/or only small

configurations, due to its limited capacity. Applications

that benefit from difference-based [6] reconfiguration

techniques are among those able to employ this kind of

repository.

SRAM and DRAM devices present a good compromise

between access speed and storage capacity. The former

imply simpler controllers added to the DSRSs, but are

much more expensive per bit than DRAMs. DRAMs, on

the other hand, have a low cost per storage bit, allowing

storing more configurations. However, a higher area of the

DSRS must be committed to implement its controller.

Contrary to the other three technologies, PROMs have

the advantage of keeping configurations after turning the

DSRS off. They cost more per bit than DRAMs, but imply

a simpler procedure at startup of the DSRS. Also, changing

the contents of the repository is more complicated than

with the other technologies.

2.2. Reconfigurable Interface
A reconfigurable interface is necessary to implement the

communication between a reconfigurable IP and the rest of

the DSRS. The interface proposed by Palma et al. [7] uses

two levels of tristate buffers in the input and output pins of

the reconfigurable IPs. One level of tristates belongs to the

reconfigurable IP and the other to the communication

infrastructure. Manual routing verification and manual

routing corrections are required, to ensure correct

connection between IPs. To reduce manual routing, Palma

employs a 1-bit data serial bus as communication

infrastructure.

Lim and Peattie propose a reconfigurable interface

called Bus Macro [6], which employs 8 tristate buffers.

Each macro allows the simultaneous exchange of 4 bits

between a reconfigurable area and another area, fixed or

reconfigurable. The advantage of this macro is that it

reduces manual routing. However, it also uses tristate

buffers, which are scarce resources in Xilinx FPGAs. The

use of such resources overconstrains designs with complex

reconfigurable interfaces.

Huebner et al. [8] propose a reconfigurable interface

called Bus Macro (distinct from the Xilinx Bus Macro, and

herein named Huebner macro). This macro is a static bus

used to connect all reconfigurable IPs of the system. This

reconfigurable interface is composed by two unidirectional

busses, one to communicate the reconfigurable area with

the fixed area and another to communicate in the inverse

direction. Each macro allows the simultaneous

transmission of 8 bits from a reconfigurable area to another

area, fixed or reconfigurable.

2.3. Configuration Ports

The external JTAG and SelectMap interfaces are

alternatives for implementing configuration ports for DRSs

that are not self-reconfigurable, where the configuration

controller is located outside the DRS. Although these

interfaces can be used for building DSRS (using external

wiring connecting some of the reconfigurable device pins

to them) most Xilinx devices have available an Interal

Configuration Access Port (ICAP). The ICAP usually

constitutes the best choice for building DSRSs, since user

logic can reach it from inside the reconfigurable device.

2.4. Configuration Controller

The Authors of this paper have built two versions of

Configuration Controller (CC): (i) a pure hardware version

(CC-H); (ii) a mostly software version (CC-S). Table 1

compares these two implementations qualitatively.

CC-S is three times slower than the CC-H. This

disadvantage is related to the inefficiency of the current

API furnished by Xilinx to give access to ICAP. This API

requires the CC-S to fetch 512-word blocks of each partial

configuration and store these in a BRAM. Only after

caching these data, the API sends configuration data to the

ICAP. The CC-H sends data directly from an external

memory to ICAP, leading to smaller reconfiguration time.

CC-S runs on an embedded 32-bit RISC processor

designed by Xilinx, MicroBlaze. The structure of CC-S

also includes peripheral device controllers, memory and a

communication infrastructure. If configuration control is

the only task assigned to this infrastructure, the approach

could hardly be justified. However, assuming that most

applications today require the use of one or more

processors inside the system, and assuming some of these

processors have spare time to perform the CC tasks, the

additional hardware for configuration control requires less

area than CC-H. Given the assumptions above and if the

application reconfiguration time requirements are not too

stringent, CC-S can be usefully applied.

Table 1 – Comparison of two CC implementations.

Characteristic CC-H CC-S

Configuration
Speed

Milliseconds Milliseconds

Area
Requires
additional
hardware

If processor available,
small area overhead

(ICAP and macro controllers)

Modification
easiness

Complex /
extra area

Simple / modifying software

Another important aspect regarding the design of CCs is

the easiness for updating/adapting the CC to different

applications. When it is necessary to include additional

functionalities to the CC, a software implementation is

definitely more adequate. Complex tasks can be easily

implemented through programming. Examples of such

functionalities are configuration compression and on-the-

fly decompression, on-the-fly decryption, configuration

scheduling policies, and support to configuration

preemption. A hardware-only implementation such as CC-

H would require restructuring the CC design, realizing the

CC re-synthesis and would probably increase the area

overhead of the controller.

2.5. DSRS Infrastructure

Table 2 presents some recommended infrastructure

choices for DSRSs. Software configuration controllers

allow greater flexibility. It is possible to overcome its

higher reconfiguration time disadvantage by rewriting the

API to access the ICAP module, or by adding a small

hardware module to directly manage ICAP.

Table 2 - DSRSs recommended infrastructure.

Infrastructure Element Recommended Choice

Configuration Controller Software

Reconfigurable Interface LUT-Macro

Repository External SRAM

Reconfigurable Port ICAP

Communication Infrastructure NoC

A recommended choice for the reconfigurable interface

is to use LUT-macros. Macros developed by Xilinx [6] use

a larger area when compared to the LUT-macros proposed

in current work (Section 3.2). The Xilinx Bus Macro

consumes CLBs from 6 distinct CLB columns, being two

in the fixed area and four in the reconfigurable area.

Meanwhile, LUT-macros occupy CLBs of only two CLB

columns, one at the fixed area and one at the reconfigurable

area. Another difference is the number of bits transported

by each macro: a Xilinx Bus Macro is 4-bit wide and LUT-

macro allows 8-bit wide transfers. CLB columns used for

both macros have reduced usability, due to placement and

routing restrictions imposed by the macros on both fixed

and reconfigurable areas [6].

Another recommendation is to use external static RAM

to store partial configurations, since the controller to access

these memories is very simple, present a small access time,

and the capacity of such memories is sufficient to store

several partial configurations. It is not advisable to waste

internal FPGA memory with partial configurations, since

the capacity of such memories is too small.

3. Artemis NoC

The last component of the proposed DSRS infrastructure

discussed here is the communication infrastructure. As

stated before, NoCs are good choices due to their

scalability, increased parallelism and short-range wires that

reduce power consumption. This work proposes Artemis, a

NoC that supports specific reconfiguration services and is

based in the Hermes NoC [9]. This Section describes the

modifications carried out in Hermes to allow its use in

DSRSs.

The partial reconfiguration process may produce

glitches in the interface between the IP under

reconfiguration and the rest of the device. These glitches

may introduce spurious data into the NoC, causing

malfunctions or even circuit blocking. In addition, packets

transmitted to an area suffering reconfiguration, must be

discarded, since it is typically impossible to know if these

packets are targeted to the previous configuration in this

area or to the next reconfiguration. To avoid such

problems, a set of services must be added to the NoC to

enable its use in DSRSs.

Three services are implemented in Artemis: (i)

reconfigurable area insulation; (ii) packet discarding; (iii)

reconfigurable area reconnection. Hermes passed through

the addition of two functionalities to support these services:

(i) definition of control packets, enabling IPs to send

packets to routers, not only to other IPs; (ii) capacity to

disconnect/connect routers from its associated

reconfigurable area. These functionalities are detailed in

the next Sections.

3.1. Control packets: structure and function

The addition of two sideband signals per port to the

original Hermes router serves to differentiate control

packets from data packets. These signals, depicted in

Figure 2, are ctrl_in and ctrl_out. For each flit sent by

data_out, the ctrl_out is asserted together with tx if the flit

is a control packet. The target router receives flits

analogously, using data_in, rx and ctrl_in signals.

When the reconfigurable area is insulated, the router

discards any data packets sent to the area under

reconfiguration. Insulation also protects the network, since

during reconfiguration transients can occur in the

reconfigurable interface. If such signals are considered,

spurious data may enter the NoC. Transients were indeed

observed in hardware by measuring the router-IP interface

with a logic analyzer during reconfiguration. These events

may signal a false packet to the router, with unpredictable

outcomes. Once the new IP is configured, a control packet

reconnects IP and router, enabling normal operation.

R
o
u
te

r
E

a
s

t
P

o
rt

ctrl_out

ctrl_in

tx

rx

data_out

data_in

ack_tx

ack_rx

R
o
u
te

r
W

e
s
t P

o
rt

ctrl_in

ctrl_out

rx

tx

data_in

data_out

ack_rx

ack_tx

Figure 2 – Interface between Artemis routers.

The reception and forwarding of control and data

packets are similar. The major change in the router is the

addition of one bit at each position of the input buffer. This

is required to propagate the value of the ctrl_out signal to

the reconfigurable IP router. When the control packet

arrives at its destination router, it decodes and executes the

corresponding operation.

3.2. Reconfigurable IP to router interface

This work proposes a new reconfigurable interface that

does not impose the use of a specific communication

infrastructure. This interface uses LUTs. Two

unidirectional macros compose the reconfigurable

interface, as depicted in Figure 3. The first one, named

F2R, is responsible to send data from the fixed part of the

system to a reconfigurable IP, while the second one, named

R2F, implements the communication in the inverse

direction. Both macros allow the simultaneous transmission

of 8 data bits. The F2R macro is an identity function, while

the R2F uses a special logic to avoid transient glitches

during the reconfiguration process from reconfigurable to

fixed areas.

 Macro F2R

CLB

LUT

LUT

in out

in out

Fixed
Area

Reconfigurable
Area

CLB

8

in

8

out

LUTs configured
with the identity

function
(out � in)

Slice

Macro R2F

CLB

LUT

LUT

out
in

out
in

Fixed
Area

Reconfigurable
Area

CLB

8

out

8

in

LUTs configured as two
input AND gate

(out � in AND control)

Slice

8

control

(a) (b)

control

control

Figure 3 – Proposed macros: (a) F2R; (b) R2F.

The complete interface between the Artemis router and a

reconfigurable IP appears in Figure 4. It uses two R2F

macros to connect 10 bits from right to left and two F2R

macros to connect 11 bits in the inverse direction. The

interface between the router and the reconfigurable IP does

not contain the ctrl_in and ctrl_out signals because

reconfigurable IPs neither send nor receive control packets.

The reset is a global signal used to initialize the entire

system. The router asserts the reconf signal to initialize the

reconfigurable core connected to the local port. The

reconf_n signal in Figure 4 connects to the control signal in

Figure 3, controlling the connection from the router to the

reconfigurable core.

N

E
 W

S

Router
Recon-

figurable
Core

Macros
tx

data_in
ack_rx

rx

ack_tx

reconf

reset
reset

tx

data_in
ack_rx

rx
data_out
ack_tx

reset

data_out

rx

data_out
ack_tx
tx
data_in
ack_rx

reset

reconf_n

8

8

8

8

F2R

R2F

F2R

R2F

Figure 4 – Router to reconfigurable core interface.

4. Design Flow for DRS

The layout of reconfigurable IPs shares some properties:

(i) logic of a reconfigurable region must lie inside it

(achieved with placement restrictions); (ii) wires of a

reconfigurable region must lie inside it (achieved with

routing restrictions); (iii) fixed communication interface

with the rest of the DRS. Next Sections details the main

design flow steps to implement a DRS/DSRS.

4.1. Reconfigurable interfaces insertion

To enable the use of reconfigurable IPs, it is necessary

to impose two restrictions in reconfigurable interfaces:

reconfigurable IPs sharing the same region must present

identical interfaces (in terms of number and type of signals)

and identical placement of interface pins. One way to

define reconfigurable interface pins is to insert pre-defined

feedthrough components, named macros. Figure 5(a)

illustrates a system with one fixed IP, two reconfigurable

IPs and macros defining the interface pins. Macros are

inserted in the system description (e.g. VHDL or Verilog).

4.2. Placement constraints

The second step is to constrain the placement of IPs and

macros, as presented in Figure 5(b). A floorplanner tool

may constrain the placement and shape of the system IPs

(fixed and reconfigurable IPs), as well as the placement of

macros. Standard place and route follows the constraints

insertion.

4.3. Routing verification / modification

In the current generation of Xilinx physical synthesis

tools, floorplanning restrictions do not have influence on

the routing tool. As illustrated in Figure 5(b), some wires

can still cross reconfigurable region boundaries. If this

situation occurs, the associated signal can be disconnected

after a reconfiguration step, possibly causing a system

malfunction. This situation pervades all reconfigurable

design flows, including Xilinx Modular Design. In this

case, the designer must either reroute the wire(s) crossing

the interfaces (manually or automatically) or go back to the

previous step, to try different placement constraints. The

final routing must be similar to the one presented in Figure

5(c), where no wire crosses a reconfigurable interface. One

noticeable exception to this rule is the global clock signals,

which can safely cross the whole chip.

Fixed Reconf
1

Reconf
2

Reconf
1

Reconf
2

C D

Fixed

Reconf
1

Reconf
2

Macro
component

A

Fixed Reconf
1

Reconf
2

routing
problem

B

Figure 5 – DRS flow proposed in this work.

4.4. Partial configurations generation

Partial configurations, or partial bitstreams, are a set of

bits used to configure a DRS. Partial bitstream generation

is done by extracting a section of a total bitstream,

corresponding to a reconfigurable region. This is illustrated

in Figure 5(d). It is important to include part of the macro

component in partial bitstreams to connect the

reconfigurable core to the fixed part of the DRS. The

method used here to generate partial bitstreams is

straightforward, a one-phase flow. Assignment of another

core to the same region requires partially repeating the flow

for each core, while keeping the same placement

constraints. Two tools may generate partial bitstreams. The

first one is the proprietary Xilinx tool, BitGen, with

specific commands to define the coordinates of the

reconfigurable core. The second tool, compatible with all

Virtex-II (Pro) devices, was developed by the authors.

4.5. Core relocation

Two situations require to partially repeating the DRS

flow. The first one arrives with the assignment of different

cores to the same reconfigurable region. The second one

arrives with the assignment of the same core to different

reconfigurable regions. It is possible to avoid the second

situation if the same bitstream can be loaded at different

regions. This procedure is named relocation [10]. A core

originally synthesized for one reconfigurable region can be

moved to another one, without re-synthesis. Core

relocation also reduces the memory requirements to store

partial bitstreams, diminishing system cost.

5. Case Studies

This Section presents the implementation of two proof-

of-concept DSRS case studies and their comparison. Table

3 details the characteristics of the OPB-based (Figure 6)

and Artemis-based (Figure 7) case studies. These case

studies allow DSRS design space exploration, evaluating

benefits, gains and limitations of each infrastructure

element.

Table 3 - Case studies implementation characteristic

Infrastructure
Element

OPB-based
DSRS

Artemis-based
DSRS

Configuration
Controller

Software (CC-S) Hardware (CC-H)

Reconfigurable
Interface

LUT-Macro LUT-Macro

Repository Internal BRAM External SRAM

Reconfigurable
Port

ICAP + Xilinx
API

ICAP + dedicated
hardware

Communication
Infrastructure

OPB Bus Artemis NoC

5.1. OPB-based DSRS Description

The OPB-based DSRS contains a Microblaze processor,

running an application and the configuration controller

(CC-S). The system also contains several IPs connected to

the OPB bus, as shown in Figure 6.

The design flow to synthesize this DSRS requires

additional steps w.r.t. the one presented in Section 4. A

similar flow is also used in [11]. The steps to build the

OPB-based DSRS are:

• Build an initial system, using the Embedded

Development Kit (EDK) with the Xilinx IPs and the

reconfigurable IP (user function + macros + OPB

wrapper);

• Insert macros to insulate the user function from the

fixed part (Section 4.1). These macros are located

between the IPIF interface and the user function (the

user module template generated by EDK offers to the

user an interface simpler than the OPB bus, named

IPIF). Even if IPIF is simpler than OPB, it has 80

signals (36 from left to right, 44 from right to left),

requiring 11 macros (5 R2F macros, 6 F2R macros),

complicating floorplaning and routing steps;

• Generate the system netlist with EDK, exporting it to

ISE (Integrated Software Environment);

• Execute the logic synthesis, followed by floorplanning

(Section 4.2) and physical synthesis (Section 4.3). The

result of this step is the complete bitstream of the SoC;

• Import results back to EDK for software generation.

The binary code is finally added to the complete

bitstream.

Microblaze
Processor

Host
Communication

ICAP
Controller

Macro
Controller

ICAP

ILMB DLMB

O
P
B

B
U
S

Memory
Buffer

Fixed SoC part

Reconfigurable
 SoC part

reconf.
 control

U
s
e

r

fu
n

c
ti

o
n

M
A

C
R

O
S

Reconfigurable IP

O
P

B
 t

o
 I
P

IF

w
ra

p
p

e
r

IP
IF

IP
IF

Figure 6 – The OPB-based DSRS structure.

The above steps are repeated for each reconfigurable IP.

Partial bitstreams (Section 4.4) are extracted from the

obtained complete bitstreams. The OPB-based DSRS was

prototyped in a Memec Insight platform with a Virtex-II

Pro XC2VP30 device.

OPB-based DSRSs have two drawbacks: bus-based

communication and limited internal repository.

Additionally, the design flow is quite complex, since two

software environments are used: EDK and ISE. However,

this simple case study allows reconfiguration time

evaluation using the Xilinx API to access the ICAP

module, and the area consumed to implement the

reconfiguration infrastructure.

5.2. Artemis-based DSRS Description

The Artemis-based DSRS contains a 2x2 NoC used as

communication infrastructure and several IPs as illustrated

in Figure 7. The MR2 processor is a 32-bit RISC processor,

based in a load-store MIPS architecture, with 27 distinct

instructions, a 32x32 register file, non-pipelined. The

processor uses four internal 18 Kbits RAM blocks as

instruction and data memories, providing 1K words in each

memory. Three different arithmetic IP modules can be used

as reconfigurable IPs: “mult” (multiplies two 16-bit

operators), “div” (divides one 16-bit operator by a 16-bit

operator) and “sqrt” (extracts the square root of a 32-bit

operator).

The processor is the system master. Memory mapped

instructions access reconfigurable IPs. The following

system operating protocol is used:

• the processor sends a packet to the CC, informing the

identification of the desired IP.

• the CC (i) receives the reconfiguration request; (ii)

selects a reconfigurable area where to configure the

requested IP (if more than one reconfigurable area is

available); (iii) sends a packet to disconnect

communication between the router and the selected

reconfigurable area; (iv) read the specific bitstream,

transmitting it to ICAP.

• After reconfiguration, the CC sends a packet to

reconnect communication between router and the

configured IP. A second packet is sent to the processor

with the network address where the IP was configured.

01 11

00 10

Configuration
Memory

ICAP

Instruction /
Data Memory

MR2
Processor

Configuration
Controller

Host
Communication

NoC

M
A

C
R

O
S

Reconfigurable IP

U
s

e
r

fu
n

c
ti

o
n

Fixed SoC part

Reconfigurable
 SoC part

Figure 7 – Artemis-based DSRS.

The Artemis-based DSRS was also prototyped in a

Memec Insight platform with a Virtex-II Pro XC2VP30

device. The design flow used to synthesize this DSRS

employs the straightforward flow presented in Section 4.

This is simpler than the flow used for the OPB-based

DSRS, since only the ISE environment needs to be used.

Except for the configuration controller, this DSRS

follows the recommended choices to implement DSRS.

The configuration controller is implemented in hardware,

favoring performance, but reducing flexibility.

5.3. Infrastructure comparison

A common choice for both experiments presented is the

use of LUT macros. LUT macros were employed in the

OPB-based DSRS due to the number of bits in the

reconfigurable interface (80), therefore reducing the

number of CLB rows when compared to Xilinx Bus

Macros. The LUT macros had to be extended to occupy 4

CLB columns each to achieve successful interface routing.

The Artemis-based DSRS has a less complex interface (21

bits), using four LUT macros, exactly as presented in

Figure 4, and occupying only 2 CLB columns each.

A second common choice in both experiments is the

ICAP configuration port. The first case study uses the

Xilinx API to access the ICAP port, while the second case

study uses a dedicated module developed to access the

ICAP port. As already mentioned, the Xilinx API is slower

than dedicated hardware due to current buffering

requirements. Table 4 compares the partial bitstream sizes

and reconfiguration times.

The third column presents partial bitstream sizes. Partial

bitstreams of the OPB-based DSRS occupy 10 CLB

columns, while for the Artemis-based DSRS they occupy 6

CLB columns
1
. It is possible to store partial bitstreams of

the OPB-based DSRS in internal BRAMs because a simple

compression algorithm was applied to partial bitstreams,

based on zeroes/ones counting. On-the-fly software

decompression is executed before sending bitstreams to the

ICAP controller. There is no time penalty in this

decompression, due to the algorithm simplicity. The

Artemis-based DSRS stores partial bitstreams in a 1 Mbyte

external SRAM. The Artemis-based DSRS stores up to 10

partial bitstreams, without compression, while the OPB-

based DSRS is able to store only 2 partial bitstreams using

compression.

Table 4 – Reconfiguration times
†
 for OPB and

Artemis based DSRS case studies.

Partial Bitstream Size Reconf. Time
Case
Study Module Name

Size
(Kbytes)

CC-H CC-S

Minimal
Reconf.

Time

OPB-
based

Arith. 1 / 2 182,180 - 63.55 3.64

Multiply 99,644 9,98 34.76* 1.99

Divider 96,428 9,65 33.63* 1.93
Artemis
-based

Square Root 101,988 10,21 35.57* 2.04

†Times are expressed in milliseconds and reconfigurations run at 50MHz.

*Estimated, using data from the OPB-based system.

The fourth and fifth columns present the reconfiguration

time using the CC-H and CC-S configuration controllers.

The CC-H reconfiguration time is in average three times

faster than CC-S, considering the NoC protocol.

Reconfiguration times were measured using two methods:

internal FPGA timers and a logic analyzer.

The sixth column presents the minimal reconfiguration

time, assuming it would be possible to transmit one partial

bitstream byte per clock cycle (at 50 MHz). This column

shows that it is not possible to work with reconfiguration

times below 1 ms in current case studies, with

reconfigurable IPs using 6 to 10 CLB columns. With more

complex reconfigurable IPs, reconfigurable area is

expected to increase consequently increasing the

reconfiguration time.

Figure 8 details the reconfiguration time for the divider

IP. The reconfiguration time, 9.65 ms, is equivalent to

482,500 clock cycles. Observe that 99.94 % of this

reconfiguration time is spent by the reconfiguration process

itself (Figure 8(c)), with a very small time spent in the NoC

with control packets.

After reconfiguration, the protocol to access the

reconfigurable IP comprises three steps: (i) creation and

transmission of a packet with the operators to the

reconfigurable IP; (ii) creation and transmission of a read

packet to receive results; (iii) reception of the result packet

from the reconfigurable IP. Typical time spent in each step

is 173, 141 and 117 clock cycles respectively. As the

reconfigurable IPs are very simple in this case study, once

1
 Different bitstream sizes for the same number of CLB columns

exists because partial bitstreams are generated by Bitgen, which

uses the multi-frame write feature.

the read request arrives at the reconfigurable IP, the packet

with the results is sent immediately to the source IP,

totalizing in average 439 clock cycles (sum of the time

spent in each step). This protocol can be simplified by

eliminating the read packet (141 cycles), sending the

answer from the reconfigurable IP directly to the source IP.

(a) packet from a source IP to the CC asking a new reconfigurable IP
(b) CC processing time and packet to the reconfigurable area to disconnect it
(c) reconfiguration time
(d) packet from the CC to the new reconfigurable IP reconnecting it
(e) packet from the CC to the source IP with the reconfigurable IP address

145 4

482,221

(a) (c) (b)

(e)

(d)

4

126

Figure 8 – Reconfiguration protocol timing, in clock
cycles, for Artemis-based DSRS.

At 50 MHz, 10 ms represent 500,000 clock cycles. This

reconfiguration time can be hidden by: (i) executing

complex computations in hardware; (ii) pre-fetching

reconfigurable IPs to later use; (iii) reusing the same

reconfigurable IPs during a time longer than the execution

in software plus the time to configure the IP into the DSRS.

With such strategies, the reconfiguration time has minimal

impact in DSRS performance. For example, if a given

function executed in hardware is 500 clock cycles faster

than an equivalent software implementation, after 1,000

consecutive executions the hardware implementation

displays superior performance. This can be easily achieved

with image processing algorithms, where the same

operation is repeated thousands of times.

For these proof-of-concept case studies, the average

execution time for the equivalent software implementation

is 26% slower (in average 600 clock cycles against 439

clock cycles). This difference in favor of the hardware

implementation, 161 cycles, is not yet sufficient to

demonstrate performance gains for the proposed

infrastructure, but clearly shows its viability. Some

application portions (typically loops) may benefit from this

approach, given they consume at least 1,000 clock cycles in

the embedded processor and are repeatedly used.

Table 5 and Table 6 compare the area to implement both

DSRSs. The first analysis concerns the configuration

controller (CC) area overhead. The CC-H uses 494 slices.

The CC-S uses 821 slices (Microblaze, ICAP and macro

controllers). However, if a processor is already available in

the system (such as MicroBlaze), the area of the CC-S

represents the area of the ICAP and macro controllers,

resulting in 250 slices. As processors are ubiquitous in

actual SoCs, a software CC represents the implementation

option with smaller area overhead.

The area of the Artemis-NoC is 1167 slices (Table 5),

representing in average 290 slices per router. For this case

study, this area represents an important overhead. In

practice, when using real IPs, an area overhead of 5-10%

per IP is expected, justifying the use of NoCs in DSRSs.

Comparing the router area to the Gecko platform [5],

Gecko routers consume 611 slices (router plus network

interfaces, data and control).

Table 5 - Artemis-based DSRS area report (XC2VP30)

Slices (total: 13696) # FF (total: 27392)
IP

Total Percentage Total Percentage

Serial 316 2.31% 279 1.02%

Processor 1001 7.31% 555 2.03%

CC (CC) 494 3.61% 294 1.07%

Artemis NoC 1167 8.52% 959 3.50%

DIV (reconf IP) 183 1.34% 259 0.95%

MULT (reconf IP) 172 1.26% 259 0.95%

SQRT (reconf IP) 223 1.63% 269 0.98%

Table 6 - OPB-based DSRS area report (XC2VP30).

Slices (total: 13696) # FF (total: 27392)
IP

Total Percentage Total Percentage

MicroBlaze 571 4.17 366 1.34

MicroBlaze Perip. 160 1.17 75 0.27

MicroBlaze OPB 90 0.66 11 0.04

ICAP Controller 151 1.10 155 0.57

Macro Controller 99 0.72 136 0.50

Arith1 (reconf IP) 128 0.93 168 0.61

Arith2 (reconf IP) 128 0.93 168 0.61

6. Conclusion and Future Work

The main contribution of this work is the proposal of a

conceptual DSRS architecture, summarized in Table 2,

centered on the use of a NoC interconnection. The

implementation of two proof-of-concept case studies

demonstrates the viability of the proposed DSRS

architecture, even if none of the case studies follow all

recommendations. However, each recommendation in the

Table was implemented and evaluated by at least one of the

case studies. To support the development of the proposed

DSRS architecture, the paper advanced two additional

contributions: (i) a suggestion of a straightforward DSRS

design flow; (ii) the design of a specific NoC supporting

partial and dynamic hardware reconfiguration.

The ideal implementation choice for this DSRS

architecture is dedicated ASICs with embedded

reconfigurable areas. Nonetheless, partial and dynamic

reconfigurable FPGAs were used to successfully prototype

the architecture. The main advantage of the suggested flow

is a reduced number of steps compared to other flows

proposed in the literature, such as Modular Design. The

proposed flow employs new macros, which guarantee the

correct operation of the rest of the system during

reconfiguration, avoiding the use of tristate buffers,

components scarcely available in Virtex FPGAs. Also, the

new macros enable the use of communication architectures

other than busses to link reconfigurable modules to other

parts of the system. To support dynamic IPs

reconfiguration, the paper showed the need to add services

to ordinary NoCs. Three needed services were identified:

IP insulation, packets discarding and IP reconnection.

These services were implemented over the existing Hermes

NoC, resulting in the Artemis NoC, which supports DSRS.

The case studies evaluation helped to identify the area

overhead incurred by the proposed infrastructure and the

reconfiguration time. The addition of a Configuration

Controller in a SoC represents a small area overhead (1.82

to 3.61% of the available slices for XC2VP30 device),

while providing a greater flexibility to the system. The

addition of hardware flexibility to a SoC enables to

implement the same function both in software and in

hardware. The user or the operating system may select the

implementation according to performance requirements.

The experiments allowed to observe that, independently of

the fact that reconfiguration is controlled in software or

hardware, IP reconfiguration time is always above 2 ms for

current FPGA technologies (measured times were between

9.65 ms and 63.55 ms). This represents an average value of

500,000 clock cycles. The time measured to send data to

the reconfigurable IP, and to receive data from it, through

the NoC is around 439 clock cycles. Performance gains can

be easily obtained in loops with small/medium complexity

(1,000 clock cycles) or more complex IPs.

7. References

[1] Keutzer, K.; Newton, A.R.; Rabaey, J.M.; Sangiovanni-

Vincentelli, A. “System-Level Design: Orthogonalization of

Concerns and Platform-Based Design”. IEEE Transactions

on CAD of Integrated Circuits and Systems, vol. 19 (12),

Dec. 2000, pp. 1523-1543.

[2] Van den Branden, G.; Touhafi, A.; Dirkx, E. “A design

methodology to generate dynamically self-reconfigurable

SoCs for Virtex-II FPGAs”. In: FPT’05, 2005, pp. 325-326.

[3] Dally, W.; Towles, B. “Route Packets, Not Wires: On-Chip

Interconnection Networks”. In: DAC’01, 2001, pp. 684-689.

[4] Benini, L.; De Micheli, G. “Networks on Chips: a New SoC

Paradigm”. Computer, vol. 35 (1), Jan. 2002, pp. 70-78.

[5] Marescaux, T.; Nollet, V.; Mignolet, J.-Y.; Bartic, A.;

Moffat, W.; Avasare, P.; Coene, P.; Verkest, D.; Vernalde,

S.; Lauwereins, R. “Run-Time Support for Heterogeneous

Multitasking on Reconfigurable SoCs”. Integration, the

VLSI Journal, vol. 38 (1), Oct. 2004, pp. 107-130.

[6] Lim, D.; Peattie, M. “Two Flows for Partial

Reconfiguration: Module Based or Small Bit

Manipulations”. Xilinx Application Note 290 (v1.0), 2002.

[7] Palma, J.; Mello, A.; Möller, L.; Moraes, F.; Calazans, N.

“Core Communication Interface for FPGAs”. In: SBCCI’02,

2002, pp. 183-188.

[8] Huebner, M.; Paulsson, K.; Becker, J. “Parallel and Flexible

Multiprocessor System-On-Chip for Adaptive Automotive

Applications based on Xilinx MicroBlaze Soft-Cores”. In:

IPDPS’05, 2005, pp. 149a-149a.

[9] Moraes, F.; Calazans, N.; Mello, A.; Möller; Ost, L.

“HERMES: an Infrastructure for Low Area Overhead

Packet-switching Networks on Chip”. Integration, the VLSI

Journal, vol. 38 (1), Oct. 2004, pp. 69-93.

[10] Krasteva, Y.; Jimeno, A.; Torre, E.; Riesgo, T. “Straight

Method for Reallocation of Complex Cores by Dynamic

Reconfiguration in FPGAs”. In: RSP’05, 2005, pp. 77-83.

[11] Donato, A.; Ferrandi, F.; Santambrogio, M.D.; Sciuto, D.

“Caronte: a complete methodology for the implementation

of partially dynamically self-reconfiguring systems on

FPGA platforms”. In: FCCM’05, 2005, pp. 321-322.

