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Abstract—The use of NoCs in complex MPSoCs is a reality in 

academic researches and industrial designs. A lot of research 

effort has been conducted in the last years in NoC and MPSoC 

designs, but few works address the gap between the NoC 

infrastructure and the MPSoC software applications. An 

important issue in MPSoC design is QoS, since applications 

running in such systems may have tight timing constraints, as 

video processing or fast communication protocols. This work 

bridges the hardware/software gap, exploring the integration 

of low-level NoC services into an application programming 

interface (API). Such API hides the interconnection complexity 

from programmer and provides efficient design space 

exploration to meet the QoS application requirements. Results 

shows that, even with the huge available bandwidth offered by 

NoCs, such interconnection architecture is not capable to meet 

QoS constraints when flows compete for common resources 

inside the NoC. Using the priority scheme developed in this 

work, applications executing in the MPSoC achieve the 

performance requirements. This work highlights the need to 

integrate NoC and MPSoC design efforts in a unified 

framework.  (Abstract) 
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I. INTRODUCTION 

Multiprocessor systems-on-chips (MPSoCs) provide a 

huge design space exploration for applications with high 

computational demands. MPSoCs are used in applications 

such as networking, signal processing, and multimedia. 

Increasing its programmability makes them more flexible, 

allowing its use in a wide range of digital systems. In this 

way, the MPSoC lifetime increases, reducing the price for 

the final consumer.  

Since the platform computational power is distributed in 

several processing elements (PEs), its synchronization and 

message passing have a crucial role in the system 

performance. As the number of PEs trends to increase to 

dozens in a near future, an unscalable interconnection 

architecture, such as traditional busses, are not 

recommended to be used in such systems. Networks-on-chip 

(NoCs) support the communication requirements of modern 

MPSoCs, due to features as scalability, QoS support, 

parallel transactions, and high aggregated throughput.  

Increasing MPSoCs flexibility also imply new 

applications added to the systems at run time. Therefore, 

design time approaches to support QoS, such as network 

dimensioning, reduce the NoC-based MPSoC flexibility, 

since the NoC resources cannot be managed. To support 

QoS in a dynamic environment, applications should have 

access to the NoC services. Thus, the programmer can 

manage the NoC resources to meet the application 

requirements at run-time. 

This paper shows the need to expose NoC services at the 
task level in NoC-based MPSoCs. A complete system is 
presented, enabling the management of QoS flows through a 
dedicated API. 

This paper is organized as follows. Section II presents 
related work in resource management in NoC-based 
MPSoCs. Section III gives an overview of the target NoC-
based platform. Section IV describes the implemented 
support to QoS in the reference NoC. Section V describes the 
QoS integration from the NoC physical level up to the task 
level. Section VI presents evaluation results. Finally, Section 
VII presents conclusions and directions for future work. 

II. RELATED WORK 

With the shifting in the interconnection architecture 

from busses to NoCs, modern MPSoCs need to jointly 

manage computation and communication resources to 

ensure QoS to specific flows. The abstraction of the 

communication or the computation architectures to higher 

abstraction levels (e.g. through an API), hides the hardware 

complexity, allowing the system programmer to explore the 

design space in an efficient way.  

The Tilera TILE64 [1] MPSoC consists of an 8x8 grid 

of tiles connected by five overlapped 2D mesh NoCs 

(iMesh). To take advantage of the whole bandwidth 

afforded by the on-chip integration of multiple mesh net-

works, Tilera provides a C-based user-level API library 

called iLib. There are two broad categories of communica-

tion in iLib: socket-like channels for streaming algorithms 

and a MPI-like message passing for ad hoc messaging. iLib 

provides several channel APIs, each optimized for a 

different communication needs such as low latency and high 

throughput. Through several communication primitives, it 

lets the programmer to use the best communication interface 

for the application being developed. 

Winter and Fetteweis [2] present a global 

communication resource allocator working at the task level. 

The Guaranteed Traffic (GT) provided by the employed 

NoC is managed by a unity called NoC Manager (NoCM). 



This unit finds, allocates and releases channels between two 

PEs, providing deterministic latency and bandwidth. NoCM 

has knowledge about all links in the MPSoC, and where 

they are available or not. As soon as a PE needs a GT path 

to another PE, it requests a path reservation to the NoCM. 

This, in turn, performs the resources allocation and notifies 

the PEs about the connection establishment. To speed up 

resources allocation, the NoCM has direct connections with 

all NoC routers, which is an incompatible design decision 

considering the distributed NoC paradigm. 

Moreira et al. [3] present a similar resource allocation 

approach based on a global unit. For each set of tasks 

belonging to an application, resource budgets are computed 

offline (compilation time) such that the application meets 

the timing constraints. For hard real-time applications, an 

exhaustive temporal analysis is performed to determine 

these budgets. For soft real-time applications, a combination 

of temporal analysis and simulation may be used. When an 

application is requested to start, resources that meet the 

required resource budgets have to be found by the resource 

allocator. To meet the application constraints the resource 

allocator ensures: (i) admission control – an application is 

only allowed to start if the system can allocate upon request 

the resource budget it requires to meet its timing 

requirements; and (ii) guaranteed resource provisions - the 

access of a running application to its allocated resources 

cannot be denied by any other application. 

Pastrnak et al. [4] describe a hierarchical QoS model for 

managing multimedia applications running on a MPSoC. 

The target application is a MPEG-4 shape-texture decoder 

that is fully object based, using arbitrary object shapes. The 

work considers a class of QoS systems that relies on 

predicting the execution times of the application at run-time, 

while also taking into account the data dependencies. The 

architecture of the proposed QoS concept is based on two 

negotiating managers, instead of a conventional single 

resource manager. A Global QoS manager controls the total 

system performance involving all applications and a Local 

QoS manager controls an individual application within the 

assigned resources. 

The trend in MPSoCs design is to have dozens of PEs in 

a near future. Therefore, centralized approaches to ensure 

QoS to flows is a non scalable method, inappropriate to be 

used in large systems. An exception to centralized 

implementation is the Tilera MPSoC, which uses a 

distributed approach. However, the article describing the 

Tilera architecture does not present the iMesh QoS features 

and the integration of the NoC services at the task level. 

Several mechanisms must be used jointly to ensure QoS, as 

task mapping, resource reservation, traffic monitoring and 

task migration.  

The contribution of this work is to expose NoC 

features, as a priority scheme to transmit packets, up to the 

task level, to ensure QoS to specific application flows. This 

paper is a starting effort on bridging the gap between NoC 

services and MPSoC software tasks aiming to increase the 

overall system programmability. 

III. MPSOC ARCHITECTURE OVERVIEW  

Our target architecture is a homogeneous NoC-based 

MPSoC platform called HeMPS [8]. Figure 1 presents a 

HeMPS instance using a 2x3 mesh NoC. The main 

hardware components are the HERMES NoC [6] and the 

mostly-MIPS processor Plasma [9]. A PE, called Plasma-IP, 

wraps each Plasma processor, attaching it to the NoC. This 

IP also contains a private memory, a network interface, and 

a DMA module.  

 
Figure 1 - HeMPS instance using a 2x3 mesh NoC. 

Typical applications running in MPSoCs, such as 

multimedia and networking, often present dynamic 

workload needs. This implies a varying number of tasks 

running simultaneously, and their number or load often 

exceeds the available resources. To tackle this issue, 

HeMPS assumes: (i) applications are modeled using task 

graphs; (ii) only the kernels (the kernel is in effect a 

minimal operating system, one per Plasma) are initially 

loaded into the system. All application tasks are stored in an 

external memory, named task repository. Each application 

has at least one initial task, being the remaining tasks 

requested by the initial task, or other task already loaded 

into the system. Figure 2 shows a synthetic application, 

modeled using a task graph, with one initial task (task 0). 
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Figure 2 – Task graph modeling a synthetic application, being 

‘0’ the initial task. 

The system contains a master processor (Plasma-IP 

MP), responsible for managing system resources. This is the 

only processor having access to the task repository. When 

HeMPS starts execution, the master processor allocates 

initial tasks to the slave processors. The user defines the 

mapping of the initial tasks. The remaining tasks are 

mapped at run time according to some mapping heuristic, 

targeting e.g. congestion minimization. 

Each slave processor (Plasma-IP SL) runs a kernel, 

supporting multitasking and task communication. The kernel 

segments memory in pages, which it allocates for itself (first 

pages) and tasks (subsequent pages). The memory pages are 

protected and all communication among tasks occurs 

through message passing. During execution, tasks are 



dynamically loaded from the task repository to the slave 

processors on demand. In addition, resources may become 

available when a given task finishes execution. Such 

dynamic behavior enables smaller systems, since only those 

tasks effectively required are loaded into the system at any 

given moment. 

To achieve high performance, the Plasma-IP architec-

ture separates communication from computation. The 

network interface and DMA modules are responsible for 

sending and receiving packets, while the Plasma processor 

performs task computation and wrapper management. The 

local RAM is a true dual port memory allowing 

simultaneous processor and DMA accesses, avoiding extra 

hardware for elements as mutex or cycle stealing techniques. 

IV. QOS SUPPORT AT THE NOC LEVEL 

Most NoC implementations only provide support to best 

effort (BE) services [10], even those proposed by NoC 

companies like Arteris [11]. BE services guarantee delivery 

of all packets from a source to a target, but provide no 

bounds for throughput, jitter, or latency. This kind of service 

usually assigns the same priority to all packets, leading to 

unpredictable transmission delays. The term Quality of 

Service (QoS) refers to the capacity of a network to control 

traffic constraints to meet design requirements of an 

application or some of its specific modules. Thus, BE 

services are inadequate to satisfy QoS requirements for 

applications/modules with tight performance requirements, 

as in the case of multimedia streams. To meet performance 

requirements and thus guarantee QoS, the network needs to 

include specific characteristics at some level in its protocol 

stack. Accessing the relative priority and requirements of 

each flow enables an efficient assignment of resources to 

flows [12]. Current NoC designs employ at least one of 

three methods to provide QoS: (i) dimensioning the network 

to provide enough bandwidth to satisfy all IP requirements; 

(ii) providing support to circuit switching for all or selected 

PEs; (iii) making available priority scheduling for packet 

transmission. 

The Hermes NoC employs a 2D mesh topology. 

Routers have input buffers, a control logic shared by all 

router ports, an internal crossbar and up to five bi-

directional ports. The main modification in the original 

router to give support to some QoS level is the duplication 

of the physical channels (bi-directional ports), which 

connect neighbor routers. The physical channels were 

duplicated in all four directions (North, South, East and 

West), resulting in a router supporting up to nine bi-

directional ports. Thus, priority mechanisms can be used to 

differentiate flows. Channel replication was preferred to 

virtual channels due to its as smaller area overhead, 

increased router bandwidth and reliability, and simpler 

implementation [7]. Besides, priority mechanisms based on 

virtual channels lack on QoS support when more than one 

high priority packet requires the same output port, since the 

packets share the link bandwidth. Figure 3 illustrates the 

QoS router architecture. 
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Figure 3 – QoS router architecture with duplicated physical 

channels. 

In the present work, the implemented QoS support 

relies on fixed priorities mechanism. Two prioritized best 

effort (BE) traffic classes are distinguished inside the NoC: 

(i) high priority packets and (ii) low priority packets. One 

physical channel (channel 0) is reserved to transmit 

exclusively high priority packets, whereas channel 1 may 

transmit both packet classes. Sharing one of the two 

physical channels provides higher support to high priority 

traffics, since two high priority flows can share common 

paths. The priorities mechanism provides a soft guaranteed 

service (latency and bandwidth) to high priority traffics 

through a virtual resource reservation.  

The packets are injected into the NoC through the router 

Local port (not duplicated), which is shared by high and low 

priority packets. To differentiate incoming flows, besides 

the target address, the packet header flit has a priority bit. 

Each time a new packet enters the router, the control logic 

reads the priority bit and executes the routing algorithm and 

physical channel allocation. A high priority packet allocates 

the first free physical channel available in the direction 

selected by the routing algorithm, whereas a low priority 

one can allocates only the physical channel 0 in the selected 

direction. 

In this architecture, when more than two flows compete 

for common paths inside the NoC, QoS guarantees are 

affected, reducing the application performance. In fact, 

NoCs employing priority mechanism to ensure some QoS 

level tend to perform like BE NoCs as the amount of higher 

priority traffic increases. Priority mechanisms are simple 

and low cost solutions to ensure QoS for traffics with no 

rigid time constraints. 

 

A second modification in the original Hermes NoC, not 

related to QoS, is the routing algorithm. Packets are routed 

according to the Hamiltonian routing algorithm, which 

supports the dual path multicast [13] enabling the 

transmission of multicast and broadcast messages. 



V. INTEGRATING QOS SUPPORT FROM NOC TO TASK 

LEVEL  

Computational systems are layered in different 

abstraction levels in an effort to master its complexity. Each 

layer has a given functionality and communicates with 

adjacent levels (above/below it). Therefore, each layer uses 

the services of the lower layers and supplies them to the 

upper layer. Figure 4 shows the HeMPS system layers and 

the corresponding entities.  
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Figure 4 – HeMPS system layers. 

Each layer is responsible for: 

• Application layer: this level contains the description of 
each application to be mapped into the system. Each 

application is described as a task graph; 

• Task layer: this level contains the description of each 
task, using the synchronization and communication 

primitives available in the HeMPS API, provided by the 

OS layer; 

• OS layer: is a set of drivers responsible for task 
scheduling, task loading, memory management, DMA 

management, packet assembly/disassembly, and 

provides to the task layer the HeMPS API; 

• Transport layer: execute packet injection/reception and 
flow control; 

• Network layer: responsible for BE and QoS data 

transmission. 

 

The C-based HeMPS API provides two MPI-like 

communication primitives to allow inter-tasks message 

passing: (i) Send and (ii) Receive. These two primitives 

implement the message passing between tasks, which can be 

located in the same processor or different ones. The local 

communication is performed through the kernel area 

memory while the remote communication uses the NoC. 

Each kernel has a task-table with the location of local and 

remote tasks. Tasks location is transparent to the 

programmer, and the kernel is responsible for setting the 

NoC packet address where the target task is located. 

The Send primitive, available at the task level, has a 

dedicated parameter to set the message priority. The Send 

syntax is:  

Send(Message *msg, int target_task, int priority) 

where: 

• message *msg: points a message structure in the task 

memory; 

• int target_task: the message target task identifier; 

• int priority: the message priority (0-HIGH or 1-LOW).  

 

Each time the Send primitive is called, the kernel is 

scheduled to execute. The raw message is copied to the 

kernel area and tagged with a NoC header. To set the header 

with the target address, the kernel access its task table and 

searches the target task location using its identifier (Send 2
nd
 

parameter). Then, the NoC packet priority is set filling the 

priority bit in the header with the 3
rd
 Send parameter. 

Therefore, a memory image of the NoC packet is created. 

This is the only function of the Send primitive: create a 

packet image in the kernel area. Once this image is created, 

the task resumes its execution. This approach allows the 

parallel task execution and message transmission.  

A Receive primitive, executed by the consumer task, 

fires a packet transmission. The Receive primitive generates 

a message request packet to the producer task. An incoming 

message request interrupts the executing task and the kernel 

is scheduled. Then, the kernel configures the DMA module 

(DMA_Send()) to transmit the packet and the interrupted 

task is rescheduled. Since a true dual-port memory is used, 

packet transmission and task execution are carried out in 

parallel. All the implicit inter-kernel communication 

(control messages, e.g. message request) are transmitted in 

high priority packets. These messages are commonly short 

and do not disturb the high priority flows. Figure 5 

illustrates the Send sequence diagram.  
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Figure 5 – Send() sequence diagram. 

Figure 6 illustrates the Plasma-IP modules interaction 

during a Send-Receive processing. The illustrated steps are: 

1. The Plasma processor copies the message (msg) from 

the task memory area to the kernel memory area. The 

packet image is created in the kernel area. 

2. The DMA module is programmed to transmit the 

packet when the NI interrupts the Plasma-IP due to a 

message request. 

3. DMA module reads the packet image from the kernel 

memory area and sends it through the NoC using the NI 



module (the processor is not disturbed in this step). As 

the priority information is part of the packet header, 

there is no extra DMA pinout to inform the NI about 

the packet priority. 
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Figure 6 – Modules interaction. 

This inter-task communication scheme, non-blocking 

writing (if there is available memory space in the kernel 

area), and blocking reading has the following advantages: 

• A producer task may continues its execution, 

independently of the consumer status; 

• Network traffic is reduced, since the consumer task 

enters in wait state after a Receive execution until the 

producer task has data to transmit (there is no polling);  

• If a blocking Send and a non-blocking Receice was 

chosen, messages must be stored in the consumer side, 

or they may block the NoC if the consumer side has no 

available memory space. Also, if the consumer task is 

not yet allocated in the system, the producer task stalls 

for a large amount of time (until the consumer task be 

allocated). 

VI. RESULTS 

Two simulation scenarios are evaluated in a 4x4 

HeMPS instance. In the first one all involved flows are 

generated by Plasma-IPs, simulating a homogeneous 

MPSoC. The second one simulates a heterogeneous MPSoC 

with two traffic generators flows disturbing the Plasma-IP 

QoS flows. To speed up simulations, Plasma processor and 

RAM memories are modeled in SystemC (cycle accurate 

simulation), whereas the remainder system is described in 

synthesizable VHDL RTL. 

A. Homogeneous MPSoC QoS evaluation 

The goal of the first simulation scenario is to show the 

NoC behavior as the number of QoS flows increases. Figure 

7 presents the spatial distribution of the flows. Flows F1 and 

F2 (dotted lines) are QoS flows (higher priority) and the 

remainders (F3, F4, F5 and F6) are disturbing flows (lower 

priority). A flow is composed by burst packets (524 flits) 

interleaved by idle times. The injection rate of flows F1 and 

F2 is 30% of the link bandwidth, and the disturbing flows 

has an average injection rate of 18.5%. All flows are 

generated by the software executing in the Plasma 

processors. 
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Figure 7 – Spatial distribution of flows. F1 and F2 are QoS 

flows. F3, F4, F5 and F6 are disturbing flows. 

Figure 8 presents the throughput of each flow, as the 

number of QoS flows increases. Since the disturbing flows 

pairs F3-F4 and F5-F6 have the same target, the calculated 

pair throughput is the target throughput divided by 2. 

Initially only F1 and F2 are QoS flows and its throughputs 

are close to the injection rate. As the disturbing flows 

become QoS flows, the throughput of flows F1 and F2 

reduces. When all disturbing flows became QoS flows, all 

six flows have the same priority and the NoC acts as a BE 

NoC. In this condition, F1 and F2 throughput decays from 

29.91% and 28.83% to 21.95% and 20.91%, respectively. 

BE NoCs underutilize its resources, since there is no 

effective QoS management.  
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Figure 8 – QoS flows deterioration. 

This experiment demonstrates that: 

• When the number of QoS flows competing for resources 

do not exceed the designed QoS support, the soft QoS is 

guaranteed (in this experiment the NoC supports up to 2 

competing QoS flows); 

• The huge bandwidth provided by NoCs is not sufficient 

to ensure QoS when the number of concurrent QoS 

flows increases, even in an homogeneous scenario, with 

all flows being generated by processors (remember that 

each processor has the kernel overhead and sequential 



instruction execution, which reduces the injection rate); 

• Even do not exceeding the total NoC bandwidth, the 

flows may disturb each others; 

• The HeMPS API ensures soft QoS to the flows from the 

task level. Using it, flows F1 and F2 achieved a 

throughput equal 29.91% and 28.83% respectively. 

B. Heterogenous MPSoC QoS evaluation 

The second experiment shows that the QoS support, 

based on priorities, can efficiently guarantee throughput to a 

flow even under disturbing flows with high injection rates. 

Figure 9 presents the spatial distribution of the flows. The 

QoS flow F1 (dotted line) is generated by a Plasma-IP while 

the disturbing flows F2 and F3 (low priority) are generated 

by traffic generators. F1 injection rate is 30% of the NoC 

link bandwidth, and flows F2 and F3 have an injection rate 

of 100%.  
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Figure 9 – Flows spatial distribution. F1 is QoS flow.  

F2 and F3 are disturbing flows. 

In this scenario, considering a BE NoC, the F1 

throughput is 10.5%. Considering a QoS NoC, QoS flow F1 

achieves a throughput of 29.8%. This result is due to the 

virtual reservation, where QoS resources are available 

exclusively for high priority packets. 

VII. CONCLUSIONS AND FUTURE WORK 

A lot of research effort has been conducted in the last 

years in NoC and MPSoC designs, but few works address 

the gap between the NoC services and the MPSoC software 

tasks. This research work presented the design of a simple 

priority mechanism to ensure soft QoS for the MPSoC at the 

NoC level. This feature is integrated at the kernel level 

(HeMPS API) and it is available to application tasks 

executing in the MPSoC. This integration increases the 

overall system programmability and enables system 

programmers to manage QoS flows at the task level. Thus, 

design space exploration can be accomplished in an efficient 

way, due to the abstraction of interconnection architecture 

details.  

Results have shown that even with duplicated physical 

channels (higher bandwidth), the concurrence for resource 

may degrade the performance of QoS flows. Therefore, 

having a massive amount of interconnect resources is not 

sufficient to provide QoS, if these cannot be effectively 

utilized. This highlights the need to integrate NoC and 

MPSoC design efforts in a unified framework.  

Future work includes the addition of new services in the 

NoC, such as multicast/broadcast and circuit switching to 

provide hard QoS to flows with tight time constraints. As 

presented in this paper, these services will be exposed at 

task level, enriching the HeMPS API, and increasing the 

system programmability. 
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