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Abstract—Multiprocessor Systems on Chip (MPSoCs) are a 

trend in VLSI design, since they minimize the design crisis 

configured by the gap between the silicon technology and the 

actual SoC design capacity. An important issue in MPSoCs is 

task mapping. Applications running in MPSoCs execute a va-

rying number of tasks simultaneously, where each task may 

be started at some distinct moment, according to applications 

requests. Thus, task mapping should be executed at runtime. 

This work investigates the performance of dynamic task 

mapping heuristics in *oC-based MPSoCs, targeting *oC 

congestion minimization. Tasks are mapped on demand, ac-

cording to the *oC channels load. Results using congestion-

aware mapping heuristics compared to a straightforwardly 

defined heuristic achieve better results. In average, it is possi-

ble to reach up to 31% smaller channel load, up to 22% 

smaller packet latency, and up to 88% less.  (Abstract) 

Keywords-task mapping; �oC; MPSoC (key words) 

 

I. INTRODUCTION 

The evolution of deep-submicron technology dramati-
cally increases the density of ICs, enabling the development 
of SoCs. SoC design relies on the massive reuse of IP cores, 
reducing design effort and time-to-market. Multiprocessors 
Systems-on-Chip or simply MPSoCs are SoCs with mul-
tiple processing elements (PEs). A communication infra-
structure interconnects PEs. As traditional communication 
schemes (such as buses and point-to-point links) will not be 
able to scale in future architectures [1], the use of Net-
works-on-Chip (NoCs) seems mandatory. 

A homogeneous MPSoC contains a set of identical PEs, 
typically programmable processors. While homogeneous 
MPSoCs simplify task migration, heterogeneous MPSoCs 
tend to support a wider variety of applications because they 
integrate distinct PEs. Recently, Sony, Toshiba and IBM 
proposed a heterogeneous MPSoC composed of 9 RISC 
processors [2]. Intel Research [3] and Tilera [4] developed 
homogeneous NoC-based MPSoCs, with 80 and 64 PEs re-
spectively. These architectures reveal the growing complex-
ity in MPSoC development trends. 

Applications running in MPSoCs (e.g. multimedia and 
network), may present a dynamic task workload. This im-
plies a varying number of tasks running at any given mo-
ment, with their number possibly exceeding the available 

resources. Thus, it is necessary to control task operation and 
system resources usage, including the dynamic manage-
ment of task load. Task mapping is an important issue, 
which consists in finding a placement for a set of tasks, 
aiming to fulfill some specific requirement (e.g. energy 
consumption saving, congestion reduction). Mapping deci-
sions may drastically influence on the overall system per-
formance. 

The objective of this work is to investigate the perfor-
mance of six different mapping algorithms for NoC-based 
MPSoCs. The main objective is to minimize congestion in-
side the network (i.e. congestion-aware) through the opti-
mization of its channels usage. The evaluated performance 
figures include total execution time, NoC channels load, 
NoC congestion level, and packet latency. 

The paper is organized as follow. Section II discuses re-
lated works in task mapping. Section III presents the target 
architecture, and the mapping problem formulation. Section 
IV explains the proposed algorithms for dynamic task map-
ping. Section V explores the experimental setup and 
presents the obtained results. Finally, Section VI displays 
some conclusions. 

II. RELATED WORKS 

Concerning the moment in which it is defined, task 
mapping can be classified as static or dynamic. In the first 
case, tasks placement is defined at design time. This ap-
proach is not appropriate for dynamic workloads scenarios, 
due to their complexity and execution time. Work in [5] 
presents a two-step genetic mapping algorithm that aims to 
optimize application execution time. In [6], Wu et al. also 
investigate the use of a genetic mapping algorithm. Results 
show 51% less energy consumption using DVS techniques 
in combination with the mapping. Murali et al. [7] explore 
mappings for more than one application during the NoC de-
sign process. Taboo Search algorithm is employed to ex-
plore the large search space. Work in [8] investigates task 
mapping in NoCs, aiming to guarantee packet latency. For 
this purpose, both task mapping and packet routing are de-
fined at design time. Work in [9] presents a branch-and-
bound algorithm to map a given set of IPs into a NoC with 
bandwidth reservation. Work in [10] maps tasks using si-
mulated annealing and taboo search to reduce the total 
energy consumption. Work in [11] investigates mapping of 



applications on MPSoCs, and propose a parameter selection 
scheme for the Simulated Annealing algorithm. 

Dynamic mapping, on the other hand defines each task 
place at runtime. Smit et al. [12] present an iterative hierar-
chical approach to map an application to a NoC-based SoC 
at runtime. The application is modeled as a set of commu-
nicating tasks. The optimization targets energy consump-
tion saving. For this purpose, the mapping algorithm tries to 
place each task near to its communicating entities. In [13], 
Ngouanga et al. propose the use of a Force Directed map-
ping algorithm, which aims at approximating communicat-
ing tasks location. Mehran et al. [14] present a mapping al-
gorithm that searches a placement following a Spiral path, 
tending to place communication tasks near to each other, as 
in [12]. This method is executed for a single application 
without cost function evaluation. Al Faruque et al. [15] 
suggest a distributed agent-based mapping approach, which 
is recommended for larger MPSoCs, as 32x64 systems. 

III. PROBLEM FORMULATION 

In the proposed heterogeneous NoC-based MPSoC 
model, each PE supports one task executing at a time. Tasks 
may be executed either in hardware or in software. Soft-
ware tasks execute in Instruction Set Processors, while 
hardware tasks execute in embedded reconfigurable logic. 
MPSoCs that employ reconfigurable logic may load hard-
ware tasks on the system at runtime. This technology allows 
flexibility to hardware in a level similar to the software 
programmability. Among the available MPSoC resources, 
one processor, named Manager Processor or simply MP, is 
responsible for controlling task operation and system re-
sources usage, including dynamic management of task 
loads. One important assumption of the model is that task 
mapping is fired by an attempt to communicate with a not 
yet mapped task. 

Definition 1 – A task is a triple T = (Tid, Tex, Tty), 

where Tid ∈ ℕ is the task identifier; Tex ∈ ℕ is its execution 
time, and Tty ∈ {software, hardware, initial} is the task 
type. 

Definition 2 – A communication Cms between tasks m 
and s is a 4-tuple Cms=(Vms, Rms, Vsm, Rsm), where 

Vms ∈ ℕ is the data volume sent from m to s, according to 
the injection rate Rms. Vsm and Rsm have equivalent 
meaning for data sent from s to m. V values express trans-
mitted flits, while Rs are percentage usage of available 
bandwidth. 

Definition 3 – An application graph is a directed graph 
AP=<ST, SC>, where ST is the vertex set, representing the 
set of application tasks, and SC is the edge set, representing 
tasks communications. 

Definition 4 – A processing element is a 5-tuple 

PE=(PEid, PEad, PEti, PEuse, ST), where PEid ∈ ℕ is the 

PE identifier and PEad ∈ ℕ is the PE address, used to re-
ceive packets. PEti ∈ {software, hardware, initial} is the PE 

type and PEuse ∈ {occupied, free} represents its usage sta-
tus. Finally, ST is the set of PE mapped tasks. 

Definition 5 – A communication channel is a pair C = 

(Cw, Cuse), where Cw ∈ ℕ represents the channel width in 
bits, including both data and control wires, and Cuse is the 
data transmission available bandwidth usage, expressed as a 
percentage of available bandwidth. 

Definition 6 – An MPSoC graph is a graph GMPSoC = 
<PE, L>, where the vertex set PE is the set of processing 
elements of the MPSoC, and L is the edge set, that 
represents on chip MPSoC communication channels. 

Definition 7 (Mapping) – Let T = {t1, t2, ..., tn} be a set 
of n tasks, and PE = {pe1, pe2, ..., pem} be the set of m 
processing elements of a GMPSoC = <PE, L>. A mapping 
is an injective function f: T�PE, which associates tasks to 
processing elements. 

The task mapping problem is very similar to the Qua-
dratic Assignment, a well-known NP-hard problem. The 
use of heuristics to solve the mapping problem at runtime is 
mandatory for even moderately sized NoCs. 

IV. DYNAMIC TASK MAPPING ALGORITHMS 

A clustering heuristic is used to define the mapping for 
each application initial task (see Definition 1). The NoC is 
divided into regions or clusters. Each cluster may support 
only one initial task at some specific moment. Thus, re-
source overlapping between different applications may 
happen, but its incidence is reduced. As clusters boundaries 
are virtual, an application may use parts of different clusters 
if necessary. 

Instead of mapping all tasks of an application at once as 
proposed in [5] [9] [10] [15], the approach proposed here is 
based on greedy algorithms, which map only one task at a 
time. Mapping all tasks at once might provide better solu-
tions for task mapping, since it considers all global informa-
tion about resource utilization and the whole application 
graph [16]. However, in a dynamic workload scenario it is 
not possible to define when each task is needed. In addition, 
mapping the complete application at once may underutilize 
the system. Even if a set of resources is available, if their 
number and/or type do not match those required by the 
whole application, the latter cannot be mapped. 

A. Reference Mapping Methods – FF and ## 

Two reference mapping methods are employed here: 
First Free (FF) and #earest #eighbor (NN). First Free is a 
method that starts at resource R00, walking the network col-
umn by column, and bottom to top. FF selects the first free 
resource according to binding definitions, without taking in-
to account other metrics. FF may generate the worst results 
when compared to the other heuristics presented here. 
However, even worse solutions would be expected if ran-
dom mapping were used as reference. Similar to FF, the 
#earest #eighbor method does not take into account other 
metrics except the proximity of an available resource able 
to execute the required task. NN starts searching for a free 



node able to execute the task near the requesting task. The 
search tests all n-hop neighbors, n varying between 1 and 
the NoC limits, stopping when a first resource able to ex-
ecute the task is found. 

B. Minimum Maximum Channel Load – MMCL 

The MMCL congestion-aware mapping heuristic eva-
luates all possible mappings for each new task inserted into 
the system. The goal of this heuristic is to globally minim-
ize the channel usage peaks, reducing the occurrence of 
hotspots. For every mapping k, the communication rates 
Rms and Rsm are added to the channels employed for each 
master-slave communication. The selected mapping is that 
resulting in the smaller maximum channel load. In the 
present work, NoC links are modeled by four matrices: East 
channels (ECij); West channels (WCij); North channels 
(#Cij); and South channels (SCij). Assuming an x by y NoC, 
for each channel matrix a maximum rate MR is obtained 
with Equations 1 to 4, where REC(i,j), RWC(i,j), R#C(i,j) and 
RSC(i,j), denote the rate of each channel matrix element.  

MR���k� = max �R���,���k�� ∀ �i, j�, 0 ≤ i < � − 1;  0 ≤ � < �              (1) 

MR���k� = max �R���,���k�� ∀ �i, j�, 0 ≤ i < � − 1;  0 ≤ � < �           (2) 

MR���k� = max �R���,���k�� ∀ �i, j�, 0 ≤ i < �;  0 ≤ � < � − 1             (3) 

MR ��k� = max �R ��,���k�� ∀ �i, j�, 0 ≤ i < �;  0 ≤ � < � − 1              (4) 

Equation 5 computes the maximum cost for each k of 
the kP feasible mappings, named CMMCL(k). Finally, the se-
lected mapping is the one with minimum cost, as given by 
Equation 6. 

C""�#�k� = max$MR���k�, MR���k�, MR���k�, MR ��k�%                (5) 

Selected""�#�k� = min$C""�#�k�% ∀ k, 0 ≤ k < -.                                 (6) 

C. Minimum Average Channel Load – MACL 

The MACL aims at reducing the average NoC channels 
usage. This heuristic is similar to the MMCL, replacing the 
max function with the avg (average) function. While the 
MMCL heuristic tries to minimize the channel peak usage, 
the MACL heuristic tries to homogenously distribute the 
communication load in the NoC. The selected mapping is 
the one resulting in the lower average channel occupancy. 
Equations 7 to 10 compute the average load of each NoC 
channel, for a given mapping k. 

AR���k� = avg �R���,���k��   ∀ �i, j�, 0 ≤ i < � − 1;   0 ≤ � < �             (7) 

AR���k� = avg �R���,���k��   ∀ �i, j�, 0 ≤ i < � − 1;   0 ≤ � < �          (8) 

AR���k� = avg �R���,���k��   ∀ �i, j�, 0 ≤ i < �;   0 ≤ � < � − 1            (9) 

AR ��k� = avg �R ��,���k��   ∀ �i, j�, 0 ≤ i < �;   0 ≤ � < � − 1           (10) 

Equation 11 computes the average cost for each map-
ping k, named CMACL(k). The selected mapping is the one 
with minimum average cost, as given by Equation 12. 

C"2�#�k� = avg$AR���k�, AvgR���k�, AR���k�, AR ��k�%                (11) 

Selected"2�#�k� = min$C"2�#�k�% ∀ k, 0 ≤ k < -.                                  (12) 

D. Path Load – PL 

The MMCL and MACL heuristics consider all NoC 
channels while mapping a new task. Since this evaluation 
can take long, Path Load considers only the channels used 
by the task being mapped (communication path). However, 
all mapping possibilities are still evaluated.  

All inter-task communication occurs by means of a 
communication path, formed by path segments. A path 
segment groups a set of network channels, defined as a 
function of the task placement and of the routing algorithm. 
A path segment can be empty, if the master-slave pair is 
mapped to the same column or row of PEs. Given two 
tasks, A and B, CP(A,B) represents a communication path 
between these tasks. It is composed by four segments, 
where PSEC(A,B) is the path segment taken from East chan-
nels matrix, and PSWC(A,B), PSSC(A,B) and PS#C(A,B) has 
similar meaning. 

The Path Load heuristic computes the cost of each map-
ping k, according to its respective path segments, using Eq-
uations 13 to 16. For this purpose, it adds the rates of the 
new tasks to the current rates in each channel in CP.  

SR���k� = ∑ �R���,���k�� ∀�i, j� ∈ PS��, 0 ≤ i < � − 1; 0 ≤ � < �     (13) 

SR���k� = ∑ �R���,���k�� ∀�i, j� ∈ PS��, 0 ≤ i < � − 1; 0 ≤ � < � (14) 

SR���k� = ∑ �R���,���k�� ∀�i, j� ∈ PS��, 0 ≤ i < �; 0 ≤ � < � − 1    (15) 

SR ��k� = ∑ �R ��,���k�� ∀�i, j� ∈ PS �, 0 ≤ i < �;   0 ≤ � < � − 1    (16) 

The cost CPL is obtained from Equation 17, for all feasi-
ble maps. The selected mapping is the one with minimum 
CPL cost (Equation 18). 

C6#�k� = SR���k� + SR���k� + SR���k� + SR ��k�                              (17) 
Selected6#�k� = min$C6#�k�% ∀ k, 0 ≤ k < -.                                            (18) 

E. Best #eighbor – B# 

The Best Neighbor heuristic combines NN search strat-
egy and the PL computation approach. The search space of 
BN is similar to NN, i.e. it employs spiral searches around 
the source node. This avoids computing all feasible map-
ping solutions, as in the PL heuristic, reducing execution 
time. BN selects the best neighbor, according to PL equa-
tions, instead of the first free neighbor provided by NN. 

V. EXPERIMENTS AND RESULTS 

The simulation environment employs the RTL VHDL 
Hermes NoC [17], a 2D-mesh topology with 16-bit flit 
width. Other parameters include: wormhole packet switch-
ing, input buffers, and deterministic XY routing algorithm. 

PEs are modeled using SystemC, with two different 
RTL SystemC-Cthreads, one for the MP and the second one 
for the remaining PEs. The MPthread is responsible for the 
MPSoC management, task scheduling, and task mapping. 
In addition, this thread contains scheduling queues, channel 



occupation matrices and PE occupation matrix, to hold sy
tem usage status. This status is updated at runtime
tors attached to all NoC ports, which measure the real 
channel occupation. MP takes mapping decisions accor
to matrices. The TASKthread implements the t
vior, which is customized by means of a configuration file 
that describes the communication rates and the exec
time for each task. 

Four simulation scenarios are evaluated:

a. Pipe: 20 identical pipeline-like applications (typical 

dataflow applications presenting this behavior), each 

one with 10 tasks, and injection rate varying from 5 to 

30% of the available channel bandwidth; 

b. Tree: 20 identical tree-like applications (typical para

lel benchmarks have this profile), each one with 10 

tasks, and injection rate varying from 5 to 20%;

c. Generic: 20 different generic applications generated 

using the TGFF, with 5 to 10 tasks, and injection rates 

randomly chosen from 5 to 30%. 

d. True Apps: 8 different applications including: 4 appl

cations where the graph and rates are based on real 

applications (MPEG-4, MWD, VOPD and Romberg 

integration), and 4 graphs generated using TGFF.

 
An 8x8 heterogeneous MPSoC is adopted for the exp

riments of scenarios a, b and c.  One node (the router with 
its PE) is used for the MP, 16 nodes are hardware r
and 47 nodes are software resources. The PEs placement 
and the PEs reserved for initial tasks are defined according 
to each PE type, aiming to uniformly spread r
the system area. The set of experiments arb
maximum of 15 applications simultaneously running.

Scenario d employs a 9x9 homogeneous
all PEs are processors. Thus, applications are modeled as a 
set of software tasks only. This scenario aims to evaluate 
the performance of the mapping heuristics when graphs 
based on real applications are employed.  

A. #oC Channels Usage 

The average channel load represents the NoC use. All 
algorithms reduce the average channel load in comparison 
to the FF method. According to Figure 1, for the three first 
simulated scenarios (a, b and c), two congestion
mapping heuristics, MMCL and MACL, reduce in average 
14% the channel load (compared to FF), a result i
the NN algorithm (29.95%), which does not co
traffic during mapping, but explores the proximity of co
municating tasks. The BN heuristic has gains similar to 
(29.74%), while PL shows the best gain (31.36%).

The channel load standard deviation measures the tra
fic distribution inside the network. Lower values corre
pond to a homogeneous traffic distribution, while higher 
values suggest some channels with higher loads, and others 
are not used at all. For the three first simulated scenarios, 
the BN heuristic reduces the channel load standard devi
tion (20% less), with values similar to the Nearest Neig

ces and PE occupation matrix, to hold sys-
is updated at runtime by moni-

attached to all NoC ports, which measure the real 
channel occupation. MP takes mapping decisions according 

ments the tasks beha-
vior, which is customized by means of a configuration file 
that describes the communication rates and the execution 

Four simulation scenarios are evaluated: 

like applications (typical 

ations presenting this behavior), each 

one with 10 tasks, and injection rate varying from 5 to 

30% of the available channel bandwidth;  

like applications (typical paral-

lel benchmarks have this profile), each one with 10 

njection rate varying from 5 to 20%; 

applications generated 

using the TGFF, with 5 to 10 tasks, and injection rates 

8 different applications including: 4 appli-

nd rates are based on real 

4, MWD, VOPD and Romberg 

integration), and 4 graphs generated using TGFF. 

MPSoC is adopted for the expe-
ne node (the router with 

MP, 16 nodes are hardware resources 
and 47 nodes are software resources. The PEs placement 
and the PEs reserved for initial tasks are defined according 
to each PE type, aiming to uniformly spread resources over 
the system area. The set of experiments arbitrarily assume a 

neously running. 

homogeneous MPSoC where 
are processors. Thus, applications are modeled as a 

set of software tasks only. This scenario aims to evaluate 
e mapping heuristics when graphs 

represents the NoC use. All 
gorithms reduce the average channel load in comparison 

for the three first 
), two congestion-aware 

, reduce in average 
), a result inferior to 

algorithm (29.95%), which does not consider the 
traffic during mapping, but explores the proximity of com-

heuristic has gains similar to NN 
(31.36%). 

measures the traf-
fic distribution inside the network. Lower values corres-
pond to a homogeneous traffic distribution, while higher 
values suggest some channels with higher loads, and others 

For the three first simulated scenarios, 
the BN heuristic reduces the channel load standard devia-
tion (20% less), with values similar to the Nearest Neighbor 

algorithm. Again, PL presents the best results with a gain of 
22% with regard to the FF reference 

Figure 1.  Average channel load (in % of available ban

first three simulated scenarios.

B. Packet Latency 

The average packet latency is a function of the distance 
between the source and the target PEs and the 
the communication path. Table I presents the a
et latency for the three first simulated scenarios. The last 
line of this Table shows for all algorithms its pe
gain with regard to the FF reference mapping. In most ca
es, PL heuristic obtains the best results. Additio
BN, and NN algorithms present quite close packet l
values, resulting in similar gains (≈
However, Path Load again presents the best results (15%). 
The average gains for MACL and 
spectively 8% and 6%) are less significant.

TABLE I.   AVERAGE PACKET LATENC

THREE FIRST SIMULATED SCENARIOS 

Scenarios 
Reference Mapping Congestion

FF NN MMCL

Pipe 05% 164 141 152 

Pipe 10% 269 239 255 

Pipe 15% 371 334 350 

Pipe 20% 527 431 479 

Pipe 25% 656 542 645 

Pipe 30% 815 665 781 

Tree 05% 156 143 147 

Tree 10% 271 247 255 

Tree 15% 370 327 349 

Tree 20% 514 433 447 

Generic 343 286 319 

% Gain w.r.t. FF - 14.98% 6.15%

 

The packet latency standard deviation
metric for systems with QoS constraints. Packets orig
from a given source must keep a regular interval b
them to respect the injection rate. Variation
incurs in jitter, which can lead to packet loss in a
with strict temporal deadlines like real
scenario c, composed by graphs generated u
all congestion-aware heuristics improve the l
dard deviation. However, MMCL and MACL present 10% 
and 16% gains respectively, with r

gorithm. Again, PL presents the best results with a gain of 
22% with regard to the FF reference mapping. 

 
in % of available bandwidth) for the 

first three simulated scenarios. 

is a function of the distance 
tween the source and the target PEs and the congestion in 

presents the average pack-
et latency for the three first simulated scenarios. The last 

shows for all algorithms its percentage 
nce mapping. In most cas-

heuristic obtains the best results. Additionally, PL, 
algorithms present quite close packet latencies 

≈14%) compared to FF. 
again presents the best results (15%). 

and MMCL heuristics (re-
spectively 8% and 6%) are less significant. 

VERAGE PACKET LATENCY (I# CLOCK CYCLES) FOR THE 

LATED SCENARIOS (A, B AND C). 

Congestion-aware Heuristics 

MMCL MACL PL BN 

 156 142 147 

 258 239 238 

 356 328 330 

 478 425 450 

 579 531 531 

 711 673 664 

 153 146 146 

 246 233 242 

 352 329 330 

 493 430 434 

 313 285 291 

6.15% 8.07% 15.59% 14.66% 

packet latency standard deviation is an important 
tric for systems with QoS constraints. Packets originated 

from a given source must keep a regular interval between 
them to respect the injection rate. Variation in the latency 
incurs in jitter, which can lead to packet loss in applications 
with strict temporal deadlines like real-time applications. In 

, composed by graphs generated using the TGFF, 
aware heuristics improve the latency stan-

dard deviation. However, MMCL and MACL present 10% 
and 16% gains respectively, with regard to FF, while BN 



presents a 14% gain. NN and PL allow reducing in around 
21% the standard deviation in packet latency.

C. #etwork Congestion Level 

This paper employs two metrics for evaluating conge
tion. In The first metric, named wasted time 
are employed to count the number of clock cycles a packet 
is stalled in router buffers. Figure 2 shows the total 
time for the three first simulated scenarios. It is n
that the growth in injection rate causes an increase in the 
wasted time, due to increasing NoC congestion. For smal
injection rates, FF and MACL, are the algorithms pr
ing the worst results. As the injection rate increases, to 
30%, the BN heuristic induces smaller NoC conge
lowed by PL and NN respectively. NN and 
reduce the time wasted in congested areas by a
83%. Algorithms MACL and MMCL achieve smaller but 
still significant improvements, respectively 52% and 47%. 
Again, PL presents the best results, with 87% of reduction 
in time wasted in congested areas. 

Figure 2.  Total wasted time (in millions of clock cycles

first simulated scenarios (a, b and c).

The second metric, named saturated channels
the number of channels that achieve their maximum a
lowed rate (Figure 3). NN, BN and PL algorit
the number of saturated channels by 69%, 70%, and 76% 
respectively, when compared to the First Free
MACL and MMCL obtain smaller improvements, 38% and 
45%, respectively.  

Figure 3.  Total number of saturated channels for the three first simulated 

scenarios. 

ducing in around 
tency. 

metrics for evaluating conges-
wasted time (w.t.), monitors 

are employed to count the number of clock cycles a packet 
shows the total wasted 

for the three first simulated scenarios. It is noticeable 
that the growth in injection rate causes an increase in the 
wasted time, due to increasing NoC congestion. For smaller 

, are the algorithms present-
ing the worst results. As the injection rate increases, to e.g. 

heuristic induces smaller NoC congestion, fol-
and BN algorithms 

areas by approximately 
achieve smaller but 

still significant improvements, respectively 52% and 47%. 
presents the best results, with 87% of reduction 

 
of clock cycles) for the three 

first simulated scenarios (a, b and c). 

saturated channels, counts 
the number of channels that achieve their maximum al-

algorithms reduce 
the number of saturated channels by 69%, 70%, and 76% 

First Free mapping. 
obtain smaller improvements, 38% and 

 

channels for the three first simulated 

D. Overall Execution Time 

The last evaluation concerns the 
head. The goal of this parameter is to measure the impact 
on implementing the mapping heuristics on the overall e
ecution time. The complexity of MMCL
es a large penalty for these heuristics (13% and 25% respe
tively). PL and BN heuristics present execution time ove
head of 8.8% and 2.5%, respectively). This constitutes an 
acceptable cost, since these heuristics reduce c
and congestion as well. A variation in parameters of the 
performed experiments shows that an increase in co
cation volume of 10 times can cancel this overhead. In this 
case, BN results in an execution time 0.8% less co
to FF, while the PL algorithm execution in 1.13% less time 
than FF. In addition, the evaluated scen
by communication. Longer task exec
to reduce the overhead. 

Table II summarizes the results, normalized to the 
reference mapping. This Table considers the average r
obtained from scenarios a, b and 
the best results in most performance figures, as 31% smal
channel usage, 22% smaller packet latency, and up to 88% 
smaller NoC congestion. NN heuristic e
to its smaller algorithmic complexity. Note that with i
creased transmission volume, the mapping execution time 
does not affect the total execution time.

TABLE II.  SUMMARY OF RESULTS FO

NORMALIZED TO FIRST FREE RESULTS. IT CONSIDERS THE AVE

THE THREE FIRST SIMULATED SCENARIOS 

Metric 
Reference Map. Congestion

FF NN MMCL

Mapping complexity 
(x is the NoC width) 

O(x
2
) O(x

2
) O(x

Channel Load (avg) 1.00 0.70 0.86

Channel Load (s.d.) 1.00 0.80 0.88

Packet Latency (avg) 1.00 0.85 0.94

Packet Latency (s.d.) 1.00 0.66 1.33

Congestion (s.c.) 1.00 0.31 0.55

Congestion (w.t.) 1.00 0.17 0.53

Exec. Time (Vol) 1.00 1.00 1.25

Exec. Time (10xVol) 1.00 0.98 1.00

E. Scenario D Evaluation 

Scenario d is composed by 4 graphs obtained from real 
applications, and 4 synthetic graphs. The first application is 
the MPEG-4 decoder used for compression
video digital data. It is composed by 13 tasks. The second 
application is the Video Object Plane 
VOPD, also composed by 13 tasks. The VOPD application 
presents less inter-task dependency when compared to 
MPEG-4. The Romberg’s integration method
application graph used in experiments. It contains 10 tasks. 
This graph presents a higher inter-
most tasks communicate with 4 tasks. The fourth graph is 
based on Multi-Window Display (MWD) application, co
posed by 12 tasks. Synthetic graphs, generated by TGFF, 
contain 7 to 9 tasks. 

the execution time over-
. The goal of this parameter is to measure the impact 
plementing the mapping heuristics on the overall ex-

MMCL and MACL induc-
es a large penalty for these heuristics (13% and 25% respec-

heuristics present execution time over-
head of 8.8% and 2.5%, respectively). This constitutes an 
acceptable cost, since these heuristics reduce channel load 
and congestion as well. A variation in parameters of the 
performed experiments shows that an increase in communi-
cation volume of 10 times can cancel this overhead. In this 

results in an execution time 0.8% less compared 
algorithm execution in 1.13% less time 

than FF. In addition, the evaluated scenarios are dominated 
by communication. Longer task execution times also tend 

summarizes the results, normalized to the FF 
This Table considers the average results 

and c. PL heuristic achieves 
the best results in most performance figures, as 31% smaller 

, 22% smaller packet latency, and up to 88% 
smaller NoC congestion. NN heuristic executes faster, due 
to its smaller algorithmic complexity. Note that with in-

sed transmission volume, the mapping execution time 
does not affect the total execution time. 

UMMARY OF RESULTS FOR ALL MAPPING LGORITHMS 

T CONSIDERS THE AVERAGE FOR 

LATED SCENARIOS (A, B AND C). 

Congestion-aware Heuristics 

MMCL MACL PL BN 

O(x
4
) O(x

4
) O(x

3
) O(x

2
) 

0.86 0.85 0.69 0.70 

0.88 0.90 0.78 0.80 

0.94 0.92 0.84 0.85 

1.33 0.89 0.98 1.19 

0.55 0.62 0.23 0.29 

0.53 0.47 0.12 0.17 

1.25 1.14 1.09 1.03 

1.00 1.00 0.99 0.99 

is composed by 4 graphs obtained from real 
plications, and 4 synthetic graphs. The first application is 

used for compression of audio and 
video digital data. It is composed by 13 tasks. The second 

Video Object Plane Decoder or simply 
VOPD, also composed by 13 tasks. The VOPD application 

task dependency when compared to 
Romberg’s integration method is the third 

application graph used in experiments. It contains 10 tasks. 
-task dependency, where 

most tasks communicate with 4 tasks. The fourth graph is 
(MWD) application, com-

posed by 12 tasks. Synthetic graphs, generated by TGFF, 



Table III summarizes the obtained results. In this Table, 
PL and BN results are normalized to the FF reference map-
ping. As in previous experiments, the PL mapping displays 
the best results. It allows to improve the average channel 
load by almost 11% compared to FF. The average packet 
latency too, presents a considerable gain, 21% less com-
pared to FF. NoC congestion still presents the most signifi-
cant results since PL obtains 63% less saturated channels, 
and 67% less wasted time during NoC congestion periods. 

TABLE III.  SUMMARY OF RESULTS OF PL AND BN MAPPING 

ALGORITHMS NORMALIZED TO FIRST FREE RESULTS. 

Metric FF PL BN 

Channel Load (avg) 1.00 0.89 0.92 

Channel Load (s.d.) 1.00 0.88 0.98 

Packet Latency (avg) 1.00 0.79 0.81 

Packet Latency (s.d.) 1.00 1.80 1.93 

Congestion (s.c.) 1.00 0.37 0.40 

Congestion (w.t.) 1.00 0.33 0.43 

Exec. Time  1.00 0.96 0.95 

 

Compared to scenarios a, b and c, the reduction in 
channel load, packet latency and congestion level parame-
ters observed in scenario d are smaller, but still significant. 
It is important to observe the total execution time, which is 
reduced using PL and BN heuristics. Such results, using 
complex applications and larger NoCs, highlights the ad-
vantages of using congestion-aware mapping heuristics. 

VI. CONCLUSION 

Some MPSoCs have recently been proposed in industry 
containing several tens of processors. To effectively use 
such complex MPSoCs it is necessary to include the man-
agement of the processing elements, in a distributed or cen-
tralized way. Such management includes, e.g. frequency 
and voltage control, processors and network load monitor-
ing, task/application mapping. This research work contri-
butes in last item. The dynamic task mapping heuristics 
proposed and evaluated enables to include new applications 
in the MPSoC, not only aggregating new functionalities to 
it after design, but also increasing its life time. 

The present work investigated the performance of six 
different mapping algorithms for NoC-based MPSoCs. Ac-
cording to the obtained results, the PL heuristic is the best 
solution compared to all others. In summary, when com-
pared to ad hoc mapping, the use of congestion-aware algo-
rithms allows 31% smaller channel load, up to 22% smaller 
packet latency, and up to 88% reduction in congestion. Ad-
ditionally, these heuristics presents an acceptable cost for 
the mapping overhead. MMCL and MACL are not effec-
tive, due to local decisions taken by the algorithms: when a 
new mapping does not reduce the average link load (or 
maximum load), the algorithm selects the first available 

mapping option. NN and BN display some improvements, 
but with gains inferior to PL. 

Currently, three related research topics are under inves-
tigation: benchmarks evaluation with higher NoC loads, 
energy consumption measurements, and dynamic versus 
static mapping comparison [16]. 
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