
A 10 Gbps OTN Framer Implementation Targeting FPGA Devices

Guilherme Guindani

‡
, Frederico Ferlini

‡
, Jeferson Oliveira

‡
,

Ney Calazans
‡
, Daniel Pigatto*, Fernando Moraes

‡

‡
PUCRS, Av. Ipiranga 6681, P. 32, Porto Alegre, Brazil

*DATACOM, Av. França 735, Porto Alegre, Brazil

{guilherme.guindani,ney.calazans,fernando.moraes}@pucrs.br,{fferlini,jeferson.co}@gmail.com, daniel@datacom.ind.br

Abstract—Integrated circuits for very high-speed telecommu-

nication protocols often use ASICs, due to their strict timing

constraints. This scenario is changing, since modern FPGAs,

implemented in 65 or 45 nm technologies achieve high

operating frequencies, and serializer/deserializer hardwired

modules enable the reception of high speed aggregated rates

(e. g. 10 Gbps or more), spanning the input stream for

internal parallel computation. This paper presents a complete

solution for an Optical Transport Network framer using

FPGA devices. The framer receives a 10 Gbps stream

originated from optical fiber medium, extracts its payload

information, and transmits payload data at 10 Gbps. A

working prototype was implemented in Virtex-4 and Virtex-5

devices. (Abstract)

Keywords-FPGA, OTN (Optical Transport Network),

Telecommunication Circuits, Framer (key words)

I. INTRODUCTION

 Due to the large scale globalization process active

nowadays, information exchange has become a critical

issue, requiring the elaboration of faster, flexible and

reliable computer networks. The migration of network

technologies to faster protocols (Gigabit Ethernet and 10

Gb Ethernet) forces the utilization of optical fiber links in

both local (LAN) and metropolitan (MAN) network

backbones.

To meet the increasing demand for increased

bandwidth using optical fiber links, and to support 2.5 Gb,

10 Gb and 40 Gb broadband services, a new optical

transport network layer was developed, the Optical

Transport Network (OTN) [1]. OTN is the only standard

capable of transporting 10GbE LAN PHY entirely.

Different from SONET-SDH that is time multiplexed

(TDM), the OTN protocol is multiplexed in wavelength

(WDM), lowering the costs of the network. However, the

main characteristic of the OTN standard is the presence of

an error correction structure, based on the Reed-Solomon

(255, 239) algorithm. This structure may correct up to 128

bytes in burst for each frame, enabling the use of longer

optical links.

Xelic XCO2 [2] is a commercial soft core suited for

either FPGA or ASIC implementation. The system side

can accept the following client signals: (i) ODU frames;

(ii) synchronous or asynchronous CBR10G, ATM or GFP;

(iii) non-specific client bit streams. At the system side,

data transfer takes place at a nominal rate of up to 9.953

Gbps using a 64-bit data bus, operating at 155.52 Mbps. At

the OTN line side data is transferred at an OTU2 rate,

using a 64-bit data bus operating at 167.33 Mbps, or at an

ODU2 rate using a 64-bit data bus operating at 156.83

Mbps. XCO2 has an embedded scrambling and FEC

encoding machines but no embedded decoding unit.

Broadcom BCM8512 [3] is a 10 Gbps transport

integrated processor on a single chip that operates with

SONET/SDH or 10 Gbps Ethernet on the client side. It is

implemented using 0.13µm CMOS technology. This

product includes FEC encode and decode modules using

the Reed-Solomon RS (255,239) algorithm. However, no

core version of this chip is available, and the vendor

mentions no port to FPGA.

The two examples of commercial OTN framers imply

buying a license or a chip. In addition, commercial

solutions for FPGAs as the one presented do not have a

complete solution integrated in a single device, requiring

external components e.g., Reed-Solomon FEC decoder.

The objective of this paper is to present a complete

solution for an OTN framer (also called an OTN

transponder), targeting FPGA devices. The solution

includes the OTN frame reception and transmission, frame

disassembly, reception/transmission of client data, the

Reed-Solomon FEC circuitry, and an interface to manage

the system through embedded software.

The OTN design described here is a joint development

effort involving an academic research group and a telecom

company, with the main objective to incorporate the OTN

technology into products of the company.

The rest of this paper comprises four sections. Section

2 describes the OTN protocol. Section 3 presents an

overview of the proposed OTN framer architecture, while

Section 4 describes the process of validation for the

proposed architecture. Section 5 presents conclusions and

directions for future work.

II. THE OTN PROTOCOL

The ITU-T is a branch of the International

Telecommunication Union (ITU) responsible for analyzing

and organizing groups to study and create

recommendations for the telecommunication field. The

Optical Transport Network (OTN) standard is described on

the G.709 ITU-T recommendation, which defines an OTN

interface as a set of elements for optical networks capable

of providing transporting functionality, multiplexing,

routing, management and supervision of optical channels.

The OTN interface must have the ability to carry signals

from different types of clients, as shown in the Figure 1.

2009 International Conference on Reconfigurable Computing and FPGAs

978-0-7695-3917-1/09 $26.00 © 2009 IEEE

DOI 10.1109/ReConFig.2009.27

30

Authorized licensed use limited to: PONTIFICIA UNIV CATOLICA DO RIO GRANDE DO SUL. Downloaded on January 21, 2010 at 14:36 from IEEE Xplore. Restrictions apply.

Figure 1 – Distinct signal sources transported over OTN.

According to [4], the OTN frame is composed by 16

lines of 255 bytes, and is divided in three main blocks:

overhead (16 bytes), payload (3808 bytes, in 238 columns)

and FEC (256 bytes in 16 columns). The OTN

transmission does not follow the logic structure of the

frame. It is transmitted column by column as depicted in

Figure 2.

1

1 2 2
3
9

R
o
w

Column (Byte)

2
4
0

2
5
5

4

5

6

7

8

9

10

11

12

13

14

15

16

3

2

1

4080

Figure 2 – The OTN Frame transmission sequence.

The OTN standard uses clock regeneration hardware

on its receivers, therefore, long sequences of “0”s or “1”s

can compromise the clock regeneration process and should

be avoided. To avoid those long sequences, OTN

transmitters use a scrambling process on the OTN frames

before transmission. The scrambling process operates

conceptually as a Linear Feedback Shift Register (LFSR),

using the generating polynomial 161231 xxxx ++++ . The

output of the scrambling process (Figure 3) is added to

each bit of the multiframe.

Figure 3 – Conceptual RTL implementation of the OTN scrambling

process.

Recommendation G.709 defines the OTN multiframe

(Figure 4), which contains 4 frames (4080 bytes lines,

totalizing 16320 bytes). The OTN multiframe is organized

in lines, and is composed by the overhead, payload and

FEC for each line. The OTN multiframe is transmitted line

by line.

Figure 4 – Structure of the OTN multiframe.

Scrambling is applied after the FEC calculation for all

multiframe bytes with the exception of the FAS (Frame

Alignment Signal) bytes. This process is symmetric, i.e.,

the same process used for scrambling the transmission

signal, is used during the receiving process to obtain the

original descrambled signal.

III. ARCHITECTURE OVERVIEW

This Section presents an overview of the proposed

transponder architecture. Figure 5 shows the transponder

architecture block diagram, where the architecture main

modules are apparent. The next Sections discuss each of

these modules.

Figure 5 – Block diagram for the proposed OTN transponder architecture.

A. High-speed OTN and Ethernet optical interfaces

The proposed architecture uses 4 serializer/deserializer

modules, two at each external interface connections (OTN

optical interface and 10 Gbps Ethernet interface). These

modules employ specific Xilinx FPGA primitives devised

for double data rate (DDR) communication. These

components include internal devices such as DDR registers

and differential buffers (IDDR/IBUFDS and

ODDR/OBUFDS pairs). More information about these

devices and their use is available in [5]. Combined with the

external interfaces, these modules are responsible for

receiving the serial signal from the optical interface or the

10 GbE interface and then send it, in parallel, to the FPGA.

The optical signal is received at approximately 10 Gbps

using 16 channels operating at 669.327 Mbps as

determined in the OTU2 standard. The conversion from 10

Gbps optical to 16 copper channels at 669.327 Mbps is

produced externally to the FPGA. However, even this

31

Authorized licensed use limited to: PONTIFICIA UNIV CATOLICA DO RIO GRANDE DO SUL. Downloaded on January 21, 2010 at 14:36 from IEEE Xplore. Restrictions apply.

lower frequency is unreachable in modern FPGA core

logic. Each copper channel is thus transformed into four

167.332 Mbps channels, generating a parallel traffic,

which operates with 64-bit words. This is the signal, which

the FPGA processes. The converse process is also possible,

and the FPGA can supply an OTN stream for the OTN

frame transmission.

The operating frequencies mentioned here in fact set

the basic timing constrains the OTN circuit must respect as

a whole. The parallelization of the optical flow sets the

need to work with 64-bit words at approximately 200MHz.

Since many bit manipulations take place during OTN

processing, large circuit architectural challenges arise

during the design. The next Sections cover how the design

process faced and overcome the main challenges.

B. Frame Aligner

The frame aligner module is responsible to identify the

FAS (Frame Align Sequence) sequence. The FAS includes

the 6 first bytes of a multiframe. Figure 6 depicts the

proposed architecture. This module has to handle 64-bit

word bursts at 167.332MHz, and the FAS sequence may

start in any of the 64 bits of some received word.

Figure 6 – The frame aligner circuit pipeline.

The aligner module is divided into sub-modules and

organized as a pipeline structure, with a delay constraint of

5 ns. The first stage of the pipeline consists of various

partial comparators and an address generator. Partial

comparators can identify the alignment sequence. They are

partial since this structure replicates itself 63 times. The

address generator identifies in which bit of the incoming

64-bit word the alignment sequence starts.

The second to seventh pipeline stages implement a

logarithmic shifter, responsible to perform the word

displacement in such way that the alignment sequence

position itself starts in the beginning of the 64-bit word.

The eighth pipeline stage has a complete comparator, used

to prevent false positives of the alignment sequence and to

feed the synchronization finite state machine. This finite

state machine informs when this module finds the correct

alignment of the incoming OTN signal, information that is

used by the remainder of the circuit.

C. Scrambler

The scrambler module is responsible to scramble the

data the framer transmits, using an LFSR pseudo-random

data generation technique. This technique is used to avoid

the transmission of long sequences of “0”s or “1”s. The

scrambling process operates on the overall OTN G.709

multi-frame, with the exception of the FAS field. The

unscrambling functionality is the same of the scrambling,

because this process is symmetric.

As occurred for the aligner, the use of a straightforward

LFSR is not possible to construct the scrambling system,

due to its delay (eight clock cycles to treat a 64-bit word).

To meet the delay constraints, a memory block with the

contents of the generated LFSR values is used, replacing

the traditional LFSR structure. In this new architecture, all

possible polynomial scrambled sequences are stored in

memory blocks (BRAMs), and since the OTN standard

polynomial order is 16, there are 65535 (2
16
-1) pseudo-

random bits. In fact, only four 1024x16 BRAMs are

required to store the complete sequence, organized as

Figure 7 shows.

Output

Input

BRAM
(1024 X 16)

Address

Counter

CLK

BRAM
(1024 X 16)

BRAM
(1024 X 16)

BRAM
(1024 X 16)

Scramble
d

Figure 7 – Scrambler architecture using BRAMs.

D. FEC

The forward error correction (FEC) module uses the

Reed-Solomon (RS) error correction method to introduce

redundant information into the OTN frame. The receiver

employs this additional information to search and correct

errors, which may appear due to the transmission process

[6]. The FEC encoder architecture is depicted in Figure 8.

63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1
0

D_in

Register Register Register

Shifter

63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

F
F

F

6
6

6

F
F

6
6

6

2
2

2

8
8

8

8

F

F

C0 C1 C2 C63

Address

Generator address (6 bits)

match

Full

Comparator

full match63 bits

Partial

Comparador

Register

F

6

2

8

2

8

2

8

F

6

F

6

Multiframe

synchronism control

FSM
en

Saída para o

Desembaralhador

64 bits

32

Authorized licensed use limited to: PONTIFICIA UNIV CATOLICA DO RIO GRANDE DO SUL. Downloaded on January 21, 2010 at 14:36 from IEEE Xplore. Restrictions apply.

 Figure 8 – The developed FEC encoder architecture.

Each line of the OTN frame generates one FEC parity

information (Figure 4), but frame transmission takes place

column-by-column (Figure 2). This transmission method

presents a problem for the FEC error correction module,

since in each 64-bit word received there are bytes from 8

different columns. It would be necessary to have a context

retrieval capability for each byte of the FEC, to treat each

byte separately. Again, due to the imposed design timing

constraints, sixteen copies of the FEC encoder are present

in the proposed OTN framer.

A more complex module is the FEC decoder,

responsible to detect and correct errors. For the same

reasons presented for the encoder, the decoder also appear

replicated 16 times. Figure 10 depicts the FEC decoder

architecture. The detailed description of the internal

modules is out of the scope of this paper and is subject of

extensive discussion in references [6], [7] and [8]. Because

the FEC decoder is quite large, its area and timing

optimizations were important to achieve FPGA area

restrictions for the whole framer design.

E. 10 Gbps Ethernet client interface

The 10 Gbps Ethernet client interface is responsible to

deliver and receive data to/from a 10 GbE client. The

client interface interacts two major components as depicted

in Figure 9, the client drop interface (corresponding to the

Payload Extractor in Figure 5) and the client add interface

(corresponding to the Payload Inserter in Figure 5).

The client drop interface is responsible to receive the

processed OTN frame, retrieve its payload and deliver it to

the 10 GbE interface. This module analyzes the

justification fields of the OTN frame to determine if there

is justification on the multiframe. If there is a justification,

positive or negative, the client drop interface performs a

displacement of the 64-bit word in order to align it with the

OTN payload when needed. The OTN payload feeds an

asynchronous FIFO, which then transmits data to the 10

GbE client. This module is also responsible to generate a

reference signal for external jitter control.

Figure 9 – Client interface block diagram.

The client add interface is responsible to deliver a

constant dataflow stream to the optical interface at an

operating frequency of 161.13 MHz. This module uses an

an internal FIFO, to avoid frequency variations due to the

signal jitter inserted by the 10 GbE client side. The client

add interface is also responsible to introduce positive or

negative justification bytes, thus controlling jitter.

F. Control Interface Subsystem

The control interface subsystem is responsible to

browse the OTN multiframe header and report any alarm

contained on it to the system processor, the Xilinx firm

core Microblaze. Also, it receives configuration commands

from the processor. The control interface subsystem

consists in 3 main modules: the Microblaze CPU, the

header extractor and the control interface itself, containing

the system register bank. The header is the area of the

OTN multiframe carrying the OTN communication control

bytes. Figure 11 shows the OTN header. The header

extractor module processes OTN multiframe header bytes

and writes information about them to the register bank.

Figure 10 – Developed RS (255,239) decoder architecture.

33

Authorized licensed use limited to: PONTIFICIA UNIV CATOLICA DO RIO GRANDE DO SUL. Downloaded on January 21, 2010 at 14:36 from IEEE Xplore. Restrictions apply.

The Microblaze CPU is the system control processor. It

runs the OTN framer software, which has the

responsibility to manage all system alarms and

transmission operation, using an embedded Linux

operating system. The system control processor manages

the OTN framer through read/write operations into the

system register bank.

The system register bank contains all OTN multiframe

header bytes, the FEC module statistics, transmission

control information and some system variables.

Figure 11 – The OTN multiframe header bytes [9].

IV. DESIGN VALIDATION

This Section presents the OTN framer design

validation process and the structures employed for this

process. The OTN framer was simulated and fully

prototyped in FPGAs.

A. Simulation Environment

The framer simulation environment allows testing and

evaluating all external system interfaces and the framer

correct functionality. The framer simulation environment

is depicted in Figure 12 and explained next. The simulation

testbench instantiates the framer hardware, a module that

simulates the behavior of the system control processor

(CPU software simulator) and a loopback connection in

place of the 10 GbE interface. The testbench is also

responsible to send simulated OTN frames to the optical

interface and to store frames transmitted by the framer

hardware to the optical interface.

The simulated frames are generated by an tool called

“geraframe”, and are available at the “input.x10” file. This

tool can be configured to generate controlled frames for

specific tests, building valid OTN multiframe header bytes

and introducing frame or scrambling errors. The testbench

stores any received frames into the “output.x10” files for

later evaluation.

The CPU software simulator enables the emulation of

read and write operations into the system register bank, as

would be produced by Microblaze running Linux. The

“instructions.x10” file defines these operations, and a log

file generated by the testbench stores results of read

operations. Figure 13 presents the appearance of a log of

sequential read and write operations in a set of registers.

Figure 12 – OTN framer simulation environment.

Figure 13 – Example of a CPU simulator log file, used to store test results

performed by the simulation environment. Each entry contains the value
read from the register, followed by the expected register value.

The generated simulation input frames contain one or

more test conditions, e.g. header alarms, FEC error

insertion or system register read/write operations. The set

of test frames containing a number of pre-selected test

conditions define a “simulation test scenario”. While

performing OTN framer simulation, two main simulation

scenarios were created: one that generates and evaluates all

possible OTN header alarms and another that evaluates the

framer internal modules functionality.

B. FPGA Prototyping

In order to verify the correct functionality of the

developed hardware, all modules of the project were

synthesized, prototyped and validated on FPGA. Evaluated

metrics include FPGA area occupation (slices, memory,

etc.) and timing constraints.

34

Authorized licensed use limited to: PONTIFICIA UNIV CATOLICA DO RIO GRANDE DO SUL. Downloaded on January 21, 2010 at 14:36 from IEEE Xplore. Restrictions apply.

Two different Xilinx FPGA devices served as target

during the synthesis process: a Virtex-4 FX100-11 and a

Virtex-5 LX220T-2. The project was synthesized first in a

Virtex-4 device to quickly evaluate design functionality in

a prototyping board, the Dinigroup DN8000K10PCI board.

The synthesis for the Virtex-5 device came later, when the

specific board prototype of the envisaged commercial

product became available.

The Virtex-4 synthesis results shows a minimum

period of 4.736 ns (i.e. a maximum operating frequency of

211.149 MHz) and an area occupation of 78% of the

FPGA available slices. The Virtex-5 synthesis results

shows a minimum period of 3.413 ns (i.e. a maximum

operating frequency of 292.985 MHz) and an area

occupation of 44% of the FPGA available slices.

For the Virtex-4 evaluation, the framer prototype was

validated using a communication structure called MainBus

[10], which is a bus architecture developed by the Dini

Group to facilitate data transfers between FPGA and a host

PC through the PCI bus. The host PC sends and receives

test frames to the framer hardware, comparing the results.

As in the simulation environment, the external connections

of the 10 GbE clients are connected via loopback link.

As for the Virtex-5 prototyping, the proposed OTN

framer is part of a DATACOM product prototype board

(Figure 14), which contains an embedded Virtex-5

LX220T-2 FPGA. The final OTN framer logic is currently

under test using a JDSU optical network tester with an

OTN testing module. Preliminary results show that the

OTN framer implementation is correct, the client interface

being currently under test.

Figure 14 – PUCRS/DATACOM OTN framer prototype board.

V. CONCLUSIONS AND ONGOING WORK

This work shows that FPGAs are effective in creating

complex systems with tight performance requirements.

Besides the intrinsic complexity of the design, and the

strict rules defined in the OTN definition, timing closure

was one of the major design challenges. Simple modules,

such as the frame aligner, required a VHDL gate level

description, with several pipeline stages. The FEC decoder

design process evaluated several different Galois multiplier

architectures before meeting the critical path constraint (5

ns). In addition, due to the high-speed incoming stream,

several modules had to be replicated, increasing the final

FPGA occupation.

This system is currently a functional prototype. The

final PCB board with Virtex-5 FPGAs was fabricated, and

tests in the final product are ongoing activities. As a future

work, the system will be extended to include other client

mappings, not only 10 Gbps Ethernet.

ACKNOWLEDGMENT

This work receives support from the Brazilian Funding

Agency FINEP, under project number 5161/06.

REFERENCES

[1] ITU-T “G.870: Terms and definitions for optical transport
networks (OTN)”. Available at: http://www.itu.int/rec/T-

REC-G.870-200803-I/en, Apr. 2009.

[2] Xelic XCO2 OTN transponder, captured at:

http://www.xelic.com/Networking_Cores/product_brief/xco

2_product_brief.pdf, Apr. 2009.

[3] Broadcom BCM8512 OTN transponder, captured at:
http://www.broadcom.com/collateral/pb/8512-PB05-R.pdf,

April 2009.

[4] Kocialski, C. and Harwood, J., “A Primer on Digital
Wrappers for Optical Transport Networks”. Vesta

Corporation, 2000.

[5] Virtex-5 FPGA User Guide, available at:

http://www.xilinx.com/support/documentation/user_guides/

ug190.pdf, Apr. 2009.

[6] Silva, A. and Rodolfo, T. “Implementatin of a Reed-
Solomon architecture for use in OTN 10.7 Gbps Networks”.

End of term work, Computer Engineering, PUCRS, Dec.

2007. (In Portuguese)

[7] Wilhelm, W. “A New Scalable VLSI Architecture for Reed-
Solomon Decoders”. IEEE Journal of Solid State Circuit,

Vol. 34, No 2. Mar. 1999, pp. 388-396.

[8] Park, T. “Design of the (248,216) Reed-Solomon Decoder
with Erasure Correction for Blu-ray Disc”. IEEE

Transactions on Consumer Eletronics, Vol. 51, No 3. Aug.

2005, pp. 872-878.

[9] Vissers, M. “Optical Transport Network & Optical
Transport Module“. Captured at: http://ties.itu.ch/ftp/public

/itu-t/tsg15opticaltransport /OTN /g709-intro-v2.ppt, Apr.

2009.

[10] The Dini Group. “MainBus Specification”. Available at:
http://www.dinigroup.com/product/common/mainbus_spec.

pdf, Apr. 2009.

Optical interfaces

FPGA

35

Authorized licensed use limited to: PONTIFICIA UNIV CATOLICA DO RIO GRANDE DO SUL. Downloaded on January 21, 2010 at 14:36 from IEEE Xplore. Restrictions apply.

