
HeMPS - A Framework for NoC-Based MPSoC

Generation

Everton A. Carara, Roberto P. de Oliveira, Ney L. V. Calazans, Fernando G. Moraes

PUCRS – FACIN – Av. Ipiranga 6681 – Porto Alegre – 90619-900 - Brazil

carara@inf.pucrs.br, robertoportdeoliveira@yahoo.com.br, ney.calazans@pucrs.br, fernando.moraes@pucrs.br

Abstract—Multi-Processor Systems-on-Chip (MPSoCs) are

increasingly popular in embedded systems. Due to their

complexity and huge design space to explore for such systems,

CAD tools and frameworks to customize MPSoCs are

mandatory. Some academic and industrial frameworks are

available to support bus-based MPSoCs, but few works target

NoCs as underlying communication architecture. A framework

targeting MPSoC customization must provide abstract models

to enable fast design space exploration, flexible application

mapping strategies, all coupled to features to evaluate the

performance of running applications. This paper proposes a

framework to customize NoC-based MPSoCs with support to

static and dynamic task mapping and C/SystemC simulation

models for processors and memories. A simple, specifically

designed microkernel executes in each processor, enabling

multitasking at the processor level. Graphical tools enable debug

and system verification, individualizing data for each task.

Practical results highlight the benefit of using dynamic mapping

strategies (total execution time reduction) and abstract models

(total simulation time reduction without losing accuracy).

I. INTRODUCTION AND RELATED WORKS

MPSoCs are complex architectures, composed by processors,
IPs, memories and specialized IPs. CAD tools and frameworks to
customize such architectures for implementing specific applications
are mandatory, given the huge design space to explore.

The goal of this paper is to present the design of a framework for
NoC-based MPSoC generation. This framework generates a
synthesizable RTL VHDL system description together with
C/SystemC simulation models for processors (ISS) and memories,
which reduce the simulation time up to 91%, compared to the pure
RTL simulation. Besides the hardware infrastructure, the framework
provides a software infrastructure which includes a multitask
microkernel, inter-task communication primitives and support to
dynamic workloads.

The rest of this Section presents a short review of similar
proposals available in the literature. Section 2 gives an overview of
the proposed parameterizable MPSoC platform, called HeMPS. Next,
Section 3 describes the design flow to build applications on top of
HeMPS. Section 4 discusses some practical results of building an
instance of the HeMPS platform and using it to prototype
applications. Finally, Section 5 proposes a set of conclusions and
directions for future works.

In [1] Lyonnard et al. presented an automatic design flow to
generate application-specific heterogeneous MPSoC architectures.

The architecture generation relies on generic multiprocessor
architectures templates, which are composed by four element types:
(i) processors (e.g. ARM7, 68000); (ii) communication coprocessors
(interface to the interconnection architecture); (iii) IP components
(e.g. memory modules, bus bridges); (iv) interconnection architecture
(point-to-point or bus). The architecture templates are
parameterizable for the four element types.

STARSoC [2] is a framework for hardware/software codesign
and design space exploration. The input description consists in a set
of software and hardware processes described in C. After specifying
the number of processors (instances of the freely available core
processor called OpenRisc), a HW-SW partitioning is executed. The
hardware part is synthesized in an RTL description and the software
part is distributed among the set of processors. As result, STARSoC
generates a bus-based MPSoC platform from a high-level application
specification.

xENOC [3] is an environment for hardware/software automated
design of NoC-based MPSoC architectures. The core of this
environment is an EDA tool, called NoCWizard, which can generate
RTL Verilog NoCs. The whole system is described in an XML file
(NoC features, IPs and mapping), which is used as input for the
automatic generation tools. In addition to the hardware infrastructure,
xNoC also includes an Embedded Message Passing Interface (eMPI)
supporting parallel task communication.

Some commercial design environments support creation of bus-
based MPSoCs. Examples are Altera SOPC [7] and Xilinx EDK [8].
These environments provide graphical tools for system integration
along with an extensive IP cores library. The HDL description of the
final system and hardware-software integration are strongly
automated. SOPC allows MPSoCs design based on NIOS, ARM and
ColdFire processors connected through the proprietary Avalon bus.
EDK allows the design based on MicroBlaze and PowerPC
processors integrated through the IBM CoreConnect bus architecture.

II. ARCHITECTURE OVERVIEW

The architecture proposed here, named HeMPS, is a
homogeneous NoC-based MPSoC platform. Figure 1 presents a
HeMPS instance using a 2x3 mesh NoC. The main hardware
components are the HERMES NoC [4] and the mostly-MIPS
processor Plasma [5]. A processing element, called Plasma-IP, wraps
each Plasma and attaches it to the NoC. This IP also contains a
private memory, a network interface, and a DMA module.

Typical applications running in MPSoCs, such as multimedia and
networking, often present a dynamic workload. This implies a
varying number of tasks running simultaneously, and their number or
load often exceeds the available resources. To tackle this issue,

978-1-4244-3828-0/09/$25.00 ©2009 IEEE 1345

HeMPS assumes that: (i) applications are modeled using task graphs;
(ii) only a subset of tasks is initially loaded into the system.
Remaining tasks are stored in an external memory, named task
repository. This memory keeps all task codes necessary in any
instance of the applications execution.

Figure 1 - HeMPS instance using a 2x3 mesh NoC.

The system contains a master processor (Plasma-IP MP),
responsible for managing system resources. This is the only processor
having access to the task repository. When HeMPS starts execution,
the master processor allocates initial tasks to the slave processors
(Plasma-IP SL). During execution, tasks are dynamically loaded from
the task repository to slave processors on demand. Also resources
may become available when a given task finishes execution. Such
dynamic behavior enables smaller systems, since only those tasks
effectively required are loaded into the system at any given moment.

The Hermes NoC [4] employs a 2D mesh topology. Routers have
only input buffers, a control logic shared by all router ports, an
internal crossbar and up to five bi-directional ports. A single round-
robin arbitration schedules grants access to incoming packets, and a
deterministic distributed XY routing algorithm determines the path
between source and target IPs.

To achieve high performance in the processing elements, the
Plasma-IP architecture targets the separation between communication
and computation. The network interface and DMA modules are
responsible for sending and receiving packets, while the Plasma
processor performs task computation and wrapper management. The
local RAM is a true dual port memory allowing simultaneous
processor and DMA accesses, which avoids extra hardware for
elements like mutex or cycle stealing techniques.

A. Microkernel

Each slave processor runs a microkernel, which supports
multitasking and task communication. The microkernel segments
memory in pages, which it allocates for itself (first page) and tasks
(subsequent pages). Each Plasma-IP has a task table, with the
location of local and remote tasks. A simple preemptive scheduling,
implemented as a round robin, provides support to multitasking.

The microkernel protects the memory pages and all
communication among tasks occurs through message passing.
Message passing is supported through a global message pipe located
in the microkernel and communication primitives (WritePipe() and
ReadPipe()), which compose the current HeMPS API.

 The underlying model of computation for ensuring
synchronization between tasks is base on Kahn Process Networks
(KPN) [5]. KPN is a distributed model of computation where
unbounded FIFOs communication channels (pipes) connect processes
to each other, forming a process network. KPNs rely on the
fundamental principle that communication must be blocking for
channel read operations and non-blocking for channel write
operations.

When a given task executes a WritePipe() primitive, the message
is stored in the processor global pipe, and computation continues.
This characterizes a non-blocking writing. The global pipe is
software implemented as a parameterizable array with random
access. In this way, problems such as head-of-line (FIFO) blocking
and deadlocks are avoided.

For the ReadPipe(), a system function is executed. If the target
task is located in the same processor, the task executes a read in the
local global pipe. If the task is located in another processor, the
microkernel sends a request message through the NoC and the task
enters in wait state. When the message arrives from network, the
microkernel stops the executing task and reschedules the waiting
task. Figure 2 illustrates this process. In Figure 2(a) assumes task t2
has written a message in the global pipe, addressed to task t5
(WritePipe(&msg,t5)), and task t5 is requesting the message from
task t2 (ReadPipe(&msg,t2)). In Figure 2(b) processor 1 sends the
requested message to processor 2 through the NoC. The system
ensures in-order message delivering, because the WritePipe() adds to
each message the order in which they were written.

Processor 2 Processor 2 Processor 1 Processor 1

t1

t2

t3

WritePipe(&msg,t5);

t4

t5

t6

ReadPipe(&msg,t2);

HERMES

microkernel microkernel

request_msg

t1

t2

t3

WritePipe(&msg,t5);

t4

t5

t6

ReadPipe(&msg,t2);

HERMES

microkernel microkernel

msg

global_pipe global_pipe global_pipe global_pipe

(a) (b)

Figure 2 – HeMPS reading of an available message.

B. Dynamic workload

The master processor is responsible for system management,
including: (i) task allocation; (ii) broadcast of control messages
(unicast based), such as placement of allocated tasks and release of
finished tasks; (iii) reception of control messages, as end of task and
debug packets. It does not execute application tasks.

Dynamic workload takes place through on demand task
allocation at application runtime. The system designer defines an
initially needed set of tasks. The trigger to fire a new task allocation
is the WritePipe() primitive. Each time a task executes WritePipe(),
the microkernel executing this function verifies in the task table if the
target task is already allocated in the system. If the task is already in
the system, the microkernel writes the message into its global pipe.
Otherwise, it sends a task request message to the master processor.
Figure 3 illustrates this process.

 WritePipe(&msg, ti)

Is ti
allocated ?

Write msg
in the pipe

RequestTask(ti,master)

Yes No

Task layer

Microkernel layer

Figure 3 – Application-transparent dynamic task allocation in HeMPS.

When the master processor receives a task request message, it
configures the DMA module, which accesses the task repository and
transmits the task code to the target Plasma-IP SL memory. After task
transmission, the master processor notifies all slaves with the task ID
and its new position. The present HeMPS implements a very simple
mapping heuristic, based on the number of available pages in each
processor. The task is scheduled for the processor with more free

1346

pages, and if there are no free pages in the system, the task is
scheduled to be transmitted when a given page becomes available.
Note that the dynamic allocation is completely transparent at the task
layer.

III. HEMPS DESIGN FLOW

The HeMPS design flow follows the platform-based design
methodology depicted in Figure 4.

Platform
Specification

Software Design/
Task partitioning

Application Set
Specification

NoC Generation Tool

HW Components

Plasma, NI, RAM, DMA

SW Components

µkernel, API, Drivers Mapping

HW-SW
Integration

Evaluation/
Validation

(HDL Simulator)

MPSoC
(RTL architecture) HeMPS Editor

Figure 4 – HeMPS Design Flow.

 The design flow starts with the specification of the set of
applications to be executed by the MPSoC. Next, software design and
platform specification steps can be carried out in parallel, due to the
HeMPS API, which isolates the application software from the
platform implementation. The software design includes task
partitioning, with the definition of the task graph for each application.
The platform specification includes: (i) definition of the NoC size;
(ii) customization of hardware components, as memory size, and
number of pages per processor memory; (iii) customization of the
microkernel according to the NoC parameters and hardware features.

In the sequel, tasks are mapped in the platform, followed by
hardware-software integration. The MPSoC is then evaluated, and if
design constraints are not met, it is possible to redefine task graphs,
mapping, or platform parameters. The last step in the flow is the
generation of the platform hardware HDL code.

IV. HEMPS FRAMEWORK EDITOR

The HeMPS Editor covers several of the design steps presented
in HeMPS design flow, helping to automate the platform generation
step. Figure 5 presents the HeMPS Editor graphic interface main
window.

This framework allows quick platform customization, with the
user setting the number of processor connected in a mesh NoC
through the parameters X and Y. The maximum number of tasks per
slave is parameterizable, and is a function of two parameters, page
size and memory size. For performance evaluation purposes,
processors and local memories are modeled using cycle accurate
instruction set simulators (ISSs) and C/SystemC models,
respectively. This enables faster design space exploration. The left
panel in Figure 5 presents two applications (mpeg, and
communication) along with their task composition. Drag and drop
actions allows to easily perform the initial static task mapping to
slave processors. The master processor receives the remaining tasks,
which correspond to the contents of the task repository.

Figure 5 – HeMPS Editor main window.

The Generate HeMPS button executes the hardware-software
integration. This action fills the memories (microkernel, API and
drivers) and the task repository with all task codes.

System evaluation takes place using a commercial RTL
simulator, such as ModelSim. The Debug HeMPS button calls a
graphic debug tool (Figure 6). During simulation, when a given task
executes a print() system call, a debug packet is sent to the master
processor tagged with the source task and processor IDs. All debug
data received by the master processor is stored in a dedicated
memory area, used by the debug tool. This tool contains one panel for
each processor. Each panel has tabs, one for each task executing in
the corresponding processor (in Figure 6 processors 10 and 01
execute 2 tasks each one). In this way, messages are separated,
allowing to the user to visualize the execution results for each task.
Another system call useful for debug message is gettick(), which
returns the current execution time in clock cycles. Using this system
call, it is possible to compute the task execution time, latency and
throughput.

Figure 6 – HeMPS debug interface.

Once design constraints are met, the MPSoC can be synthesized
replacing ISSs and RAMs C/SystemC simulation models by VHDL
code, which is generated by the HeMPS Editor.

1347

V. RESULTS

A Motion-JPEG (MJPEG) decoder application has been chosen
for the experiments. This application is partitioned in four tasks: (i)
data producer, T0; (ii) Inverse Variable Length Coding, T1; (iii)
Inverse Quantization, T2; (iv) Inverse Discrete Cosine Transform,
T3; (v) output data printing, T4. No color space conversion has been
implemented here. Therefore, only grey-level images are processed.

Four simulations scenarios are evaluated, in a 2x3 HeMPS
instance: (i) ISS/RAM models and static mapping; (ii) ISS/RAM
models and dynamic mapping; (iii) RTL models and static mapping;
(iv) RTL models and dynamic mapping. The application has been
evaluated according to three criteria: simulation time, execution time,
and abstract model accuracy. As mentioned before, the use of
ISS/RAM models enables fast design space exploration. Table I
displays the total simulation time (first criterion) for four scenarios,
using a 1.66GHz Intel Core 2 Duo PC with 1GB of RAM. The use of
ISS/RAM models reduced the total simulation time up to 91%.

TABLE I. SIMULATION TIME USING DIFERENT SIMULATION MODELS.

Simulated Scenario Total Simulation Time (seconds)

ISS/RAM models – static mappping 383

ISS/RAM models – dynamic mappping 386

RTL models – static mappping 4677

RTL models – dynamic mappping 4550

The second criterion relates execution time to the choice of

mapping strategy: static or dynamic. Light gray bars in Figure 7(a)
denote the allocation time, whereas dark gray ones denote task
execution time. It should be noted that tasks are sequentially loaded
into the system. In Figure 7(b), dynamic mapping, only task T0 is
initially loaded into the system. The remaining tasks are loaded on
demand, resulting in shorter execution time with regard to static
mapping. In the static approach the loaded tasks wait for available
data (looping) before start the computation, whereas in the dynamic
approach the data is already available when the tasks are loaded. The
overall performance in both strategies is quite similar, however, the
dynamic approach favors the multitasking due to the shorter
execution time, maximizing the CPU processing.

(a) MJPEG tasks execution time: static mapping (ISS/RAM models)

(b) MJPEG tasks execution time: dynamic mapping (ISS/RAM models)

Figure 7 – Application execution time, in clock cycles, for different mapping

strategies. Black bars denote the execution time.

The third criterion evaluates the relative accuracy of ISS/RAM
models against RTL models. Even if the ISS is cycle accurate, some
small differences to RTL implementation exist, as in multiply and
divide operations. In the RTL implementation such operations may
be executed in parallel with subsequent operations, while in the
Plasma ISS these always execute in 32 clock cycles, during which no
other instruction can be executed. The error observed comparing the
total execution time in clock cycles is 2.14% and 1.07% for static and
dynamic mapping, respectively. Thus, the use of ISS does not imply
significant loss of accuracy and adds efficiency to system simulation.

VI. CONCLUSIONS AND FUTURE WORKS

HeMPS supports several steps of platform-based MPSoC design
including platform customization, application mapping and
hardware-software integration. It provides cycle accurate simulation
models (C/SystemC) for microprocessors (ISSs) and memories for
fast design space exploration. Results showed that the abstract
modeling has a significant impact on the simulation time. A graphical
tool supports application level debug, providing an efficient high
level approach as alternative to traditional RTL waveform debug.

Significant HeMPs features related to the state-of-the-art in
MPSoCs are: (i) NoC used as interconnection architecture; (ii)
microkernel supported multitasking, increasing the amount of
simultaneous executing tasks in each processor; (iii) dynamic
workload, enabling on demand system task loading; and (iv) inter-
task communication primitives (HeMPS API), which abstracts the
platform hardware, supporting software development independent of
mapping strategies and platform dimensions.

The conducted experiments showed the effectiveness of some
framework features like simulation models and dynamic mapping
strategies. Simulation models reduced the total simulation time by
91%, with a cycle accurate error lower than 3%. Dynamic mapping
performed better than traditional static mapping, due to the reduced
amount of simultaneity of messages request.

Some works in the path to make HeMPS evolve include: (i)
support to other processors, DSPs and specialized IPs to enable the
generation of heterogeneous MPSoCs; (ii) load balancing dynamic
mapping heuristics; (iii) enable ordinary task execution on the master
processor; and (iv) improvements on NoC architecture such as QoS
and broadcast/multicast services along with support to these features
at the application layer. In the current implementation, messages are
broadcasted sending several unicast copies. The final goal is to have
an API which includes support to all services provided by the NoC.
In this way many kinds of different application requirements can be
efficiently fulfilled.

REFERENCES

[1] Lyonnard, D. et al “Automatic Generation of Application-Specific
Architectures for Heterogeneous Multiprocessor System-on-Chip”. In:
DAC, 2001, pp. 518-523.

[2] Samahi, A.; Bourennane, E. “Automated Integration and
Communication Synthesis of Reconfigurable MPSoC Platform”. In:
AHS, 2007, pp. 379-385.

[3] Joven, J.; Carrabina, J.; et al “xENOC – An eXperimental Network-on-
Chip Enviroment for Parallel Distributed Computing on NoC-based
MPSoC Archtectures”. In: Euromicro Conference on Parallel,
Distributed and Network-Based Processing, 2008, pp. 141-148.

[4] Moraes, F.; et al. “HERMES: an Infrastructure for Low Area Overhead
Packet-switching Networks on Chip”. Integration the VLSI Journal,
38(1), Oct. 2004, pp. 69-93.

[5] OpenCores, www.opencores.org.

[6] G. Kahn. “The semantics of a simple language for parallel
programming”. In: Information Processing, 1974, pp 471-475.

[7] Altera, www.altera.com

[8] Xilinx, www.xilinx.com

0 100000 200000 300000 400000 500000

T0

T1

T2

T3

T4

Execution Time (clock cycles)

0 100000 200000 300000 400000 500000

T0

T1

T2

T3

T4

Execution Time (clock cycles)

1348

