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Abstract—Multi-Processor Systems-on-Chip (MPSoCs) are 

increasingly popular in embedded systems. Due to their 

complexity and huge design space to explore for such systems, 

CAD tools and frameworks to customize MPSoCs are 

mandatory. Some academic and industrial frameworks are 

available to support bus-based MPSoCs, but few works target 

NoCs as underlying communication architecture. A framework 

targeting MPSoC customization must provide abstract models 

to enable fast design space exploration, flexible application 

mapping strategies, all coupled to features to evaluate the 

performance of running applications. This paper proposes a 

framework to customize NoC-based MPSoCs with support to 

static and dynamic task mapping and C/SystemC simulation 

models for processors and memories. A simple, specifically 

designed microkernel executes in each processor, enabling 

multitasking at the processor level. Graphical tools enable debug 

and system verification, individualizing data for each task. 

Practical results highlight the benefit of using dynamic mapping 

strategies (total execution time reduction) and abstract models 

(total simulation time reduction without losing accuracy). 

I. INTRODUCTION AND RELATED WORKS 

MPSoCs are complex architectures, composed by processors, 
IPs, memories and specialized IPs. CAD tools and frameworks to 
customize such architectures for implementing specific applications 
are mandatory, given the huge design space to explore.  

The goal of this paper is to present the design of a framework for 
NoC-based MPSoC generation. This framework generates a 
synthesizable RTL VHDL system description together with 
C/SystemC simulation models for processors (ISS) and memories, 
which reduce the simulation time up to 91%, compared to the pure 
RTL simulation. Besides the hardware infrastructure, the framework 
provides a software infrastructure which includes a multitask 
microkernel, inter-task communication primitives and support to 
dynamic workloads. 

The rest of this Section presents a short review of similar 
proposals available in the literature. Section 2 gives an overview of 
the proposed parameterizable MPSoC platform, called HeMPS. Next, 
Section 3 describes the design flow to build applications on top of 
HeMPS. Section 4 discusses some practical results of building an 
instance of the HeMPS platform and using it to prototype 
applications. Finally, Section 5 proposes a set of conclusions and 
directions for future works. 

In [1] Lyonnard et al. presented an automatic design flow to 
generate application-specific heterogeneous MPSoC architectures. 

The architecture generation relies on generic multiprocessor 
architectures templates, which are composed by four element types: 
(i) processors (e.g. ARM7, 68000); (ii) communication coprocessors 
(interface to the interconnection architecture); (iii) IP components 
(e.g. memory modules, bus bridges); (iv) interconnection architecture 
(point-to-point or bus). The architecture templates are 
parameterizable for the four element types. 

STARSoC [2] is a framework for hardware/software codesign 
and design space exploration. The input description consists in a set 
of software and hardware processes described in C. After specifying 
the number of processors (instances of the freely available core 
processor called OpenRisc), a HW-SW partitioning is executed. The 
hardware part is synthesized in an RTL description and the software 
part is distributed among the set of processors. As result, STARSoC 
generates a bus-based MPSoC platform from a high-level application 
specification. 

xENOC [3] is an environment for hardware/software automated 
design of NoC-based MPSoC architectures. The core of this 
environment is an EDA tool, called NoCWizard, which can generate 
RTL Verilog NoCs. The whole system is described in an XML file 
(NoC features, IPs and mapping), which is used as input for the 
automatic generation tools. In addition to the hardware infrastructure, 
xNoC also includes an Embedded Message Passing Interface (eMPI) 
supporting parallel task communication. 

Some commercial design environments support creation of bus-
based MPSoCs. Examples are Altera SOPC [7] and Xilinx EDK [8]. 
These environments provide graphical tools for system integration 
along with an extensive IP cores library. The HDL description of the 
final system and hardware-software integration are strongly 
automated. SOPC allows MPSoCs design based on NIOS, ARM and 
ColdFire processors connected through the proprietary Avalon bus. 
EDK allows the design based on MicroBlaze and PowerPC 
processors integrated through the IBM CoreConnect bus architecture. 

II. ARCHITECTURE OVERVIEW  

The architecture proposed here, named HeMPS, is a 
homogeneous NoC-based MPSoC platform. Figure 1 presents a 
HeMPS instance using a 2x3 mesh NoC. The main hardware 
components are the HERMES NoC [4] and the mostly-MIPS 
processor Plasma [5]. A processing element, called Plasma-IP, wraps 
each Plasma and attaches it to the NoC. This IP also contains a 
private memory, a network interface, and a DMA module.  

Typical applications running in MPSoCs, such as multimedia and 
networking, often present a dynamic workload. This implies a 
varying number of tasks running simultaneously, and their number or 
load often exceeds the available resources. To tackle this issue, 
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HeMPS assumes that: (i) applications are modeled using task graphs; 
(ii) only a subset of tasks is initially loaded into the system. 
Remaining tasks are stored in an external memory, named task 
repository. This memory keeps all task codes necessary in any 
instance of the applications execution. 

  

Figure 1 - HeMPS instance using a 2x3 mesh NoC. 

The system contains a master processor (Plasma-IP MP), 
responsible for managing system resources. This is the only processor 
having access to the task repository. When HeMPS starts execution, 
the master processor allocates initial tasks to the slave processors 
(Plasma-IP SL). During execution, tasks are dynamically loaded from 
the task repository to slave processors on demand. Also resources 
may become available when a given task finishes execution. Such 
dynamic behavior enables smaller systems, since only those tasks 
effectively required are loaded into the system at any given moment. 

The Hermes NoC [4] employs a 2D mesh topology. Routers have 
only input buffers, a control logic shared by all router ports, an 
internal crossbar and up to five bi-directional ports. A single round-
robin arbitration schedules grants access to incoming packets, and a 
deterministic distributed XY routing algorithm determines the path 
between source and target IPs. 

To achieve high performance in the processing elements, the 
Plasma-IP architecture targets the separation between communication 
and computation. The network interface and DMA modules are 
responsible for sending and receiving packets, while the Plasma 
processor performs task computation and wrapper management. The 
local RAM is a true dual port memory allowing simultaneous 
processor and DMA accesses, which avoids extra hardware for 
elements like mutex or cycle stealing techniques. 

A. Microkernel 

Each slave processor runs a microkernel, which supports 
multitasking and task communication. The microkernel segments 
memory in pages, which it allocates for itself (first page) and tasks 
(subsequent pages). Each Plasma-IP has a task table, with the 
location of local and remote tasks. A simple preemptive scheduling, 
implemented as a round robin, provides support to multitasking. 

The microkernel protects the memory pages and all 
communication among tasks occurs through message passing. 
Message passing is supported through a global message pipe located 
in the microkernel and communication primitives (WritePipe() and 
ReadPipe()), which compose the current HeMPS API.  

 The underlying model of computation for ensuring 
synchronization between tasks is base on Kahn Process Networks 
(KPN) [5]. KPN is a distributed model of computation where 
unbounded FIFOs communication channels (pipes) connect processes 
to each other, forming a process network. KPNs rely on the 
fundamental principle that communication must be blocking for 
channel read operations and non-blocking for channel write 
operations.  

When a given task executes a WritePipe() primitive, the message 
is stored in the processor global pipe, and computation continues. 
This characterizes a non-blocking writing. The global pipe is 
software implemented as a parameterizable array with random 
access. In this way, problems such as head-of-line (FIFO) blocking 
and deadlocks are avoided. 

For the ReadPipe(), a system function is executed. If the target 
task is located in the same processor, the task executes a read in the 
local global pipe. If the task is located in another processor, the 
microkernel sends a request message through the NoC and the task 
enters in wait state. When the message arrives from network, the 
microkernel stops the executing task and reschedules the waiting 
task. Figure 2 illustrates this process. In Figure 2(a) assumes task t2 
has written a message in the global pipe, addressed to task t5 
(WritePipe(&msg,t5)), and task t5 is requesting the message from 
task t2 (ReadPipe(&msg,t2)). In Figure 2(b) processor 1 sends the 
requested message to processor 2 through the NoC. The system 
ensures in-order message delivering, because the WritePipe() adds to 
each message the order in which they were written. 

Processor 2 Processor 2 Processor 1 Processor 1 

t1 

t2 

t3 

WritePipe(&msg,t5); 

t4 

t5 

t6 

ReadPipe(&msg,t2); 

HERMES 

microkernel microkernel 

request_msg 

t1 

t2 

t3 

WritePipe(&msg,t5); 

t4 

t5 

t6 

ReadPipe(&msg,t2); 

HERMES 

microkernel microkernel 

msg 

global_pipe global_pipe global_pipe global_pipe 

(a) (b)  

Figure 2 – HeMPS reading of an available message. 

B.  Dynamic workload 

The master processor is responsible for system management, 
including: (i) task allocation; (ii) broadcast of control messages 
(unicast based), such as placement of allocated tasks and release of 
finished tasks; (iii) reception of control messages, as end of task and 
debug packets. It does not execute application tasks. 

Dynamic workload takes place through on demand task 
allocation at application runtime. The system designer defines an 
initially needed set of tasks. The trigger to fire a new task allocation 
is the WritePipe() primitive. Each time a task executes WritePipe(), 
the microkernel executing this function verifies in the task table if the 
target task is already allocated in the system. If the task is already in 
the system, the microkernel writes the message into its global pipe. 
Otherwise, it sends a task request message to the master processor. 
Figure 3 illustrates this process. 

 WritePipe(&msg, ti) 

Is ti 
allocated ? 

Write msg 
in the pipe 

RequestTask(ti,master) 

Yes No 

Task layer 

Microkernel layer 

 

Figure 3 – Application-transparent dynamic task allocation in HeMPS. 

When the master processor receives a task request message, it 
configures the DMA module, which accesses the task repository and 
transmits the task code to the target Plasma-IP SL memory. After task 
transmission, the master processor notifies all slaves with the task ID 
and its new position. The present HeMPS implements a very simple 
mapping heuristic, based on the number of available pages in each 
processor. The task is scheduled for the processor with more free 
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pages, and if there are no free pages in the system, the task is 
scheduled to be transmitted when a given page becomes available. 
Note that the dynamic allocation is completely transparent at the task 
layer. 

III. HEMPS DESIGN FLOW 

The HeMPS design flow follows the platform-based design 
methodology depicted in Figure 4. 

 

Platform 
Specification 

Software Design/ 
Task partitioning 

Application Set 
Specification 

NoC Generation Tool 

HW Components 

Plasma, NI, RAM, DMA 

SW Components 

µkernel, API, Drivers Mapping 

HW-SW 
Integration 

Evaluation/ 
Validation 

(HDL Simulator) 

MPSoC  
(RTL architecture) HeMPS Editor 

 

Figure 4 – HeMPS Design Flow. 

 The design flow starts with the specification of the set of 
applications to be executed by the MPSoC. Next, software design and 
platform specification steps can be carried out in parallel, due to the 
HeMPS API, which isolates the application software from the 
platform implementation. The software design includes task 
partitioning, with the definition of the task graph for each application. 
The platform specification includes: (i) definition of the NoC size; 
(ii) customization of hardware components, as memory size, and 
number of pages per processor memory; (iii) customization of the 
microkernel according to the NoC parameters and hardware features. 

In the sequel, tasks are mapped in the platform, followed by 
hardware-software integration. The MPSoC is then evaluated, and if 
design constraints are not met, it is possible to redefine task graphs, 
mapping, or platform parameters. The last step in the flow is the 
generation of the platform hardware HDL code. 

IV.  HEMPS FRAMEWORK EDITOR 

The HeMPS Editor covers several of the design steps presented 
in HeMPS design flow, helping to automate the platform generation 
step. Figure 5 presents the HeMPS Editor graphic interface main 
window.  

This framework allows quick platform customization, with the 
user setting the number of processor connected in a mesh NoC 
through the parameters X and Y. The maximum number of tasks per 
slave is parameterizable, and is a function of two parameters, page 
size and memory size. For performance evaluation purposes, 
processors and local memories are modeled using cycle accurate 
instruction set simulators (ISSs) and C/SystemC models, 
respectively. This enables faster design space exploration. The left 
panel in Figure 5 presents two applications (mpeg, and 
communication) along with their task composition. Drag and drop 
actions allows to easily perform the initial static task mapping to 
slave processors. The master processor receives the remaining tasks, 
which correspond to the contents of the task repository. 

 
Figure 5 – HeMPS Editor main window. 

The Generate HeMPS button executes the hardware-software 
integration. This action fills the memories (microkernel, API and 
drivers) and the task repository with all task codes.  

System evaluation takes place using a commercial RTL 
simulator, such as ModelSim. The Debug HeMPS button calls a 
graphic debug tool (Figure 6). During simulation, when a given task 
executes a print() system call, a debug packet is sent to the master 
processor tagged with the source task and processor IDs. All debug 
data received by the master processor is stored in a dedicated 
memory area, used by the debug tool. This tool contains one panel for 
each processor. Each panel has tabs, one for each task executing in 
the corresponding processor (in Figure 6 processors 10 and 01 
execute 2 tasks each one). In this way, messages are separated, 
allowing to the user to visualize the execution results for each task. 
Another system call useful for debug message is gettick(), which 
returns the current execution time in clock cycles. Using this system 
call, it is possible to compute the task execution time, latency and 
throughput. 

 
Figure 6 – HeMPS debug interface. 

Once design constraints are met, the MPSoC can be synthesized 
replacing ISSs and RAMs C/SystemC simulation models by VHDL 
code, which is generated by the HeMPS Editor. 
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V. RESULTS 

A Motion-JPEG (MJPEG) decoder application has been chosen 
for the experiments. This application is partitioned in four tasks: (i) 
data producer, T0; (ii) Inverse Variable Length Coding, T1; (iii) 
Inverse Quantization, T2; (iv) Inverse Discrete Cosine Transform, 
T3; (v) output data printing, T4. No color space conversion has been 
implemented here. Therefore, only grey-level images are processed.  

Four simulations scenarios are evaluated, in a 2x3 HeMPS 
instance: (i) ISS/RAM models and static mapping; (ii) ISS/RAM 
models and dynamic mapping; (iii) RTL models and static mapping; 
(iv) RTL models and dynamic mapping. The application has been 
evaluated according to three criteria: simulation time, execution time, 
and abstract model accuracy. As mentioned before, the use of 
ISS/RAM models enables fast design space exploration. Table I 
displays the total simulation time (first criterion) for four scenarios, 
using a 1.66GHz Intel Core 2 Duo PC with 1GB of RAM. The use of 
ISS/RAM models reduced the total simulation time up to 91%. 

TABLE I.  SIMULATION TIME USING DIFERENT SIMULATION MODELS. 

Simulated Scenario Total Simulation Time (seconds) 

ISS/RAM models – static mappping 383 

ISS/RAM models – dynamic mappping 386 

RTL models – static mappping 4677 

RTL models – dynamic mappping 4550 

 
The second criterion relates execution time to the choice of 

mapping strategy: static or dynamic. Light gray bars in Figure 7(a) 
denote the allocation time, whereas dark gray ones denote task 
execution time. It should be noted that tasks are sequentially loaded 
into the system. In Figure 7(b), dynamic mapping, only task T0 is 
initially loaded into the system. The remaining tasks are loaded on 
demand, resulting in shorter execution time with regard to static 
mapping. In the static approach the loaded tasks wait for available 
data (looping) before start the computation, whereas in the dynamic 
approach the data is already available when the tasks are loaded. The 
overall performance in both strategies is quite similar, however, the 
dynamic approach favors the multitasking due to the shorter 
execution time, maximizing the CPU processing. 

 
(a) MJPEG tasks execution time: static mapping (ISS/RAM models) 

 
(b) MJPEG tasks execution time: dynamic mapping (ISS/RAM models) 

Figure 7 – Application execution time, in clock cycles, for different mapping 

strategies. Black bars denote the execution time. 

The third criterion evaluates the relative accuracy of ISS/RAM 
models against RTL models. Even if the ISS is cycle accurate, some 
small differences to RTL implementation exist, as in multiply and 
divide operations. In the RTL implementation such operations may 
be executed in parallel with subsequent operations, while in the 
Plasma ISS these always execute in 32 clock cycles, during which no 
other instruction can be executed. The error observed comparing the 
total execution time in clock cycles is 2.14% and 1.07% for static and 
dynamic mapping, respectively. Thus, the use of ISS does not imply 
significant loss of accuracy and adds efficiency to system simulation. 

VI. CONCLUSIONS AND FUTURE WORKS 

HeMPS supports several steps of platform-based MPSoC design 
including platform customization, application mapping and 
hardware-software integration. It provides cycle accurate simulation 
models (C/SystemC) for microprocessors (ISSs) and memories for 
fast design space exploration. Results showed that the abstract 
modeling has a significant impact on the simulation time. A graphical 
tool supports application level debug, providing an efficient high 
level approach as alternative to traditional RTL waveform debug. 

Significant HeMPs features related to the state-of-the-art in 
MPSoCs are: (i) NoC used as interconnection architecture; (ii) 
microkernel supported multitasking, increasing the amount of 
simultaneous executing tasks in each processor; (iii) dynamic 
workload, enabling on demand system task loading; and (iv) inter-
task communication primitives (HeMPS API), which abstracts the 
platform hardware, supporting software development independent of 
mapping strategies and platform dimensions. 

The conducted experiments showed the effectiveness of some 
framework features like simulation models and dynamic mapping 
strategies. Simulation models reduced the total simulation time by 
91%, with a cycle accurate error lower than 3%. Dynamic mapping 
performed better than traditional static mapping, due to the reduced 
amount of simultaneity of messages request. 

Some works in the path to make HeMPS evolve include: (i) 
support to other processors, DSPs and specialized IPs to enable the 
generation of heterogeneous MPSoCs; (ii) load balancing dynamic 
mapping heuristics; (iii) enable ordinary task execution on the master 
processor; and (iv) improvements on NoC architecture such as QoS 
and broadcast/multicast services along with support to these features 
at the application layer. In the current implementation, messages are 
broadcasted sending several unicast copies. The final goal is to have 
an API which includes support to all services provided by the NoC. 
In this way many kinds of different application requirements can be 
efficiently fulfilled. 
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