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Abstract—Integrated circuits for very high-speed telecommu-

nication protocols often use ASICs, due to their strict timing 

constraints. This scenario is changing, since modern FPGAs, 

implemented in 65 or 45 nm technologies achieve high 

operating frequencies, and serializer/deserializer hardwired 

modules enable the reception of high speed aggregated rates 

(e. g. 10 Gbps or more), spanning the input stream for 

internal parallel computation. This paper presents a complete 

solution for an Optical Transport Network framer using 

FPGA devices. The framer receives a 10 Gbps stream 

originated from optical fiber medium, extracts its payload 

information, and transmits payload data at 10 Gbps. A 

working prototype was implemented in Virtex-4 and Virtex-5 

devices. (Abstract) 

Keywords-FPGA, OTN (Optical Transport Network), 

Telecommunication Circuits, Framer (key words) 

I. INTRODUCTION 

 Due to the large scale globalization process active 

nowadays, information exchange has become a critical 

issue, requiring the elaboration of faster, flexible and 

reliable computer networks. The migration of network 

technologies to faster protocols (Gigabit Ethernet and 10 

Gb Ethernet) forces the utilization of optical fiber links in 

both local (LAN) and metropolitan (MAN) network 

backbones. 

To meet the increasing demand for increased 

bandwidth using optical fiber links, and to support 2.5 Gb, 

10 Gb and 40 Gb broadband services, a new optical 

transport network layer was developed, the Optical 

Transport Network (OTN) [1]. OTN is the only standard 

capable of transporting 10GbE LAN PHY entirely. 

Different from SONET-SDH that is time multiplexed 

(TDM), the OTN protocol is multiplexed in wavelength 

(WDM), lowering the costs of the network. However, the 

main characteristic of the OTN standard is the presence of 

an error correction structure, based on the Reed-Solomon 

(255, 239) algorithm. This structure may correct up to 128 

bytes in burst for each frame, enabling the use of longer 

optical links. 

Xelic XCO2 [2] is a commercial soft core suited for 

either FPGA or ASIC implementation. The system side 

can accept the following client signals: (i) ODU frames; 

(ii) synchronous or asynchronous CBR10G, ATM or GFP; 

(iii) non-specific client bit streams. At the system side, 

data transfer takes place at a nominal rate of up to 9.953 

Gbps using a 64-bit data bus, operating at 155.52 Mbps. At 

the OTN line side data is transferred at an OTU2 rate, 

using a 64-bit data bus operating at 167.33 Mbps, or at an 

ODU2 rate using a 64-bit data bus operating at 156.83 

Mbps. XCO2 has an embedded scrambling and FEC 

encoding machines but no embedded decoding unit. 

Broadcom BCM8512 [3] is a 10 Gbps transport 

integrated processor on a single chip that operates with 

SONET/SDH or 10 Gbps Ethernet on the client side. It is 

implemented using 0.13µm CMOS technology. This 

product includes FEC encode and decode modules using 

the Reed-Solomon RS (255,239) algorithm. However, no 

core version of this chip is available, and the vendor 

mentions no port to FPGA.  

The two examples of commercial OTN framers imply 

buying a license or a chip. In addition, commercial 

solutions for FPGAs as the one presented do not have a 

complete solution integrated in a single device, requiring 

external components e.g., Reed-Solomon FEC decoder. 

The objective of this paper is to present a complete 

solution for an OTN framer (also called an OTN 

transponder), targeting FPGA devices.  The solution 

includes the OTN frame reception and transmission, frame 

disassembly, reception/transmission of client data, the 

Reed-Solomon FEC circuitry, and an interface to manage 

the system through embedded software. 

The OTN design described here is a joint development 

effort involving an academic research group and a telecom 

company, with the main objective to incorporate the OTN 

technology into products of the company. 

The rest of this paper comprises four sections. Section 

2 describes the OTN protocol. Section 3 presents an 

overview of the proposed OTN framer architecture, while 

Section 4 describes the process of validation for the 

proposed architecture. Section 5 presents conclusions and 

directions for future work. 

II. THE OTN PROTOCOL 

The ITU-T is a branch of the International 

Telecommunication Union (ITU) responsible for analyzing 

and organizing groups to study and create 

recommendations for the telecommunication field. The 

Optical Transport Network (OTN) standard is described on 

the G.709 ITU-T recommendation, which defines an OTN 

interface as a set of elements for optical networks capable 

of providing transporting functionality, multiplexing, 

routing, management and supervision of optical channels. 

The OTN interface must have the ability to carry signals 

from different types of clients, as shown in the Figure 1. 
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Figure 1 – Distinct signal sources transported over OTN. 

According to [4], the OTN frame  is composed by 16 

lines of 255 bytes, and is divided in three main blocks: 

overhead (16 bytes), payload (3808 bytes, in 238 columns) 

and FEC (256 bytes in 16 columns). The OTN 

transmission does not follow the logic structure of the 

frame. It is transmitted column by column as depicted in 

Figure 2. 
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Figure 2 – The OTN Frame transmission sequence. 

The OTN standard uses clock regeneration hardware 

on its receivers, therefore, long sequences of “0”s or “1”s 

can compromise the clock regeneration process and should 

be avoided. To avoid those long sequences, OTN 

transmitters use a scrambling process on the OTN frames 

before transmission. The scrambling process operates 

conceptually as a Linear Feedback Shift Register (LFSR), 

using the generating polynomial 161231 xxxx ++++ . The 

output of the scrambling process (Figure 3) is added to 

each bit of the multiframe. 

 
Figure 3 – Conceptual RTL implementation of the OTN scrambling 

process. 

Recommendation G.709 defines the OTN multiframe 

(Figure 4), which contains 4 frames (4080 bytes lines, 

totalizing 16320 bytes). The OTN multiframe is organized 

in lines, and is composed by the overhead, payload and 

FEC for each line. The OTN multiframe is transmitted line 

by line. 

 
Figure 4 – Structure of the OTN multiframe. 

Scrambling is applied after the FEC calculation for all 

multiframe bytes with the exception of the FAS (Frame 

Alignment Signal) bytes. This process is symmetric, i.e., 

the same process used for scrambling the transmission 

signal, is used during the receiving process to obtain the 

original descrambled signal. 

III. ARCHITECTURE OVERVIEW 

This Section presents an overview of the proposed 

transponder architecture. Figure 5 shows the transponder 

architecture block diagram, where the architecture main 

modules are apparent. The next Sections discuss each of 

these modules. 

 

 
Figure 5 – Block diagram for the proposed OTN transponder architecture. 

A. High-speed OTN and Ethernet optical interfaces 

The proposed architecture uses 4 serializer/deserializer 

modules, two at each external interface connections (OTN 

optical interface and 10 Gbps Ethernet interface). These 

modules employ specific Xilinx FPGA primitives devised 

for double data rate (DDR) communication. These 

components include internal devices such as DDR registers 

and differential buffers (IDDR/IBUFDS and 

ODDR/OBUFDS pairs). More information about these 

devices and their use is available in [5]. Combined with the 

external interfaces, these modules are responsible for 

receiving the serial signal from the optical interface or the 

10 GbE interface and then send it, in parallel, to the FPGA. 

The optical signal is received at approximately 10 Gbps 

using 16 channels operating at 669.327 Mbps as 

determined in the OTU2 standard. The conversion from 10 

Gbps optical to 16 copper channels at 669.327 Mbps is 

produced externally to the FPGA. However, even this 
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lower frequency is unreachable in modern FPGA core 

logic. Each copper channel is thus transformed into four 

167.332 Mbps channels, generating a parallel traffic, 

which operates with 64-bit words. This is the signal, which 

the FPGA processes. The converse process is also possible, 

and the FPGA can supply an OTN stream for the OTN 

frame transmission. 

The operating frequencies mentioned here in fact set 

the basic timing constrains the OTN circuit must respect as 

a whole. The parallelization of the optical flow sets the 

need to work with 64-bit words at approximately 200MHz. 

Since many bit manipulations take place during OTN 

processing, large circuit architectural challenges arise 

during the design. The next Sections cover how the design 

process faced and overcome the main challenges. 

B. Frame Aligner 

The frame aligner module is responsible to identify the 

FAS (Frame Align Sequence) sequence. The FAS includes 

the 6 first bytes of a multiframe. Figure 6 depicts the 

proposed architecture. This module has to handle 64-bit 

word bursts at 167.332MHz, and the FAS sequence may 

start in any of the 64 bits of some received word. 

 

Figure 6 – The frame aligner circuit pipeline. 

The aligner module is divided into sub-modules and 

organized as a pipeline structure, with a delay constraint of 

5 ns. The first stage of the pipeline consists of various 

partial comparators and an address generator. Partial 

comparators can identify the alignment sequence. They are 

partial since this structure replicates itself 63 times. The 

address generator identifies in which bit of the incoming 

64-bit word the alignment sequence starts. 

The second to seventh pipeline stages implement a 

logarithmic shifter, responsible to perform the word 

displacement in such way that the alignment sequence 

position itself starts in the beginning of the 64-bit word. 

The eighth pipeline stage has a complete comparator, used 

to prevent false positives of the alignment sequence and to 

feed the synchronization finite state machine. This finite 

state machine informs when this module finds the correct 

alignment of the incoming OTN signal, information that is 

used by the remainder of the circuit. 

C. Scrambler 

The scrambler module is responsible to scramble the 

data the framer transmits, using an LFSR pseudo-random 

data generation technique. This technique is used to avoid 

the transmission of long sequences of “0”s or “1”s. The 

scrambling process operates on the overall OTN G.709 

multi-frame, with the exception of the FAS field. The 

unscrambling functionality is the same of the scrambling, 

because this process is symmetric. 

As occurred for the aligner, the use of a straightforward 

LFSR is not possible to construct the scrambling system, 

due to its delay (eight clock cycles to treat a 64-bit word). 

To meet the delay constraints, a memory block with the 

contents of the generated LFSR values is used, replacing 

the traditional LFSR structure. In this new architecture, all 

possible polynomial scrambled sequences are stored in 

memory blocks (BRAMs), and since the OTN standard 

polynomial order is 16, there are 65535 (2
16
-1) pseudo-

random bits. In fact, only four 1024x16 BRAMs are 

required to store the complete sequence, organized as 

Figure 7 shows. 
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Figure 7 – Scrambler architecture using BRAMs. 

D. FEC 

The forward error correction (FEC) module uses the 

Reed-Solomon (RS) error correction method to introduce 

redundant information into the OTN frame. The receiver 

employs this additional information to search and correct 

errors, which may appear due to the transmission process 

[6]. The FEC encoder architecture is depicted in Figure 8.  
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 Figure 8 – The developed FEC encoder architecture. 

Each line of the OTN frame generates one FEC parity 

information (Figure 4), but frame transmission takes place 

column-by-column (Figure 2). This transmission method 

presents a problem for the FEC error correction module, 

since in each 64-bit word received there are bytes from 8 

different columns. It would be necessary to have a context 

retrieval capability for each byte of the FEC, to treat each 

byte separately. Again, due to the imposed design timing 

constraints, sixteen copies of the FEC encoder are present 

in the proposed OTN framer. 

A more complex module is the FEC decoder, 

responsible to detect and correct errors. For the same 

reasons presented for the encoder, the decoder also appear 

replicated 16 times. Figure 10 depicts the FEC decoder 

architecture. The detailed description of the internal 

modules is out of the scope of this paper and is subject of 

extensive discussion in references [6], [7] and [8]. Because 

the FEC decoder is quite large, its area and timing 

optimizations were important to achieve FPGA area 

restrictions for the whole framer design.  

E. 10 Gbps Ethernet client interface 

The 10 Gbps Ethernet client interface is responsible to 

deliver and receive data to/from a 10 GbE client. The 

client interface interacts two major components as depicted 

in Figure 9, the client drop interface (corresponding to the 

Payload Extractor in Figure 5) and the client add interface 

(corresponding to the Payload Inserter in Figure 5). 

The client drop interface is responsible to receive the 

processed OTN frame, retrieve its payload and deliver it to 

the 10 GbE interface. This module analyzes the 

justification fields of the OTN frame to determine if there 

is justification on the multiframe. If there is a justification, 

positive or negative, the client drop interface performs a 

displacement of the 64-bit word in order to align it with the 

OTN payload when needed. The OTN payload feeds an 

asynchronous FIFO, which then transmits data to the 10 

GbE client. This module is also responsible to generate a 

reference signal for external jitter control. 

 
Figure 9 – Client interface block diagram. 

The client add interface is responsible to deliver a 

constant dataflow stream to the optical interface at an 

operating frequency of 161.13 MHz. This module uses an 

an internal FIFO, to avoid frequency variations due to the 

signal jitter inserted by the 10 GbE client side. The client 

add interface is also responsible to introduce positive or 

negative justification bytes, thus controlling jitter. 

F. Control Interface Subsystem 

The control interface subsystem is responsible to 

browse the OTN multiframe header and report any alarm 

contained on it to the system processor, the Xilinx firm 

core Microblaze. Also, it receives configuration commands 

from the processor. The control interface subsystem 

consists in 3 main modules: the Microblaze CPU, the 

header extractor and the control interface itself, containing 

the system register bank. The header is the area of the 

OTN multiframe carrying the OTN communication control 

bytes. Figure 11 shows the OTN header. The header 

extractor module processes OTN multiframe header bytes 

and writes information about them to the register bank. 

 
Figure 10 – Developed RS (255,239) decoder architecture. 
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The Microblaze CPU is the system control processor. It 

runs the OTN framer software, which has the 

responsibility to manage all system alarms and 

transmission operation, using an embedded Linux 

operating system. The system control processor manages 

the OTN framer through read/write operations into the 

system register bank. 

The system register bank contains all OTN multiframe 

header bytes, the FEC module statistics, transmission 

control information and some system variables. 

 

 

 
Figure 11 – The OTN multiframe header bytes [9]. 

IV. DESIGN VALIDATION 

This Section presents the OTN framer design 

validation process and the structures employed for this 

process. The OTN framer was simulated and fully 

prototyped in FPGAs. 

A. Simulation Environment  

The framer simulation environment allows testing and 

evaluating all external system interfaces and the framer 

correct functionality. The framer simulation environment 

is depicted in Figure 12 and explained next. The simulation 

testbench instantiates the framer hardware, a module that 

simulates the behavior of the system control processor 

(CPU software simulator) and a loopback connection in 

place of the 10 GbE interface. The testbench is also 

responsible to send simulated OTN frames to the optical 

interface and to store frames transmitted by the framer 

hardware to the optical interface. 

The simulated frames are generated by an tool called 

“geraframe”, and are available at the “input.x10” file. This 

tool can be configured to generate controlled frames for 

specific tests, building valid OTN multiframe header bytes 

and introducing frame or scrambling errors. The testbench 

stores any received frames into the “output.x10” files for 

later evaluation. 

The CPU software simulator enables the emulation of 

read and write operations into the system register bank, as 

would be produced by Microblaze running Linux. The 

“instructions.x10” file defines these operations, and a log 

file generated by the testbench stores results of read 

operations. Figure 13 presents the appearance of a log of 

sequential read and write operations in a set of registers. 

 

 
Figure 12 – OTN framer simulation environment. 

 
Figure 13 – Example of a CPU simulator log file, used to store test results 

performed by the simulation environment. Each entry contains the value 
read from the register, followed by the expected register value. 

The generated simulation input frames contain one or 

more test conditions, e.g. header alarms, FEC error 

insertion or system register read/write operations. The set 

of test frames containing a number of pre-selected test 

conditions define a “simulation test scenario”. While 

performing OTN framer simulation, two main simulation 

scenarios were created: one that generates and evaluates all 

possible OTN header alarms and another that evaluates the 

framer internal modules functionality. 

B. FPGA Prototyping 

In order to verify the correct functionality of the 

developed hardware, all modules of the project were 

synthesized, prototyped and validated on FPGA. Evaluated 

metrics include FPGA area occupation (slices, memory, 

etc.) and timing constraints. 

34

Authorized licensed use limited to: PONTIFICIA UNIV CATOLICA DO RIO GRANDE DO SUL. Downloaded on January 21, 2010 at 14:36 from IEEE Xplore.  Restrictions apply. 



Two different Xilinx FPGA devices served as target 

during the synthesis process: a Virtex-4 FX100-11 and a 

Virtex-5 LX220T-2. The project was synthesized first in a 

Virtex-4 device to quickly evaluate design functionality in 

a prototyping board, the Dinigroup DN8000K10PCI board. 

The synthesis for the Virtex-5 device came later, when the 

specific board prototype of the envisaged commercial 

product became available. 

The Virtex-4 synthesis results shows a minimum 

period of 4.736 ns (i.e. a maximum operating frequency of 

211.149 MHz) and an area occupation of 78% of the 

FPGA available slices. The Virtex-5 synthesis results 

shows a minimum period of 3.413 ns (i.e. a maximum 

operating frequency of 292.985 MHz) and an area 

occupation of 44% of the FPGA available slices. 

For the Virtex-4 evaluation, the framer prototype was 

validated using a communication structure called MainBus 

[10], which is a bus architecture developed by the Dini 

Group to facilitate data transfers between FPGA and a host 

PC through the PCI bus. The host PC sends and receives 

test frames to the framer hardware, comparing the results. 

As in the simulation environment, the external connections 

of the 10 GbE clients are connected via loopback link.  

As for the Virtex-5 prototyping, the proposed OTN 

framer is part of a DATACOM product prototype board 

(Figure 14), which contains an embedded Virtex-5 

LX220T-2 FPGA. The final OTN framer logic is currently 

under test using a JDSU optical network tester with an 

OTN testing module. Preliminary results show that the 

OTN framer implementation is correct, the client interface 

being currently under test. 

 

 

Figure 14 – PUCRS/DATACOM OTN framer prototype board. 

 
 

V. CONCLUSIONS AND ONGOING WORK 

This work shows that FPGAs are effective in creating 

complex systems with tight performance requirements. 

Besides the intrinsic complexity of the design, and the 

strict rules defined in the OTN definition, timing closure 

was one of the major design challenges. Simple modules, 

such as the frame aligner, required a VHDL gate level 

description, with several pipeline stages. The FEC decoder 

design process evaluated several different Galois multiplier 

architectures before meeting the critical path constraint (5 

ns). In addition, due to the high-speed incoming stream, 

several modules had to be replicated, increasing the final 

FPGA occupation. 

This system is currently a functional prototype. The 

final PCB board with Virtex-5 FPGAs was fabricated, and 

tests in the final product are ongoing activities. As a future 

work, the system will be extended to include other client 

mappings, not only 10 Gbps Ethernet. 
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