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Abstract 

Current embedded applications are migrating from sin-
gle processor-based systems to intensive data communi-
cation requiring multiprocessing. The performance de-
manded by these applications requires the use of hetero-
geneous multiprocessing architectures in a single chip 
(MPSoCs) endowed with complex communication infra-
structures, such as Networks on Chip or NoCs. NoC pa-
rameter choices, such as network dimensioning, topology, 
routing algorithm, and buffer sizing then become essen-
tial aspects for optimizing the implementation of such 
complex systems. This paper presents NoC models that 
allow evaluating communication architectures through 
the variation of parameters during MPSoC design. Appli-
cability of the concepts is demonstrated through two het-
erogeneous MPSoC case studies: an MJPEG decoder 
and an H.264 encoder. 

1 Introduction 

Multiprocessor SoCs (MPSoCs) are emerging as one 
of the technologies providing a way to face the growing 
design complexity of embedded systems, since they pro-
vide flexibility of programming allied to specific proces-
sor architectures adapted to selected problem classes. 
This leads to gains in compactness, low power consump-
tion and performance [1][2]. MPSoCs integrate hardware 
(HW) such as processors, memories, interconnect and 
special purpose modules and software (SW) like operat-
ing systems and application code. MPSoC design is usu-
ally platform-based and dominated by SW design, to 
achieve cost and time efficiency [3]. The amount of func-
tionality incorporated in an MPSoCs is continuously 
growing. Consequently, their complexity and size also 
increases. Therefore, on chip communication demands 
rise. Industry roadmaps and research literature point that 
communication will be the greater challenge in future 
MPSoC projects, representing up to 50% of the total en-
ergy consumption, thus becoming the system perform-

ance bottleneck [4]. The way an application is partitioned 
and the employed communication structures directly af-
fect system energy and performance figures. 

According to [5][6][7] traditional multipoint schemes, 
like single shared busses, will not be able to support the 
amount of communication required by future MPSoCs. 
Networks on chip (NoCs) emerge as an interesting ap-
proach because they help solving electrical problems in 
new deep-submicron technologies. NoCs can be more 
energy-efficient, more reliable, and more scalable than 
buses. Additionally, NoCs allow orthogonalizing compu-
tation and communication concerns, improving the capac-
ity to design multi-billion transistor chips. However, 
adopting NoCs as communication infrastructures adds 
non-trivial design challenges to the MPSoC design flow, 
like architectural definition and communication protocol 
choice to achieve the best trade-off of cost, speed and 
power consumption [8][9][10].  

This paper proposes a flow for inserting NoC design 
considerations during MPSoC design. This is achieved 
through communication architecture model parameteriza-
tion and simulation with the target application. This flow 
makes use of three distinct abstraction levels to model 
application functionality together with the hardware ar-
chitecture, and allows analyzing performance for varying 
NoC parameters. Among NoC parameters that can be 
varied stand the number of routers, the routing algorithm 
and the MPSoC IP cores mapping on the NoC. The main 
contribution of this paper is the definition of abstract NoC 
models that can be integrated into MPSoC design flows 
and the demonstration of the utility of such models 
through the use of two real world case studies, an MJPEG 
decoder and an H.264 encoder. 

The paper is organized as follows. Section 2 presents 
related work in MPSoC communication modeling and 
evaluation. Section 3 depicts the proposed flow, and the 
proposed NoC models. Section 4 presents the conducted 
experiments, while Section 5 discusses results and their 
analysis. Finally, Section 6 gives concluding remarks. 
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2 Related Work 

Lahiri et al. [8] propose algorithms to map HW ele-
ments on predefined communication architectures accord-
ing to a communication profile defined through perform-
ance analysis. This analysis enables to discover potential 
contentions on shared channels. However, the approach is 
assuming a memory-less communication infrastructure, 
which prevents the application of the method to most 
router-based NoCs. 

Madsen et al. [11] present a method to optimize the 
usage of communication infrastructures modeled at sys-
tem level with an RTOS, performing a static functionality 
analysis. Communication latency is modeled using best 
case figures, without considering congestion. 

Coppola et al. [12] present OCCN, a framework for 
modeling and simulation of communication infrastruc-
tures which enables defining protocols, master and slave 
port behavior and statistical packages. However, OCCN 
does not support description of architectural details of the 
communication environment. 

Bertozzi et al. [13] propose a three-step flow for the 
exploration and synthesis of NoCs: NoC topology map-
ping, selection and generation. The input is a core graph, 
describing the communication behavior of the system. 
The graph capture is not considered in their flow, being 
based on statistical analysis and simulation. This may 
lead to a wrong choice of the communication architecture 
in case a bad core graph is picked. 

Xu et al. [14] present a methodology for evaluating 
different NoC architectures at low levels of abstraction, 
based on the application communication behavior. For 
accurate results, tools like OPNET, Design Compiler and 
SPICE are employed. Although the accuracy of the result 
is high, activities like communication analysis, perform-
ance analysis and interconnection design require time 
consuming modeling and simulation tasks. 

Dumitrascu et al. [15] present a flow focused on ob-
taining communication architecture evaluation, based on 
the OCCN library [12] for all the communication models. 
Some statistical information is captured by the flow. Au-
thors compare a distributed memory server, an AMBA 
bus and an Octagon NoC models. However, they do not 
support optimization of the communication architecture. 

The work presented in this paper provides a method to 
evaluate different NoC configurations for a given applica-
tion. The NoC models proposed in Section 3 are based on 
<blind> [16], a NoC infrastructure that enables automatic 
generation of RTL NoC descriptions for synthesis. In the 
proposed models, details of communication protocol are 
hidden from the system designer, assuming a read/write 
communication style. This enables gradual refinement of 
NoC from an abstract description down to architecture 
definition, e.g. topology and routing algorithm. 

3 Communication Modeling 

This Section starts by presenting the assumptions on 
the MPSoC design flow. Next, follows the discussion of 
the proposed generic communication model and the 
proposition of the abstract NoC models. 

The design of MPSoCs, involving hardware and the 
software, requires that architecture and implementation 
definitions be done gradually. Figure 1 presents an 
MPSoC generic architecture. Figure 1(a) represents the 
global view of the architecture. The system is a composi-
tion of CPU subsystems (CPUSSs) which execute appli-
cation threads, hardware subsystems (HWSS) which im-
plement specific application behavior and the communi-
cation infrastructure. CPUSSs may include different 
components such as a processor CPU, a network inter-
face, local memories and other peripherals (Figure 1 (b)). 

In this work, application functionality is a composition 
of threads statically allocated to either a CPUSS or a 
HWSS, corresponding to the mapping process. The way 
threads are distributed affects communication characteris-
tics. The communication characteristics are defined by 
the intra and inter subsystem data exchange. The intra 
subsystem data exchange occurs between threads allo-
cated to the same subsystem, while inter subsystem 
communication refers to threads allocated to distinct 
CPUSS/HWSS. 

Regarding the inter subsystem communication, the 
choice of efficient communication architectures is essen-
tial in the design flow. However, partitioning threads and 
evaluating alternative communication architectures are 
steps usually conducted at different moments of design. 
The proposed flow allows varying and evaluating com-
munication architecture characteristics for an application 
mapped on a target architecture. 
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Figure 1: An MPSoC generic model. (a) Global 
view. (b) Architecture of CPUSS. 

3.1 Communication Modeling 
The flow proposed here to integrate NoC design dur-

ing MPSoC design is depicted in Figure 2, and has three 
steps: (i) application modeling, (ii) communication archi-
tecture definition, and (iii) communication architecture 
refinement. 

The first step consists in the functional modeling of 
the target application. Based on requirements specifica-
tion, a high level application model is created using Si-
mulink, from MathWorks. This model combines the ap-
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plication description, partitioning and mapping. Applica-
tion threads are virtually mapped to a given 
CPUSS/HWSS of the target MPSoC architecture. Com-
munication between threads is described using primitives 
of the underlying framework. The model also contains the 
communication mapping information, i.e. the way threads 
communicate when mapped in the same or in distinct 
subsystems (e.g. shared memory or FIFOS). The simula-
tion of the high level application model allows validation 
of the application functionality. 

The second step defines an abstract model of the com-
munication infrastructure. This model corresponds to the 
Virtual Architecture (VA), composed of abstract CPUSSs 
and HWSSs. The evaluation of communication infra-
structure alternatives takes place through the adoption of 
dedicated links, busses or NoCs. In case a NoC architec-
ture is chosen, the network dimension, i.e. its number of 

routers, has to be defined. The simulation of the VA 
model guarantees validation of the application mapping 
on the target architecture (e.g. it can guarantee deadlock-
freedom) and generates quantitative data for communica-
tion evaluation. Example quantitative data are the amount 
of read and write requests, the number of packets 
sent/received, and the net amount of exchanged data. 
Based on these values, the designer may find communica-
tion bottlenecks, may change the network dimensioning, 
remap communication buffers to different storage re-
sources (e.g. local memory, global memory) or adopt 
different communication strategies (e.g. dedicated hard-
ware FIFOs). The net amount of exchanged data is an 
early indicator for an appropriate mapping of the MPSoC 
IP cores distribution over the NoC. 
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Figure 2: Flow adopted for integrating NoC modeling during MPSoC design. 

 
 
The third step refines the communication infrastruc-

ture. This corresponds to the Transaction Accurate (TA) 
architecture model. The TA model allows detailing the 
local architecture of each CPUSS: abstract CPU, Local 
Memory, Network Interface and other peripherals. Addi-
tionally, it implements the communication protocol. Con-
cerning the NoC, its architecture become explicit, by spe-
cifying the number of access points per subsystem, the 
mapping of IP Cores, the specific NoC topology, the rout-
ing algorithm and router buffer sizes. Each one of these 
characteristic influences the energy consumption, per-
formance and silicon area of the final system. The simu-

lation of the TA model allows communication architec-
ture performance evaluation, by measuring values such as 
the average number of hops taken by each packet, the 
degree of NoC congestion, the overall number of routing 
requests and the total number of bytes exchanged during 
simulation with real data. 

3.2 NoC Models 
The following paragraphs describe the NoC models 

adopted in the VA and TA architecture. Both were im-
plemented in SystemC. 
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The VA NoC Model 

The VA NoC model is illustrated in Figure 3. This 
model allows fully parallel communication among differ-
ent subsystems composing an MPSoC. The model repre-
sents an abstract NoC where information like topology, 
routing algorithm, arbitration or buffer size information 
are abstracted. Communication architecture is modeled 
like a crossbar, where any set of communication events 
may take place simultaneously. 

The VA NoC model is composed of three basic ele-
ments, which are the network interface (NI), the mapping 
table (MT) and the router. The NI is responsible for pro-
viding send/receive operations for communicating 
threads, encapsulating these requests in packets, captur-
ing and interpreting packets arriving from the NoC, and 
delivering them to subsystems. The MT is responsible for 
storing and informing the correspondence between IP 
Core range addresses and NoC physical addresses. For 
example, IP Core addresses between 0x00400000 and 
0x007FFFFF may correspond to a single NoC physical 
address, say 0x0. The router is in charge of sending and 
receiving packets from source to destination. 

The VA description of the MPSoC is automatically 
generated from the high level application description. 
From the simulation of the VA description together with 
the VA NoC, further information can be captured. Exam-
ples are the amount of data exchanged between the dif-
ferent subsystems, the storage elements worst case size 
requirement for the communication buffer, the number of 
operations (send/receive) originated from each access 
point of the NoC and the amount of read/write operations 
performed at storage elements. Also, it is possible to ob-
tain first estimates of NoC area, based on the number of 
routers alone. 
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Figure 3: VA NoC model components and exam-
ple. 

The TA NoC Model 

The TA NoC model is illustrated in Figure 4. This 
model adds still more architectural details such as topol-
ogy, routing algorithm and router buffers size. The TA 
model of the MPSoC is automatically generated.  
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Figure 4: TA NoC Model example: mesh topol-
ogy, pure XY routing algorithm, round robin 
arbiter algorithm. 

The TA NoC model is composed of the same basic 
elements as the VA NoCs (NI, MT and routers) with a 
more detailed implementation. Topology (e.g. mesh, to-
rus), routing algorithm (e.g. pure XY, west first), arbiter 
algorithm (e.g. round robin or fixed priority) and buffer 
size (e.g. number of flits) can be varied. The packet struc-
ture in this model is composed of destination address, 
size and body fields, similar to that assumed in the syn-
thesizable NoC description.  

The TA NoC allows extracting information from the 
system communication architecture, including: (i) num-
ber of routing requests; (ii) number of packets inserted 
into the NoC; (iii) amount of exchanged bytes; (iv) aver-
age number of bytes per packet; (v) the number of trans-
mitted packets, (vi) number of failing routing requests, 
due to NoC congestion.  

4 Experiments 

This Section presents the results obtained by applying 
the proposed flow in the case of the Motion JPEG de-
coder and H.264 encoder applications mapped onto a 
multimedia platform. For the MJPEG decoder, 10 frames 
were used as input bitstream encoded using QVGA YUV 
444 format. For the H.264 encoder, 5 frames encoded 
using QCIF YUV 420 input video format were used. The 
target hardware architecture is a simplified version of 
Diopsis [17], which includes an ARM and a DSP subsys-
tem (two CPUSSs). The ARM subsystem includes the 
processor core and local memories, while the DSP 
subsystem includes the DSP core, data and program 
memories, DMA, interrupt controller and synchronization 
components. The HWSS nodes consist of an external 
distributed memory subsystem (DXM) and the peripheral 
on tile (POT) subsystem. The POT includes system 
peripherals of the ARM processor (timer, interrupt 
controller), and also I/O components like serial peripheral 
interface. The next Section presents the NoC modeling 
flow using 2D mesh and 2D torus topologies. 
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4.1 Modeling MJPEG decoder and H.264 en-
coder 

The MJPEG decoder and the H.264 encoder were first 
modeled at the functional level and mapped on the Diop-
sis architecture. The MJPEG application was partitioned 
into 4 threads. Two threads were mapped to the ARM 
subsystem, one thread to the DSPSS and one to the POT. 
The MJPEG decoder model contains three inter subsys-
tem communication units. 

The H.264 encoder was partitioned into two threads, 
T1 and T2 which were mapped to DSP and ARM, respec-
tively (Figure 5). The communication between the ARM 
and DSP subsystems require 26 communication units. 
The communication buffers were mapped on global 
memory for both applications. 
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Figure 5: H.264 application modeling and parti-
tioning. 

4.2 Diopsis and the VA NoC 
Figure 6 represents the Diopsis architecture with VA 

NoC, running the MJPEG application. In this model, 4 
access points are necessary to connect the DXM, POTSS, 
ARMSS and DSPSS. 
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Figure 6: VA description of Diopsis architecture 
interconnected by VA NoC. 

TABLE 1 and TABLE 2 show simulation results of 
the VA NoC model for the MJPEG decoder and H.264 
encoder. The first two columns show IP Cores and NoC 
addresses relation. The third column displays the total 
number of read/write requests. The designer may define a 
better mapping of hardware or the size of packets with 
such values. The fourth and the fifth columns represent 
the amount read and write operations from/to the global 
memory. The sixth and the seventh columns allow evalu-

ating the amount of communication injected into the 
NoC. 

TABLE 1: Results captured from VA NoC during 
the MJPEG simulation. 

NoC 
address

Read/Write
request 

Read 
operation 

Write 
operation 

Packets
sent 

MBytes 
sent 

DXM 0x0 0 4,798,220 4,798,156 223,173 21.28
POTSS 0x1 37,195 0 0 74,390 0.99
ARMSS 1x0 74,391 0 0 185,979 11.29
DSPSS 1x1 111,586 0 0 260,367 12.42

Total 743,909 45.98  
For the MJPEG decoder simulation, the DSP and the 

DXM were those who injected most packets into the 
NoC. Even if the DXM injected fewer packets than the 
DSP, it can be seen that it inserted much more bytes than 
any other subsystem, due to block transfers to/from mem-
ory, where a control packet can more than a single word.  

For the H.264 encoder, the DXM was the element that 
inserted the largest amount of data into the NoC. In both 
cases, DXM packets originate from read requests and 
confirmation packets.  

TABLE 2 - Results captured from VA NoC after 
encoding 5 frames with H.264. 

NoC
address

Read/Write
request 

Read 
operation 

Write 
operation 

Packets
sent 

GBytes
sent 

DXM 0x0 0 309,483,404 309,483,404 19,175,640 2.55
POTSS 0x1 1,065,313 0 0 0 0,07
ARMSS 1x0 3,195,940 0 0 6,391,880 0.84
DSPSS 1x1 3,195,940 0 0 6,391,880 0.47

Total 31,959,400 3.86  

4.3 Diopsis and TA NoCs 
Figure 7 gives the block diagram for the Diopsis plat-

form using the TA NoC as communication infrastructure. 
Two types of TA NoC topologies were modeled: 2D 
mesh and 2D torus. 
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Figure 7: Block diagram of architecture for the 
Diopsis platform with TA NoC. 

First, the TA NoC employs a 2D mesh topology, a 
pure XY routing algorithm and a round robin arbiter algo-
rithm at each router and wormhole as packet switching 
strategy (TA Mesh). Then, the TA NoC used 2D torus 
topology and deadlock free of a non-minimal west-first 
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routing algorithm proposed by Glass and Ni [18] (TA 
Torus). 

In the TA model, five access points to the NoC were 
necessary: four access points for the different subsystems, 
as previously presented in the VA model, and one addi-
tional for the DMA component, which becomes explicit 
in the TA model and has direct link to the interconnect 
component. With regular topologies such as the 2D torus 
and mesh, the smallest usable NoC has 6 routers (3x2). 

TABLE 3 shows results captured from TA Mesh mod-
el simulation for the MJPEG decoder application. The 
first and second columns represent the correspondence 
between the different subsystems and the NoC access 
points. A routing request is performed at least once per 
packet per router it will cross. Depending on the applica-
tion, the NoC structure, routing algorithm, and on NoC 
congestion state, the routing request may occur as many 
times as needed inside a router. For the MJPEG simula-
tion, 42.623.519 routing requests were issued. The third 
column of TABLE 3 presents the percentage of routing 
requests at each router, while the remaining columns de-
tail this information for each router port. 

TABLE 3: Percentage of routing requests during 
simulation with the TA 2D Mesh NoC. 

 NoC 
address TOTAL LOCAL NORTH SOUTH EAST WEST 

MEM SS 0x0 24,1% 11,3% 5,7% 0 % 7,1% 0 % 

POT SS 0x1 11,4% 2,9% 0 % 1,3% 7,2% 0 % 

 1x0 18,3% 0 % 0 % 0 % 7,0% 11,3% 

DSP (DMA) 1x1 10,1% 0 % 0 % 0 % 7,2% 2,9% 

ARM SS 2x0 20,0% 7,2% 1,5% 0 % 0 % 11,3% 

DSP (Bridge) 2x1 16,1% 7,4% 0 % 5,8% 0 % 2,9% 
 

 
Figure 8 shows the amount of data that traverses each 

router in the TA Mesh for the MJPEG encoder applica-
tion. The local port of each router inserts packets into the 
NoC, while the remaining ports transfer them inside the 
NoC. The value assigned to the local port of router 0x0 
(MEM SS) corresponds to response packets due to read 
requests or confirmation packets due to write requests. 
Depending on the way communication is mapped and 
performed, these values can change. For example, block 
transfer operations (amount of operation that will be 
transferred in one packet) allows optimizing the amount 
of data exchanged inside the NoC by minimizing the 
amount of control data. 

TABLE 4 shows results captured from TA Mesh mod-
el of the H.264 encoder simulation. The third column of 
the Table represents the exchanged amount of data and 
control information (e.g. operation request, confirmation 
response, etc). Again, the remaining columns of the Table 
detail the amount of data transmitted per router port. 

For the TA Torus model, 30.440.287 and 
3.693.770.895 routing requests were issued during the 
simulation of the MJPEG decoder and H.264 encoder 
respectively, representing in both cases a 29% reduction 
of routing request activity when compared to the TA 
Mesh. This was possible because the 2D torus topology 

has longest minimum paths that are only half of those in 
2D meshes in hops. Also, tori networks have better path 
diversity than meshes. This, if exploitable by the routing 
algorithm, leads to less network congestion, thus poten-
tially reducing routing requests. 
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Figure 8: TA Mesh data quantification on a per 
router and per port basis, for MJPEG simulation. 
For TA Torus, Routers 1x0 and 1x1 display no 
traffic activity, while other ports have values 
identical to TA-Mesh. 

TABLE 4: Amount of data transmitted in TA 2D 
Mesh NoC for H.264 encoder. 

 NoC
address LOCAL NORTH SOUTH EAST WEST 

MEM SS 0x0 9,21 GB 6,15 GB 0,00 GB 8,40 GB 0,00 GB 

POT SS 0x1 1,85 GB 0,00 GB 1,85 GB 6,15 GB 0,00 GB 

 1x0 0,00 GB 0,00 GB 0,00 GB 8,40 GB 9,21 GB 

DSP (DMA) 1x1 0,00 GB 0,00 GB 0,00 GB 6,15 GB 1,85 GB 

ARM SS 2x0 6,07 GB 1,85 GB 0,00 GB 0,00 GB 9,21 GB 

DSP (Bridge) 2x1 6,15 GB 0,00 GB 4,98 GB 0,00 GB 1,85 GB 

Total data inserted 23,28 GB     
 

5 Results and Analysis 

Through the VA NoC model it is possible to estimate 
the NoC size in number of routers, the amount of com-
munication present in the system and the functionality of 
the application over the virtual architecture. In the present 
work, a VA NoC composed of 4 routers and the commu-
nication between CPUSSs assuming a global memory 
was assumed. A deadlock free execution of the applica-
tion was detected for both MJPEG decoder and H.264 
encoder case studies. 

The evaluation of different NoC architecture is possi-
ble at the TA model. For the TA NoC models, resize was 
performed and topology, and consequently routing algo-
rithm, was varied. In both NoC topologies and applica-
tions, no congestion was detected. Consequently, buffer 
size remained constant. Based on simulation results, the 
torus NoC allows a better performance while consuming 
less energy, due to the decrease on the path covered by 
packets. On the other hand, mesh NoCs allow reduction 
of communication area overhead. In this case, area over-
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head reduction is due mostly to the elimination of buffers 
in routers located at the border of the NoC. 

6 Conclusions and Future Work 

The flow presented here allows integrating the design 
of NoCs during MPSoC design for some target applica-
tion running on top of a system platform. The description 
of the approach showed hints on what kind of information 
can be obtained from the proposed abstract NoC models. 
This information is currently being used to develop a de-
sign exploration flow for MPSoCs using NoCs as intra-
chip communication architecture.  

The flow proposed here was employed to design an 
MJPEG decoder and H.264 encoder running on the Diop-
sis platform, experimenting with two different NoC to-
pologies, 2D mesh and 2D torus. 

Future work includes extending the supported NoC 
templates at both the VA and TA abstraction levels, add-
ing diversity to the choices of NoC templates. Another 
ongoing work is linking the TA level to the RTL synthe-
sizable abstraction level and improving parameterization 
at the TA level, to include e.g. the possibility of buffer 
dimensioning at the network interface. This is an impor-
tant step to decouple application transmission rates from 
NoC transmission rates, which increases independence of 
application concerns from communication architectures. 
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