Rate-based Scheduling Policy for QoS Flows in
Networks on Chip

Aline Mello, Ney Calazans, Fernando Moraes
Faculdade de Informatica - Pontificia Universidade Catolica do Rio Grande do Sul, PUCRS - Porto Alegre, Brazil
{alinev, calazans, moraes}@inf.pucrs.br

ABSTRACT

Several propositions of NoC architectures claim providing
quality of service (QoS) guarantees, which is essential for e.g.
real time and multimedia applications. The state-of-art in NoC
literature provides QoS at design time, using circuit switching
and/or priority-based scheduling. Both methods optimize a
given network template to achieve the QoS requirements after
traffic generation and network simulation. However, modern
SoCs may execute applications not devised at design time, and
these may easily have its QoS requirements violated by a
previously fixed NoC structure. This paper proposes a method
to achieve QoS requirements in NoCs at execution time. The
proposed rate-based scheduling policy is employed to determine
the priority of each QoS flow being transmitted through the
network. The basis of this scheduling method is the difference
between the rate required by a given flow and the rate
currently used by this flow. This difference corresponds to the
flow priority used by the scheduler. Differently from traditional
priority-based scheduling, the priority is dynamically adjusted.
Preliminary results show the efficiency of the rate-based
scheduling to meet QoS requirements, by comparing the
proposed scheduling to priority-based scheduling.

1. INTRODUCTION

Network-on-Chip (NoC) is an emerging paradigm for
communications within large VLSI systems implemented on
a single silicon chip, known as System on Chip (SoC). In a
NoC based SoC, modules such as processor cores, memories
and other specialized IP blocks exchange data encoded in
packets, using the NoC as a subsystem for data transport.

Distributed multimedia applications (e.g. 3G phones),
need to communicate in real-time and are sensitive to the
quality of services (QoS) they receive from the NoC. The
term QoS refers here to the capacity to control the
communication infra-structure to meet the application design
requirements in what concerns the communication among
modules of the SoC.

Usually, NoC literature employs two services class
definitions: best effort (BES), and guaranteed (GS). BE
services guarantee the transmission of all packets from a
given source to a given target without any temporal bound
guarantee. GS provide rigid bounds on one or on a subset of
performance figures such as throughput (GT), latency, jitter
and packet losses. This paper proposes to add a new service
class, named Quality Services (QS). QS is defined as a
service class where the network actively tries to reach
application requirements without guaranteeing rigid bounds

978-1-4244-1710-0/07/$25.00 (© 2007 IEEE

for performance figures. Three reasons can be advanced to
propose this new service class. First, the typical workload of
SoC applications is tolerant to limited variation in
performance figures, possibly not requiring GS. Second,
although GS can locally provide the best possible level of
services, in general QS is capable of achieving a better level
of global performance. Third, QS allows a better use of
resources, leading naturally to a better dimensioning of the
NoC.

Most current NoC implementations only provide support
to BE services [1], including commercial products such as
Arteris [2]. BE services are inadequate to satisfy QoS
requirements for applications/modules ~ with tight
performance requirements.

NoC implementations providing support to QoS ([2]-
[12]) try to achieve performance requirements at design time.
This requires application traffic modeling, system simulation
and NoC optimization and/or sizing. The internal router
architecture of such NoCs employs circuit switching and/or
priority-based scheduling to attain performance requirements
for a given application. Circuit switching allows
implementing GS and priority-based scheduling is a
technique to meet QS.

Several modern SoCs may execute applications not
devised at design time, and these may easily have its QoS
requirements violated by a previously fixed NoC structure.
Also, designing a NoC to support any traffic scenario is often
unfeasible in terms of power and area.

The objective of this paper is to propose and evaluate a
method to achieve QoS requirements at execution time for
NoCs using QS. The proposed method uses a rate-based
scheduling policy, being a two-step process. First, a data
flow requiring QoS (called a QoS flow) is admitted in the
NoC if and only if the NoC can transmit the rate required by
the specific flow end-to-end, in what is called admission
control. Next, each router dynamically defines the priority of
each QoS flow locally, as a function of the rate used by this
flow.

This paper is organized as follows. Section 2 presents
related work in NoCs that offer support to obtain QoS,
discussing limitation of current methods. Section 3 details
the proposed scheduling method for QoS flows. Section 4
evaluates the proposed method, comparing it to priority-
based scheduling method. Finally, Section 5 presents
conclusions and directions for future work.

140

2. RELATED WORK

Current NoC designs employ at least one of three
methods to provide QoS: (i) dimensioning the network to
provide enough bandwidth to satisfy all IP requirements in
the system; (ii) providing support to circuit switching for all
or for selected IPs; (iif) making available priority-based
scheduling for packet transmission.

Harmanci et al. [3] present a quantitative comparison
between circuit switching and priority-based scheduling,
showing that the prioritization of flows on top of a
connectionless communication network is able to guarantee
end-to-end delays in a more stable form than circuit
switching. However, the reference does not quantify results
numerically. A possible explanation for this is the use of a
TLM SystemC modeling, instead of clock cycle accurate
models advanced here. Additionally, the structural
limitations of circuit switching and priority-based scheduling
are not depicted.

The first method to provide QoS mentioned above is
advocated e.g. by the Xpipes NoC [4]. A designer sizes
Xpipes according to application requirements, adjusting each
channel bandwidth to fulfill the requirements. However,
applying this method alone does not guarantee avoidance of
local congestions (hot spots), even if bandwidth is largely
increased. This fact, coupled to ever-increasing performance
requirements [5], render the method inadequate to satisfy
requirements for a wide range of distinct applications.

The second method, support to circuit switching',
provides a connection-oriented distinction between flows.
This method is used in Zthereal [6], aSOC [7], Octagon [8],
Nostrum [9] and SoCBUS [10] NoCs. For example, the
Nostrum NoC [9] employs virtual circuits (VC), with the
routing of QoS flows decided at design time. The
communications on the physical channels are globally
scheduled in time slots (TDM). The VCs guarantee
throughput and constant latency at execution time, even with
variable traffic rates. Circuit switching NoCs create
connections for each or to selected flows. The establishment
of connections requires allocation of resources such as
buffers and/or channel bandwidth. This scheme has the
advantage of guaranteeing tight temporal bounds for
individual flows. However, this method has two main
disadvantages: (i) poor scalability [3]; (i) inefficient
bandwidth usage. Here, router area grows proportional to the
number of supported connections, penalizing scalability.
Resource allocation for a given flow is based in worst case
scenarios. Consequently, network resources may be wasted,
particularly for bursty flows.

QNoC [11], DiffServ-NoC [3] and RSoC [12] are
examples of NoCs adopting the third method, packet
switching with priorities. This connectionless technique
groups traffic flows into different classes, with different

In this paper, the term circuit switching is used to refer to both, networks
providing physical level structures to establish connection between
source and destination, as well as to packet switched networks that
employ higher level services (such as virtual circuits) to establish
connections.

service levels for each class. The method requires separate
buffering to manipulate packets according to the services
levels. To each service level corresponds a priority class. The
network always serves first non-empty higher priority
buffers. Packets stored in lower priority buffers are
transmitted only when there are no higher priority packets
waiting to be served. This scheme offers better adaptation to
varying network traffic and a potentially better utilization of
network resources. However, end-to-end latency and
throughput cannot be guaranteed, except to the higher
priority flows. Also, it is necessary to devise some form of
starvation prevention for lower priority flows. When flows
share resources, even higher priority flows can have an
unpredictable behavior. Consequently, this method often
provides a poorer QoS support than circuit switching.

Neither circuit switching nor priority methods guarantee
QoS for concurrent multiple flows. When using the circuit
switching method, the network may reject a number of
flows, due to limited amount of simultaneously supported
connections, even if network bandwidth is available. When
multiple flows with the same priority compete for the same
resources, priority-based networks have behavior similar to
BE service networks [13]. As mentioned before, networks
using any of the three above described methods employ
techniques at design time to guarantee QoS, through traffic
modeling, simulation-based network sizing (topology, buffer
depth, flit width) and network synthesis. The drawbacks of
sizing the network at design time are: (i) the complexity of
traffic modeling and system simulation is very high, being
thus error-prone; and (ii) the network designed in this way
may not guarantee QoS for new applications. The first
drawback may force the use of simplified
application/environment models, which can in turn lead to
incorrect dimensioning of the NoC parameters for synthesis.
The second drawback may arise if new applications must run
on the system after some initial implementation, as occurs
with reconfigurable or programmable systems.

The main performance figures used in the above
reviewed NoCs are end-the-end latency and throughput.
Nonetheless, when QoS is considered, another concept can
be of relevance, jitter. Jitter can be defined as the variation in
latency, caused by network congestion, or route variations
[14]. In connectionless networks, buffers introduce jitter.
When packets are blocked, latency increases. Once the
network can release packets from blocking, latency reduces,
due to burst packet diffusion. Therefore, networks using only
priorities cannot guarantee controlled jitter.

Some other works advocate different methods to enhance
QoS. For example, Andreasson and Kumar proposed a slack-
time aware routing [15][16], a source routing technique to
improve overall network utilization by dynamically
controlling the injection of BE packets in the network in
specific paths, while guaranteed throughput (GT) packets are
not employing those paths. This work is not directly related
to QoS achievement.

2007 IFIP International Conference on Very Large Scale Integration (VLSI-SoC 2007) 141

3. RATE-BASED SCHEDULING POLICY

The proposed scheduling policy assumes the following
NoC features: wormhole packet switching, deterministic
routing, and physical channels multiplexed in at least two
virtual channels (VC). BE flows are transmitted using only
one VC, while QoS flows may use any VC. This resource
reservation for QoS flows is necessary to avoid that multiple
BE flows block the possibility of using the channel for some
QoS flow. The proposed policy is a two-step process:
admission control followed by dynamic scheduling.

The admission step determines if the network may accept
a new QoS flow without penalizing performance guarantees
already assigned to other QoS flows. The admission step
starts by sending a control packet from the source router to
the target router, containing the rate required by the IP. The
QoS flow is admitted into the network if and only if all
routers in the path to the target can transmit at the required
rate. When the control packet arrives at the target, an
acknowledgment signal is back propagated to the source
router. This process is similar to the connection
establishment in circuit switching, but differently from
circuit switching there is no static resource reservation.

When the QoS flow is admitted, a virtual connection is
established between the source and target router, as in ATM
[17] networks. This virtual connection corresponds to a line
in the flow table (see Figure 1) of each router in the
connection path. Each line of the flow table identifies the
QoS flow using the following fields: source router, target
router, required rate, and used rate. The flow table depth
determines how many simultaneous QoS flows can be
admitted by each router. The virtual connection is released
by the source router with another control packet.

INPUT PORTS
EAST JRE. PARTIAL CROSSBAR 10x1

(i

{ WEST
1T+

ARBITRATION AND ROUTING

FLOW TABLE l

NORTH SOUTH LOCAL

OUTPUT PORTS
Figure 1. Router architecture with support for rate-based
scheduling.

Once the virtual path is established, the source router
may start sending QoS flow packets. When packets arrive at
a router input port they are stored in input buffers, arbitrated
(e.g. using round robin) and routed (e.g. XY deterministic
algorithm) to an output port (Figure 1). Packets assigned to
the same output port are served according to the proposed

scheduling policy.

The implemented scheduling policy adopts a work-
conserving mechanism, which is idle only when there is no
packet awaiting to be served. BE flows are transmitted only
when no QoS flows require the physical channel. When two
or more Qos flows compete, the higher priority flow is
scheduled first.

As illustrated in Figure 1, the flow table is read by the
scheduler (blocks named S in Figure 1) to find the priority of
each QoS flow assigned to a same output port. The QoS flow
priority is the difference between the required rate and the
rate currently used by the QoS flow. The flow priority is
periodically updated according to Equation 1. A positive
priority means that the flow used less rate than required in
the considered sampling period. A negative priority means
that the flow is violating its admitted rate in the considered
sampling period.

priority, = required rate — used rate, 1)
The required rate is fixed during the admission control
step. The used rate (UR) is periodically computed according
to Equation 2:
CR, if UR_=0

i

UR;=q UR, +CR, 2

, if UR,_,#0
2
where:
e CR: is the current rate used during the current period;

e UR: is the average of the previous used rate and the current
used rate.

Figure 2 illustrates packets of a given QoS flow being
transmitted. Timestamps TO to T4 designate when the rates
are sampled, assuming in this example 10 time units in each
interval. The table in the Figure corresponds to the behavior
of one flow table from TO to T4.

TO T1 T2 T3 T4
Time

Time TO | T1 | T2 | T3 | T4

Source 01 01 01 01 01
Target 55 55 55 55 55
Required rate 25% | 25% | 25% | 25% | 25%
Current rate (CR) 0% | 20% | 30% | 0% | 50%
Used rate (UR) 0% | 20% | 25% | 12% | 31%
Actual rate 0% | 20% | 25% | 16% | 25%
Priority 25 5 0 13 -6

Figure 2. Transmission of packets for a given QoS flow.

In this example, the 4™ line of the table contains the
required rate (25%) for this flow. At timestamp T1 the
current rate (5" line) is 20%, corresponding to the channel
bandwidth used by the flow in the previous interval (T0-T1).
According to the Equation 2 it is possible to obtain the used
rate (6" line of the table). The 8" line of the table contains
the flow priority, which is updated according to Equation 1.

The interval between timestamps is an important
parameter of the proposed method. The 7 line contains the

142 2007 IFIP International Conference on Very Large Scale Integration (VLSI-SoC 2007)

actual flow rate (shown here for comparison purposes, not
present in the flow table). If the chosen interval is too short,
the computed used rate may not correspond to the actual rate,
compromising the scheduling method. If the interval is too
long, the computed used rate will be accurate, but the flow
priority will remain fixed for a long period, also
compromising the method.

To minimize the error induced by the sampling period,
the method in fact employs two sample intervals. In the
previously presented example, consider a second current rate
(CR2) and a sample interval 4 times larger than the original
one. In this example, CR2 will be equal to 100% (summation
of CR from TO to T4) in T4. Dividing CR2 by 4, the
corrected used rate is obtained (CUR, Equation 3). It can be
observed that applying CUR to UR each n intervals (4 in this
example), the error is minimized.

n-1
CR,
cur-CR2 _ % 3)
n n

Consequently, in Equation 1 UR; receives CUR when i
mod n is equal to zero, where n corresponds to the result of
dividing the long sample interval value by the short sample
interval value.

It is important to mention that if only the used rate were
considered in the priority computation (priority; = 100 -
UR)), the scheduling policy tends to balance physical channel
use. This implies disregarding the fact that distinct QoS
flows may require distinct rates. Consider two QoS flows
with instantaneous UR of 20% and 30%, respectively. The
first flow would be scheduled first. Assume that the required
rates are 10% and 40% to each flow. The first flow
scheduled first does not consider that it is using more
bandwidth than the required. Using Equation 1 the correct
schedule is obtained.

4. EXPERIMENTAL RESULTS

This Section compares the performance of the priority-
based scheduling with the proposed rate-based scheduling,
since both support QS. Traffic injection and results capture is
modeled with SystemC, while the NoC is modeled through
RTL VHDL [18]. The NoC parameters are: 8x8 mesh
topology; XY routing; 16-bit flits; 2 virtual channels; 8-flit
buffers associated to each virtual channel.

4.1 Experimental Setup

Table 1 presents the flows used in the experiments. Flow
A is characterized as a CBR service with QoS requirements,
as latency and jitter. Nodes generating flows A transmit 2000
packets. The results do not take into account the first 50
packets and the last 50 packets. They are discarded from
results, since the traffic at the beginning and the end of the
simulation does not correspond to regular load operation.
Flow B is a BE flow modeled using a Pareto distribution.
This flow is used to disturb QoS flows, being considered as
noise traffic. For this reason, results for the B flow are not
discussed.

Table 1. Flows Characterization.

Type | Service | QoS | Distribution | Number of Packet Target
Packets Size
Uniform 50, 100, .
A CBR | Yes (20%/30%) 2000 200, 500 Fixed
Pareto
B BE No (20% on) Random 20 Random

Figure 3 presents the spatial distribution of source and
target nodes. In this scenario, two QoS flows (F1 and F2)
originated at different nodes share part of the paths to targets.
The remaining network nodes transmit B flows, disturbing
the QoS flows.

(7.7

Figure 3. Spatial distribution of source and target nodes for
flows with QoS requirements. Dotted lines indicate the path of
each flow. Rounded rectangles highlight the area where flows

compete for network resources.

Equation 4 gives the ideal latency to transfer a packet
from a source to a target, in clock cycles.

ideal latency = 5N + P 4)
where:
e 5:is the router minimal latency (arbitration and routing);
e N:is the number of routers in the communication path (source
and target included);
e P:is the packet size.

When the packet size is 50 flits, the ideal latency for the
scenario presented in the Figure 3 is 100 (5x10+50) clock
cycles for both scheduling.

4.2 Results

Table 2 presents the latency values, jitter and throughput
when the packet size is 50 flits and the inserted rate is 20%.
Both scheduling policies guarantee throughput close to the
inserted rate (20%).

Analyzing the priority-based scheduling, F2 has average
latency near to ideal, while F1 flow has higher latency
(average latency 44% far from the ideal latency). F1 and F2
are CBR flows with the same priority, competing for the
same resources. They insert packets in the network at fixed
intervals. As the F2 source node is closer to the region
disputed by the flows, it is always served first. This
experiment demonstrates that priority-based scheduling is
inefficient for QS when flows with the same priority
compete for the same resources.

2007 IFIP International Conference on Very Large Scale Integration (VLSI-SoC 2007) 143

Table 2. Results for flows F1 and F2, 50 flits, 20% load.

. Priority-based Rate-based
Performance Figures
F1 F2 F1 F2
Ideal (ck) 100,00 100,00 100,00 100,00
‘:" Minimum (ck) 141,00 100,00 119,00 119,00
i:; Average (ck) 144,23 101,78 148,95 121,93
Maximal (ck) 154,00 133,00 174,00 133,00
Jitter (ck) 2,66 3,04 18,63 3,03
Average throughput (%) 19,21 19,21 19,35 19,20

In the rate-based scheduling, the priority is dynamically
updated according to the used rate, not as a function of the
arrival time of the packets in the router. Therefore, as both
flows have the same required rate, the bandwidth is equally
divided between the flows, reducing the difference between
the F1 and F2 average latency from 42% (when priority-
based scheduling is used) to 22%. The jitter is increased
when compared to priority-based scheduling because F1 and
F2 are not served always in the same order.

Table 3 displays the latency values, jitter and throughput
when the packet size is 50 flits and the inserted rate is 30%.
As presented in Table 2, both scheduling policies guarantee
throughput close to the inserted rate (30%).

Table 3. Results for flows F1 and F2, 50 flits, 30% load.

. Priority-based Rate-based
Performance Figures
F1 F2 F1 F2
Ideal (ck) 100,00 100,00 100,00 100,00
‘Z” Minimum (ck) 141,00 100,00 119,00 119,00
éi Average (ck) 143,82 101,44 137,31 121,94
Maximal (ck) 156,00 112,00 184,00 131,00
Jitter (ck) 2,75 2,77 21,20 2,47
Average throughput (%) 28,80 28,81 29,60 28,80

Figure 4 presents the F1 and F2 average latency when the
packet size is 50, 100, 200, and 500 flits. Figure 4(a) shows
the behavior of the priority-based scheduling. In this Figure
it is possible to observe the difference between the F1 and F2
average latency increases according to the packet size. As
mentioned before, the F2 average latency is smaller because
F2 source node is closer to the region disputed by the flows.
Analyzing the rate-based scheduling presented in Figure
4(b), the F2 average latency is slightly higher when
compared to the priority-based scheduling. However, the
difference between the F1 and F2 average latency is
significantly reduced.

This results shows the superiority of the rate-based
scheduling over the priority-based scheduling, allowing to
deliver QoS packets with similar latency, independently of
the packet size.

It is possible to observe that average latency and jitter of

QoS flows (F1 and F2) presented in Table 3 have similar
behavior of Table 2. The reasons for the similar behavior are:
(1) F1 and F2 are CBR flows with the same inserted rate
(fixed intervals between packets); (2) the total used load by
these flows is inferior to 100%, allowing them to be
transmitted with the same delay; (3) F1 and F2 are priority
flows that only compete between themselves for the same
resources. In priority-based scheduling, the disturbing traffic
does not interfere the QoS flows due to its lower priority.
However, in rate-based scheduling, F1 average latency is
slightly reduced when the injection rate has increased. The
reason is the amount of conflicts between BE and QoS flows
in the shared virtual channel?, which changes with the
injection rate.

2 One virtual channel is reserved for QoS flows, while the second
one is shared between QoS and BE flows. QoS flows may use the
shared virtual channel when no BE packet is being transmitted.

144

Priority-based
1200
g
2 1000 {
]
% 800 4
@ > 600 | ——F1
a
& 400 _— —=—F2
S
g 200 /0//¢/
& o pl/
0 100 200 300 400 500 600
Packet Size
Rate-based
> 1200
€ 1000
o
® 800
- .
(b P 600 A F1
) g 400 - / ek
o
g 200 ==
<
0 100 200 300 400 500 600
Packet Size

Figure 4. Average latency for F1 and F2 flows, Experiment I,
CBR Traffic. (a) priority-based scheduling; (b) rate-based
scheduling.

Sample periods are a critical factor in the rate-based
method, since they define how frequently priorities are
updated. Rate-based results, presented in Table 2 and Table
3, employed short and long sample periods equal to 1000 and
8000 clock cycles, respectively. Small differences (less than
1%) were observed when samples periods were reduced to
250/2000 clock cycles and packet size equals to 50 flits.
However, reducing the samples periods to 250/2000 clock
cycles and packet size equals to 200 flits increased the
overall latency. These results show that a trade-off between
packet size and samples period should be established, as
discussed in Section 3.

2007 IFIP International Conference on Very Large Scale Integration (VLSI-SoC 2007)

5. CONCLUSIONS AND FUTURE WORK

As discussed, the state of the art in NoCs still does not
provide efficient solutions to achieve QoS for applications
when the network traffic is not known in advance. The main
drawback of circuit switching and priority-based scheduling
is the performance unpredictability when QoS flows compete
for the same network resources. This paper presented a rate-
based scheduling policy, which adjusts the flow priority
w.r.t. the required flow rate and current rate used by the
flow.

Good results were obtained with CBR flows. When QoS
flows with the same priority compete for resources, priority-
based scheduling favors the flow that reaches the shared
resources first, penalizing the latency of the second arriving
flow. Rate-based scheduling overcomes this problem,
balancing flows according to their required rates.

As future work it is possible to enumerate: (i) evaluating
the proposed method with more experiments; (ii) evaluating
area overhead of the approach, which is expected to be
small, because only a small table and few counters were
added to the NoC router; (iif) implementing congestion
control mechanisms; (iv) developing services in superior
layers to the network layer, allowing to include the
requirements specification and to verify if the network is
supporting these requirements.

6. ACKNOWLEDGMENTS

This research was supported partially by CNPq (Brazilian
Research Agency), project 300774/2006-0.

7. REFERENCES

[1] Di Micheli, G.; Benini, L. “Networks on Chips: Technology
and Tools”. Morgan Kaufmann, 2006, 304 p.

[2] Arteris. “Arteris Network on Chip Company”.
Auvailable at http://www.arteris.net.

[3] Harmanci, M.D.; Escudero, N.P.; Leblebici, Y.; Ienne, P.
“Quantitative Modelling and Comparison of Communication
Schemes to Guarantee Quality-of-Service in Networks-on-
Chip”. In: ISCAS, 2005, pp. 1782-1785.

[4] Bertozzi, D.; Benini, L. “Xpipes: A Network-on-chip
Architecture for Gigascale Systems-on-Chip”. 1IEEE Circuits

2005.

2007 IFIP International Conference on Very Large Scale Integration (VLSI-SoC 2007)

[3]

(6]

(7

[8]

]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

and Systems Magazine, v.4(2), 2004, pp. 18-31.

Shin, J.; Lee, D.; Kuo, C.-C. “Quality of Service for Internet
Multimedia”. Prentice Hall, 2003, 204 p.

Goossens, K.; Dielissen, J.; Radulescu, A. “Athereal
Network on Chip: Concepts, Architectures, and
Implementations”. 1IEEE Design and Test of Computers,
v.22(5), 2005, pp. 414-421.

Liang, J.; Swaminathan, S.; Tessier, R. “aSOC: A Scalable,
Single-Chip communications — Architecture”. In: 1EEE
International Conference on Parallel Architectures and
Compilation Techniques, 2000, pp. 37-46.

Karim, F.; Nguyen, A.; Dey S. “An interconnect architecture

for network systems on chips”. IEEE Micro, v.22(5), 2002,

pp. 36-45.

Millberg, M.; Nilsson, E.; Thid, R.; Jantsch, A. “Guaranteed
Bandwidth Using Looped Containers in Temporally Disjoint
Networks Within the NOSTRUM Network on Chip”. In:
DATE, 2004, pp. 890-895.

Wiklund, D.; Liu D. “SoCBUS: Switched Network on Chip

for Hard Real Time Systems”. In: IPDPS, 2003, 8p.

Bolotin, E; Cidon, I.; Ginosar R.; Kolodny A. “ONoC: QoS
Architecture and Design Process for Network on Chip”.
Journal of Systems Architecture, v.50(2-3), 2004, pp 105-
128.

Véstias, M.; Neto, H. “4 Reconfigurable SoC Platform Based
on a Network on Chip Architecture with QoS”. In: XX DCIS,
2005, 6 p.

Mello, A.; Tedesco, L.; Calazans, N.; Moraes, F. “Evaluation
of Current QoS Mechanisms in Networks on Chip”. In:
International Symposium on System-on-Chip, v.1, 2006, pp.
115-118.

Dally, W..; Towles, B. “Principles and Practices of
Interconnection Networks”. Morgan Kaufmann Publishers,
2004, 550p.

Andreasson, D.; Kumar, S. “Improving BE Traffic QoS Using
GT Slack in NoC Systems”. In: NORCHIP, 2005, pp. 44-47.
Kumar, S.; Andreasson, D. “Slack-Time Aware Routing in
NoC Systems”. In: ISCAS, 2005, pp. 2353-2356.

Giroux, N.; Ganti, S. “Quality of Service in ATM Networks:
State-of-Art Traffic Management”. Prentice Hall, 1998, 252p.

Moraes, F.; Calazans, N.; Mello, A.; Moller, L.; Ost, L.
“Hermes: an Infrastructure for Low Area Overhead Packet-
switching Networks on Chip”. Integration the VLSI Journal,
v.38(1), Oct. 2004, pp. 69-93.

145

