
Floating Point Hardware for Embedded Processors in FPGAs: 

Design Space Exploration for Performance and Area 

Taciano A. Rodolfo, Ney L. V. Calazans, Fernando G. Moraes 

Faculty of Informatics (FACIN) 
Pontifical Catholic University of Rio Grande do Sul (PUCRS) 

Porto Alegre, Brazil 
e-mail: {taciano.rodolfo, ney.calazans, fernando.moraes}@pucrs.br 

 
Abstract – Although the use of floating point hardware in 

FPGAs has long been considered unfeasible or relegated to use 

only in expensive devices and platforms, this is no longer the 

case. This paper describes fully-fledged implementations of 

single-precision floating point units for a MIPS processor ar-

chitecture implementation. These coprocessors take as little 

room as 6% of a medium-sized FPGA, while the processor 

CPU may take only 2% of the same device. The space explora-

tion process described here values the area and performance 

metrics and considers variations on the choice of synthesis tool, 

floating point unit generation method and architectural issues 

like clocking schemes. The conducted experiments show reduc-

tions of up to 22 times in clock cycles count for typical floating 

point application modules, compared to the use of software-

emulated floating point processing. 

Keywords – floating point hardware; FPGA; embedded pro-

cessor; GALS design; prototyping. 

I.  INTRODUCTION 

For many years, hardware floating point (FP) units 
(FPUs) were resources affordable only in expensive wall 
powered systems, because of their high complexity when 
compared to integer units and the low density of integrated 
circuits. Gradually, hardware FPUs reached the status of a 
commodity in systems such as desktop computers, high-end 
microprocessors and powerful game consoles. The current 
state of the art in integrated circuit density and performance 
allows designers to envision a near future when FP hardware 
will be commonplace in practically any system where they 
may bring some performance advantage. This includes sev-
eral classes of embedded systems, and even mobile devices, 
if the FP hardware power dissipation problem is adequately 
controlled. FPGAs were once devices where designers 
avoided FP hardware due to high area overhead and low per-
formance. This is no longer true. This paper explores the 
design space of FPGA embedded processors with FPUs. 

To put the work in perspective, Figure 1 displays the de-
sign options spectrum to solve problems that can benefit 
from the use of floating point representations.  

 

Figure 1.  The spectrum of design options to deal with FP representations. 

Each option has its own set of benefits and disadvantag-
es, the choice of the method depending on several issues. 

Software emulation is the most straightforward option, since 
it relies simply on a compiler that can transform FP compu-
tations into an equivalent set of integer manipulations. This 
appears as the most used method in embedded processors. Its 
main problem is low performance. Transforming an FP spe-
cification to a fixed-point implementation may solve the 
software emulation performance problem, at the cost of in-
creased design time and reduced portability. The next option 
is to use a processor coupled to some hardware FPU. This 
may have a dramatic impact on the performance, but may 
imply a significant overhead in silicon real estate and also in 
power dissipation. This option is the focus this paper. Specif-
ic problems such as radars and molecular dynamic simula-
tions can benefit a lot from the fine-grain parallelism enabled 
by FPGA architectures, but this may lead to large hardware 
design time and reduce the flexibility and portability of the 
solution. Finally, the virtually infinite degrees of freedom of 
Application Specific Integrated Circuit (ASIC) design can 
take the most of area, performance and power optimizations. 
However, few embedded applications are able to afford the 
non recurring design and mask fabrication overheads implied 
by ASIC design flows. 

The rest of this paper is organized in six Sections. Sec-
tion II approaches related work. Section III describes the 
basic FP coprocessor design for a MIPS processor. Section 
IV presents the FPUs initially implemented for conducting 
the design space exploration process and Section V describes 
the CPU-FP coprocessor integration. The design space ex-
ploration is the subject of Section VI. The paper ends with 
some conclusions, ongoing and future work, in Section VII. 

II. RELATED WORK 

The amount of works proposing FPGA acceleration of 
specific problems demanding FP is quite large. However, 
approaches other than exploring FPGA fine-grain parallelism 
exist as well. The proposals of Chong and Parameswaran [1] 
and Beauchamp et al. [2] produce each a case to justify the 
inclusion of embedded FPUs in FPGAs. However, such 
pleads do not seem to have had effect so far on mainstream 
FPGA vendors.  

When FPGA resources were more modest, some authors 
proposed configurable FP formats and FP module libraries. 
An example of the first is Dido et al. [3] that designed a spe-
cific, parameterizable, non-IEEE format for DSP design on 
FPGAs. Belanovic and Leeser [4] on another effort proposed 
a parameterizable module library, able to support the con-
struction of FP operators adapted to the application in view. 

2009 International Conference on Reconfigurable Computing and FPGAs

978-0-7695-3917-1/09 $26.00 © 2009 IEEE

DOI 10.1109/ReConFig.2009.26

24

Authorized licensed use limited to: PONTIFICIA UNIV CATOLICA DO RIO GRANDE DO SUL. Downloaded on January 21, 2010 at 14:36 from IEEE Xplore.  Restrictions apply. 



Other works suggest that very high performance is 
achievable in FPGA FP computations, by carefully designing 
basic FP operators, as shown by Jie et al. [5]. Such works 
support the adoption of core based approaches used here. 

Finally, there are works proposing the integration of em-
bedded processors and FP hardware in FPGAs. This forms a 
complete solution, as investigated here. Papakonstantinou et 
al. [6] use the Altera Nios configurable soft core and FP cus-
tom instructions for accelerating MP3 processing. Their ar-
chitecture is specific for the problem. Kadlec et al. [7] im-
prove FP performance of a MicroBlaze soft processor with 
up to eight FP coprocessors, each controlled by a reconfigur-
able Picoblaze soft processor. The integration is strongly 
based on the EDK environment for connecting Microblaze 
and the coprocessor. Configuring of the coprocessor control-
lers may require assembly coding. In another work, Steiner 
et al. from Xilinx [8] showed how to accelerate FP with a 
FPGA-specific firm FPU coupled to an embedded hard core 
PowerPC processor. Again, EDK is used, which may impair 
flexibility. The approach described here uses an open source 
embedded processor enabling low level optimization of the 
processor/coprocessor interface. Also, the paper explores a 
generic processor plus FPU combination, favoring fast de-
sign of blocks, dozens of which can be replicated in FPGAs. 

III. A MIPS-I COPROCESSOR 1 DESIGN 

Although proposed almost 30 years ago, the MIPS-I ar-
chitecture is still largely employed today, in several niche 
embedded applications. Its straightforward RISC architecture 
is well known and some encompassing open-source imple-
mentations are available. Due to these characteristics, this 
work uses the MIPS-I architecture and proposes an FP co-
processor for it that serves as basis to the experimentation.  

A. The MIPS-I architecture and coprocessors 

The MIPS-I basic block diagram appears in Figure 2. 
This is a 32-bit RISC processor with a load/store architec-
ture, where all arithmetic and logic instructions operate on 
register values only. The MIPS CPU contains 32 32-bit gen-
eral purpose registers, named $0 (which is in fact the con-
stant zero, not a proper register) through $31. There are Har-
vard and von Neumann organizations proposed for this ar-
chitecture, and pipelined implementations of the hardware 
have often been used. 

 

 
MIPS 
CPU 

 

Memory 
Subsystem 

 

 
CP0 

IO-Traps 

 

CP1 
(FPU+) 

 

Figure 2.  A typical structure for a MIPS-I architecture processor. 

A MIPS-I architecture consists of a central processing 
unit (CPU) and functional units, or coprocessors, that per-
form auxiliary tasks or operate on other data types. The ar-
chitecture supports operation with one to four co-processors 
two of which are displayed in the block diagram of Figure 2. 

The CP0 co-processor is used to control the system, perform-
ing tasks such as memory management (when needed), inter-
rupt and exception handling, producing execution diagnos-
tics, etc. The CP1 coprocessor is the FPU. The other two 
coprocessors are reserved for implementation of additional 
units, depending on the specific utilization devised for the 
architecture. CP0 is usually implemented within the proces-
sor, on the same chip. Other coprocessors, including CP1, 
can be implemented separately or as part of the same chip. 

The CP1 is defined by the MIPS-I architecture as an 
IEEE 754-compliant floating point coprocessor, with its own 
32 32-bit wide registers, that operates in both single and 
double precision. This work limits developments to single 
precision implementations, but most results can easily extend 
to treat a full single/double precision FPU version. 

Most complex systems on chip (SoCs) built today reuse 
complex modules extensively. Accordingly, all experiments 
described herein assume a core based design approach, 
where available processor and FP cores are reused or gener-
ated automatically with design automation tools. HDL cod-
ing takes place only where reuse is not possible or feasible. 
For the MIPS CPU architecture, this work selected the Plas-
ma open-source implementation [9] that presents structure 
and memory interface as depicted in Figure 3.  Plasma is a 
von Neumann organization supporting all MIPS-I instruc-
tions, except for unaligned load and store instructions, be-
cause these are patented. 

PLASMA 

CPU MEMORY 

address_next 

byte_we_next 

address 

byte_we 

data_r 

data_w 

mem_pause 

 

 

Figure 3.  Plasma block diagram and its memory interface, taken from [9]. 

The latest available version of Plasma comes with a GNU 
gcc cross compiler and an operating system kernel support-
ing real time applications, besides software facilities like a 
TCP/IP protocol stack and a boot loader. The free VHDL 
embedded core also includes peripherals like a bidirectional 
serial port, DDR SDRAM controller, MAC Ethernet inter-
face and a Flash controller. However, Plasma does not con-
tain any memory management unit or FPU. The control co-
processor CP0 deals only with interrupt enabling/disabling 
and some exception treatment. 

B. Structure of the Proposed MIPS Coprocessor 1 

The structure of a fully-fledged MIPS coprocessor 1 
(CP1) comprises three main elements: the FPU itself, a regis-
ter bank similar to that of the CPU, and a controller. A data-
path for the proposed CP1 appears in Figure 4. The FPU 
(fpu) and the register bank (bc_regs) are combined with an 
instruction register (ir) and some simple modules that enable 

25

Authorized licensed use limited to: PONTIFICIA UNIV CATOLICA DO RIO GRANDE DO SUL. Downloaded on January 21, 2010 at 14:36 from IEEE Xplore.  Restrictions apply. 



operations not supported by a typical FPU. These are needed 
to cover the whole set of MIPS-I FP instructions, including 
modules to execute absolute value (abs), negation (neg), 
conversions (cvt) and comparison (cmp) instructions. 

 

Figure 4.  Block diagram of the proposed CP1 datapath. 

The hidden controller, HFP_control, interacts with the 
MIPS CPU through a streamlined interface, the most rele-
vant signals of which are depicted in Figure 4. Besides the 
basic 32-bit data transfer signals (data_in and data_out), 
the controller receives one CPU signal (fetch) and generates 
two signals used by external entities: FPcond signals the 
result of an FP comparison instruction by the CP1, enabling 
the CPU controller to execute control flow instructions based 
on FP conditions, while signal bus_mux routes data from 
FP data movement instructions outside the CP1 to the CPU 
or memory subsystems. 

To the knowledge of the authors no MIPS-I CP1 is avail-
able in open-source format and little information other than 
manuals of commercial MIPS designs are found in the litera-
ture. The CP1 designs proposed are thus an original work 
unavailable on the Opencores Plasma project. The fpu block 
of the proposed CP1 is one of the sources of the design ex-
ploration process performed here. It is obtained from either 
reuse of open source code or from the use of automatic gene-
rators, as described in Section IV. 

Another point to clarify is that Plasma had to be adapted 
to accommodate the new module. The CP1 operates in paral-
lel with the CPU. It captures instruction words and decodes 
them to find out when an instruction has to be executed by it 
and not by the CPU. The Plasma correctly ignores FP in-
structions, but it has to suspend operation while an FP in-
struction is under execution. This takes place by OR-ing to-
gether signals mem_pause from the memory with the busy 
signal form the CP1 (See Figures 3 and 4). Also, since Plas-
ma employs a von Neumann organization, instructions and 
data share the CPU input data bus. Thus, it was necessary to 
edit the Plasma interface, by adding a new signal (fetch) that 
indicates when an instruction fetch occurs. This enables the 
CP1 to decode instructions in parallel with the CPU. 

IV. FPUS FOR DESIGN SPACE EXPLORATION 

This paper adopts two methods to further the core based 
design approach of the design space exploration process. The 
first is the reuse of a generic FPU. The choice in this case 
was for the Opencores module FPU100 [10], a VHDL, IEEE 
754-compliant, single precision soft core. The second me-
thod relies upon the use of a design automation tool capable 
of generating firm cores for FPGAs. The choice here was for 
the Xilinx Core Generator tool (Coregen), which enables the 
parameterized, automatic generation of hardware FP opera-
tors for Xilinx FPGAs. The tool was used to produce two 
versions of FPUs functionally and structurally equivalent to 
the FPU100, to enable fair comparisons. 

A. The Open-Source FPU100 FPU 

The FPU100 datapath block diagram appears in Figure 5. 
It contains four operators, one for performing addition and 
subtraction, one for square root and two others for the re-
maining arithmetic operations (multiplication and division). 
The core supports the four IEEE 754 rounding modes 
through the 2-bit control input rmode_i, and is capable to 
signal all exceptions predicted in the standard, through the 8-
bit exception_o output. As usual, exception treatment is left 
to software. This work ignores exceptions. The communica-
tion protocol with this FPU uses two signals, start_i and 
ready_o, that signal the start and end of the FP computation 
for the operation specified by the fpu_op_i signal. As MIPS-
I does not contain a square root instruction, the FPU100 was 
edited to remove this block for the purpose of this work. 

 
 
opa_i opb_i mode_i start_i 

ready_o exception_o output_o 

fpu_op_i 

 

 

PRE-NORM 

ARITH. CORE  

POST-NORM 

add/sub 

PRE-NORM 

ARITH. CORE  

POST-NORM 

mult sqrt 

PRE-NORM 

ARITH. CORE  

POST-NORM 

div 

PRE-NORM 

ARITH. CORE  

POST-NORM 

multiplexer 

trigger 

 

Figure 5.  Block diagram for the FPU100 core datapath. 

B. The Xilinx Coregen FPUs 

Coregen is part of the ISE Design Suite for Xilinx 
FPGAs. It allows the user to choose among a large number 
of parameterizable hardware generators to support core 
based design for Xilinx FPGAs. Although some modules are 
in fact only available after the payment of licensing fees, 
many are included freely with the ISE license, available for 
academic institutions through the Xilinx University Program. 
This work employed the Floating Point hardware generator 
version 3.0, available in the ISE Design Suite version 10.1, 
with Service Pack 3.  

Coregen allowed the production of two FPU versions 
with interface and functionality compatible with the 
FPU100, as illustrated in Figure 6. Besides the arithmetic 

26

Authorized licensed use limited to: PONTIFICIA UNIV CATOLICA DO RIO GRANDE DO SUL. Downloaded on January 21, 2010 at 14:36 from IEEE Xplore.  Restrictions apply. 



operators it was possible to automatically produce modules 
to perform comparisons and conversions eliminating the 
need for the external cvt and cmp modules of Figure 4.  

 
 

multiplexer 

output_o exception_o 

comp 
< 

comp
= 

comp 
≤ 

conv 
fl�int 

conv 
int�fl 
  

opa opb

sub mul div 

mode_i fpu_op_i 

add 

 

Figure 6.  Block diagram for the Coregen FPU with minimum latency. 

Coregen floating point hardware generator allows speci-
fying each module’s latency. The two FPU Coregen versions 
differ in this aspect. One uses minimum latency, while the 
other employs maximum latency for all modules. Since the 
minimum latency Coregen FPU takes exactly the same num-
ber of cycles for all operations, signals start_i and ready_o 
are not necessary and are accordingly eliminated. This is not 
the case for the maximum latency version which does 
present these signals on its external interface. Intermediate 
latencies between the minimum and maximum values are 
possible and their investigation is left as future work. 

V. CP1S-PLASMA INTEGRATION  

The development of the three functionally equivalent and 
structurally similar FPUs described in Section IV enabled 
producing single-precision CP1s containing each FPU. Next, 
took place the integration of each of these CP1s with the 
Plasma. Figure 7 depicts the general interconnection struc-
ture for these fully synchronous versions of the Plasma with 
Hardware Floating Point Unit (Plasma-HFP).  

Besides the already cited modifications on the Plasma 
CPU (addition of the fetch output, see Section III), other 
changes in Plasma were needed to accommodate the com-
plete functionality of the CP1s. This occurs because copro-
cessor-related instructions of MIPS-I are absent in the Plas-
ma CPU. The instructions in question are the data movement 
instructions between CP1 and the memory (swc1 and lwc1), 
between the CPU and the CP1 (mtc1 and mfc1), and the 
conditional branch instructions based on CP1 results (bc1t 
and bc1f). The former two are more easily implemented in 
the CPU, because they need the base address register value 
from the CPU register bank. The latter two test the FPcond 
input coming from the CP1 to control the instruction flow. 
Decoding of other FP instructions is overlooked by the CPU, 
since these are taken over by the CP1 controller. In the pro-
posed implementation, the memory does not need to insert 
wait states. Thus, the mem_pause signal is in fact under 
control of the CP1 only. Also, it was necessary to interpose 
the multiplexers appearing in Figure 7, to create a path for 
data exchanges between CPU, memory subsystem (RAM) 
and CP1s. In this version each multiplexer is controlled by 
the CP1 through the 4-bit signal bus_mux, one for each 

multiplexer. Also, the 32-bit memory interface accepts byte 
enable writes controlled by the mem_byte_we 4-bit signal. 
For the CP1s all writing deal with entire words only, explain-
ing the enable all (“1111”) signal. 

address
RAM

mem_address
mem_data_w

mem_data_r

mem_byte_we

data_write

data_read

mem_byte_we

1111

Plasma

CPU

Plasma-HFP

data_in

data_out

fetch
busy

bus_mux

CP1

FPcond

 

Figure 7.  Overall structure of the fully synchronous Plasma-HFP organi-
zations. Clock signals and less relevant signals are omitted. 

The Plasma-HFP organizations described in this Section 
are the starting point for the design space exploration. 

VI. DESIGN SPACE EXPLORATION 

The main intent of this work is to investigate core based 
design processes for using FPU hardware in FPGA embed-
ded processors. The primary method to conduct the investi-
gation is to examine design trade-offs in performance, identi-
fied by the maximum operating frequency in synchronous 
systems, and FPGA area occupation, in LUTs. This is ap-
proached in Section VI.A. The results of this first step served 
to further the design space exploration, enabling to create a 
better implementation of the Plasma-HFP, as described in 
Section VI.B. Finally, Section VI.C brings some data on the 
acceleration achievable with the proposed organizations for 
FP intensive application modules. 

A. Basic Space Exploration 

To analyze the trade-offs, all three Plasma-HFP versions 
passed by synthesis and prototyping. All organizations were 
successfully prototyped on a Dinigroup DN8000K10PCI 
platform with a Xilinx Virtex4 XCV4FX100-10 FPGA. An 
example C program to exercise all single precision MIPS-I 
FP instructions was compiled, loaded on organization memo-
ry and run. The Xilinx Chipscope on-chip verification tool 
certified the process. Table I displays the results of this step.  

The synthesis process used two distinct tools: XST, the 
ISE Design Suite 10.1 built-in tool and Synplify-Pro version 
9.4 from Synplicity. Since exploring the best possible use of 
the tools was not an issue, both were explicitly parameterized 

27

Authorized licensed use limited to: PONTIFICIA UNIV CATOLICA DO RIO GRANDE DO SUL. Downloaded on January 21, 2010 at 14:36 from IEEE Xplore.  Restrictions apply. 



to use only default settings. For each organization, Table I 
displays four lines, the first of which containing data about 
the synthesis of the whole organization and the other three 
with data about the synthesis of selected modules: the whole 
CP1, the hidden controller and the FPU itself. Each of these 
three lines results from separate synthesis processes. 

TABLE I.  INITIAL DESIGN SPACE EXPLORATION DATA FOR A XILINX 

VIRTEX4 XCV4FX100-10 FPGA. THE 4-LINE GROUPS BRING GLOBAL AND 

PARTIAL DATA ABOUT EACH PLASMA-HFP VERSION. THE LAST 2 LINES 

RELATE TO THE CPU AND THE CP1 REGISTER BANK.  

Module / Tool 

XST Synplify 

Frequency 
(MHz) 

Area (LUTs) 
Frequency 
(MHz) 

Area (LUTs) 

Plasma-HFP100 28,52 13513 (16%) 34,10 8221 (9%) 

- CP1 28,89 10285 (12%) 33,60 5399 (6%) 

- Controller 330,24 1005 (1%) 179,00 1085 (1%) 

- FPU 28,58 8328 (9%) 78,00 3283 (3%) 

Plasma-HFPMin 5,84 7606 (9%) 5,60 7342 (8%) 

- CP1 5,84 4553 (5%) 5,70 4596 (5%) 

- Controller 759,71 137 (1%) 784,10 118 (1%) 

- FPU 83,99 3283 (3%) 190,00 3489 (4%) 

Plasma-HFPMax 61,50 8092 (9%) 35,20 7594 (8%) 

- CP1 79,42 4815 (5%) 46,60 4810 (5%) 

- Controller 478,48 116 (1%) 234,10 98 (1%) 

- FPU 249,83 3532 (4%) 208,90 3582 (4%) 

Plasma Only 66,07 3124 (3%) 38,50 2382 (2%) 

Reg_bank_FPU NA 1068 (1%) NA 1062 (1%) 

 
The first feature salient in the Table is that an embedded 

processor with FP hardware takes as little as 8% of the 
FPGA. Remember this family contains devices with as much 
as twice this amount of resources (3x more in Virtex5). Also, 
this module fits in some of the smallest family members. 

Table I area information shows that Synplify consistently 
obtains better area results than XST. However, the difference 
is only significant for the FPU100. This is due to the fact that 
the FPU100 source code does not use Xilinx specific FPGA 
features like Block-RAMs or LUT-RAMs and Synplify has 
better RAM-inference algorithms than XST. For the Coregen 
versions this is probably not relevant, since this Xilinx tool is 
expected to use Xilinx FPGA features extensively. Thus, 
using XST or Synplify does not impact area significantly 
when using Coregen to produce FP modules. As for the op-
erating frequency, the results point again to the use of Synpl-
ify as a better choice for the open-source FPU100. For Core-
gen, however, both tools give bad results for the min. latency 
version and the minor gains in area with regard to the maxi-
mum latency version do not justify the performance loss. 

Finally, the partial data on operating frequencies of se-
lected modules led to the conclusion that the CP1 design was 
not the best possible, because the main FP modules (the 
FPUs) had maximum operating frequency far larger than the 
corresponding CP1, except in one case. The analysis of this 
result and the measures taken to overcome this are the sub-
ject of the next Section. 

B. Enhancement of the Plasma-HFP System 

The first problem is to explain why the CP1 implementa-
tions obtained very low maximum operating frequencies 
compared to the respective FPUs. The next is to propose a 
solution for it. Finally, if the first problem can be solved the 
discrepancy between the maximum operating frequency of 
the CPU and its CP1 has to be overcome. 

Referring to Figure 4, an analysis of the proposed CP1 
organization revealed that the data interface between the CP1 
register bank and the FPU was at the core of the problem, 
with a very long critical path. This can be explained in part 
by the large combinational multiplexers at each output of the 
register bank, associated to the combinational path after the 
inputs of the FPU. To solve this, the data interface has been 
registered and the controller behavior changed accordingly. 
This alone had a dramatic impact on the maximum operating 
frequencies of the CP1s, which become practically identical 
to the FPU operating frequency (near 250MHz). Also, the 
original register bank was written in generic VHDL and an 
analysis of the Plasma CPU showed that it contained func-
tionally equivalent modules using hard features of both Xi-
linx and Altera FPGAs. Thus, the CP1 register bank was 
exchanged by the appropriate module, reducing the CP1 reg-
ister bank area to one tenth of its original size. 

To overcome the CPU-CP1 operating frequency discre-
pancy, the solution was the use of a globally asynchronous, 
locally synchronous (GALS) design approach for the em-
bedded processor. Figure 8 shows the new organization. 

F
P
_
in
s
tr

F
P
c
o
n
d

 

Figure 8.  Proposed organization for GALS version of the Plasma-HFP. 

In the Plasma-HFP-GALS, CPU and memory are located 
in one clock domain and the CP1 is at another clock domain. 
The exchange of data and control signals among the domains 
relies on the use of simple two-flop synchronizers [11]. Due 
to the separation of clock domains and to the intrinsic ineffi-
ciency added by the simple synchronizers, it was necessary 
to modify the CPU-CP1 interface. Two-flop synchronizers 

28

Authorized licensed use limited to: PONTIFICIA UNIV CATOLICA DO RIO GRANDE DO SUL. Downloaded on January 21, 2010 at 14:36 from IEEE Xplore.  Restrictions apply. 



imply a latency of at least two additional clock cycles on the 
receiving domain, which become at least four cycles if a 
handshake between domains is necessary. To avoid this as 
much as possible, all multiplexers remained in the CPU 
clock domain and their control migrated to the CPU, requir-
ing Plasma code alterations again. With this new organiza-
tion only two instructions suffered additional delay, move 
from coprocessor 1 and the store from coprocessor 1 instruc-
tions (MFC1 and SWC1). These instructions required the 
addition of the data_from_cp1 control line in the CP1-CPU 
interface. Both instructions now take 4 CPU cycles to ex-
ecute, instead of the 2 cycles in the synchronous version. 

C. Application Modules Behavior Comparison 

The GALS version of the Plasma-HFP used as basis for 
development the Plasma-HFPMax synthesized with the XST 
tool, which provides the best area-performance trade-off. To 
evaluate the new area-performance trade-offs, four FP-
intensive application modules (sine and cosine computations 
and FIR and IIR digital filters) have been adapted to run on 
the synchronous and GALS organizations. Table II compares 
the obtained results, using as reference the performance of a 
Plasma-only organization emulating FP instructions with 
integer instructions, a code produced by gcc.  

TABLE II.  PERFORMANCE OF 4 FP APPLICATION MODULES RUNNING ON 4 
DIFFERENT ORGANIZATIONS – SW EMULATION, SYNCHRONOUS HFP, AND 

GALS HFP WITH 2 FP TO CPU FREQUENCY RELATIONS, 4 AND 8. 

FP Organizations 
Accelerations 

Application Module Clock Cycles for Execution 

Sine Cosine FIR IIR 

# of FP Instructions 1124 1043 37 26 

Sw Emulation 89898 81906 2662 3776 

Synchronous HFPMax 11638 10729 884 396 

- Sw Em. Accel. 7.7X 7.6X 3.0X 9.5X 

GALS HFPMax 4X 9381 8671 805 224 

- Sw Em. Accel. 9.5X 9.4X 3.3X 16.8X 

- Sync HFP Accel. 1.2X 1.2X 1.1X 1.7X 

GALS HFPMax 8X 8722 8065 775 172 

- Sw Em. Accel. 10.3X 10.1X 3.4X 21.9X 

- Sync HFP Accel. 1.3X 1.3X 1.1X 2.3X 

- GALS HFP 4X Accel. 1.07X 1.07X 1.03X 1.3X 

 
To highlight GALS systems behavior, the GALS 

HFPMax organization runs with two combinations of clock 
frequencies: 12.5 and 50MHz for CPU and CP1 respectively, 
and 25 and 200MHz. More relevant than the absolute fre-
quency values is the relation between these, which directly 
affects overall performance. The Table accordingly brings 
results in clock cycle count. From the results, the potential 
benefits of using the organizations should be clear. Accelera-
tions do depend a lot on the application and the consideration 
of what organization to use in a given embedded application 
must pass by the execution of the candidate code on each 
organization. However, improvements of more than 20 times 
over SW emulation can make a difference in many fields. 

VII. CONCLUSIONS AND ONGOING WORK 

This paper demonstrated that using FPGAs as a substrate 
to implement embedded processors with FP hardware is 

feasible and has a manageable cost, even for small less-than-
state-of-the-art devices. It also demonstrates that the use of 
available soft and firm cores enables fast execution of design 
space exploration for embedded applications for FP manipu-
lation. The experiments have a generic nature and should 
easily map to several other processor architectures and FPUs. 

Several directions are available to extend the design 
space exploration described here. Concerning the FPU, inter-
esting enhancements include consider double-precision 
hardware and exception treatment issues and their influence 
in the processor and software design. Since even in FPGAs 
power concerns are growingly important, the studies can be 
extended to account for power dissipation, to complete the 
spectrum of considered design issues. Another important 
aspect is the proposed use of GALS techniques. Two-flop 
synchronizers are simple and fast to use, but have strong 
impact on performance. The use of better synchronizers as 
proposed in [12] are currently under investigation.  

ACKNOWLEDGMENT 

This work receives partial support from the Conselho 
Nacional de Desenvolvimento Científico e Tecnológico 
(CNPq-Brazil) under grants 134400/2008-9 (PNM), 
309255/2008-2 and 141247/2005-3. 

REFERENCES 

[1] Y. Chong, S. Parameswaran, "Flexible multi-mode embedded float-
ing-point unit for field programmable gate arrays," in: 17th Int. Symp. 
on Field Programmable Gate Arrays (FPGA’09), pp. 171-180. 

[2] M. Beauchamp, S. Hauck, K. Underwood, K. Hemmert, "Embedded 
floating-point units in FPGAs," in: 14th International Symposium on 
Field Programmable Gate Arrays (FPGA’06), pp. 12-20. 

[3] J. Dido, N. Geraudie, L. Loiseau, O. Payeur, Y. Savaria, D. Poirier, 
"A flexible floating-point format for optimizing data-paths and opera-
tors in FPGA based DSPs," in: Proc. 10th Int. Symp. on Field Pro-
grammable Gate Arrays (FPGA’02), pp. 50-55. 

[4] P. Belanovic, M. Leeser, "A library of parameterized floating-point 
modules and their use," in: 12th Int. Conf. on Field-Programmable 
Logic and Applications (FPL’02), Sep. 2002, pp. 657-666. 

[5] S. Jie, Y. Ning, Z. Xiao-Yan, "An IEEE compliant floating-point 
adder with the deeply pipelining paradigm on FPGAs," in: 2008 Int. 
Conf. on Comp. Sc. and Soft. Eng. (CSSE’08), 2008, pp. 50-53. 

[6] A. Papakonstantinou, Y. Kifle, G. Lucas, D. Chen. "MP3 decoding on 
FPGA: a case study for floating point acceleration," in: 4th Annual 
Reconfigurable Systems Summer Institute (RSSI’08), Jul. 2008, 4pp. 

[7] J. Kadlec, R. Bartosinski, M. Danek, "Accelerating Microblaze float-
ing point operations," in: 17th Int. Conf. on Field-Programmable Log-
ic and Applications (FPL’07), Sep. 2007, pp. 621-624. 

[8] G. Steiner, B. Jones, P. Alfke, "Floating Point: Have it Your Way 
with FPGA Embedded Processors," Xcell J. 1st Q. 2009, pp. 32-35. 

[9] OpenCores, “Plasma-most MIPS I(TM) opcodes: overview,” captured 
in: http://www.opencores.org/?do=project&who=plasma, Aug. 2009. 

[10] OpenCores, “FPU100: overview,” captured in: http://www. open-
cores.org /?do=project&who=fpu100, Aug. 2009. 

[11] R. Ginosar. “Fourteen ways to fool your synchronizer,” In: IEEE Int. 
Symp. on Asynchronous Circuits and Systems (ASYNC03), May 
2003, pp. 89-96. 

[12] R. Dobkin, R. Ginosar, “Two-phase synchronization with sub-cycle 
latency,” Integration the VLSI Journal, 42(3), Jun. 2000, pp. 367-375.

29

Authorized licensed use limited to: PONTIFICIA UNIV CATOLICA DO RIO GRANDE DO SUL. Downloaded on January 21, 2010 at 14:36 from IEEE Xplore.  Restrictions apply. 


