
Integrating Abstract NoC Models within MPSoC Design

Edson I. Moreno1, Katalin M. Popovici2, Ney L. V. Calazans1, Ahmed A. Jerraya3

1 Faculty of Informatics, PUCRS, Porto Alegre, Brazil, {emoreno, calazans}@inf.pucrs.br

2 TIMA Laboratory, Institute de Informatica, France, katalin.popovici@imag.fr
3 CEA-LETI, MINATEC, France, ahmed.jerraya@cea.fr

Abstract

Current embedded applications are migrating from sin-
gle processor-based systems to intensive data communi-
cation requiring multiprocessing. The performance de-
manded by these applications requires the use of hetero-
geneous multiprocessing architectures in a single chip
(MPSoCs) endowed with complex communication infra-
structures, such as Networks on Chip or NoCs. NoC pa-
rameter choices, such as network dimensioning, topology,
routing algorithm, and buffer sizing then become essen-
tial aspects for optimizing the implementation of such
complex systems. This paper presents NoC models that
allow evaluating communication architectures through
the variation of parameters during MPSoC design. Appli-
cability of the concepts is demonstrated through two het-
erogeneous MPSoC case studies: an MJPEG decoder
and an H.264 encoder.

1 Introduction

Multiprocessor SoCs (MPSoCs) are emerging as one
of the technologies providing a way to face the growing
design complexity of embedded systems, since they pro-
vide flexibility of programming allied to specific proces-
sor architectures adapted to selected problem classes.
This leads to gains in compactness, low power consump-
tion and performance [1][2]. MPSoCs integrate hardware
(HW) such as processors, memories, interconnect and
special purpose modules and software (SW) like operat-
ing systems and application code. MPSoC design is usu-
ally platform-based and dominated by SW design, to
achieve cost and time efficiency [3]. The amount of func-
tionality incorporated in an MPSoCs is continuously
growing. Consequently, their complexity and size also
increases. Therefore, on chip communication demands
rise. Industry roadmaps and research literature point that
communication will be the greater challenge in future
MPSoC projects, representing up to 50% of the total en-
ergy consumption, thus becoming the system perform-

ance bottleneck [4]. The way an application is partitioned
and the employed communication structures directly af-
fect system energy and performance figures.

According to [5][6][7] traditional multipoint schemes,
like single shared busses, will not be able to support the
amount of communication required by future MPSoCs.
Networks on chip (NoCs) emerge as an interesting ap-
proach because they help solving electrical problems in
new deep-submicron technologies. NoCs can be more
energy-efficient, more reliable, and more scalable than
buses. Additionally, NoCs allow orthogonalizing compu-
tation and communication concerns, improving the capac-
ity to design multi-billion transistor chips. However,
adopting NoCs as communication infrastructures adds
non-trivial design challenges to the MPSoC design flow,
like architectural definition and communication protocol
choice to achieve the best trade-off of cost, speed and
power consumption [8][9][10].

This paper proposes a flow for inserting NoC design
considerations during MPSoC design. This is achieved
through communication architecture model parameteriza-
tion and simulation with the target application. This flow
makes use of three distinct abstraction levels to model
application functionality together with the hardware ar-
chitecture, and allows analyzing performance for varying
NoC parameters. Among NoC parameters that can be
varied stand the number of routers, the routing algorithm
and the MPSoC IP cores mapping on the NoC. The main
contribution of this paper is the definition of abstract NoC
models that can be integrated into MPSoC design flows
and the demonstration of the utility of such models
through the use of two real world case studies, an MJPEG
decoder and an H.264 encoder.

The paper is organized as follows. Section 2 presents
related work in MPSoC communication modeling and
evaluation. Section 3 depicts the proposed flow, and the
proposed NoC models. Section 4 presents the conducted
experiments, while Section 5 discusses results and their
analysis. Finally, Section 6 gives concluding remarks.

The 19th IEEE/IFIP International Symposium on Rapid System Prototyping

978-0-7695-3180-9/08 $25.00 © 2008 IEEE
DOI 10.1109/RSP.2008.29

65

2 Related Work

Lahiri et al. [8] propose algorithms to map HW ele-
ments on predefined communication architectures accord-
ing to a communication profile defined through perform-
ance analysis. This analysis enables to discover potential
contentions on shared channels. However, the approach is
assuming a memory-less communication infrastructure,
which prevents the application of the method to most
router-based NoCs.

Madsen et al. [11] present a method to optimize the
usage of communication infrastructures modeled at sys-
tem level with an RTOS, performing a static functionality
analysis. Communication latency is modeled using best
case figures, without considering congestion.

Coppola et al. [12] present OCCN, a framework for
modeling and simulation of communication infrastruc-
tures which enables defining protocols, master and slave
port behavior and statistical packages. However, OCCN
does not support description of architectural details of the
communication environment.

Bertozzi et al. [13] propose a three-step flow for the
exploration and synthesis of NoCs: NoC topology map-
ping, selection and generation. The input is a core graph,
describing the communication behavior of the system.
The graph capture is not considered in their flow, being
based on statistical analysis and simulation. This may
lead to a wrong choice of the communication architecture
in case a bad core graph is picked.

Xu et al. [14] present a methodology for evaluating
different NoC architectures at low levels of abstraction,
based on the application communication behavior. For
accurate results, tools like OPNET, Design Compiler and
SPICE are employed. Although the accuracy of the result
is high, activities like communication analysis, perform-
ance analysis and interconnection design require time
consuming modeling and simulation tasks.

Dumitrascu et al. [15] present a flow focused on ob-
taining communication architecture evaluation, based on
the OCCN library [12] for all the communication models.
Some statistical information is captured by the flow. Au-
thors compare a distributed memory server, an AMBA
bus and an Octagon NoC models. However, they do not
support optimization of the communication architecture.

The work presented in this paper provides a method to
evaluate different NoC configurations for a given applica-
tion. The NoC models proposed in Section 3 are based on
<blind> [16], a NoC infrastructure that enables automatic
generation of RTL NoC descriptions for synthesis. In the
proposed models, details of communication protocol are
hidden from the system designer, assuming a read/write
communication style. This enables gradual refinement of
NoC from an abstract description down to architecture
definition, e.g. topology and routing algorithm.

3 Communication Modeling

This Section starts by presenting the assumptions on
the MPSoC design flow. Next, follows the discussion of
the proposed generic communication model and the
proposition of the abstract NoC models.

The design of MPSoCs, involving hardware and the
software, requires that architecture and implementation
definitions be done gradually. Figure 1 presents an
MPSoC generic architecture. Figure 1(a) represents the
global view of the architecture. The system is a composi-
tion of CPU subsystems (CPUSSs) which execute appli-
cation threads, hardware subsystems (HWSS) which im-
plement specific application behavior and the communi-
cation infrastructure. CPUSSs may include different
components such as a processor CPU, a network inter-
face, local memories and other peripherals (Figure 1 (b)).

In this work, application functionality is a composition
of threads statically allocated to either a CPUSS or a
HWSS, corresponding to the mapping process. The way
threads are distributed affects communication characteris-
tics. The communication characteristics are defined by
the intra and inter subsystem data exchange. The intra
subsystem data exchange occurs between threads allo-
cated to the same subsystem, while inter subsystem
communication refers to threads allocated to distinct
CPUSS/HWSS.

Regarding the inter subsystem communication, the
choice of efficient communication architectures is essen-
tial in the design flow. However, partitioning threads and
evaluating alternative communication architectures are
steps usually conducted at different moments of design.
The proposed flow allows varying and evaluating com-
munication architecture characteristics for an application
mapped on a target architecture.

(a) (b)

Communication Infrastructure

CPU SS

HW SS

Peripheral

CPU

Memory

Network
Interface

Figure 1: An MPSoC generic model. (a) Global
view. (b) Architecture of CPUSS.

3.1 Communication Modeling
The flow proposed here to integrate NoC design dur-

ing MPSoC design is depicted in Figure 2, and has three
steps: (i) application modeling, (ii) communication archi-
tecture definition, and (iii) communication architecture
refinement.

The first step consists in the functional modeling of
the target application. Based on requirements specifica-
tion, a high level application model is created using Si-
mulink, from MathWorks. This model combines the ap-

66

plication description, partitioning and mapping. Applica-
tion threads are virtually mapped to a given
CPUSS/HWSS of the target MPSoC architecture. Com-
munication between threads is described using primitives
of the underlying framework. The model also contains the
communication mapping information, i.e. the way threads
communicate when mapped in the same or in distinct
subsystems (e.g. shared memory or FIFOS). The simula-
tion of the high level application model allows validation
of the application functionality.

The second step defines an abstract model of the com-
munication infrastructure. This model corresponds to the
Virtual Architecture (VA), composed of abstract CPUSSs
and HWSSs. The evaluation of communication infra-
structure alternatives takes place through the adoption of
dedicated links, busses or NoCs. In case a NoC architec-
ture is chosen, the network dimension, i.e. its number of

routers, has to be defined. The simulation of the VA
model guarantees validation of the application mapping
on the target architecture (e.g. it can guarantee deadlock-
freedom) and generates quantitative data for communica-
tion evaluation. Example quantitative data are the amount
of read and write requests, the number of packets
sent/received, and the net amount of exchanged data.
Based on these values, the designer may find communica-
tion bottlenecks, may change the network dimensioning,
remap communication buffers to different storage re-
sources (e.g. local memory, global memory) or adopt
different communication strategies (e.g. dedicated hard-
ware FIFOs). The net amount of exchanged data is an
early indicator for an appropriate mapping of the MPSoC
IP cores distribution over the NoC.

High Level

Application Modeling

• Application partitioning
• Computation description
• Communication mapping

High Level
Application Model

VA NoC model
Generation

• NoC size definition

VA Architecture
Model

VA NoC

Abstract
CPU1 SS

Abstract
CPU2 SS

HW
SS

TA NoC model
Generation

• NoC resize
• HW positioning over NoC
• NoC topology
• Routing algorithm
• Buffer size

Memory

Periph. Interface

Abstract
CPU1

TA Architecture
Model

TA NoC

HW
SS

Memory

Periph. Interface

Abstract
CPU2

Simulation

• Functional validation

Simulation

• Functional validation
Deadlock free execution

• Communication architecture
Number of routing requests
Number of exchanged bytes

Simulation

• Communication architecture
Average number of hops
Amount of conflicts
Number of routing requests
Number of bytes exchanged

Figure 2: Flow adopted for integrating NoC modeling during MPSoC design.

The third step refines the communication infrastruc-

ture. This corresponds to the Transaction Accurate (TA)
architecture model. The TA model allows detailing the
local architecture of each CPUSS: abstract CPU, Local
Memory, Network Interface and other peripherals. Addi-
tionally, it implements the communication protocol. Con-
cerning the NoC, its architecture become explicit, by spe-
cifying the number of access points per subsystem, the
mapping of IP Cores, the specific NoC topology, the rout-
ing algorithm and router buffer sizes. Each one of these
characteristic influences the energy consumption, per-
formance and silicon area of the final system. The simu-

lation of the TA model allows communication architec-
ture performance evaluation, by measuring values such as
the average number of hops taken by each packet, the
degree of NoC congestion, the overall number of routing
requests and the total number of bytes exchanged during
simulation with real data.

3.2 NoC Models
The following paragraphs describe the NoC models

adopted in the VA and TA architecture. Both were im-
plemented in SystemC.

67

The VA NoC Model

The VA NoC model is illustrated in Figure 3. This
model allows fully parallel communication among differ-
ent subsystems composing an MPSoC. The model repre-
sents an abstract NoC where information like topology,
routing algorithm, arbitration or buffer size information
are abstracted. Communication architecture is modeled
like a crossbar, where any set of communication events
may take place simultaneously.

The VA NoC model is composed of three basic ele-
ments, which are the network interface (NI), the mapping
table (MT) and the router. The NI is responsible for pro-
viding send/receive operations for communicating
threads, encapsulating these requests in packets, captur-
ing and interpreting packets arriving from the NoC, and
delivering them to subsystems. The MT is responsible for
storing and informing the correspondence between IP
Core range addresses and NoC physical addresses. For
example, IP Core addresses between 0x00400000 and
0x007FFFFF may correspond to a single NoC physical
address, say 0x0. The router is in charge of sending and
receiving packets from source to destination.

The VA description of the MPSoC is automatically
generated from the high level application description.
From the simulation of the VA description together with
the VA NoC, further information can be captured. Exam-
ples are the amount of data exchanged between the dif-
ferent subsystems, the storage elements worst case size
requirement for the communication buffer, the number of
operations (send/receive) originated from each access
point of the NoC and the amount of read/write operations
performed at storage elements. Also, it is possible to ob-
tain first estimates of NoC area, based on the number of
routers alone.

Vi
rt

ua
l A

rc
hi

te
ct

ur
e

N
oC

Mapping Table

Router
0x0

Router
1x0

Router
1x1

Network Interface
0x0

Network Interface
1x1

Router
0x1

Network Interface
1x0

Network Interface
0x1

Figure 3: VA NoC model components and exam-
ple.

The TA NoC Model

The TA NoC model is illustrated in Figure 4. This
model adds still more architectural details such as topol-
ogy, routing algorithm and router buffers size. The TA
model of the MPSoC is automatically generated.

0x0
Network Interface

2x0
Network Interface

1x0
Network Interface

Router
0x0

Router
1x0

Router
1x1

Router
0x1

Router
2x0

Router
2x1

 Mapping Table

Mapping Table

Network Interface
0x1

Network Interface
2x1

Network Interface
1x1

Tr
an

sa
ct

io
n

A
cc

ur
at

e
N

oC
 OutputInput

InputOutput

Arbiter
Algorithm

Routing

Algorithm

O
ut

pu
t

In
pu

t

Figure 4: TA NoC Model example: mesh topol-
ogy, pure XY routing algorithm, round robin
arbiter algorithm.

The TA NoC model is composed of the same basic
elements as the VA NoCs (NI, MT and routers) with a
more detailed implementation. Topology (e.g. mesh, to-
rus), routing algorithm (e.g. pure XY, west first), arbiter
algorithm (e.g. round robin or fixed priority) and buffer
size (e.g. number of flits) can be varied. The packet struc-
ture in this model is composed of destination address,
size and body fields, similar to that assumed in the syn-
thesizable NoC description.

The TA NoC allows extracting information from the
system communication architecture, including: (i) num-
ber of routing requests; (ii) number of packets inserted
into the NoC; (iii) amount of exchanged bytes; (iv) aver-
age number of bytes per packet; (v) the number of trans-
mitted packets, (vi) number of failing routing requests,
due to NoC congestion.

4 Experiments

This Section presents the results obtained by applying
the proposed flow in the case of the Motion JPEG de-
coder and H.264 encoder applications mapped onto a
multimedia platform. For the MJPEG decoder, 10 frames
were used as input bitstream encoded using QVGA YUV
444 format. For the H.264 encoder, 5 frames encoded
using QCIF YUV 420 input video format were used. The
target hardware architecture is a simplified version of
Diopsis [17], which includes an ARM and a DSP subsys-
tem (two CPUSSs). The ARM subsystem includes the
processor core and local memories, while the DSP
subsystem includes the DSP core, data and program
memories, DMA, interrupt controller and synchronization
components. The HWSS nodes consist of an external
distributed memory subsystem (DXM) and the peripheral
on tile (POT) subsystem. The POT includes system
peripherals of the ARM processor (timer, interrupt
controller), and also I/O components like serial peripheral
interface. The next Section presents the NoC modeling
flow using 2D mesh and 2D torus topologies.

68

4.1 Modeling MJPEG decoder and H.264 en-
coder

The MJPEG decoder and the H.264 encoder were first
modeled at the functional level and mapped on the Diop-
sis architecture. The MJPEG application was partitioned
into 4 threads. Two threads were mapped to the ARM
subsystem, one thread to the DSPSS and one to the POT.
The MJPEG decoder model contains three inter subsys-
tem communication units.

The H.264 encoder was partitioned into two threads,
T1 and T2 which were mapped to DSP and ARM, respec-
tively (Figure 5). The communication between the ARM
and DSP subsystems require 26 communication units.
The communication buffers were mapped on global
memory for both applications.

Fn IT

F’n

F’n-1

+
-

+

+

Inter

Intra

NAL

.yuv

Q

IT-1

Reorder CABAC

Q-1Filter

ME

MC

Intra
Pred.

Choose
Intra Pred.

Prediction

T1 T2

Figure 5: H.264 application modeling and parti-
tioning.

4.2 Diopsis and the VA NoC
Figure 6 represents the Diopsis architecture with VA

NoC, running the MJPEG application. In this model, 4
access points are necessary to connect the DXM, POTSS,
ARMSS and DSPSS.

ARM

POT

DSP

DXM

T2 T1

T4 T3

Virtual Architecture NoC

Figure 6: VA description of Diopsis architecture
interconnected by VA NoC.

TABLE 1 and TABLE 2 show simulation results of
the VA NoC model for the MJPEG decoder and H.264
encoder. The first two columns show IP Cores and NoC
addresses relation. The third column displays the total
number of read/write requests. The designer may define a
better mapping of hardware or the size of packets with
such values. The fourth and the fifth columns represent
the amount read and write operations from/to the global
memory. The sixth and the seventh columns allow evalu-

ating the amount of communication injected into the
NoC.

TABLE 1: Results captured from VA NoC during
the MJPEG simulation.

NoC
address

Read/Write
request

Read
operation

Write
operation

Packets
sent

MBytes
sent

DXM 0x0 0 4,798,220 4,798,156 223,173 21.28
POTSS 0x1 37,195 0 0 74,390 0.99
ARMSS 1x0 74,391 0 0 185,979 11.29
DSPSS 1x1 111,586 0 0 260,367 12.42

Total 743,909 45.98
For the MJPEG decoder simulation, the DSP and the

DXM were those who injected most packets into the
NoC. Even if the DXM injected fewer packets than the
DSP, it can be seen that it inserted much more bytes than
any other subsystem, due to block transfers to/from mem-
ory, where a control packet can more than a single word.

For the H.264 encoder, the DXM was the element that
inserted the largest amount of data into the NoC. In both
cases, DXM packets originate from read requests and
confirmation packets.

TABLE 2 - Results captured from VA NoC after
encoding 5 frames with H.264.

NoC
address

Read/Write
request

Read
operation

Write
operation

Packets
sent

GBytes
sent

DXM 0x0 0 309,483,404 309,483,404 19,175,640 2.55
POTSS 0x1 1,065,313 0 0 0 0,07
ARMSS 1x0 3,195,940 0 0 6,391,880 0.84
DSPSS 1x1 3,195,940 0 0 6,391,880 0.47

Total 31,959,400 3.86

4.3 Diopsis and TA NoCs
Figure 7 gives the block diagram for the Diopsis plat-

form using the TA NoC as communication infrastructure.
Two types of TA NoC topologies were modeled: 2D
mesh and 2D torus.

Transaction Accurate NoC

Bridge

Bridge

Abstract
DSP Core

 Bus

MEM

Bridge

Register
Bank

DMA

 DSP SS

 ARM9 SS

Abstract
ARM Core

Bus

MEM

Bridge

POT SS

MEM SS

Figure 7: Block diagram of architecture for the
Diopsis platform with TA NoC.

First, the TA NoC employs a 2D mesh topology, a
pure XY routing algorithm and a round robin arbiter algo-
rithm at each router and wormhole as packet switching
strategy (TA Mesh). Then, the TA NoC used 2D torus
topology and deadlock free of a non-minimal west-first

69

routing algorithm proposed by Glass and Ni [18] (TA
Torus).

In the TA model, five access points to the NoC were
necessary: four access points for the different subsystems,
as previously presented in the VA model, and one addi-
tional for the DMA component, which becomes explicit
in the TA model and has direct link to the interconnect
component. With regular topologies such as the 2D torus
and mesh, the smallest usable NoC has 6 routers (3x2).

TABLE 3 shows results captured from TA Mesh mod-
el simulation for the MJPEG decoder application. The
first and second columns represent the correspondence
between the different subsystems and the NoC access
points. A routing request is performed at least once per
packet per router it will cross. Depending on the applica-
tion, the NoC structure, routing algorithm, and on NoC
congestion state, the routing request may occur as many
times as needed inside a router. For the MJPEG simula-
tion, 42.623.519 routing requests were issued. The third
column of TABLE 3 presents the percentage of routing
requests at each router, while the remaining columns de-
tail this information for each router port.

TABLE 3: Percentage of routing requests during
simulation with the TA 2D Mesh NoC.

 NoC
address TOTAL LOCAL NORTH SOUTH EAST WEST

MEM SS 0x0 24,1% 11,3% 5,7% 0 % 7,1% 0 %

POT SS 0x1 11,4% 2,9% 0 % 1,3% 7,2% 0 %

 1x0 18,3% 0 % 0 % 0 % 7,0% 11,3%

DSP (DMA) 1x1 10,1% 0 % 0 % 0 % 7,2% 2,9%

ARM SS 2x0 20,0% 7,2% 1,5% 0 % 0 % 11,3%

DSP (Bridge) 2x1 16,1% 7,4% 0 % 5,8% 0 % 2,9%

Figure 8 shows the amount of data that traverses each

router in the TA Mesh for the MJPEG encoder applica-
tion. The local port of each router inserts packets into the
NoC, while the remaining ports transfer them inside the
NoC. The value assigned to the local port of router 0x0
(MEM SS) corresponds to response packets due to read
requests or confirmation packets due to write requests.
Depending on the way communication is mapped and
performed, these values can change. For example, block
transfer operations (amount of operation that will be
transferred in one packet) allows optimizing the amount
of data exchanged inside the NoC by minimizing the
amount of control data.

TABLE 4 shows results captured from TA Mesh mod-
el of the H.264 encoder simulation. The third column of
the Table represents the exchanged amount of data and
control information (e.g. operation request, confirmation
response, etc). Again, the remaining columns of the Table
detail the amount of data transmitted per router port.

For the TA Torus model, 30.440.287 and
3.693.770.895 routing requests were issued during the
simulation of the MJPEG decoder and H.264 encoder
respectively, representing in both cases a 29% reduction
of routing request activity when compared to the TA
Mesh. This was possible because the 2D torus topology

has longest minimum paths that are only half of those in
2D meshes in hops. Also, tori networks have better path
diversity than meshes. This, if exploitable by the routing
algorithm, leads to less network congestion, thus poten-
tially reducing routing requests.

9,8

46,1

11,5

47,8

61,5

61,5

66,8

66,8

16,6

73,8

16,6

73,8

62,3

68,5

16,6

73,8

0 25 50 75 100 125 150 175 200

0x0

0x1

1x0

1x1

2x0

2x1

R
ou

te
rs

Amount of data in MBytes

NORTH SOUTH EAST WEST LOCAL

Figure 8: TA Mesh data quantification on a per
router and per port basis, for MJPEG simulation.
For TA Torus, Routers 1x0 and 1x1 display no
traffic activity, while other ports have values
identical to TA-Mesh.

TABLE 4: Amount of data transmitted in TA 2D
Mesh NoC for H.264 encoder.

 NoC
address LOCAL NORTH SOUTH EAST WEST

MEM SS 0x0 9,21 GB 6,15 GB 0,00 GB 8,40 GB 0,00 GB

POT SS 0x1 1,85 GB 0,00 GB 1,85 GB 6,15 GB 0,00 GB

 1x0 0,00 GB 0,00 GB 0,00 GB 8,40 GB 9,21 GB

DSP (DMA) 1x1 0,00 GB 0,00 GB 0,00 GB 6,15 GB 1,85 GB

ARM SS 2x0 6,07 GB 1,85 GB 0,00 GB 0,00 GB 9,21 GB

DSP (Bridge) 2x1 6,15 GB 0,00 GB 4,98 GB 0,00 GB 1,85 GB

Total data inserted 23,28 GB

5 Results and Analysis

Through the VA NoC model it is possible to estimate
the NoC size in number of routers, the amount of com-
munication present in the system and the functionality of
the application over the virtual architecture. In the present
work, a VA NoC composed of 4 routers and the commu-
nication between CPUSSs assuming a global memory
was assumed. A deadlock free execution of the applica-
tion was detected for both MJPEG decoder and H.264
encoder case studies.

The evaluation of different NoC architecture is possi-
ble at the TA model. For the TA NoC models, resize was
performed and topology, and consequently routing algo-
rithm, was varied. In both NoC topologies and applica-
tions, no congestion was detected. Consequently, buffer
size remained constant. Based on simulation results, the
torus NoC allows a better performance while consuming
less energy, due to the decrease on the path covered by
packets. On the other hand, mesh NoCs allow reduction
of communication area overhead. In this case, area over-

70

head reduction is due mostly to the elimination of buffers
in routers located at the border of the NoC.

6 Conclusions and Future Work

The flow presented here allows integrating the design
of NoCs during MPSoC design for some target applica-
tion running on top of a system platform. The description
of the approach showed hints on what kind of information
can be obtained from the proposed abstract NoC models.
This information is currently being used to develop a de-
sign exploration flow for MPSoCs using NoCs as intra-
chip communication architecture.

The flow proposed here was employed to design an
MJPEG decoder and H.264 encoder running on the Diop-
sis platform, experimenting with two different NoC to-
pologies, 2D mesh and 2D torus.

Future work includes extending the supported NoC
templates at both the VA and TA abstraction levels, add-
ing diversity to the choices of NoC templates. Another
ongoing work is linking the TA level to the RTL synthe-
sizable abstraction level and improving parameterization
at the TA level, to include e.g. the possibility of buffer
dimensioning at the network interface. This is an impor-
tant step to decouple application transmission rates from
NoC transmission rates, which increases independence of
application concerns from communication architectures.

REFERENCES
[1] Jerraya, A; Tenhunen, H. and Wolf, W. Multiprocessor

Systems-on-Chips. IEEE Computer, 38(7), 2005.
[2] Tan, Z. et al. Design and implementation of the Software

System on MPSoC: An HDTV Decoder case study. IEEE
Consumer Electronics, 52(4), 2006.

[3] Cesario, W. et al. Component-based design approach for
multicore SoCs. DAC, 2002.

[4] Kadayif, I.; Kandemir, M. and Chen, G. Influence of
Communication Optimizations on On-Chip Multi-
Processor Energy. SoC Conference, 2003.

[5] Benini, L. and De Micheli, G. Networks on chips: a new
SoC paradigm. IEEE Computer, 35(1), 2002.

[6] Sgroi, M. et al. Addressing the System-on-a-Chip Inter-
connect Woes Through Communication-Based Design.
DAC, 2001.

[7] Lee, H. G. et al. Design Space Exploration and Prototyping
for On-chip Multimedia Applications. DAC, 2006.

[8] Lahiri, K.; Raghunathan, A. and Dey, S. Design space
exploration for optimizing on-chip communication archi-
tectures. IEEE Trans. on CAD, 23(6), 2004.

[9] Narasimhan, A.; Kumaravelu, O. and Sridhar, R. An inves-
tigation of the impact of network parameters on perform-
ance of network-on-chips. Midwest Symposium on Cir-
cuits and Systems, 2005.

[10] Monchiero, M. et al. Exploration of Distributed Shared
Memory Architectures for NoC-based Multiprocessors.
Journal of System Architectures, Elsevier, 2007.

[11] Madsen, J. et al. Network on Chip Modeling for System
Level Multiprocessor Simulation. RTSS, 2003.

[12] Coppola, M. et al. OCCN: A Network on chip Modeling
and Simulation Framework. DATE, 2004.

[13] Bertozzi, D. et al. NoC Synthesis Flow for Customized
Domain Specific Multiprocessor Systems on Chip. IEEE
Trans. on Parallel and Distributed Systems, 16(2), 2005.

[14] Xu, J. et al. A methodology for design, modeling, and
analysis of network on chip. ISCAS, 2005.

[15] Dumitrascu, F. et al. Flexible MPSoC Platform with Fast
Interconnect Exploration for Optimal System Performance
for a Specific Application. DATE, 2006.

[16] Omitted for the purpose of blind review.
[17] Paolucci, P. et al. SHAPES: a tiled scalable software hard-

ware architecture platform for embedded systems.
CODES+ISSS, 2006.

[18] Glass, C. and Ni, L. The Turn Model for Adaptive Rout-
ing. Journal of the ACM, 41(5), 1994.

71

