
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL

FACULDADE DE ENGENHARIA

FACULDADE DE INFORMÁTICA

ENGENHARIA DE COMPUTAÇÃO

DESIGN AND IMPLEMENTATION OF A STANDARD CELL

LIBRARY FOR BUILDING ASYNCHRONOUS ASICS

MATHEUS TREVISAN MOREIRA

END OF TERM WORK

PROF. DR. NEY LAERT VILAR CALAZANS

ADVISOR

PORTO ALEGRE 2010

MATHEUS TREVISAN MOREIRA

DESIGN AND IMPLEMENTATION OF A STANDARD CELL

LIBRARY FOR BUILDING ASYNCHRONOUS ASICS

End of Term work presented as part of the

activities to obtain the degree of Computer

Engineering at the Faculty of Engineering at

the Pontifical Catholic University of Rio

Grande do Sul.

PROF. DR. NEY LAERT VILAR CALAZANS

ADVISOR

Porto Alegre 2010

ACKNOWLEDGEMENTS

To my supervisor Prof. Dr. Ney Calazans, thanks for all his support and guidance in the

development of this work. Thanks for the confidence deposited in me and for all the useful

discussions we had. Thanks for the opportunities given to me and for always being available

for help when I needed.

Thanks to the members of GAPH, to my friends and the people who contributed

somehow in the development of this work. Thanks to my friends and colleagues Felipe de

Magalhães, Thiago Raupp and Thales Chaves for proof reading. Thanks to Bruno Oliveira for

his support in the development of this work.

Special thanks to my colleague and friend Julian Pontes for putting a large amount of

time supporting me in the development of this work. Thanks for all the effort to teach me the

foundations of microelectronics and for solving my CAD tools problems.

Thanks also go to Andrew Bardsley, from The University of Manchester, for promptly

answering questions about the Teak System and for the support given by upgrading the tool to

support technology mapping.

Finally thanks to my family and to my girlfriend, Gabriela, for everything they have

done for me. Thanks for their love and patience. Without you this work would not have been

possible.

Four Xeon based PCs running the Red Hat operating system were used for simulations

and a Core 2 Quad based PC running Ubuntu was used for the remaining practical portion of

the practical work described in this document.

ABSTRACT

Asynchronous ASIC design automation tools and standard cell libraries development

lag behind their synchronous counterpart. Therefore, most asynchronous designs still make

use of full-custom design approaches, which contributes to make asynchronous circuits less

used. To help in solving this problem this work presents the design and implementation of a

standard cell library for building asynchronous application specific integrated circuits

(ASICs), called ASCEnD-ST65 (currently at version 0.1), developed for a 65nm gate length

STMicroelectronics CMOS process. An abridged version of this library was designed to

implement an asynchronous network on chip (NoC) router. Nevertheless, those cells

presented elevated leakage power consumption. This characteristic was treated in ASCEnD-

ST65, by proposing a new, robust design flow. This flow contains a novel method to

determine the dimension of transistors in the CMOS implementation of C-Element gates,

fundamental elements in asynchronous design. This work presents the details of the method

and adopts it throughout the specification of the library cells. The designed standard cells

count with several views: layout, schematic, symbol, Verilog and abstract. LEF and LIB files

describe the physical and electrical characteristics for each cell, and the cells have been

characterized for three different process corners, worst, typical and best cases. A total of 251

cells were designed. Among these are a large amount of implementations and variations of C-

Elements, the main gate used in many asynchronous design styles. A tradeoff between three

different C-Element CMOS implementations – Conventional, Symmetric and Weak Feedback

– is presented in this work. Also, the library contains other cells, such as metastability filters.

To validate the library, two different IC design flows were adopted. First, a typical flow

consisting of VHDL sources synthesized and implemented through the Cadence Framework

was used to generate and simulate an asynchronous NoC router. Next, a novel design flow,

consisting of a Balsa description synthesized through the Teak System was used to generate

the netlist of an asynchronous RSA based cryptography circuit. The layout of this circuit was

obtained through Cadence Encounter and simulated through Spectre. The results prove the

successful integration of this library and Teak System.

Keywords: Standard cells, ASIC, design libraries, asynchronous circuits, Balsa, Teak.

“Any intelligent fool can make things

bigger and more complex… It takes a

touch of genius – and a lot of courage to

move in the opposite direction.”

Albert Einstein

v

CONTENTS

LIST OF ABBREVIATIONS ... IX

LIST OF TABLES ... XI

LIST OF FIGURES.. XIII

LIST OF EQUATIONS .. XIX

1 INTRODUCTION .. 1

1.1 INTRODUCTION ... 1

1.2 CONTRIBUTIONS OF THIS WORK .. 5

1.3 WORK STRUCTURE ... 5

2 CONCEPTS .. 7

2.1 MICROELECTRONIC DESIGN STYLES .. 7

2.2 A TYPICAL DESIGN FLOW OF A STANDARD CELL LIBRARY ... 10

2.2.1 LAYOUT ... 11

2.2.2 VERIFICATION ... 12

2.2.3 ABSTRACT .. 13

2.2.4 EXTRACTION ... 13

vi

2.2.5 ELECTRICAL CHARACTERIZATION .. 14

2.3 ASYNCHRONOUS CIRCUITS ... 15

2.3.1 MULLER C-ELEMENT ... 16

2.3.2 DELAY MODELS... 18

2.3.3 HANDSHAKING .. 18

2.3.4 DATA ENCODING ... 20

2.3.5 METASTABILITY ... 22

2.4 BALSA ... 22

2.5 TEAK .. 25

3 STATE OF THE ART IN OPEN SOURCE STANDARD CELL LIBRARIES AND SUPPORT FOR

ASYNCHRONOUS CIRCUITS... 29

3.1 GRAD AND STINE STANDARD CELL LIBRARY [GRA03] .. 29

3.2 DJIGBENOU AND HA STANDARD CMOS LIBRARY [DJI07] ... 30

3.3 CHONG, GWEE AND CHANG DESIGN METHODOLOGY [CHO07] ... 30

3.4 CORTADELLA ET AL. DESYNCHRONIZATION PARADIGM [COR06] ... 31

3.5 FERRETTI STANDARD CELL LIBRARY [FER04] [FER06].. 31

3.6 OZDAG AND BEEREL QDI TEMPLATES [OZD04] [OZD06] .. 32

3.7 TIMA AND LETI ASYNCHRONOUS STANDARD CELL LIBRARY [MAU03] ... 32

4 LIBRARY DESIGN METHOD AND TOOLS ... 35

4.1 PHYSICAL DESIGN GUIDELINES FOR THE LIBRARY ... 35

4.1.1 TIGHTENED PHYSICAL DESIGN RULES FOR MANUFACTURABILITY ... 36

4.1.2 DEFINING THE PMOS-TO-NMOS TRANSISTORS RATIO ... 38

4.1.3 OUTPUT DRIVING STRENGTH ... 39

4.2 THE DESIGN FLOW FOR CELLS IN THE LIBRARY ... 42

4.2.1 SPECIFICATION .. 44

4.2.2 LAYOUT ... 51

4.2.3 ELECTRICAL CHARACTERIZATION .. 53

4.2.4 ABSTRACT .. 57

4.2.5 SYMBOL ... 58

4.2.6 VERILOG .. 59

4.2.7 VALIDATION ... 63

vii

4.3 LIBRARY VALIDATION UNDER A STANDARD CELL FLOW .. 63

5 ASCEND ST65 V0.1 .. 65

5.1 THE ST CMOS65 TECHNOLOGY .. 65

5.2 NAME CONVENTION ... 65

5.3 DESIGNED GATES ... 66

5.3.1 C-ELEMENTS .. 66

5.3.2 METASTABILITY FILTER ... 70

6 ASYNCHRONOUS CIRCUITS DESIGN WITH ASCEND ST65 .. 71

6.1 ASYNCHRONOUS RSA BASED CRYPTOGRAPHY CIRCUIT ... 71

6.2 ASYNCHRONOUS NOC ROUTER ... 76

7 CONCLUSIONS .. 77

7.1 FUTURE WORK ... 78

REFERENCES .. 81

A APPENDIX A ... 87

B APPENDIX B ... 97

C APPENDIX C ... 99

D APPENDIX D ... 107

ix

LIST OF ABBREVIATIONS

APT Advanced Processor Technologies

ASIC Application-Specific Integrated Circuit

BP Best for low Power consumption

BS Best for Speed

CAD Computer-Aided Design

CeS Cell Specifier

CMOS Complementary Metal-Oxide-Semiconductor

DFM Design For Manufacturability

DI Delay-Insensitive

DRC Design Rule Check

DSP Digital Signal Processor

EDA Electronic Design Automation

ELC Encounter Library Characterization

FIR Finite Impulse Response

FPGA Field Programmable Gate Array

GALS Globally-Asynchronous Locally-Synchronous

GPSVT General Purpose Standard Vt Transistor

HDL Hardware Description Language

HVT High Vt Transistor

x

I/O Input/Output

IC Integrated Circuit

LEF Library Exchange Format

LIB Liberty Library

LVS Layout Versus Schematic

NMOS N-Type Metal Oxide Semiconductor

NoC Network on Chip

PCHF Precharged Half Buffer

PMOS P-Type Metal Oxide Semiconductor

QDI Quasi-Delay-Insensitive

ROGen Ring Oscillator Generator

RTL Register Transfer Level

RTL Register Transfer Level

SDF Standard Delay Format

SI Speed-Independent

SoC System on a Chip

STM ST Microelectronics

SVT Standard Vt Transistor

UDP User Defined Primitives

VHDL VHSIC Hardware Description Language

VHSIC Very-High-Speed Integrated Circuit

VLSI Very Large Scale Integration

Vt Threshold Voltage

VTC Voltage Transfer Characteristic

xi

LIST OF TABLES

TABLE 2.1 – TRADEOFFS BETWEEN MICROELECTRONIC DESIGN STYLES, FROM [MIC94]. 9

TABLE 2.2 –C-ELEMENT TRUTH TABLE. ... 16

TABLE 2.3 – ASYMMETRIC C-ELEMENTS TRUTH TABLES. IN (A) A C-ELEMENT WITH A NORMAL INPUT (B) AND A

RISING INPUT (A). IN (B), A C-ELEMENT WITH A NORMAL INPUT (A) AND A FALLING INPUT (B). 17

TABLE 2.4 – FOUR PHASE DUAL RAIL CODIFICATION FOR 1 BIT OF DATA [SPA01]. .. 21

TABLE 4.1 – SUMMARIZED RESULTS FOR PMOS-TO-NMOS RATIO SIMULATION DIFFERENT NMOS SIZES. 39

TABLE 4.2 – SUMMARIZED SIMULATION RESULTS FOR DIFFERENT OUTPUT DRIVES OF AN INVERTER. 42

TABLE 4.3 – SUMMARIZED SPECIFICATIONS OF A BP AND BS IMPLEMENTATION OF AN EXAMPLE GATE. 50

TABLE 5.1 – DESIGNED 2 INPUT VERSIONS OF C-ELEMENTS. ... 67

TABLE 5.2 – DESIGNED 3 INPUT VERSIONS OF C-ELEMENTS. ... 68

TABLE A.1 – SUMMARIZED RESULTS FOR DIFFERENT PMOS-TO-NMOS RATIO SIMULATIONS. 87

TABLE B.2 – LOGICAL SPECIFICATION OF EACH GATE DESIGNED FOR ASCEND ST65. .. 97

xiii

LIST OF FIGURES

FIGURE 1.1 – (A) A SYNCHRONOUS CIRCUIT AND (B) AN ASYNCHRONOUS IMPLEMENTATION, USING LOCAL

HANDSHAKE CONTROL CIRCUITS (BLOCKS CALLED CTL) [SPA01]. .. 2

FIGURE 1.2 – REQUIRED PERCENTAGE FOR NEXT DECADES ICS DRIVEN BY HANDSHAKING SIGNALING

ACCORDING TO [ITR08]. .. 3

FIGURE 1.3 – EXAMPLE OF A PARTIAL VIE W OF A STANDARD-CELL BASED IC DIE, OBTAINED WITH THE

CADENCE ENCOUNTER LAYOUT EDITOR TOOL [CAD10]. THERE ARE 5 HORIZONTAL STRIPES LOCATED AT

THE CENTER OF THE DIE CONTAINING EACH FROM 5 TO 7 STANDARD-CELLS. VERTICAL THIN LINES ARE

WIRES INTERCONNECTING CELLS. THIN VERTICAL RECTANGLES ARE FILLER CELLS USED TO GUARANTEE

MANUFACTURABILITY CHARACTERISTICS OF THE DESIGN. THE DESIGN IS ENCIRCLED BY RECTANGLES

THAT REPRESENT GLOBAL POWER AND GROUND LINES. ... 4

FIGURE 2.1 – MICROELECTRONIC DESIGN STYLES. ADAPTED FROM [MIC94] AND [RAB03]. 7

FIGURE 2.2 – DIE PHOTO OF (A) INTEL 4004 AND (B) I7 MICROPROCESSORS [INT10]. .. 8

FIGURE 2.3 – INTEL PENTIUM 4 DIE PHOTO [INT10]. THE PATTERNS AND RECTANGULAR SHAPES IN THE CHIP,

MAKES CLEAR THE USE OF A SEMI-CUSTOM DESIGN STYLE. .. 9

FIGURE 2.4 – TYPICAL DESIGN FLOW OF EACH GATE OF A STANDARD CELL LIBRARY BASED ON [CHO92] [SAI02]

[HAS03] [RAB03] [YEO09]. INPUTS AND OUTPUTS ARE GIVEN BY ROUNDED CORNERS BOXES, ACTIONS BY

BOXES, DECISIONS BY DIAMONDS AND THE REPOSITORY AS A CYLINDER. .. 10

FIGURE 2.5 – A BASIC SET OF RULES FOR A STANDARD CELL LIBRARY. “A” AND “B” ARE THE CELL HEIGHT AND

WIDTH, RESPECTIVELY. “C” IS THE POWER LINES WIDTH AND “D” IS THE ROUTING GRID. “E”, “F” AND “G”

ARE THE HEIGHT OF THE IMPLANT LAYERS [SMI97] [SAI02] [RAB03] [SAI04]... 11

FIGURE 2.6 – EXAMPLE OF METAL1 PITCH, THE MINIMUM DISTANCE BETWEEN THE CENTERS OF TWO

ADJACENT METAL1 LAYERS. .. 12

FIGURE 2.7 – BASIC SET OF DRC RULE CLASSES [SAI02] [RAB03]. ... 13

FIGURE 2.8 – PHYSICAL MODEL OF AN NMOS TRANSISTOR, EXTRACTED FROM [DOA05]. 14

FIGURE 2.9 – CMOS MICROPHOTOGRAPH SHOWING THE POSSIBLE ORIGINS OF PROCESS CORNERS IN (A) A

TRANSISTOR OF AN INTEL 386 PROCESSOR, AND (B) A GATE OF AN INTEL SDRAM [INT10]. 15

FIGURE 2.10 – DIFFERENT BUFFER IMPLEMENTATIONS. WEAK CONDITIONED HALF BUFFER (WCHB) CIRCUIT

DIAGRAM IN (A), PRE-CHARGED HALF BUFFER (PCHB) IN (B) AND PRE-CHARGED FULL BUFFER (PCFB) IN

xiv

(C). PICTURE TAKEN FROM [YAH06]. ... 17

FIGURE 2.11 – CIRCUIT FRAGMENT WITH GATE AND WIRES DELAYS, ADAPTED FROM [SPA01]. 18

FIGURE 2.12 – EXAMPLE OF COMMUNICATION THROUGH HANDSHAKING. A PURE CONTROL CHANNEL (A), A

PUSH DATA CHANNEL (B) AND A PULL DATA CHANNEL (C) [TOM06]. .. 19

FIGURE 2.13 – OPERATION OF THE FOUR PHASE (A) AND TWO PHASE (B) HANDSHAKE PROTOCOL [PON08]. .. 19

FIGURE 2.14 – FOUR PHASE (A) AND TWO PHASE (B) BUNDLED DATA TRANSMISSION. 20

FIGURE 2.15 – FOUR PHASE (A) AND TWO PHASE (B) DUAL RAIL TRANSMISSION. .. 22

FIGURE 2.16 – TWO CASCADE INVERTERS (A) AND THEIR VTCS (B), BASED ON [RAB03]. 22

FIGURE 2.17 – EXAMPLE OF A TWO PLACE BUFFER DESCRIBED IN BALSA, FROM [EDW06]. 23

FIGURE 2.18 – WAVEFORM FOR THE CIRCUIT DESCRIBED IN FIGURE 2.17 WITH RANDOM INPUT VALUES........ 24

FIGURE 2.19 – EXAMPLE OF A PARAMETERIZABLE MULTIPLIER DESCRIBED IN BALSA. 24

FIGURE 2.20 – WAVEFORM OF A 16 BIT MULTIPLIER DESCRIBED IN BALSA FOR THE INPUTS 210 AND 910. 25

FIGURE 2.21 – TEAK COMPONENTS, CAPTURED FROM [BAR09]. ... 25

FIGURE 2.22 – BALSA DESCRIPTION OF A 4-BIT SUM AND SUBTRACTION UNIT. ... 26

FIGURE 2.23 – DIAGRAM OF THE TEAK-GENERATED NETLIST FOR THE SUM AND SUBTRACTION UNIT. 27

FIGURE 4.1 – DEPENDENCY BETWEEN THE MAIN STEPS OF THE ADOPTED DESIGN FLOW FOR THE STANDARD

CELL LIBRARY. .. 35

FIGURE 4.2 – ADOPTED SET OF DFM RULES CONCERNING IC LAYERS. PO IS POLYSILICON, DIFF IS DIFFUSION, CO

IS CONTACT AND M1 METAL 1 LAYERS. .. 36

FIGURE 4.3 – STANDARD LAYOUT ARCHITECTURE. THE RED POLYGON IS POLYSILICON AND THE GREEN

RECTANGLES ARE DIFFUSION. NP AND NWELL ARE THE NEGATIVE DOPING LAYERS AND PP IS THE

POSITIVE DOPING LAYER. .. 37

FIGURE 4.4 – SIMULATIONS RESULTS FOR AN INVERTER WITH A MINIMUM SIZED NMOS TRANSISTOR

(0.135µM) WITH THE PMOS TRANSISTOR SIZE VARYING FROM MINIMUM TO A MAXIMUM SIZE OF TWO

FINGERS. A TOTAL OF 244 SIMULATIONS WERE PERFORMED, OBTAINING THE BEST PMOS-TO-NMOS

RATIO OF 2.19. .. 39

FIGURE 4.5 – SIMULATION RESULTS FOR DIFFERENT CELL DIMENSIONS IN A RING WITH 11 IDENTICAL

INVERTERS, FOR A 65NM GATE LENGTH TECHNOLOGY PROCESS USING A PMOS-TO-NMOS RATIO OF

2.11. .. 40

FIGURE 4.6 –SIMULATION RESULTS OF A MINIMUM SIZED INVERTER WITH VARYING OUTPUT LOADS AND AN

INPUT SLOPE OF 0.033NS. ... 41

FIGURE 4.7 – SIMULATION RESULTS FOR AN INVERTER WITH VARYING TRANSISTOR SIZES, AN INPUT SLOPE OF

0.033NS AND AN OUTPUT LOAD OF 0.54PF. THE RESULTS SHOW THAT THE TRANSISTOR SIZE REQUIRED

TO DRIVE THE OUTPUT LOAD IN 1NS IS AN NMOS OF 0.285µM AND A PMOS OF 0.600µM. 41

FIGURE 4.8 – ADOPTED FLOW TO DESIGN EACH STANDARD CELL OF THE LIBRARY. ... 42

FIGURE 4.9 – ADOPTED DESIGN FLOW FOR EACH GATE OF THE DESIGNED STANDARD-CELL LIBRARY AND

REQUIRED TOOLS. THE THREE MAIN STEPS ARE: SPECIFICATION (BLUE), (PHYSICAL) DESIGN (RED) AND

VALIDATION (PURPLE). ACTIONS ARE REPRESENTED BY BOXES, DECISIONS BY DIAMONDS, DESCRIPTIONS

xv

AS ROUNDED CORNERS BOXES AND REPOSITORIES AS A GREEN CYLINDER. THE TOOLS USED IN EACH

STEP APPEAR IN THE TOP AND BOTTOM STRIPES. .. 43

FIGURE 4.10 – EXAMPLE OF SCHEMATIC DESIGN USING VIRTUOSO SCHEMATIC EDITOR. 45

FIGURE 4.11 – EXAMPLE OF A GATE LEVEL VIEW OF A SIMULATION CIRCUIT AUTOMATICALLY GENERATED

THROUGH A SPECIALLY DESIGNED TOOL. WHEN THE IN PIN IS AT LOGICAL 0, THE CIRCUIT IS STATIC WITH

ALL THE NODES IN LOGICAL 1. HOWEVER WHEN THE INPUT IS ASSERTED, THE CIRCUIT STARTS TO

OSCILLATE. .. 46

FIGURE 4.12 – EXAMPLE OF PROPAGATION DELAY MEASUREMENT. THE GRAPHICS WERE GENERATED BY

CADENCE WAVESCAN [CAD10]. .. 46

FIGURE 4.13 – EXAMPLE OF TRANSITION DELAY MEASUREMENT. .. 47

FIGURE 4.14 – EXAMPLE OF FREQUENCY MEASUREMENT. ... 47

FIGURE 4.15 – AUTOMATED FLOW FOR SIMULATION, ANALYSIS AND SPECIFICATION OF TRANSISTORS SIZE. A

SPECIALLY DESIGNED TOOL GENERATES AN OSCILLATOR RING FROM THE DESIGNED SCHEMATIC VIEW,

THIS RING IS SIMULATED FOR DIFFERENT DIMENSIONS OF PMOS TRANSISTORS OVER DIFFERENT

DIMENSIONS OF NMOS TRANSISTORS AND EACH VARIATION HAS ITS ELECTRICAL BEHAVIOR MEASURED.

THE RESULTS ARE ANALYZED BY ANOTHER SPECIALLY DESIGNED TOOL THAT SELECTS THE BEST PMOS

DIMENSION FOR EACH VARIATION IN THE NMOS SIZE. FROM THERE, TWO IMPLEMENTATIONS ARE

SELECTED, ONE FOR LOWER POWER CONSUMPTION (BP) AND ONE FOR HIGH PERFORMANCE (BS). 48

FIGURE 4.16 – RESULTS OBTAINED FROM OPERATING FREQUENCY MEASUREMENTS FOR A RING OF C-

ELEMENTS WITH VARYING TRANSISTORS SIZE. .. 49

FIGURE 4.17 – RESULTS OBTAINED FROM OPERATING FREQUENCY AND POWER CONSUMPTION

MEASUREMENTS FOR A RING OF C-ELEMENTS WITH VARYING TRANSISTORS SIZE. THE GRAPHIC

REPRESENT THE COST-BENEFIT OF BIGGER TRANSISTORS REGARDING TO WATTS CONSUMED PER HERTZ

OBTAINED.. 49

FIGURE 4.18 – SCHEMATIC THAT IMPLEMENTS THE LOGIC OF GPSVT_FILTER2X1 STANDARD CELL. 50

FIGURE 4.19 – RESULTS FOR SIMULATIONS OF DIFFERENT VARIATIONS, CONCERNING TO TRANSISTORS SIZE,

OF THE GPSVT_FILTER2X1 CELL WITH AN OUTPUT LOAD OF 0.27PF. ... 51

FIGURE 4.20 – VIEW OF THE VIRTUOSO LAYOUT EDITOR. THE PHYSICAL DESIGN OF A 2 INPUT C-ELEMENT. 52

FIGURE 4.21 – ADOPTED PHYSICAL VIEW DESIGN FLOW. .. 52

FIGURE 4.22 – EXAMPLE OF A TAPPED CELL, REQUIRED FOR CIRCUIT EXTRACTION. .. 53

FIGURE 4.23 – EXAMPLE OF NON LINEAR MODEL INPUT TABLE. ... 54

FIGURE 4.24 – LIBRARY CHARACTERIZATION FLOW USING ELC [CAD10B]. .. 54

FIGURE 4.25 – EXAMPLE OF PROPAGATION DELAYS (A) AND TRANSITION DELAYS (B) FOR AN INVERTER. 55

FIGURE 4.26 – EQUIVALENT TRANSITION CIRCUITS FOR AN INVERTER, (A) HIGH TO LOW TRANSITION AND (B)

LOW TO HIGH TRANSITION, FROM [RAB03]. .. 56

FIGURE 4.27 – TRANSIENT CURRENT, ADAPTED FROM [RAB03]. ... 56

FIGURE 4.28 – EXAMPLE OF ABSTRACT VIEW AUTOMATICALLY GENERATED THROUGH CADENCE ABSTRACT

GENERATOR. ABSTRACT VIEW OF THE LAYOUT SHOWED IN FIGURE 4.20. .. 58

xvi

FIGURE 4.29 – EXAMPLE OF SYMBOL GENERATED THROUGH VIRTUOSO SCHEMATIC EDITOR. 58

FIGURE 4.30 – FLOW ADOPTED FOR THE VERILOG VIEW GENERATION. ... 59

FIGURE 4.31 – EXAMPLE OF VERILOG VIEW, A 2 INPUT C-ELEMENT. .. 59

FIGURE 4.32 – EXAMPLE OF A TEST BENCH, DESCRIBED IN VHDL FOR AUTOMATICALLY VERIFYING THE

BEHAVIORAL DESCRIPTION FROM FIGURE 4.31. ... 60

FIGURE 4.33 – RESULTANT WAVEFORM FROM THE SIMULATION OF THE VHDL TEST BENCH DESCRIBED IN

FIGURE 4.32. .. 60

FIGURE 4.34 – EXAMPLE OF A SINGLE CELL DESIGN PLACED AND ROUTED IN ENCOUNTER. THE FILLED BLUE

SQUARE IS THE PHYSICAL SITE OF THE STANDARD CELL, IN THE BORDERS OF THE OUTER SQUARE ARE

THE I/O PINS AND THE ROUTING IS THROUGH METAL LAYERS, RED, GREEN AND YELLOW RECTANGLES. 61

FIGURE 4.35 – EXAMPLE OF SDF FILE, GENERATED FROM ENCOUNTER. ... 61

FIGURE 4.36 – TIMING SIMULATION RESULTS FOR A GATE LEVEL DESIGN OF A SINGLE 2 INPUT C-ELEMENT

STANDARD CELL. (A) AND (B) PRESENTS, RESPECTIVELY, RISE AND FALL PROPAGATION DELAYS FROM PIN

A TO Q, WHILE (C) AND (D) PRESENTS THE PROPAGATION DELAYS FROM PIN B TO Q. 62

FIGURE 4.37 – IC DESIGN FLOWS USED TO IMPLEMENT DESIGNS ON THE DESIGNED LIBRARY GATES. 63

FIGURE 5.1 – VERSIONS OF EACH C-ELEMENT SPECIFICATION... 66

FIGURE 5.2 – SEVERAL COMPARISONS BETWEEN DIFFERENT C-ELEMENTS CMOS IMPLEMENTATIONS WITH

VARYING DRIVE STRENGTHS, FROM X1 TO X4. THE COMPARED C-ELEMENT CLASSES ARE

CONVENTIONAL (CCONV), WEAK FEEDBACK OR MULLER (CMUL) AND SYMMETRIC (CSYM). IN (A) THE

AREA OF THE CELLS IS COMPARED. IN (B) AND (C), THE OPERATING FREQUENCY AND THE DYNAMIC

POWER CONSUMPTION OF A RING OF C-ELEMENTS ARE COMPARED. IN (D), THE LEAKAGE POWER

CONSUMPTION OF THE GATES IS COMPARED FOR 2 AND 3-INPUT CELLS. FOR INSTANCE, BP_CMUL2 IS A

2-INPUT BP MULLER (WEAK FEEDBACK) C-ELEMENT, WHILE BP_CMUL3 IS ITS 3-INPUT VERSION. 69

FIGURE 6.1 – IC DESIGN FLOW ADOPTED TO DESCRIBE AND IMPLEMENT AN ASYNCHRONOUS RSA BASED

CRYPTOGRAPHY CIRCUIT. .. 71

FIGURE 6.2 – SIMULATION OF A TEST BENCH FOR THE BALSA DESCRIPTION, USING TEAK SYSTEM. 73

FIGURE 6.3 – BEHAVIORAL SIMULATION OF A TEST BENCH OF THE NETLIST GENERATED FROM THE TEAK

SYNTHESIS, USING INCISIVE. ... 74

FIGURE 6.4 – ASYNCHRONOUS RSA DESIGN ROUTED THROUGH ENCOUNTER. .. 75

FIGURE 6.5 – TIMING SIMULATION OF A TEST BENCH OF THE NETLIST GENERATED FROM THE CIRCUIT PLACED

AND ROUTED BY ENCOUNTER. ... 75

FIGURE 6.6 – IC DESIGN FLOW ADOPTED TO DESCRIBE AND IMPLEMENT AN ASYNCHRONOUS NOC ROUTER. . 76

FIGURE A.1 – RESULTS FOR THE SIMULATION OF AN INVERTER WITH VARYING PMOS SIZING AND AN NMOS

TRANSISTOR SIZE OF 0.135µM. ... 88

FIGURE A.2 – RESULTS FOR THE SIMULATION OF AN INVERTER WITH VARYING PMOS SIZING AND AN NMOS

TRANSISTOR SIZE OF 0.200µM. ... 88

FIGURE A.3 – RESULTS FOR THE SIMULATION OF AN INVERTER WITH VARYING PMOS SIZING AND AN NMOS

TRANSISTOR SIZE OF 0.300µM. ... 89

xvii

FIGURE A.4 – RESULTS FOR THE SIMULATION OF AN INVERTER WITH VARYING PMOS SIZING AND AN NMOS

TRANSISTOR SIZE OF 0.400µM. ... 89

FIGURE A.5 – RESULTS FOR THE SIMULATION OF AN INVERTER WITH VARYING PMOS SIZING AND AN NMOS

TRANSISTOR SIZE OF 0.500µM. ... 90

FIGURE A.6 – RESULTS FOR THE SIMULATION OF AN INVERTER WITH VARYING PMOS SIZING AND AN NMOS

TRANSISTOR SIZE OF 0.600µM. ... 90

FIGURE A.7 – RESULTS FOR THE SIMULATION OF AN INVERTER WITH VARYING PMOS SIZING AND AN NMOS

TRANSISTOR SIZE OF 0.700µM. ... 91

FIGURE A.8 – RESULTS FOR THE SIMULATION OF AN INVERTER WITH VARYING PMOS SIZING AND AN NMOS

TRANSISTOR SIZE OF 0.800µM. ... 91

FIGURE A.9 – RESULTS OF SIMULATIONS FOR AN INVERTER WITH VARIABLE TRANSISTORS SIZE AND AN

OUTPUT LOAD OF 0.54PF (X2). .. 92

FIGURE A.10 – RESULTS OF SIMULATIONS FOR AN INVERTER WITH VARIABLE TRANSISTORS SIZE AND AN

OUTPUT LOAD OF 0.81PF (X3). .. 93

FIGURE A.11 – RESULTS OF SIMULATIONS FOR AN INVERTER WITH VARIABLE TRANSISTORS SIZE AND AN

OUTPUT LOAD OF 1.08PF (X4). .. 93

FIGURE A.12 – RESULTS OF SIMULATIONS FOR AN INVERTER WITH VARIABLE TRANSISTORS SIZE AND AN

OUTPUT LOAD OF 1.35PF (X5). .. 94

FIGURE A.13 – RESULTS OF SIMULATIONS FOR AN INVERTER WITH VARIABLE TRANSISTORS SIZE AND AN

OUTPUT LOAD OF 1.62PF (X6). .. 94

FIGURE A.14 – RESULTS OF SIMULATIONS FOR AN INVERTER WITH VARIABLE TRANSISTORS SIZE AND AN

OUTPUT LOAD OF 1.89PF (X7). .. 95

FIGURE A.15 – RESULTS OF SIMULATIONS FOR AN INVERTER WITH VARIABLE TRANSISTORS SIZE AND AN

OUTPUT LOAD OF 2.16PF (X8). .. 95

FIGURE C.16 – SCHEMATIC OF A TWO INPUT CONVENTIONAL C-ELEMENT. ... 99

FIGURE C.17 – LAYOUT OF A TWO INPUT CONVENTIONAL C-ELEMENT. ... 100

FIGURE C.18 – SCHEMATIC OF A TWO INPUT MULLER C-ELEMENT. .. 101

FIGURE C.19 – LAYOUT OF A TWO INPUT MULLER C-ELEMENT. .. 102

FIGURE C.20 – SCHEMATIC OF A TWO INPUT SYMMETRIC C-ELEMENT. .. 103

FIGURE C.21 – LAYOUT OF A TWO INPUT SYMMETRIC C-ELEMENT. .. 104

FIGURE C.22 – SCHEMATIC OF A TWO INPUT METASTABILITY FILTER. .. 105

FIGURE C.23 – LAYOUT OF A TWO INPUT METASTABILITY FILTER.. 106

FIGURE D.24 – VARIABLE SIZE MULTIPLIER BALSA DESCRIPTION. .. 107

FIGURE D.25 – VARIABLE SIZE DIVISION REMAINDER BALSA DESCRIPTION. .. 108

FIGURE D.26 – VARIABLE SIZE ASYNCHRONOUS DESCRIPTION OF THE FUNCTION IMPLEMENTED BY RSA. 109

FIGURE D.27 – BALSA DESCRIPTION OF THE ASYNCHRONOUS RSA TOP CIRCUIT. ... 110

FIGURE D.28 – DIAGRAM OF TEAK SYNTHESIS BEFORE OPTIMIZATION. .. 111

FIGURE D.29 – DIAGRAM OF TEAK SYNTHESIS AFTER OPTIMIZATION. .. 112

xix

LIST OF EQUATIONS

EQUATION 2.1 – STANDARD CELL HEIGHT (A) AND WIDTH (B). ... 12

EQUATION 2.2 – QDI DELAY ASSUMPTION FOR THE CIRCUIT DEPICTED IN FIGURE 2.11. 18

EQUATION 4.1 – SIZE OF PMOS TRANSISTOR (WP) AS A FUNCTION OF THE SIZE OF THE NMOS TRANSISTOR (WN)

AND THE PMOS-TO-NMOS RATIO (Β). ... 38

EQUATION 4.2 – EXAMPLE OF LOGICAL EXPRESSION DEFINING THE OUTPUT OF A 2 INPUT C-ELEMENT AS A

FUNCTION OF ITS INPUTS. Q IS THE OUTPUT AND A AND B THE INPUTS. .. 44

EQUATION 4.3 – SPECIFICATION OF A FILTER FUNCTIONALITY FOR ITS TWO OUTPUTS: (A) AA AND (B) AB. 50

EQUATION 4.4 – STATIC POWER DISSIPATION [RAB03] ... 56

EQUATION 6.1 – RSA ALGORITHM EQUATIONS AND KEY DEFINITIONS [SCH96]. .. 72

1

1 INTRODUCTION

“The world is full of obvious things which

nobody by any chance ever observes.”

Sir Arthur Conan Doyle

1.1 Introduction

Throughout the evolution of electronic design techniques, some assumptions were

adopted in order to overcome the increasing complexity of circuits. Classically, digital

electronics assumes the discretization of information using two distinct voltage levels to

represent the digits of a binary system, e.g.: high voltage (digit 1) and low voltage (digit 0). In

this way, information can be manipulated through logic and arithmetic operations and digital

devices are easily implemented. The evolution of the technologies used to fabricate integrated

circuits (ICs) brought the possibility of implementing hundreds of millions of transistors in a

single chip. Thus, modern ICs can contain all elements of a complex system in a single chip.

Such devices are usually called Systems on a Chip (SoCs) [REI00].

At present, many SoC designs adopt the synchronous paradigm, which implies another

assumption: a discrete notion of time. Synchronous digital circuits employ an externally

generated control signal, usually called clock. The clock signal, distributed through the circuit

and employed by all its storage components, synchronizes the overall circuit state changes.

This abstraction of time significantly reduces the complexity of a digital circuit design and

allows it to be more easily modeled using register transfer level (RTL) description languages,

such as Very-High-Speed Integrated Circuits Hardware Description Language (VHDL) and

Verilog [BRO05] [VAH10].

However, with the evolution of very large scale integration (VLSI) technologies,

limitations of the synchronous design paradigm started to emerge. Synchronous design

problems that were easily overcome in previous decades, such as clock skew and power

consumption, became a complex task to solve in modern designs. The clock signal dissipates

2

an average of 45% of the whole power in high performance processors and can reach as much

as 70% of the power dissipation for such devices [AMD05]. This power budget makes

complex synchronous designs less attractive for low power applications such as embedded

systems. Therefore, it is necessary to consider new strategies as the complexity to design a

synchronous SoC gets higher [ITR09].

An alternative is to use non-synchronous circuits, which make use of the voltage level

discretization but where there is not a global clock signal [MYE01] [SPA01]. In this way,

time is again considered a continuous variable. This characteristic makes such circuits more

sensitive to temporal phenomena [PON08]. In contrast to the synchronous paradigm, in order

to perform synchronization, communication and sequencing operations, asynchronous circuits

often use explicit handshaking between their elements. Consequently, the circuit executes a

computation only when and where it is needed [SPA01]. To illustrate this, Figure 1.1(a)

shows an example of a synchronous circuit, where data flows through registers (Reg.1, Reg.

2, …) controlled by a global and common clock signal (CLK). Data transformation is

accomplished by the combinational logic blocks (CL3, CL4) interspersed between registers.

In an asynchronous counterpart, that Figure 1.1(b) displays, data flows by means of local

communications between each pair of storage elements, using a handshake channel. Note that

asynchronous design may employ level sensitive storage devices instead of the usually edge-

triggered flip-flops used in synchronous design.

Reg. 1 Reg. 2 CL3 CL4Reg. 3 Reg. 4

CLK

(a)

(b)Reg. 1 Reg. 2

CL3 CL4

Reg. 3 Reg. 4

CTL

Data

Data

CTL CTL CTL

Ack

Req

Figure 1.1 – (a) A synchronous circuit and (b) an asynchronous implementation, using local

handshake control circuits (blocks called CTL) [SPA01].

In fact, the interest in non-synchronous circuits has been increasing since the last

decade. The International Technology Roadmap for Semiconductors (ITRS) published in

[ITR01] suggests that at 65nm technology nodes and below, communication architectures and

protocols for SoCs would require a significant change, as it would become impossible to

move signals across a large die within the period of a clock signal or without dissipating too

much power. The ITRS 2008 Edition [ITR08] presents the need for asynchronous

3

communication protocols for control and synchronization in ICs for the next decades, as

depicted in Figure 1.2. Therefore, it seems inevitable a shift to asynchronous or globally

asynchronous locally synchronous (GALS) design styles for deep submicron ICs.

Figure 1.2 – Required percentage for next decades ICs driven by handshaking signaling

according to [ITR08].

Conversely, the lack of adequate electronic design automation (EDA) tools imposes a

great barrier in the design of asynchronous circuits. This is because the majority of

commercial applications target the synchronous paradigm. According to the ITRS 2009

Edition [ITR09] further progress in the asynchronous paradigm depends on commercial tool

support. The high complexity of modern ICs makes the task of ensuring that such designs will

operate correctly on silicon nearly impossible without the use of adequate EDA software and

consolidated design methodologies [MIC94] [REI00] [RAB03] [WON05]. Additionally, time

to market constraints become increasingly stricter as the semiconductors industry develops

new technologies and short design time remains an essential feature for successful products.

Current SoC designs use the standard-cell methodology extensively as an answer to

design automation needs. This aims at fulfilling the constraints imposed by complex modern

ICs. In fact, this concept (standard-cell based design) was invented to speed up the design

phase of high performance ICs and is often referred as the key success factor for the rapid

growth of integrated systems [JAM99] [ERI03] [HAS03]. The reason for that is the use of a

standard library of pre-defined cells, provided by chip vendors, which contains a collection of

gate-level elements standardized at logic or functional level [RAB03]. Such components are

pre-designed and pre-verified, making the task of implementing an IC on silicon much easier

to be automated by EDA tools. The latter support the assumption of using functional blocks

4

to build the design [SAI02]. For instance, Figure 1.3 shows the layout of a standard-cell based

design, depicting the use of different pre-implemented blocks interconnected in order to

create a given functionality.

Figure 1.3 – Example of a partial vie w of a standard-cell based IC die, obtained with the

Cadence Encounter layout editor tool [CAD10]. There are 5 horizontal stripes located at the

center of the die containing each from 5 to 7 standard-cells. Vertical thin lines are wires

interconnecting cells. Thin vertical rectangles are filler cells used to guarantee

manufacturability characteristics of the design. The design is encircled by rectangles that

represent global power and ground lines.

One major drawback for those intending to use standard-cell design methods for the

asynchronous paradigm is that most libraries provided by vendors still contain only basic

devices for synchronous design, such as logic gates and flip-flops. However, efficient

asynchronous designs require other specific devices as well, as it will be explored in this

document. The objective of this work is to supply these devices in order to enable the design

of asynchronous standard cell based ASICs. To do so, a library containing over 200 typical

asynchronous gates was designed for a 65nm gate length CMOS technology.

5

1.2 Contributions of This Work

This work presents ASCEnD, a standard cell library created to support the design of

asynchronous ASICs. This library contains, in its present version, over 200 gates. Among the

available standard cells there are different implementations of C-Elements and metastability

filters. If designers associate ASCEnD to a regular standard cell library containing e. g. gates

and flip-flops, this is sufficient to support asynchronous design styles such as QDI based on a

4-phase protocol with dual-rail encoding or bundled-data micropipelines [SPA01]. A novel

flow to perform transistor sizing for C-Elements is presented and adopted in the design of the

library. Moreover, this document also describes an alternative flow to implement

asynchronous circuits and adopts it to validate ASCEnD. This flow employs asynchronous

EDA tools from The University of Manchester Advanced Processor Technologies (APT)

Group [APT10]. An asynchronous version of an RSA based cryptographic circuit was

described in Balsa language and implemented in the designed library.

1.3 Work Structure

The remainder of this work is organized as follows. Chapter 2 provides relevant

background information. Chapter 3 presents the state of the art in open source standard cell

libraries and their support for asynchronous circuits. Chapters 4 , 5 and 6 present the

developed work. The design method adopted, along with the required tools, is described in

Chapter 4 . Next, Chapter 5 explores the designed library. Chapter 6 presents the validation of

the library through the design and simulation of an asynchronous RSA cryptography circuit

and a Network on Chip (NoC) router using ASCEnD. Finally, Chapter 7 explores

conclusions and directions for future works.

7

2 CONCEPTS

“It was easier to know it than to explain

why I know it.”

Sir Arthur Conan Doyle

This Chapter presents basic concepts of microelectronic design styles and a typical

design flow for standard cell libraries. Also, it describes some basic concepts of asynchronous

circuits and addresses the Balsa System, which comprises a language and a framework for

describing and implementing such circuits in ASIC and FPGA technologies.

2.1 Microelectronic Design Styles

Different methods are used to design integrated circuits (ICs). Usually these are roughly

classified into full-custom or semi-custom design styles, or methods. In the former, both the

functional and physical design are handcrafted, which implies a large effort of the design

team to achieve maximum efficiency of each single feature of the circuit. Semi-custom

designs, on the other hand, aim at reducing fabrication costs and time as well as design

complexity, by using predesigned and pre-validated gates or even pre-diffused ICs. Figure 2.1

provides a classification that can be used to encompass available microelectronic design

styles.

Microelectronic

Design Styles

Full-Custom Semi-Custom

Cell-Based Array-Based

Standard-Cells Macro-Cells Pre-Diffused Pre-Wired

Figure 2.1 – Microelectronic design styles. Adapted from [MIC94] and [RAB03].

8

In the full-custom approach, every transistor has its functional and physical design

optimized for excellence. This methodology involves detailed manipulation of physical and

electrical characteristics, through layout design and simulation. However, the increasing

complexity of current ICs, added to strict time-to-market constraints, has confined custom

design techniques to specific cases, where such extremely costly effort pays off. For instance,

Figure 2.2 shows an example of contemporary designs in comparison with previous decades.

The Intel 4004, Figure 2.2 (a) was fabricated in the early 70’s and counted roughly with 2.300

transistors. In contrast, the Intel i7, Figure 2.2 (b), in the market since 2009, contains around

800,000,000 transistors. It is simply impossible to design such an IC, as the latter, using a

full-custom design approach and respect time to market constraints. Hence, another method is

necessary to supply the fast transitioning and high demanded IC market: the semi-custom

design style.

Figure 2.2 – Die photo of (a) Intel 4004 and (b) i7 microprocessors [INT10].

Semi-custom design styles can be divided in two subgroups: cell-based and array-based.

The former aims to reduce fabrication costs and time. Semi-custom designs can even

completely avoid to the end user the need to get involved in the IC manufacturing process, as

in the case of field programmable gate arrays (FPGAs), an off-the-shelf IC fabricated as a pre-

diffused array-based design. The cell-based approach can still be subdivided into macro cell

and standard cell designs. Macro cell designs, in short, often make use of computer programs

to synthesize modules. Such modules are implemented as circuitry that is too complex to be

handcrafted but still presents some degree of regularity that can be exploited by a

parameterized automatic generation process. Structures such as multipliers, data paths,

memories, embedded microprocessors and digital signal processors (DSPs) are examples of

commonly used macro cells [RAB03].

The semi-custom standard cell approach increases the grain size of design to logic

gates, in contrast to designing each transistor, as in a full-custom method. When using

standard cells, a library is provided containing a vast number of logic gates over a range of

fan-in and fan-out with different physical, electrical and logical characteristics. With the

9

support of EDA tools, the layout of a circuit with arbitrary complexity can be automatically

generated either from a schematic, containing exclusively cells from the library, or from a

higher level specification like a hardware description language (HDL) description, which is

then synthesized to the desired technology and mapped according to the library elements

[MIC94]. Additionally, a design does not need to be limited to a single method and it is

common to have ICs designed with compatible methods. For instance, the Intel Pentium 4,

which die appears in Figure 2.3, was designed mostly with automated semi-custom

approaches but some of its performance-critical modules, such as clock buffers, were

designed manually [RAB03].

Figure 2.3 – Intel Pentium 4 die photo [INT10]. The patterns and rectangular shapes in the

chip, makes clear the use of a semi-custom design style.

The choice for a design style is often based on a tradeoff between performance and

design cost and time. For instance, a full-custom approach may only be justified over a very

high volume, due to its high cost. The advantages and drawbacks of the design styles

mentioned here are summarized in Table 2.1.

Table 2.1 – Tradeoffs between microelectronic design styles, from [MIC94].

 Full-Custom Cell-based Prediffused Prewired

Density Very High High High Medium-Low

Performance Very High High High Medium-Low

Flexibility Very High High Medium Low

Design time Very Long Short Short Very Short

Manufacturing time Medium Medium Short Very Short

Cost – low volume Very High High High Low

Cost – high volume Low Low Low High

10

2.2 A Typical Design Flow of a Standard Cell Library

The typical design flow of a standard cell library consists in designing a set of logical

gates at the transistor level for a given technology process. Figure 2.4 presents an overview of

the basic steps required to design each element of a standard cells library. The design of each

gate starts from a specification, defining logical and electrical parameters like propagation

delay and power consumption. From these, the physical view of each gate is designed. In a

typical standard cell based design, cells are placed side by side by an automated place and

route tool. Therefore, rules are needed. In order for the gates to fit side by side, every element

must have the same height with a variable, albeit predictable, width. Moreover, the input and

output terminals of each gate must be placed in pre-determined physical regions.

From the metal layers of the physical view, an abstract view is generated, which

specifies internal nodes and input/output (I/O) terminals. Then, the extracted circuit is

obtained through an automated extraction tool. This circuit contains not only the drawn

transistors but also every parasitic device generated from the physical layers. In this way, a

more realistic view is obtained, and with it simulations are performed to characterize the

electrical behavior of the designed gate. With the electrical characteristics of each gate, a

circuit can be synthesized from a high level description. With the abstract views the place and

route tool can easily assemble the IC from these predesigned blocks.

Specification

Abstract

Layout

Verification

Extraction

Characterization
Power &

Delay

Standard Cell

Library

Figure 2.4 – Typical design flow of each gate of a standard cell library based on [CHO92]

[SAI02] [HAS03] [RAB03] [YEO09]. Inputs and outputs are given by rounded corners boxes,

actions by boxes, decisions by diamonds and the repository as a cylinder.

11

2.2.1 Layout

Once the circuit schematic is defined, it is possible to draw its physical view through a

layout editor tool. The basic function of this tool is to place polygons representing the

different layers used to fabricate an IC in a given technology. However, to make it possible

for automated tools to place and connect the cells, rules are needed. Thinking about Lego, the

reason why one can build bigger structures with them is that all of these bricks fit with each

other. Moreover, all the blocks have standard sizes and standard places for the connection

bumps. In order to design a standard-cell library, it is necessary to respect the same rules for

each cell [SAI04]. In this way, the gates will fit together in predictable patterns and it is

possible to automate the process of generating circuit layouts from abstract descriptions, such

as RTL modeling. Figure 2.5 shows a basic set of rules for standard cell libraries.

B

A

C

C

D

E

F

G

Figure 2.5 – A basic set of rules for a standard cell library. “A” and “B” are the cell height and

width, respectively. “C” is the power lines width and “D” is the routing grid. “E”, “F” and “G”

are the height of the implant layers [SMI97] [SAI02] [RAB03] [SAI04].

Because the generation of the layout of a standard cell-based IC is an automated

process, a place and route tool must be used to build the circuit from the gates provided by the

library. This tool places the cells side by side and then connects these to implement the logic

of the circuit. It does help a lot the automation of this process if the cell height, represented by

12

“A” in Figure 2.5, is the same for every gate, facilitating the arrangement of the power lines.

The cell width however, depicted as “B” in the figure, can vary. These dimensions are given

as a function of the metal pitches, which are defined by the manufacturer [CAD09]. Usually,

the metal pitch represents the minimum distance between the centers of two adjacent layers of

a same metal line at minimum size with minimum spacing between them. Figure 2.6 depicts

an example of a metal1 pitch.

Metal1

Metal1
min. width

min. width

min. spacingMetal1 pitch

Figure 2.6 – Example of metal1 pitch, the minimum distance between the centers of two

adjacent metal1 layers.

Generally, the height of a cell must be an even multiple of the metal1 pitch while the

width must be an even multiple of the metal2 pitch. Equation 2.1 defines these relations. In

(a) “Pm1” is the metal1 pitch and in (b) “Pm2” is the metal2 pitch. The metal pitches also

define the routing grid, represented by “D”. Input and output pins are placed according to this

grid, usually exactly in the middle of the region where the horizontal axis override the vertical

axis, which are given by the metal2 and metal1 pitches respectively. Another standardized

dimension is the height of the implant layers, “E”, “F” and “G”, due to the fact that the cells

are usually placed side by side.

Equation 2.1 – Standard cell height (a) and width (b).

*

1 nPnA m (a)

*

2 nPnB m (b)

Finally, there is the manufacture grid. This grid defines the metric unit to design a

layout. For instance, if the manufacture grid is 0.010nm, every measure in the layout must be

an even multiple of 0.010nm in both axes, X and Y, in order to have a manufacturable layout.

This grid can usually be defined in the configuration options of the layout editor tool.

2.2.2 Verification

To guarantee that an IC using standard cells is manufacturable, the designed layers must

respect some rules stated by the semiconductor foundry. The basic rule classes for layers are

spacing, width, enclosure and extension rules, all illustrated in Figure 2.7. From these classes

13

it is possible to define a vast set of rules, specifying relations between different or identical

layers. This makes the task of designing a single cell harder, as its complexity increases. To

ensure that a given layout respects all the rules for a specific process, it is necessary to use a

design rule check (DRC) tool. This tool verifies if the generated layout can be properly

manufactured in a specific foundry and technology process. However, ensuring that the

circuit can be correctly implemented in silicon does not mean that it will operate correctly. In

order to ensure that the layout implements the specified logic, a layout versus schematic

(LVS) test must be performed through an LVS tool, which compares the schematic with the

layout and checks if the circuits are functionally equivalent.

Extension

Extension

Spacing Width

Enclosure

Figure 2.7 – Basic set of DRC rule classes [SAI02] [RAB03].

2.2.3 Abstract

Once a cell is fully verified, an abstract view can be generated. An abstract view is a

high-level representation of a layout and is generated based on the extraction of the physical

layout of a cell for a given technology [CAD07]. This view contains the metal layers of a

circuit and its terminals along with boundaries, which is crucial in the silicon circuit assembly

automation. From this view, the place and route tool will obtain the necessary information to

place each gate and connect its terminals.

2.2.4 Extraction

Following the cell abstraction step, a circuit extractor tool must be used to scan the

different layers of the physical design and reconstruct the circuit schematic from this

geometrical description. The generated circuit contains not only the transistors that implement

the logic of the gate, but also every parasitic element, like the capacitance between the gate

and the bulk. This allows a more accurate simulation and analysis of the designed circuit

[RAB03]. Figure 2.8 shows parasitic elements for a physical implementation of an NMOS

transistor.

14

Figure 2.8 – Physical model of an NMOS transistor, extracted from [DOA05].

2.2.5 Electrical Characterization

A robust physical characterization of a standard cell library can guarantee that a design

can be properly manufactured using the gates of the library, but it does not ensure that the

design will work correctly on silicon. Hence, just logical and physical characteristics of the

gates – functionality, size and terminal positions – are not enough. The quality of the result of

a synthesis tool depends strongly on the level of detail of the library’s electrical

characterization process. This process consists in specifying the delay and power

consumption of each gate as a function of the fan-out and the input slopes [RAB03].

Due to variations in the fabrication process, gates must be characterized at different

manufacturing parameters, which will reflect their real behavior for different fabrication

process variations. In this way, it is possible to verify that a design will operate correctly and

perform to its required timing specification even in worst case conditions. In addition, there is

also the influence of operational conditions, temperature and voltage, which can make the

delay of the cells vary as well. For instance, Figure 2.9 (a) shows a microphotograph of a

fabricated transistor cross section. In the photograph it is possible to identify the possible

source of process variations on a channel length, on the distance between doped regions (left

and right bottom darkened areas). It is possible to note for example, that this later distance is

not the same for different depths of the channel. Figure 2.9 (b) shows how variations in the

gate and source/drain of a transistor may occur, due to manufacturing process variations.

Such phenomena can, when not adequately controlled result in faulty ICs.

A robust standard cell characterization is clearly a challenge, especially in

15

contemporary deep submicron technologies, where any slight variation can compromise a

whole chip. Fortunately, there are tools that automate the task of exhaustively simulating all

necessary conditions to ensure the reliability of a characterization process. Once robust

information about electrical, physical and functional characteristics of a cell is obtained, this

can become part of a library.

Figure 2.9 – CMOS microphotograph showing the possible origins of process corners in (a) a

transistor of an Intel 386 processor, and (b) a gate of an Intel SDRAM [INT10].

2.3 Asynchronous Circuits

A digital circuit is (fully) asynchronous when no clock signal is used to control any

sequencing of events. Instead, asynchronous modules use handshaking between its

components to synchronize, communicate and operate [SPA01] [MYE01]. In “synchronous

terms” the resulting behavior is registers being clocked only when and where this is needed

[BAR00] [SPA01]. Such characteristic presents advantages over the use of a global clock

signal in modern technologies. According to [BER99] [SPA01] [MYE01] [BOU07] [CHO07]

and [CRI10], asynchronous circuits may present:

 Lower dynamic power consumption: When not computing, the circuit is

quiescent, i.e. consumes only leakage current. When requested, the circuit starts

to compute and starts to consume energy. However, after the computation of a

task, the circuit returns to a quiescent until next request.

 Higher operating speed: The operating speed is given by local latencies rather

than a global signal. Asynchronous circuits operate at average case delays, while

their synchronous counterpart are designed based on worst case delays.

 Better composability and modularity: Since synchronization is given by local

handshakes rather than a global signal.

 Low electromagnetic emissions: Registers do not switch all at the same time.

Instead, they switch at random points of time through local requests.

16

 High robustness: The circuit continues to operate correctly for a larger range of

variation in the power supply. Moreover, since no assumptions are made about

the inter-cell communication delays, the circuit is much more tolerant to

process, voltage and temperature variations.

Yet, there are also drawbacks concerning the use of asynchronous control logic, such as

the obvious area penalty, and in some cases circuit speed and power consumption may be

compromised [BER99] [SPA01] [MYE01] [KWE07].

2.3.1 Muller C-Element

The Muller C-element [MUL57] is a fundamental component in asynchronous circuits

design and is extensively used [SPA01] [MYE01]. This is because the C-element operates as

an event synchronizer. Its output will only switch when all inputs have the same logical value.

Its truth table is represented in Table 2.2. When inputs (A and B) have the same value, the

output (Q) assumes this same value. However, when the inputs are different, the output keeps

its previous logic value. Hence, the C-element can be viewed as an AND function for

transitions [BAR00]. C-elements are often required in asynchronous circuits to allow the

synchronization of control inputs. Its properties make C-elements crucial components in the

implementation of asynchronous circuits control.

Table 2.2 –C-Element truth table.

A B Qi

0 0 0

0 1 Qi-1

1 0 Qi-1

1 1 1

The C-Element can also have some variations concerning to the symmetry of its inputs.

Table 2.3 (a) shows the truth table of an asymmetric C-Element with a normal input (B) and a

rising1 input (A). When both inputs are high, the output is high. However, if B is low, the

output is low, because A is a rising input. On the other hand, in Table 2.3 (b), the truth table

of an asymmetric C-Element with a normal input (A) and a falling input (B) is showed. When

both inputs are low, the output is low. However, since B is a falling input, only A needs to be

high for the output to be high. Additionally, the C-Elements can have reset and/or set inputs.

A reset input sets the output to low regardless the value of the other inputs, while the set input

1 A rising input is an input that drives only the rising logical switching of an output. It is represented in symbols with “+”.

On the other hand, a falling input is an input that drives only the falling logical switching of an output. This inputs are

represented with “–“ in symbols.

17

sets it to high.

Table 2.3 – Asymmetric C-Element truth tables. In (a) a C-Element with a normal input (B)

and a rising input (A). In (b), a C-Element with a normal input (A) and a falling input (B).

A B Qi

0 0 0

0 1 Qi-1

1 0 0

1 1 1

A B Qi

0 0 0

0 1 Qi-1

1 0 1

1 1 1

(a) (b)

From the presented cells, different versions of C-Elements can be implemented,

providing a more flexible library. For instance, in [YAH06] different versions of registers are

implemented and compared. In order to implement these versions, different variations of C-

Elements are required. Figure 2.10 shows 3 buffer implementations from logic gates. In (a), a

weak conditioned half buffer (WCHB) is designed with a NOR gate and two 2 input C-

Elements with a reset pin (C1 and C2). In (b), a pre charged half buffer (PCHB) is

implemented with two NOR gates, two asymmetric 3 input C-Elements with one rising input

and a reset pin (C1 and C2) and one asymmetric 2 input C-Element with a rising input (C3).

In (c), a pre charged full buffer is implemented with two NOR gates, one inverter, two

asymmetric 3 input C-Elements with one rising input and a reset pin (C1 and C2), one

asymmetric 3 input C-Element with a rising and a falling input (C3) and one asymmetric C-

Element with a rising input (C4).

(a) (b) (c)

Figure 2.10 – Different buffer implementations. Weak Conditioned Half Buffer (WCHB)

circuit diagram in (a), Pre-Charged Half Buffer (PCHB) in (b) and Pre-Charged Full Buffer

(PCFB) in (c). Picture taken from [YAH06].

The designed library counts with all the C-Element variations described above. In this

way, different implementations can be obtained by using it to build circuits.

18

2.3.2 Delay Models

Asynchronous circuits can be classified according to several criteria. The most used

classification criterion is based on the delays of wires and gates. The most robust and

restrictive delay model is the delay-insensitive (DI) model. Circuits in this class operate

correctly regardless of gate and wire delays. Unfortunately, these circuits are restricted to

modules composed of C-elements and inverters only [SPA01]. Referring to the circuit

depicted in Figure 2.11, a DI circuit would operate correctly with arbitrary delay values dA,

dB, dC, d1, d2 and d3.

A

dA

B

dB

C

dC

d2

d3

d1

Figure 2.11 – Circuit fragment with gate and wires delays, adapted from [SPA01].

Asynchronous circuits can also be implemented with the addition of an assumption on

the wire delays in some carefully indicated forks. This kind of implementation is called quasi-

delay-insensitive (QDI). In this delay model, signal transitions must occur at the same time at

all end points of the mentioned forks. Let us say that the circuit in Figure 2.11 is QDI and it

contains a single fork. Therefore, Equation 2.2 must be true, where λ is negligible, and dA, dB,

dC and d1 are arbitrary [SPA01].

Equation 2.2 – QDI delay assumption for the circuit depicted in Figure 2.11.

 32 dd

There are also speed-independent (SI) circuits. Such circuits assume positive, unknown

delays in the gates and ideal wire delays. For instance, in the circuit shown in Figure 2.11 this

means arbitrary delay for dA, dB and dC and zero-delay for d1, d2 and d3 [SPA01]. Obviously,

the assumption of ideal wires in contemporary semiconductor processes is impractical

[RAB03]. Therefore the most used classes are the QDI and DI, the latter being more often

applied to higher levels of abstraction, where the grain is not at gate level, due to its nature

[BAR00]. More delay models and more detailed information can be found in [SPA01].

2.3.3 Handshaking

Handshaking is the most used communication protocol to synchronize and transfer data

through asynchronous elements of a given circuit [SPA01]. It consists, in its most basic form,

19

of two control signals in opposite directions, request and acknowledge. Given that the

mechanism can be used with the sole purpose of control, to synchronize elements only, a data

channel is optional. The protocol consists of an active element sending a request to

synchronize with a passive element, which issues an acknowledgement, when it is ready to

communicate. Figure 2.12 (a) shows an example of two components that use handshaking to

synchronize through the signals req and ack, representing request and acknowledge

respectively. If the components are to transfer data, there are two possible configurations:

using push or pull channels. The former consists of two handshaking elements that transfer

data, where the data flows from the active to the passive. In the latter, on the contrary, the

data flows from the passive to the active. Examples of push and pull data channels are

depicted in Figure 2.12 (b) and (c), respectively.

Active Passive

req

ack
Active Passive

req

ack

data
Active Passive

req

ack

data

(a) (b) (c)

Figure 2.12 – Example of communication through handshaking. A pure control channel (a), a

push data channel (b) and a pull data channel (c) [TOM06].

There are two possible ways to implement handshaking protocols, transition and level

signaling [SPA01] [TOM06]. In the latter, also known as four phase protocol, the logic level

of the request and acknowledge signals are used to control the handshake. Figure 2.13 (a)

shows an example of a four phase handshake communication. In this example, the active

element starts with a requisition to communicate, rising the req signal. If any data is to be

transferred through a push channel it must be valid at this moment. The passive element

reads, processes the request and asserts the ack signal. In a push channel the passive element

reads the data made available by the active element. In a pull channel, data must be valid

when the acknowledgment is signaled. When the active element reads the acknowledgement

it also reads the data, if any, and sets the req signal to low. At any moment from there a new

communication can take place. Since the level signaling has four handshaking phases,

different validity schemes can be used. For simplicity sake, they will not be described in the

present work. In [TOM06] each scheme is discussed in detail.

req

ack

1
st

2
nd

req

ack

Transmissions

1
st

2
nd

Transmissions

3
rd

4
th

(a) (b)

Figure 2.13 – Operation of the four phase (a) and two phase (b) handshake protocol [PON08].

20

The transition signaling is very similar to the level signaling but its transitions are

reduced to half. In this protocol, as shown in Figure 2.13 (b), the active element starts with a

request, switching the logical level of the “req” signal. If a push channel is implemented the

data must be valid at this moment. When the passive element reads the request, it processes it,

reads the data (if any) and, then, sends an acknowledgement, switching the logical level of the

“ack” signal. If a pull channel is implemented, data must be valid when the passive issues the

acknowledgement.

There are also the timing restrictions when dealing with data transfer handshaking. For

instance, the setup time between the request signal transition and the valid data in a push

channel. Every relationship between control and data signals must respect their respective

time constraints.

2.3.4 Data Encoding

Asynchronous circuits use synchronization protocols in order to its elements to

communicate and the handshake protocol is the most common approach, as explained before.

In addition to the way the data is transferred, the way how it is encoded is also an important

decision in a design. For instance, in synchronous circuits, data is usually encoded in 2n

distinct symbols represented by Boolean logical values (0 or 1), on n wires and the validity of

these data signals is given by a clock signal along with control signals [BAR00].

In asynchronous designs there are different ways to encode data. Bundled-data

protocols implement a situation where data signals use normal Boolean encoding to carry

information and their validity is given by bundled request and acknowledge signals.

Communication can then be implemented using four or two phases protocols [SPA01]. As

Figure 2.14 (a) shows, a four phase bundled data communication starts with sender rising the

request signal (req). At this moment the data must be valid. The receiver acknowledges the

communication by rising the acknowledge signal (ack). After that, the sender sets the request

low and the receiver subsequently sets the acknowledge signal low. At this point, a new

transmission can take place. A similar operation takes place in the two phase protocol, the

difference is that it avoids the unnecessary return to zero transitions of the control signals

present in the four phase. In a two phase bundled data communication, every transition of the

request and acknowledge represents a transmission, as Figure 2.14 (b) depicts.

data

req

01 11

ack

(a)

data

req

01 11

ack

(b)

Figure 2.14 – Four phase (a) and two phase (b) bundled data transmission.

21

However, the assumption of bundled control signals requires extra care with the time

constraints between data and control signals. Fortunately, DI codes present a solution that is

robust to wire delays. The dual rail protocol encodes the request signal into the data signal

making use of two wires per bit. Hence, there are no timing constraints for the data channel.

However, the request must be computed from it and, therefore, demand extra hardware. In the

dual-rail protocol each single bit requires two wires to be represented. Moreover, this

codification can use either two or four phase communication protocols.

As it is shown in Table 2.4, in the four phase dual rail protocol logical 0 is represented

by a low d.t and a high d.f while logical 1 is the opposite. The request is computed when d.t

and d.f assume different logical values and to signal a low transition of the request, a spacer is

used where d.t and d.f are set to logic 0. If d.t and d.f are logic 1 the data is invalid [SPA01].

Figure 2.15 (a) shows an example of a four phase dual rail data transmission. Firstly, the

sender put valid data, “01” in the data channel. The receiver computes the request and

acknowledges setting the ack signal high. When the sender reads the acknowledgment, it

transmits a spacer to finish the handshaking. The receiver computes the spacer and set ack

low. The sender can then start a new transmission.

Table 2.4 – Four phase dual rail codification for 1 bit of data [SPA01].

Value d.t d.f

Spacer 0 0

0 0 1

1 1 0

Invalid 1 1

The two phase dual rail protocol avoids the avoids the unnecessary return to zero

transitions in the acknowledge signal and present a different data codification. In this

protocol, logical 1 is represented by a transition in d.t. while switching d.f characterizes

logical 0. The request is computed when every bit switch one of its wires. Figure 2.15 (b)

presents an example of a two phase dual rail data transmission. Firstly, the sender issues a

request putting “01” in the data channel. When the receiver computes the request it switches

the acknowledge signal. From this point a new transmission can take place. For more detailed

information about data encoding protocols one can refer to [BAR00] [SPA01] [TOM06].

22

(a) (b)

ack

d1.t

d1.f

d0.t

d0.f

ack

d1.t

d1.f

d0.t

d0.f

Figure 2.15 – Four phase (a) and two phase (b) dual rail transmission.

2.3.5 Metastability

Bistable circuits have two stable states that represent logical 1 and 0 values. In this

scope, a static memory can be implemented by using cascaded inverters. An example of a

static memory composed by two cascaded inverters appears in Figure 2.16(a). Figure 2.16(b)

shows the voltage transfer characteristic (VTC) of this circuit in three graphs. As it can be

seen in the last graph, the circuit has three possible states (A, B and C). Assume the value of

Vo2 is sampled at a given instant in time. If in this instant the circuit is stable in A or B, the

sampled value will be logical 0 or 1, respectively. However while the circuit is transitioning,

this value passes by point C, which is neither at logical 1 nor at logical 0. If a digital circuit

uses (samples) this signal in this moment, for example to transfer its value to another bistable

circuit, it may either store a logical 0, or a logical 1 or simply transfer the logically undefined

value to the destination circuit. If this later situation happens, one must remember that

physically this corresponds to N and P transistors simultaneously operating in a state of

conduction at the destination of the sampled signal. The signal will eventually fall back to a

stable state, but this can take an arbitrarily long time to occur. This is called a metastable

state, and can imply devastating situations for the circuit, including transitory or permanent

circuit failures [RAB03].

Vi1 Vo1 = Vi2 Vo2

V
o

1

Vi1

V
o
1
 =

 V
i2

Vo2

V
o

1
 =

 V
i2

Vi1 = Vo2

(a) (b)

A

B

C

Figure 2.16 – Two cascade inverters (a) and their VTCs (b), based on [RAB03].

2.4 Balsa

Balsa is both a language to describe asynchronous circuits and a framework to

synthesize such circuits [SPA01] [EDW06]. It was developed as a response to the need of a

23

language to replace the Philips Tangram system [BER91] [KES01] in an existing Tangram

application in the University of Manchester [BAR98]. In fact, the Balsa language can be

viewed as an extension of the Tangram language. The approach adopted by the language is

the syntax directed compilation into handshaking components. Balsa was developed and is

maintained by the Advanced Processor Technologies Group of The University of Manchester

[APT10].

The compilation of a Balsa description is transparent, language constructs are directly

mapped into handshake circuits. The advantage is that it is relatively easy for the user to

visualize the circuit-level architecture described by a balsa description. This way, language

level changes reflect in predictable changes in the resultant circuit. Additionally, different

technologies can be used to synthesize Balsa circuit descriptions, generating silicon or field

programmable gate array (FPGA) netlist implementations [BAR00]. The back-end generated

gate level netlists can then be imported into computer-aided design (CAD) systems to

implement the described circuit. At present, Balsa generates netlists fully integrated with

consolidated CAD systems [SPA01] including: Xilinx FPGA design tools [XIL10] and

Cadence Design Framework [CAD10].

Figure 2.17 shows an example of a balsa description of a 2 place buffer. The

input/output channels (I/O) of the buffer are declared in line 2, an input (i) and an output (o)

of one byte. Two one byte internal registers are declared in line 3, x1 and x2. The behavior of

the circuit is given in lines 4-10. The circuit waits for a request in the input channel i and

when it is asserted, the data in the channel is stored in register x1. Next, the data stored in

register x1 is copied to register x2. Finally, the circuit issues a request in the output channel

and waits to transfer the data stored in register x2. Once the output communication finishes,

the circuit will wait for a new input communication, due to the loop declared in line 5 and

finished in line 9.

Figure 2.17 – Example of a two place buffer described in Balsa, from [EDW06].

The sequentiality of the handshakes is given by the operator “;”. Therefore, in the

given example, the input data follows through register x1, x2 and then to the output, in this

order. Figure 2.18 presents a waveform for the described two place buffer with random input

values.

24

Figure 2.18 – Waveform for the circuit described in Figure 2.17 with random input values.

A more complex circuit description is give in Figure 2.19. The described circuit is a

multiplier with parameterizable I/O channels size. Three internal registers, which width is

variable as well, are required: result, data_a and data_b. The operation of the circuit consists

in successive sums. Initially, the circuit waits for a request in the input channels in order to

load its internal registers. A parallel operator “||” is used in line 14, in this way the two input

channels, data_in_a and data_in_b wait for a request through the operator “->”. Once both

of the channels are requested, and the internal registers loaded, the computation may start.

The internal register result is reseted, in line 16, and the successive sums start through the line

17 loop. The partial result is added with the value of data_a for data_b times. After that, a

request is issued in the output channel and the data is transferred. From there on, a new

multiplication operation may start when both the multiplier and the multiplicand are loaded

through the input channels once more. In line 25 a 16 bits multiplier, mult16x16 is

instantiated.

Figure 2.19 – Example of a parameterizable multiplier described in Balsa.

Figure 2.20 presents the waveform of a simulation of the 16 bit multiplier of line 25 of

Figure 2.19 with an input of 210 and 910. Firstly, the values are loaded in the internal registers

and the partial result is reseted. Next, the circuit computes 2 times the sum of the partial result

and 9. Finally, a request is issued in the output channel and the resultant value is made

25

available.

Figure 2.20 – Waveform of a 16 bit multiplier described in balsa for the inputs 210 and 910.

2.5 Teak

Another option to synthesize Balsa descriptions is the open source back-end system

designed in the University of Manchester: Teak [BAR09]. It consists in a new target

parameterizable component set and synthesis scheme that aims the improvement of circuits

described in the Balsa language. The tool optimizes Balsa descriptions synthesis by replacing

data-less activation channels with separate control channels. Albeit the Balsa System allows

different data encodings over two- or four-phase protocols, Teak implementations are

typically QDI four-phase dual rail asynchronous circuits. Hence, circuits synthesized through

this tool are limited to that choice of protocol and data encoding.

The components used in the Teak synthesis are abstract data and control flow

manipulation elements as displayed in Figure 2.21. The Steer component conditionally

distributes an input value to exactly one of its output. The fork splits a channel in n parts

unconditionally. This is a delay insensitive form to send different parts of some information

to distinct destinations. The Join element, on the other hand, unconditionally joins n channels

in one single information flow and synchronizes information appearing at distinct instants on

all its input channels. A Merge component selects one of n mutually exclusive inputs and let

it available in a single output. Variables are used for storing values and have separate write

and read sections. Operators represent any data transforming operations. Finally, a buffer is

used for data storage and channel handshaking decoupling. A better explanation of these

components can be found in [BAR09].

Figure 2.21 – Teak components, captured from [BAR09].

26

To make clear how Teak conducts the transformation of an asynchronous Balsa

description into a diagram of components, this Section now depicts the processing of an

example. A 4-bit sum and subtraction unit was described in Balsa language, as Figure 2.22

shows. First, two values must be loaded through data_a and data_b. Next, the desired

operation is signaled through ctr. Depending on the logical value of ctr the circuit sums or

subtracts the loaded values and copies the result to data_out.

Figure 2.22 – Balsa description of a 4-bit sum and subtraction unit.

The diagram of the Teak netlist obtained through Teak synthesis is depicted in Figure

2.23. This netlist shows typical handshaking components, which are used by Teak: Merge

(M), Fork (F), Join (J), Steer (S), Variable (data_a-data_b) and Operators (+, - and =). The

C-Element is a fundamental primitive gate for implementing all these components. For

instance, a 1 bit fork uses two buffers and one 2-input C-Element. A 1 bit Steer uses seven

buffers, two OR gates and three 2-input C-Elements.

27

Figure 2.23 – Diagram of the Teak-generated netlist for the sum and subtraction unit.

The circuits generated by Teak do not perform very well in terms of performance when

compared to the ones generated by the Balsa System [BAR09]. This is due to the fact that the

system is still in its early stages of development and some functionalities of the tool do not

present satisfactory results. However, due to the restricted set of standard cells that this

system requires to generate a complete netlist for any circuit described in Balsa, the

developed library will initially support Teak synthesis only, as well as flows starting with

28

VHDL descriptions helped by several manual operations. Future work includes expanding the

set of gates in order to support Balsa System synthesis as well.

29

3 STATE OF THE ART IN OPEN SOURCE

STANDARD CELL LIBRARIES AND SUPPORT FOR

ASYNCHRONOUS CIRCUITS

“What one man can invent, another can

discover.”

Sir Arthur Conan Doyle

At present, the use of standard-cells in the design of ICs is a consolidated design style.

Therefore, a wide variety of standard-cell libraries is on hand for different technologies,

different processes and different purposes. Moreover, even free of charge libraries are

available for educational institutions. However, asynchronous elements are usually not

present in contemporary standard cell libraries. Designs that demand asynchronous elements

usually design their own gates in a full-custom approach or use typically synchronous

elements to build asynchronous ones.

Another major draw-back of the asynchronous paradigm is the enormous gap between

the development of EDA tools for asynchronous circuits and their synchronous counterpart.

Therefore, the design and implementation of asynchronous ASICs through typically

synchronous EDA tools have also been proposed as an alternative.

This chapter presents an overview of current standard-cell libraries and design and

implementation of asynchronous circuits in present.

3.1 Grad and Stine Standard Cell Library [GRA03]

Grad and Stine present a public domain Standard Cell Library for educational proposes

that supports a fully automated design flow. The library contains combinational cells, such as

NANDs and NORs, with various drive strengths and a positive edge Flip-Flop

implementation for sequencing operations. The cells were designed for the American

30

Megatrends INC (AMI) [AMI10] 0.5µm process, which allows fabrication through MOSIS

[MOS10] educational program. The design flow of the library used tools from the Cadence

Framework [CAD10] and its physical and electrical characteristics are described through LEF

and LIB text-based files, respectively.

A fully automated Semi-Custom IC design flow is also distributed through a set of

script templates. The design flow uses tools that are widely available in the market and

educational institutions. Synopsys [SYN10] Design Compiler is used for synthesis and

Cadence Silicon Ensemble for place and route. Moreover, the scripts are highly

parameterizable in order to provide full control over the final layout to the designer.

This library was not designed to support asynchronous design styles.

3.2 Djigbenou and Ha Standard CMOS Library [DJI07]

The library presented by Djigbenou and Ha, from Virginia Tech VLSI for

Telecommunications (VTVT) Lab, targets the TSMC [TSM10] 0.25 µm process with a

supply of 2.5 Volts. It was designed using commercial design and simulation tools and

provides various primitive gates, multiplexers and flip-flops with a variety of drive strengths.

In total, the library contains 84 cells.

In order to provide a glance of the real world design environment, the presented library

is available for educational purposes free of charge. The supported Semi-Custom IC design

flow uses a VHDL or Verilog behavioral description that is synthesized and simulated using

Synopsys tools. The synthesized design is then imported into Cadence Framework to generate

the IC layout through place and route tools. Still, this library does not have any typical

asynchronous element.

3.3 Chong, Gwee and Chang Design Methodology

[CHO07]

The lack of appropriate support to design asynchronous ASICs is one of the main

drawbacks for this paradigm in present. Hence, Chong, Gwee and Chang present a

methodology of designing asynchronous circuits using conventional IC design tools and

standard cell libraries.

In the design methodology proposed in [CHO07], the circuit is implemented as a latch-

based pipeline and an asynchronous latch controller, composed of conventional elements, is

proposed for the synchronization of each stage. To synthesize the design, the architecture of

the circuit is divided in three: data path circuits, asynchronous latch controllers and state

31

machines. The first, is basically synthesized through a normal combinational logic synthesis.

The latch controllers, on the other hand, cannot be synthesized because the synthesis tool

would end up generating a very different circuit through its optimization approach. Finally,

the state machines are synthesized through conventional RTL synthesis with one delay

assumption: the delay for a change of state has to be lower than the worst delay of the

combinational logic.

To validate their design methodology, an asynchronous finite impulse response (FIR)

filter was implemented in a 0.35 µm CMOS process. The design flow counted with

conventional commercial EDA tools from Synpsys and Cadence.

3.4 Cortadella et al. Desynchronization Paradigm

[COR06]

Cortadella et al. present a paradigm for automating the design of asynchronous circuits

from synchronous specifications. In [COR06], different protocols for desynchronization are

addressed and a desynchronization flow is proposed. This flow consists, in essence, of

switching each register of a pipeline for two latches and implementing a control for each local

handshaking, in order to eliminate the global clock. Additionally, combinational logic delays

are matched in their respective synchronization lines.

The work validates the proposed paradigm through solid implementations, including a

desynchronized version a DES core and a DLX processor [HEN02]. A SoC containing the

DLX processor and two on chip memories was synthesized, through typically synchronous

libraries and tools, fabricated, and tested. The chip supported multiplexed clock that enables

it to operate in both the synchronous and the desynchronized mode. A comparison between

the two implementations proved that the presented paradigm did not introduce significant

penalties in the design and, more importantly, achieved benefits of asynchronous circuits,

such as lower electromagnetic emission and lower power consumption. However, for its

nature, this paradigm provides just a taste of the advantages of asynchronous circuits.

3.5 Ferretti Standard Cell Library [FER04] [FER06]

In these works, Ferreti presents a Single-Track Full-Buffer Standard-Cell library that

was designed to support high-speed area-efficient asynchronous nonlinear pipeline design.

The library was designed for the TSMC [TSM10] 0.25 µm process and validated through

silicon implementations. Each cell of the presented library employs an asynchronous

communication channel that can help automate the implementation of local handshaking.

The designed STFB Standard-Cell is freely available through the MOSIS Educational

32

Program [MOS10]. As far as the Author could verify in the available literature this library is

the only freely available standard-cell library for asynchronous ASIC design. The library

supports dual-rail and 1-of-3 data encoding and the back-end design flow using the presented

library can be done through Synopsys and Cadence tools.

3.6 Ozdag and Beerel QDI Templates [OZD04] [OZD06]

Ozdag and Beerel present the implementation of an asynchronous low-power high-

performance sequential decoder along with the design flow of a QDI precharged half buffer

(PCHB) standard cell library. The design flow utilized to generate the gate-level cell library

counts with the following steps: Cell Specification, Cell Design and Cell Abstract. For each

cell it was designed the physical layout, transistor-level schematic view, symbol and

behavioral (Verilog) views according to its specification. Moreover, spice simulations were

used to characterize the electrical behavior of each of the cells.

The resulting cell library, which is available through MOSIS [MOS10] for the TSMC

[TSM10] 0.25 µm process, counts with a set of 40 dynamic cells, to implement function

blocks, and 10 cells to implement control logic. However, the cells are significantly limited

when it comes to output driving strength and many of the cells have a short range of output

load capacitance. These limitations are due to the fact that the designed library was generated

in order to implement a specific application and there was no fine grain optimization

regarding the design of the gates.

3.7 TIMA and LETI asynchronous standard cell library

[MAU03]

The only fairly way to experience asynchronous ASICs is to have an asynchronous

standard cell library available. From this assumption, TIMA and LETI (both French

laboratories) developed a library to support such designs. A 130nm gate length version of this

library, called TAL-130 is presented in [MAU03]. In this work, the flow used to design the

library is detailed and compares the results of implementing QDI circuits using TAL-130 and

using a standard synchronous library (through AO222 gates).

At present, a 65nm transistors gate length version of this library has also been designed.

This library is called TAL-65 and is fully validated through characterization process and

silicon implementation. Two sets of cells compose the library, a set of C-Elements and a set

of PCHB templates. In the former, different variations of C-Elements are available. Among

these are two, three and four input cells and asymmetric cells.

However, this library is not freely available. The information obtained about it was

33

courtesy of TIMA and LETI.

35

4 LIBRARY DESIGN METHOD AND TOOLS

“To let the brain work without sufficient

material is like racing an engine. It racks

itself to pieces.”

Sir Arthur Conan Doyle

The main goal of this work is to describe the design and implementation of a standard

cell library called ASCEnD ST65, specific for building asynchronous ASICs. In particular,

this Chapter presents the adopted design flow proposed and used to develop ASCEnD ST65.

The contents of the library are the subject of Chapter 5 .

This flow can be divided in three main sections, with the dependency relations among

them depicted by Figure 4.1.

Guidelines Library Design
Library

Validation

Figure 4.1 – Dependency between the main steps of the adopted design flow for the

standard cell library.

4.1 Physical Design Guidelines for the Library

As it was explained in Chapter 2 , the standard cell approach to design ASICs makes

use of pre-designed and pre-verified functional blocks in order to build complex ICs. These

blocks can be seen as Lego bricks and, in order for them to fit side by side, rules are needed to

define physical characteristics like cell height and terminals positioning. Moreover, a PMOS-

to-NMOS ratio must be defined to obtain balanced cells, with rise and fall propagation times

the more similar the possible. Finally, different designs of a same gate are usually demanded

to support different requirements, such as design density or circuit performance. Therefore, a

metric to define the driving strength of cells must be specified as well.

36

4.1.1 Tightened Physical Design Rules for Manufacturability

The stance of the doping layers, power rails and connection pins along with the width of

the power rails and the height of the cell were standardized for each cell of the designed

library. The width of the cells varies, albeit respecting the routing grid. Moreover, in deep

submicron technology nodes, minimum DRC rules are not enough to guarantee a significant

die yield. To do so, design for manufacturability rules (DFM) are essential in 65nm nodes and

below, where a slight variation of process parameters may ruin a whole die [WON09].

This work proposed a set of layout guidelines in order to obtain designs that are more

likely to respect all DFM principles and improve yield. A fundamental choice is not to use

minimum size, but at least 2 manufacture grid points bigger geometries. The set of adopted

DFM rules is summarized in Figure 4.2, where A represents the polysilicon extension from

the gate region, which was defined to be 4 manufacturing grid points bigger than the

minimum size rule. When the source/drain runs in parallel with the overlapping polysilicon,

this size must be even bigger (6 manufacturing grid points) to avoid unwanted short circuits.

In patterns, the distance between lanes of a same layer, represented as C, must be at least 4

manufacturing grid points bigger than the minimum size rule. Contact redundancy is

recommended whenever possible to reduce failure by faulty contacts, as depicted in D. The

same is recommended for vias to interconnect different metal layers. Finally, the enclosure of

contacts (E) must be at least 2 metal pitches bigger than the recommended. Once more, the

same rule applies to vias. All the DFM rules adopted were obtained from the design rules

specification in the design kit manuals.

A

C

B

PO

Diff

M1 M1 M1 M1

CO

CO

D

E

Figure 4.2 – Adopted set of DFM rules concerning IC layers. PO is polysilicon, Diff is diffusion,

CO is contact and M1 metal 1 layers.

The architecture of each standard cell has also been defined in order to be compatible

with the library provided by the foundry. In this way an IC can be implemented through the

use of cells from both libraries. Figure 4.3 presents the defined architecture for every gate.

37

The height of the gates is fixed in 2.6µm, while the width can vary, albeit it must be an even

multiple of 0.2µm. The power rails have standard widths of 0.56µm and the doping layers

have predefined sites and extension over the standard cell.

k

k

Nwell

Gnd

Vdd

PP

NP
2

.6
µ

m

0.2µm

0
.2

3
5

µ
m

1
.4

6
µ

m
1

.1
4

µ
m

0.36µm

0.09µm

0.235µm

0.09µmN*0.2µm

0
.5

6
µ

m

Figure 4.3 – Standard layout architecture. The red polygon is polysilicon and the green

rectangles are diffusion. NP and Nwell are the negative doping layers and PP is the positive

doping layer.

Another important definition for the physical design of the library is the fact that all the

cells will be tapless, where a tapless cell consists of a standard cell without connections to

bulk silicon. This is done for compatibility sake with the basic library of standard cells

provided by the foundry. The use of tapless cells enables the design of hybrid ICs, using cells

from the asynchronous standard cell library and the typical library provided by the foundry. In

the approach described here as in the basic 65nm library of ST the polarization of the

38

substrate is not given by each gate, but by special elements called tapping cells. These cells

are already available in the library provided by the foundry and when generating the layout of

an IC, they are placed in stripes separated by predefined distances.

4.1.2 Defining the PMOS-to-NMOS Transistors Ratio

The PMOS-to-NMOS transistors ratio is a constant that defines the size (more

precisely, the width, since the length is fixed) of the PMOS as a function of the size of the

NMOS transistor, as Equation 4.1 establishes. The method adopted by this work to define a

PMOS-to-NMOS ratio consisted in describing the schematic of an inverter, the most

elementary logic gate, using the SPICE language and simulating it in a test circuit. Cadence

Spectre was the simulator used [CAD10]. This choice is a reflex of its availability and

widespread usage. The test circuit consisted of an inverter with an output of 0.5 pF and an

input slope of 0.033 ns. These values were obtained from the design kit manual, where it is

specified typical simulation scenarios.

Equation 4.1 – Size of PMOS transistor (Wp) as a function of the size of the NMOS transistor

(Wn) and the PMOS-to-NMOS ratio (β).

np WW

Firstly, an initial PMOS-to-NMOS ratio was obtained by setting the NMOS to its

minimum size and varying the PMOS from its minimum size to a maximum size of two

fingers1 (an extreme transistor size for the aimed technology process), respecting the defined

maximum cell height and doping layers stances. Different simulations were performed for

each PMOS size variation and a ratio of 2.19 was obtained from the simulation results. As

Figure 4.4 shows, the best PMOS-to-NMOS ratio was found for a PMOS of 0.295µm with a

minimum sized NMOS (0.135µm). A total of 244 simulations were performed, each varying

by 5nm the PMOS size for one finger implementations and by 10nm for two fingers.

1 Since the maximum cell height and doping layers stances restrict the maximum size of a single transistor, the only way to

implement a transistor bigger than this maximum size is to have transistors in parallel. In these cases, the widespread

folding technique can be applied to obtain bigger transistors, inflicting a smaller area penalty than implementing two

separated parallel transistors. The technique consists in utilizing the drain/source of the transistor to generate a next

“finger” and connecting the drain/source nodes together to implement two parallel transistors. Finally, the gates are

connected to implement the equivalent folded bigger transistor.

39

Figure 4.4 – Simulations results for an inverter with a minimum sized NMOS transistor

(0.135µm) with the PMOS transistor size varying from minimum to a maximum size of two

fingers. A total of 244 simulations were performed, obtaining the best PMOS-to-NMOS ratio of

2.19.

In order to obtain a more reliable ratio, the same flow used to obtain the most balanced

PMOS for a minimum sized NMOS, concerning to rise and fall propagation delay, was

performed for different NMOS sizes. Appendix A presents the simulation results for all

performed variations of the NMOS size. Table 4.1 summarizes the obtained PMOS-to-

NMOS ratio results. Finally, an average of PMOS-to-NMOS ratio of 2.11 was obtained

through the performed simulations.

Table 4.1 – Summarized results for PMOS-to-NMOS ratio simulation different NMOS sizes.

NMOS size (µm) PMOS size (µm) PMOS-to-NMOS ratio

0.135 0.295 2.19

0.2 0.43 2.15

0.3 0.645 2.15

0.4 0.855 2.14

0.5 1.03 2.06

0.6 1.24 2.07

0.7 1.45 2.07

0.8 1.67 2.09

4.1.3 Output Driving Strength

Different designs of a same gate are usually required to assist different needs, such as

density or speed. The former need entails to build smaller transistors, so that the final design

40

will use less area and consume less power, while the latter need leads to larger and,

consequently, faster transistors with good driving capability, albeit with an area and power

consumption penalty [MIC94] [JAM99] [RAB03]. Simulation results prove that bigger

transistors provide faster, although more power consuming, cells. Figure 4.5 shows the results

of multiple simulations for a ring of 11 identical inverters with different transistors size for a

65nm gate length technology process. The ratio used to dimension the transistors was 2.11,

i.e. an inverter with a PMOS 2.11 times bigger than the NMOS, which in average provides

the best balance between rise and fall cell delays.

Figure 4.5 – Simulation results for different cell dimensions in a ring with 11 identical

inverters, for a 65nm gate length technology process using a PMOS-to-NMOS ratio of 2.11.

Having different implementations of each cell improves the performance of the circuit

that may achieve near full-custom performance designs [HAS03]. That happens because

when the cell does not need to drive a big load, a small transistor version can be used, which

leads to lower power consumption. On the other hand, for instances that need to drive a large

load, a cell with larger transistors can be employed to improve performance. Therefore, an

indispensable step for the design of a standard cell library is to define different output driving

strengths.

The methodology adopted in this work is to define output driving strengths through

simulations using Spectre. Firstly, it was to assumed that a X1 drive cell would drive the

same load that a minimum sized inverter in a period of time of 1ns, a X2 would drive two

times this value, a X3 three times and so on. Therefore, the first step was to define the

maximum load (dis)charged by an inverter with minimum size transistors, respecting the

defined PMOS-to-NMOS ratio. The test circuit consisted of a minimum sized inverter with

an input slope of 0.033ns (as defined by the design kit user guide) and varying output loads,

from 0.01pF to 0.40pF in 0.01pF steps, because it was verified by previous simulations that

these values represent extreme values for a minimum sized transistor. The results showed that

the circuit was capable to drive a maximum of 0.27pF in 1ns, as Figure 4.6 shows.

41

Figure 4.6 –Simulation results of a minimum sized inverter with varying output loads and an

input slope of 0.033ns.

Next, different simulations were performed to define what transistor size would be

capable to drive 2 times the X1 drive (0.54pF/ns). In order to do so, a test circuit composed

by an inverter with a 0.54pF capacitance in its output and a slope of 0.033ns in its input was

described in the Spice language. The inverter was simulated for different sizings, varying

from minimum, 0.135µm NMOS and 0.285µm PMOS, to a maximum size of two fingers in

the NMOS (1.4µm). The size of the PMOS was always fixed in 2.11 times the NMOS

transistor size. In the results, depicted in Figure 4.7, the red line represents the time taken for

each transistors dimension to drive the output load, while the green line represents the

balance for rise and fall propagation delays. The point where the red graphics cross the 1ns

line is the best inverter dimensions for that output drive. Moreover, the closer the green line is

to 1ns, the more balanced is the cell. Therefore, it is determined that a X2 cell requires an

NMOS of 0.285µm and a PMOS of 0.600µm.

Figure 4.7 – Simulation results for an inverter with varying transistor sizes, an input slope of

0.033ns and an output load of 0.54pF. The results show that the transistor size required to drive

the output load in 1ns is an NMOS of 0.285µm and a PMOS of 0.600µm.

42

The same method was used to specify the transistor sizing for X3, X4, X5, X6, X7 and

X8 inverters. The complete set of results for each drive can be found in Appendix A. Table

4.2 presents the summarized results for the simulations performed to define the transistor

sizing for each output drive.

Table 4.2 – Summarized simulation results for different output drives of an inverter.

Drive NMOS size (µm) PMOS size (µm) Strength (pF/ns)

X1 0.135 0.285 0.27

X2 0.285 0.600 0.54

X3 0.430 0.905 0.81

X4 0.575 1.210 1.08

X5 0.725 1.530 1.35

X6 0.860 1.820 1.62

X7 1.000 2.100 1.89

X8 1.150 2.420 2.16

4.2 The Design Flow for Cells in the Library

Figure 4.8 shows a summary of the method adopted for the design portion of the flow

proposed in this work to implement the standard cell library. This method consists of three

main steps for each cell: Specification, Design and Validation. The rest of this Section gives

an overview of the cell design flow, while Sections 0through 4.2.7 detail all the intermediate

steps of the process.

Specification Cell Design Cell Validation

Guidelines Library Design
Library

Validation

Standard Cell Library Design Flow

Design Flow Adopted for Each Cell

Figure 4.8 – Adopted flow to design each standard cell of the library.

Figure 4.9 depicts the flow in detail, along with the tools used at each step. The first

step is to specify logical and electrical behavior, functionality along with requirements and

constraints, of each cell. The schematic of the cell circuit is then described and exported to a

text-formatted file in the Spice language. A specially designed tool, developed in the C++

language, called Ring Oscillator Generator (ROGen), automatically generates a simulation

circuit in the form of a ring oscillator to test the cell for different transistor size combinations

43

in a total of 1219 variations. Each ring implementation is simulated and some of its

characteristics are measured. The results are analyzed and compared to define two versions1

of the cell, performance driven (BS) and low power consumption driven (BP). This process is

also fully automated by another specially designed tool, also implemented in C++ called Cell

Specifier (CeS). From this point, the physical view of each version is obtained using the

65nm process STMicroelectronics design kit [STM10]. Each physical view is the result of a

hand design using the Cadence Virtuoso layout editor. Next, equivalent circuits are extracted

from the layout producing not only the drawn but also the parasitic devices. This step

employs the Mentor Calibre tool. Each extracted circuit have its electrical behavior

characterized, with Encounter Library Characterization (ELC), and if it meets the

specification, an abstract view, a symbol view and a Verilog view are generated and the cell

follows to the library. If the extracted circuit does not meet the requirements, its layout is

redesigned and the design and validation steps are repeated.

Standard Cell

Library

Specification

Design New

Schematic

Design New

Layout

Schematic Simulation

Cell Layout

DRC/LVS

Characterization

Extraction

Meets

Spec?

Abstract

Generation

Virtuoso

Schematic Editor CeS
Virtuoso

Layout Editor

Calibre Calibre

Encounter Library

Characterization

Yes

No

Virtuoso

Schematic Editor

Select Best

Dimensions

Spectre

Generate

Simulation Circuit

ROGen

R
e

q
u

ir
e

d

T
o

o
ls

R
e

q
u

ir
e

d

T
o

o
ls

Symbol

Generation

Verilog

Generation

Abstract Editor

Figure 4.9 – Adopted design flow for each gate of the designed standard-cell library and

required tools. The three main steps are: Specification (blue), (Physical) Design (red) and

Validation (purple). Actions are represented by boxes, decisions by diamonds, descriptions as

rounded corners boxes and repositories as a green cylinder. The tools used in each step appear

in the top and bottom stripes.

11 Every C-Element cell in the library will have two implementations, a low power driven and a performance driven ones.

However other cells have only one implementation. This is due to the fact that, because of their nature, the approach

used to specify C-Elements could not be implemented. Therefore, another approach was adopted, generating a single

version of the cell, that is most balanced in terms of rise and fall propagation delays.

44

The tool used to describe the schematic of the cells and export them to symbols is the

Virtuoso Schematic Editor, designed by Cadence. This choice is a reflex of the compatibility

of the design kit with the Cadence Framework, as well as its availability in the resource set to

develop this work. For compatibility sake, the chosen layout design tool is the Virtuoso

Layout Editor, also part of the Cadence Framework. The tool used to verify the layout, design

rule check (DRC) and layout versus schematic (LVS), is Mentor Calibre. Moreover, Calibre

is also used to extract the circuits from the designed layouts. This choice derives from the

possibility to seamlessly integrate the design kit and the Cadence Framework with this tool.

The chosen simulation tool is Cadence Spectre for reasons identical to the choice of the

layout editor. The tools used to automate the process of specifying the standard cells were

designed by the author in C++ and are called ROGen, used to generate ring oscillators, and

CeS, used to select transistors dimensions.

4.2.1 Specification

The first step of the adopted flow to design a standard cell is to specify its functionality

and its electrical requirements. The functionality is given as a logical expression defining the

output(s) as a function of the input(s) of the circuit. Equation 4.2 shows an example of a

standard cell logical specification, in this case a 2 input C-Element.

Equation 4.2 – Example of logical expression defining the output of a 2 input C-Element as a

function of its inputs. Q is the output and A and B the inputs.

)()()(1 iii QBBAQAQ

The electrical requirements consist in the required speed for a cell to charge or

discharge its output(s). Basically, the electrical specification of a standard cell is a tradeoff

between area, power and speed [MIC94] [RAB03]. As seen in previous sections, high

performance gates require larger transistors and, as a consequence, consume more power and

demands more silicon area. Therefore, usually different cells are specified for a same logical

function in order to support different output driving strengths.

Additionally, the definition of the name of the standard cell and its connection terminals

is also part of its specification. For instance, say Equation 4.2 defines the functionality of the

cell GPSVT_CMUL2, being A and B its inputs and Q its output. Assuming that the required

output driving strength is the equivalent of a X4 cell, then the cell must drive 1.08pF in 1ns.

Firstly, a schematic of the circuit that implements the specified logic is generated through

Virtuoso Schematic Editor, depicted in Figure 4.10.

45

Figure 4.10 – Example of schematic design using Virtuoso Schematic Editor.

Depending of the characteristics of the circuit, two different flows can be implemented

to define the transistors size. In this case, since the drive of a C-Element is given by an

inverter (composed by the transistors M1 and M4) the sizing of these transistors is fixed in

0.575µm for the NMOS and 1.21µm for the PMOS, as defined for X4 cells in previous

sections. Moreover, the inverter composed by M2 and M5 is used only to keep a previous

state. Therefore it is fixed in minimum size for the NMOS and the PMOS. The remaining

transistors have a variable size, until a dimension that best drives the output inverter is

defined. In this case, two versions are specified, one that drives as fast as possible without

concerning with power consumption and another one that best drives it as a function of

performance and power consumption.

In order to do so, the designed schematic is automatically exported to a Spice

description. The ROGen tool is used to automatically generate an oscillator ring for the

described circuit, which gate level view is represented in Figure 4.11, also in SPICE

language. The generated description varies the size of the drive transistors through the .alter

function from minimum size transistors to three fingers transistors at maximum size. The

minimum transistor size is defined by the foundry and the maximum by the adopted standard

cell height. Additionally, due to the nature of a C-Element gate, a NAND port is also included

in the ring to make it oscillate. However, the effect of this gate over the ring circuit is

normalized over the simulations and results comparison.

46

C C C

CCC

CC

C C

N
A

N
D

IN

n1n0 n2 n3 n4

n5

n6n7n8n9
n10

Figure 4.11 – Example of a gate level view of a simulation circuit automatically generated

through a specially designed tool. When the IN pin is at logical 0, the circuit is static with all the

nodes in logical 1. However when the input is asserted, the circuit starts to oscillate.

Information about electrical behavior of each variation of the circuit is obtained through

the .measure function. Such information counts with: dynamic and leakage power of the

whole ring, rise and fall propagation and transition delay of each cell and operating frequency

of the whole ring. The leakage power was measured as the average power consumed from the

power source while the circuit is quiescent. On the other hand, the dynamic power is the

average power consumption from the source when the ring is oscillating.

The fall and rise propagation delay are measured as the delay of a signal to propagate

through the cell under simulation, in this case a 2 input C-Element. For instance, from Figure

4.11, the rise propagation delay can be measured as the time that takes to node n6 to rise after

n5 has risen. However, it is very important to measure nodes between the cells under

simulation, in other words, one could lose precision if measuring nodes n0 or n10 due to the

effect of the NAND port in the I/O of the cell to be dimensioned. Figure 4.12 shows an

example of a measurement of the fall and rise propagation delays for a simulation of the

oscillator ring. The adopted switching thresholds for rise and fall are 40% and 60% of Vdd,

respectively. This definition is recommended in the manuals of the design kit.

Fall Propagation Rise Propagation

Figure 4.12 – Example of propagation delay measurement. The graphics were generated by

Cadence Wavescan [CAD10].

47

The rise and fall transition delay, are the transient delays of the output of the cell to be

dimensioned. For instance the rise transition is measured as the time that it takes for the

output of the cell, say n6 from Figure 4.11, to switch from logical 0 to logical 1 when it starts

to rise. Figure 4.13 depicts the fall and rise transition of a simulation of the oscillator ring.

The transient time is between 20% and 80% of Vdd, as recommended by the manuals of the

design kit.

Fall Transition Rise Transition

Figure 4.13 – Example of transition delay measurement.

The operating frequency is measured for the whole ring. It is a metric that defines how

many times per second a signal switches to logical 1 (or logical 0). For instance, the time

between two logical rises in n6 is the inverse of the operating frequency. Figure 4.14 shows

an example of how to measure the frequency of the oscillator ring.

1/frequency

Figure 4.14 – Example of frequency measurement.

48

From a Spectre simulation, the measurements performed for each variation of the

circuit are exported to a text based file. A second tool, CeS, is used to analyze the results and

chose for a dimension of PMOS that best drives the cell for each NMOS transistor size

variation. The result is the set of the best PMOS/NMOS combination for each sizing

variation. From this set, the fastest combination is selected as a “best for speed” (BS) version

and the sizing that consumes less power as a function of the performance is selected as a

“best for low power” (BP) implementation. The described automated transistor sizing flow is

represented in Figure 4.15. A total of 1219 simulations are performed and analyzed before

selecting the best dimensions.

NMOS at

minimum size

PMOS at

minimum size

Increment

PMOS size

PMOS at

maximum size

Results
Simulate /

Measure

Simulate /

Measure

Simulate /

Measure

...

Results

Results

Increment

NMOS size ...

NMOS at

maximum size ...

Results

Results

Analyze

Best PMOS/

NMOS

Oscilator Ring

Description

Highest

Performance

Lowest Power

Consuming

Figure 4.15 – Automated flow for simulation, analysis and specification of transistors size. A

specially designed tool generates an oscillator ring from the designed schematic view, this ring

is simulated for different dimensions of PMOS transistors over different dimensions of NMOS

transistors and each variation has its electrical behavior measured. The results are analyzed by

another specially designed tool that selects the best PMOS dimension for each variation in the

NMOS size. From there, two implementations are selected, one for lower power consumption

(BP) and one for high performance (BS).

The output of this flow is a set of graphics defining the electrical behavior of each

variation in the dimension of the transistors. For simplicity sake, only two graphics will be

presented here, for the full set of results of every cell of the library, one can refer to [ASC10].

The metric used to define the best sizing for a performance driven cell, as explained above, is

the operating frequency. Figure 4.16 presents the operating frequency of the ring, measured

for each combination of PMOS/NMOS sizes. As it is represented in the graphic, when the

transistors are too small, poor operating frequency is obtained. As the dimensions get bigger,

the operating frequency increases. However there is a point where the transistors start to get

too large and their input capacitance starts to be bigger than the maximum load driven each

cell and the performance starts to plummet. Therefore, the best dimension for a high

performance cell is the peak of the graphic, in this case a NMOS of 0.9µm and a PMOS of

1.7µm.

49

Figure 4.16 – Results obtained from operating frequency measurements for a ring of C-

Elements with varying transistors size.

The metric used to define a best cell, concerning to low power consumption, is a

function of the total power consumption and the operating frequency. The cell that presents

the best cost-benefit, regarding Watts consumed per Hertz obtained, is the BP

implementation. Figure 4.17 presents the result for this relation between power consumption

and operating frequency. As the graphic shows for this example, when the size is too small,

the W/Hz relation is not the best, that is due to the fact that this dimension of transistors

offers poor performance, albeit consuming little power. Therefore, the result is that as the

sizing is increased, a better cost-benefit is obtained. However, there is a point where the

power consumed to increase the performance starts to get too large and the cost-benefit gets

worst. In this case, the best cell for a BP implementation has NMOS transistors of 0.25µm

and PMOS of 1.3µm.

Figure 4.17 – Results obtained from operating frequency and power consumption

measurements for a ring of C-Elements with varying transistors size. The graphic represent the

cost-benefit of bigger transistors regarding to Watts consumed per Hertz obtained.

50

Therefore, two specifications of the cell are obtained, summarized in Table 4.3. The

tradeoff between these implementations is clear when comparing the cost in area and power

consumption to obtain a higher operating frequency.

Table 4.3 – Summarized specifications of a BP and BS implementation of an example gate.

Version NMOS size PMOS size Operating Frequency Power Consumption

BS 0.9µm 1.7µm 1.44GHz 0.257mW

BP 0.25µm 1.3µm 1.16GHz 0.172mW

However, when it is not an inverter that drives the output of a standard cell, a different

method is used, albeit very similar and fully automated as well. For instance, assume that the

functional specification for another cell is expressed by Equation 4.3 (a) and (b). For instance,

assume that this cell must drive an equivalent load of the one driven by a X1 inverter, as

determined in previous sections. Say this gate is called GPSVT_FILTER and its input ports

are RA and RB and its output ports are AA and AB.

Equation 4.3 – Specification of a filter functionality for its two outputs: (a) AA and (b) AB.

)(RBRAAA (a)

)(RARBAB (b)

In order to define the transistors size, the first step is to generate a schematic that

implements the specified logic. Figure 4.18 shows the schematic designed for the specified

filter. In this case the outputs are not driven by a simple inverter. Therefore the approach to

define the best size for the transistors is slightly different.

Figure 4.18 – Schematic that implements the logic of GPSVT_FILTER2X1 standard cell.

51

In this case, the whole circuit drives the outputs. Therefore, an approach similar to the

one used to define the size of inverters for different output drives, in section 4.1.3 , must be

used. The approach is fully automated and consists in fixing an output load in the output

terminals of the cell and simulating the circuit for different NMOS and PMOS sizes

respecting the ratio defined in section 4.1.2 . The sizes of the transistors vary from a

minimum size of NMOS to a maximum of three finger NMOS. The size of the PMOS tracks

the NMOS respecting the defined PMOS-to-NMOS ratio. For instance, for the

GPSVT_FILTER2X1 cell, the best dimensions can be found by placing a capacitance of

0.27pF in the output terminals and measuring the time that each variation of transistors size

takes to (dis)charge this load. The combination that gets closer to 1ns represents the best

sizing for PMOS and NMOS transistors. Figure 4.19 presents the results of the simulations

performed for different variations, concerning to transistors size, of the specified circuit. As

the graphic shows, the sizing that got closer to 1ns was the minimum sizing able to drive the

output load, a NMOS of 0.15µm and a PMOS of 0.315µm. Therefore, this is the sizing that

will be used in the design of the physical view of this cell.

Figure 4.19 – Results for simulations of different variations, concerning to transistors size, of

the GPSVT_FILTER2X1 cell with an output load of 0.27pF.

4.2.2 Layout

From the circuit schematic, the physical characteristics of the standard cell are usually

designed with the use of a layout editor. The basic function of this tool is to place polygons

representing the different layers used to fabricate an IC in a given technology [MIC94]

[RAB03]. As it was mentioned in previous sections, the chosen tool to design physical views

is Virtuoso Layout Editor. Figure 4.20 shows the layout of the 2 input C-Element specified in

0. In this example, the green blocks are the diffusion and the red ones are polysilicon. Every

polysilicon that overlaps the diffusion forms a gate of a transistor and its side diffusion is the

drain/source. The logic is then implemented by connecting the nodes together through metal

52

1, blue blocks. Contacts, used to connect different layers like polysilicon and metal 1, are

represented by yellow squares. The doping layers are the NWELL, orange rectangle, P

implant, pink rectangle and N implant, yellow rectangle.

Figure 4.20 – View of the Virtuoso Layout editor. The physical design of a 2 input C-Element.

The layout must respect DRC and sometimes DFM rules. The present work defined a

set of DFM rules through a layout guideline, in 0. The adopted design flow for the physical

view is to handcraft each transistor of the specified circuit and verify it until it meets the

specifications and the design rules, as it is shown in Figure 4.21.

Design

Layout
DRC LVS OK

Ok Ok

Fail Fail

Figure 4.21 – Adopted physical view design flow.

The tool used to perform DRC and LVS verification is Calibre, developed by Mentor.

Once the view succeeds in both verifications, it can be extracted. Calibre is also the tool used

for extraction. The process of extracting a circuit from a layout consists in scanning the

designed physical layers and reconstructing the circuit. The difference is that the extracted

circuit will contain not only the projected devices, P and N type transistors, but also parasitic

elements. In this way a more accurate analysis over the circuit is possible.

However, due to the fact that the designed standard cells are tapless and have no bulk

polarizations, a tapped version of the cell must be generated in order to extract the circuit.

Therefore, a circuit consisting of the designed gate and a tapping cell is designed. The

distance between the tap and the gate is the maximum distance recommended by the design

53

kit manuals. Figure 4.22 shows an example of a tapped cell, in this case the 2 input C-

Element from Figure 4.20.

In the adopted flow, the extraction tool performs a RC extraction, i.e. extracts parasitic

capacitors and resistors. Moreover, the circuit is extracted for 3 process corners, typical,

minimum and maximum parasitic devices. From these, 3 descriptions of the circuit are

obtained, based on the design kit manuals recommendations:

 Best Case: minimum parasitic devices for a temperature of -40C;

 Typical: typical parasitic devices for a temperature of 25C;

 Worst Case: maximum parasitic devices for a temperature of 125C.

Figure 4.22 – Example of a tapped cell, required for circuit extraction.

4.2.3 Electrical Characterization

To design an IC using a standard-cell library, a detailed documentation about the library

is required. That is due to the fact that the design flow of a complex standard-cell based

design is virtually impossible without the aid of automated tools. Such tools must rely on the

referred documentation in order to synthesize higher level descriptions of circuits, such as

RTL sources. Therefore, a robust library must have each standard cell electrical behavior

characterized for different process variations, output loads and input slopes.

As mentioned before, the tool used to characterize each gate of the library is Encounter

Library Characterization (ELC) [CAD10b]. This tool makes use of non linear table delay

54

models to characterize circuits. These models consist of tables defining input slopes and

output loads and each combination represents a simulation scenario. Therefore a limited

number of simulations are performed, constrained by the number of elements in the table, and

less computation is required to characterize a standard cell. However, the obtained results are

not a continuous function of input slopes and output loads and any missing value is defined

by linear interpolation. In this way less computation is required to characterize a standard cell.

In fact it the recommended number of values for these models is from 5 to 7 [RAB03].

Therefore the adopted flow will use non linear tables with 7 values of input slopes and 7

values of output loads. Figure 4.23 shows an example of a non linear model input table used

to characterize X4 drive cells.

Figure 4.23 – Example of non linear model input table.

Figure 4.24 depicts the electrical characterization flow using ELC. Firstly, a logic

model is generated from a transistor-level circuit described in spice format, usually exported

from a schematic description. From this logic model, test vectors are automatically generated

in order to simulate every possible transition as well as each possible state of the cell. Then, a

characterization environment is formed, specifying the operational conditions and the process

corners along with a non linear table. From there, different SPICE simulations are performed

for each combination of the input table for each generated test vector. From the simulations,

the electrical behavior of the circuit for each combination of input slope and output load for

the specified process corner is determined.

Spice Description

Logic Model
Characterization

Environment

Non Linear Tables

Process Corners

Spice

Simulations

Summarized

Results

Figure 4.24 – Library characterization flow using ELC [CAD10b].

The aspects characterized by ELC are: slew rate, propagation time, static and dynamic

power consumption, input pins capacitance and maximum load for each output pin. The

propagation time is characterized pin-to-pin, which means that every possible path in the cell

will have its propagation delay characterized. In fact, the propagation delay represents the

time that it takes a change in an input to affect an output. For the adopted design flow, as

55

defined by the design kit manuals, the switching threshold is at 40% for rise transitions and

60% for fall transitions. For instance, Figure 4.25(a) shows the propagation delays for an

inverter where tf and tr represents the fall and rise propagation delays, respectively.

Vout

t

20%

80% 80%

20%

tr tf

Vin

t

40%

60%

tf tr

Vout

t

60%

40%

Figure 4.25 – Example of propagation delays (a) and transition delays (b) for an inverter.

The example of an inverter is rather simple and there is a direct effect from a single

input to the only output of the gate. However, more complex cells, where the propagation

time between an input and an output port can depend on the status of other input ports, are not

that trivial to be characterized. This aspect is called state dependency. ELC automatically

detects state dependency and generate test vectors to verify every possible state of the cell

[CAD10b].

Along with the propagation delay, the time that an output takes to switch its logical

level for a given input slew and output load must also be characterized. Such time is called

transition time. To avoid the uncertainty of when a transition actually starts or ends, it is

defined that the transition times occur between 20% and 80% of the output voltage. Such

assumption is defined in the design kit manuals. Figure 4.25(b) shows an example of rise (tr)

and fall (tf) transition delays.

To characterize the dynamic power consumption, the transient power and the power

needed to charge the circuit, output load and parasitic capacitors, must be defined. For

instance assuming that the NMOS and the PMOS of an inverter are never on simultaneously

its transition circuits can be represented as in Figure 4.26. The output load is represented by

the capacitor CL and the circuits (a) and (b) represents the high to low and the low to high

transition circuits, respectively. During the low to high transition of the output, the capacitor

CL is charged through the PMOS and an amount of energy is drawn from the power supply,

albeit part of this energy is dissipated in the PMOS device. When the output switches once

more, high to low transition, the load in CL is discharged through the NMOS and part of this

stored energy is also dissipated in the NMOS.

56

 (a) (b)

Figure 4.26 – Equivalent transition circuits for an inverter, (a) high to low transition and (b)

low to high transition, from [RAB03].

However, in actual designs, the assumption that the PMOS and the NMOS are never on

in the same instant is not correct. For a short period of time, there is a transient current

between the power rails. That is due to the fact that there is a range of values where the

logical value is undefined, recalling Figure 4.25(b), between 20% and 80%. Hence, during

this period of time the current flows from the power supply to ground, reaching its peak in

half of the signal excursion as it is depicted in Figure 4.27. Moreover, there are also the

parasitic capacitances that are inevitable because of the proximity of the components of the

circuit. The energy required to load these capacitances also represents power consumption,

because each rise transition of the cell require energy to load them. Together with the power

consumed during the transient period of the inputs and the power consumed to charge the

output load, it represents the dynamic power consumption.

Vin

t

ishort

t

Figure 4.27 – Transient current, adapted from [RAB03].

The static power dissipation of a circuit is expressed by Equation 4.4, where Istat is the

current flowing between the power rails when there is no activity in the circuit. When the

circuit’s inputs are static and its state is well defined, the PMOS and the NMOS should not be

on at the same time. However there is a leakage current flowing through the transistors

between the substrate and the source, or drain. This current represents power dissipation for a

static state of the circuit.

Equation 4.4 – Static Power Dissipation [RAB03]

DDstatstat VIP

57

The capacitance of the input pins and the maximum load for the output pins are

essential information for the electrical characteristics of a library. The input capacitances rely

on the size of the transistors. A large transistor has a large gate and, consequently, a large

input capacitance. The output maximum load, on the other hand, is the maximum load that

the drive transistors were capable to drive in a certain period of time. For the present work,

the cells are characterized with a maximum simulation time of 0.5ns. Therefore, the

maximum output load represents the maximum load that a standard cell can drive in 0.5ns.

All the described process, of characterizing a cell with ELC, is automated. Therefore,

usually, one may just supply the spice circuit, the input look-up table, the process corners and

the operational conditions in order to obtain the electrical characteristics of a cell for the

given parameters. As it was explained before, different process corners and operational

conditions must be characterized in order to assure the reliability of a library. For the present

work, three characterizations are performed:

 Best Case: using a best case extracted circuit, a fast NMOS and fast PMOS (FF)

process corner and a temperature of -40C;

 Typical Case: using a typical extracted circuit, a typical NMOS and a typical

PMOS (TT) process corner and a temperature of 25C;

 Worst Case: using a worst case extracted circuit, a slow NMOS a slow PMOS

(SS) process corner and a temperature of 125C.

All the information generated by ELC characterization process is exported to a Liberty

Library (LIB) file. The LIB is a powerful high-level description that can represent a wide

variety of characteristics of a circuit. It was developed and is maintained by Synopsys

[SYN10].

4.2.4 Abstract

The abstract view is automatically generated through Cadence Abstract Editor. Figure

4.28 shows the abstract view of the layout depicted in Figure 4.20. The filled blue rectangles

represent the metal 1 connections of I/O terminals, which can be used for the cell routing. On

the other hand the empty blue polygons represent metal blockage, due to internal routing of

the gate. This view is then automatically exported to a text based library exchange format

(LEF) [CAD09]. This format was designed and is maintained by Cadence.

58

Figure 4.28 – Example of abstract view automatically generated through Cadence Abstract

Generator. Abstract view of the layout showed in Figure 4.20.

4.2.5 Symbol

Next, a symbol must be generated for the standard cell. This view is automatically

exported from a schematic by Virtuoso Schematic Editor and can be used to gate level circuit

descriptions. Figure 4.29 shows an example of a symbol view for the schematic showed in

Figure 4.10Figure 4.18.

Figure 4.29 – Example of symbol generated through Virtuoso Schematic Editor.

59

4.2.6 Verilog

Finally, from the specifications of the gate, a behavioral view of the gate is described in

Verilog. This description is simulated in a test bench and it is verified if it implements the

specified logical function. If not, it must be redesigned until the specification is met. After

that, a netlist containing only the described gate is placed and routed and its delay is

annotated and exported to a standard delay format (SDF) file [IEE01]. The choice for this

format is due to the fact that it is tool-independent and, therefore, widely accepted in EDA

tools. A timing simulation is then performed and compared to the annotated delay. Figure

4.30 presents the adopted flow to generate the Verilog view.

Describe

Verilog
Specification

Behavioral

Simulation

Place &

Route

Timing

Simulation

Meets

Spec?

Yes

No

Figure 4.30 – Flow adopted for the Verilog view generation.

For instance, in Figure 4.31, lines 1-12 show the primitive generated for a 2 input C-

Element. Verilog provides user defined primitives (UDP) to model complex gates, which are

not built-in the language [CIL02]. The primitive is described as a truth table implementing

the specified function, in this case Equation 4.2. In lines 14-25 this primitive is addressed for

the BS version of the specified C-Element.

Figure 4.31 – Example of Verilog view, a 2 input C-Element.

A test bench is described in order to test every transition arch of the described behavior.

This verification is automated by using a assert functions through a VHDL description.

Figure 4.32 shows an example of a VHDL test bench for the Verilog of Figure 4.31. In order

to test every possible combination of inputs transition, a clock signal is generated for each

60

input. A base clock signal has a period of 80ns and every extra clock is 4 times faster. For

instance, for a 2 input circuit, the test bench has 2 clock signals, clock0 with a period of 80ns

and clock1 20ns. A control signal switches the input signals every time the slowest clock

completes one period. Moreover, each clock has a different transition delay. In this way,

every possible transition combination is verified. The verification of the two transition arches

for the described gate is represented in lines 35 and 36.

Figure 4.32 – Example of a test bench, described in VHDL for automatically verifying the

behavioral description from Figure 4.31.

The simulator used to verify the Verilog view is Cadence Incisive. However the

simulations were also performed in Mentor Modelsim. Figure 4.33 shows the waveforms

obtained by simulating the test bench described in Figure 4.32.

Figure 4.33 – Resultant waveform from the simulation of the VHDL test bench described in

Figure 4.32.

Finally, in order to verify timing annotation, a netlist consisting of a single cell is

generated and then placed and routed through Cadence Encounter, showed in Figure 4.34.

61

The delay of the design is annotated through Encounter from the characterized electrical

behavior of the standard cell. Next, the information is exported to a SDF file. This process is

fully automated by Encounter.

Figure 4.34 – Example of a single cell design placed and routed in Encounter. The filled blue

square is the physical site of the standard cell, in the borders of the outer square are the I/O

pins and the routing is through metal layers, red, green and yellow rectangles.

An example of a SDF file is given in Figure 4.35. The delays are organized according to

the structure presented in lines 6 and 7. First it is defined the path, A to Q in line 6 and B to Q

in line 7. The rise and fall propagation delays are defined in the first and second parenthesis,

respectively. Each delay definition has three values, for best, typical and worst cases,

separated by a colon. The time scale for this example is defined to 1ns.

Figure 4.35 – Example of SDF file, generated from Encounter.

Next, a timing simulation at gate level is performed through Incisive. The results of this

simulation are compared to the ones obtained in the SDF file. Figure 4.36 presents the

resultant waveforms for the timing simulation of the example design for a typical process

corner. Recalling Figure 4.32, the signals in0, in1 and out0 are pins A, B and Q, respectively.

62

The rise propagation of input A to input Q is represented in Figure 4.36 (a), the propagation

delay is the difference between the two signal rises, in this case 14ps. The same value can be

verified in Figure 4.35 line 18 for a typical process rise propagation delay. Similar

verifications can be done for each transition arch. If they are all met, the timing annotation is

correctly working.

(a)

(b)

(c)

(d)

Figure 4.36 – Timing simulation results for a gate level design of a single 2 input C-Element

standard cell. (a) and (b) presents, respectively, rise and fall propagation delays from pin A to

Q, while (c) and (d) presents the propagation delays from pin B to Q.

63

4.2.7 Validation

From the information generated in the characterization process, it can be verified if the

extracted cell electrical behavior is equivalent to the one obtained in the specification steps. If

the cell does not meet the requirements, it must be redesigned. If it does, the cell follows to

the library.

4.3 Library Validation under a Standard Cell Flow

After a set of cells are specified, designed and validated, a library is obtained. From this

library, different ICs can be designed. Two different design flows were adopted to generate

test ICs from the designed standard cells. Firstly, a typical design flow consisting of a high

level description of the circuit at register transfer level (RTL), in this case VHDL, and the

Cadence Framework, showed in Figure 4.37(a), was used to design the router of an

asynchronous network on chip (NoC). Another flow, consisting of a Balsa source,

synthesized by Teak and placed and routed by Encounter, Figure 4.37(b), was also used to

implement an asynchronous RSA based cryptography circuit on the designed standard cells.

RTL

Compiler

VHDL

Sources

Encounter

Teak

Balsa

Sources

Encounter

IC Layout IC Layout

Circuit

Description

Synthesis

Place &

Route

(a) (b)

Figure 4.37 – IC design flows used to implement designs on the designed library gates.

65

5 ASCEND ST65 V0.1

“Things must be done decently and in

order.”

Sir Arthur Conan Doyle

The method described in Chapter 4 was adopted to create a set of gates for the ST

Microelectronics 65nm bulk CMOS process (ST CMOS65) [STM10]. A total of 251 gates

were successfully designed and characterized. This cell set counts with numerous

implementations of C-Elements and different versions of metastability filters. The standard

cell library is called Asynchronous Standard Cells Enabling n Designs (ASCEnD), currently

at version 0.1. Together with a standard cell library with typical cells (like ANDs, ORs and

buffers), provided in the design kit, ASCEnD ST65 can be used to implement asynchronous

ASICs in several current design styles, including QDI and others.

5.1 The ST CMOS65 Technology

The ST CMOS65 technology provides low power and general purpose devices for a

65nm CMOS gate length fabrication process. Moreover, it gives access to standard threshold

voltage (Vt) transistors (SVT), and high Vt transistors (HVT). It allows a back-end with 6 or

7 metal levels. This work makes use only of general purpose standard Vt (GPSVT)

transistors. However future work includes implementing the library with low power standard

Vt (LPSVT) devices as well.

5.2 Name Convention

The adopted convention to name each cell is organized as: “DEVICE-

TYPE_(BP/BS)_CELL-NAME_DRIVE”. So far, the ASCEnD ST65 library counts with

GPSVT devices only, therefore every gate name starts with GPSVT.

66

5.3 Designed Gates

The C-Element is a fundamental gate in most asynchronous designs [SPA01] [MYE01].

Therefore, it is essential to have available different implementations of a C-Element in a

standard cell library intended to support asynchronous circuits design. Moreover, due to its

continuous notion of time, the project of asynchronous circuits must deal with events like

metastability. Therefore, the implementation of efficient metastability filters is indispensable.

This work presents the design and implementation of a standard cell library containing

251 gates, from which 247 are C-Elements and 4 are metastability filters. The flow

implemented to design each gate is presented in Section 4.2 and the logical specifications are

in Appendix B. For each specification, different cell variations were implemented, concerning

to output drive strength and, in the case of C-Elements, architectural variations. Examples of

layout and schematic views appear in Appendix C. Finally, one can consult the homepage of

the library [ASC10] for a full documentation suite on the library.

5.3.1 C-Elements

The circuits designed in [PON10], [PON10b] and in this work showed that out of all

asynchronous standard cells in an asynchronous ASIC design, 90% are C-Elements a gate

originally proposed by Muller in [MUL57]. Therefore, a large set of C-Element variations

provides adequate resources to trade off power consumption, area and performance in

asynchronous circuits. This work proposes a total of 21 variations of the basic C-Element,

regarding number and symmetry of inputs, . Three different CMOS implementations of each

variation were designed: Conventional, Symmetric and Weak Feedback (Muller) [SHA96]

[SHA97] [SHA98]. Moreover, each implementation of the C-Elements counts with a low

power driven (BP) and a high performance (BS) version, as Figure 5.1 shows. Initially, each

gate was designed for an X1 output drive. However, more output drives are provided for most

of these gates (typically 4 choices, from X1 to X4).

Specification

Conventional

BP BS

Muller

BP BS

Symmetric

BP BS

Figure 5.1 – Versions of each C-Element specification.

The designed two and three-input C-Elements are summarized in Table 5.1 and Table

5.2, respectively.

67

Table 5.1 – Designed 2 input versions of C-Elements.

Cell Drives Description

C1D2 X1
Two-input C-Element with one normal input and one falling1

input.

C1D_RST2 X1
Two-input C-Element with one normal input, one falling input

and an active-low reset input.

C1D_SET2 X1
Two-input C-Element with one normal input, one falling input

and an active-high set input.

C1U2
X1, X2,

X3, X4

Two-input C-Element with one normal input and one rising2

input.

C1U_RST2 X1
Two-input C-Element with one normal input, one rising input

and an active-low reset input.

C1U_SET2 X1
Two-input C-Element with one normal input, one rising input

and an active-high reset input.

C2
X1, X2,

X3, X4

Two-input C-Element with two normal inputs.

C_RST2
X1, X2,

X3, X4

Two-input C-Element with two normal inputs and an active-low

reset input.

C_SET2
X1, X2,

X3, X4

Two-input C-Element with two normal inputs and an active-

high set input.

1 A falling input is an input that has influence only in the high to low transition of the output.

2 A rising input is an input that has influence only in the low to high transition of the output.

68

Table 5.2 – Designed 3 input versions of C-Elements.

Cell Drives Description

C1D1U3 X1
Three-input C-Element with one normal input, one rising input

and one falling input.

C1D1U_RST3 X1
Three-input C-Element with one normal input, one rising input,

one falling input and an active-low reset input.

C1D1U_SET3
X1, X2,

X3, X4

Three-input C-Element with one normal input, one rising input,

one falling input and an active-high set input..

C1D3 X1
Three-input C-Element with two normal inputs and one falling

input.

C1D_RST3 X1
Three-input C-Element with two normal inputs, one falling

input and an active-low reset input.

C1D_SET3 X1
Three-input C-Element with two normal inputs, one falling

input and an active-high set input.

C1U3 X1
Three-input C-Element with two normal inputs and one rising

input.

C1U_RST3
X1, X2,

X3, X4

Three-input C-Element with two normal inputs, one rising input

and an active-low reset input.

C1U_SET3 X1
Three-input C-Element with two normal inputs, one rising input

and an active-high set input.

C3
X1, X2,

X3, X4

Three-input C-Element with three normal inputs.

C_RST3 X1
Three-input C-Element with three normal inputs and an active-

low reset input.

C_SET3 X1
Three-input C-Element with three normal inputs and an active-

high set input.

A comparison of the three CMOS implementations classes (conventional, Muller and

symmetrical) for a 2-input C-Element appears in Figure 5.2. The total area of each cell is

compared in (a) for different output drives, showing that the Muller version presents the

smallest area. The operating frequency of a ring of 10 C-Elements and a NAND gate is

compared in (b) and its dynamic power consumption in (c). Results show that the symmetric

C-Element presents higher operating frequencies and lower power consumption. The

conventional version presents low leakage power consumption for different output drives as

Figure 5.2 (d) shows. For a 2-input cell, the symmetric and the conventional static (leakage)

power consumption is equivalent. However for 3-input cells, the latter dissipates in average

30% less power when the circuit is quiescent (static). The schematic and layout views of

these gates are showed in Appendix C.

69

(a)

(b)

(c)

(d)

Figure 5.2 – Several comparisons between different C-Elements CMOS implementations with

varying drive strengths, from X1 to X4. The compared C-element classes are conventional

(CCONV), weak feedback or Muller (CMUL) and symmetric (CSYM). In (a) the area of the

cells is compared. In (b) and (c), the operating frequency and the dynamic power consumption

of a ring of C-Elements are compared. In (d), the leakage power consumption of the gates is

compared for 2 and 3-input cells. For instance, BP_CMUL2 is a 2-input BP Muller (weak

feedback) C-Element, while BP_CMUL3 is its 3-input version.

70

5.3.2 Metastability Filter

Metastability Filters are crucial elements to implement asynchronous circuits. This is

due to the fact that they guarantee a robust implementation of control elements, like arbiters.

These elements are essential to compute data and take decisions for the correct operation of

the circuit [BER99b] [MYE01] [SPA01].

The designed library counts with 4 implementations of a metastability filter. Each of

which has a different output driving strength, according to Section 4.1.3 . The specification of

a metastability filter behavior is described in Appendix B and an example of schematic and

layout views for it are available in Appendix C.

71

6 ASYNCHRONOUS CIRCUITS DESIGN WITH

ASCEND ST65

“We can but try.”

Sir Arthur Conan Doyle

An asynchronous RSA based cryptography circuit was described in Balsa language and

synthesized with Teak using a typical standard cell library, provided by the foundry, and the

ASCEnD ST65 library. The generated netlist was placed and routed through Encounter and

the obtained netlist was validated through timing simulation. Another IC flow was also

employed to implement an asynchronous NoC router ASIC. This was done by describing the

circuit in VHDL and synthesizing it with Cadence RTL Compiler. The generated netlist was

placed and routed through Encounter and the circuit was validated through timing simulation.

6.1 Asynchronous RSA Based Cryptography Circuit

The design flow adopted to describe and implement the asynchronous RSA based

cryptography circuit is showed in Figure 6.1. This flow counts with a novel language for

describing asynchronous circuit, a novel tool to synthesize such circuits and the ASCEnD

ST65 library.

TeakBalsa Source Encounter IC Layout

Figure 6.1 – IC design flow adopted to describe and implement an asynchronous RSA based

cryptography circuit.

RSA [SCH96] is a public key cryptography algorithm. It is widely used in current

electronic protocols and can be easily implemented in hardware. The designed circuit is able

to encrypt and decrypt information using a public and a private key, denoted by Equation 6.1

(a) and (b) respectively. Equation 6.1 (c) and (d) shows the encryption and decryption

72

operations, where m is the original message and c is the encrypted message.

Equation 6.1 – RSA algorithm equations and key definitions [SCH96].

 enkeypub ,_ (a)

 dnkeypriv ,_ (b)

)mod(nmc e (c)

)mod(ncm d (d)

The circuit was described in Balsa language. The sources that implement the algorithm

can be found in Appendix D. For simplicity sake, the syntax of these descriptions will not be

explored in this document. A user guide for the Balsa language and system can be found in

[APT10].

The inputs of the circuit are: control, data_in, data_out_ack and reset. The outputs are:

data_out, control_ack and data_in_ack. Each input, but for the reset input are dual rail and

have a true and a false channel. Moreover, the size of the data inputs is parameterizable. The

control signal defines the operation of the circuit. The possible operations are: load message

(0x0), load e (0x1), load n (0x2), load d (0x3), encrypt (0x4) and decrypt (0x5). By issuing

the identifier of a function in the control channel, the operation is performed and the circuit

issues an acknowledge signal in the control_ack output. For the load operations, the data must

be issued in the data_in channel. After reading the data, the circuit issues an acknowledge

signal in the data_in_ack output. For the encrypt/decrypt operations, the circuit performs the

algorithm with the values in its registers and put the result in the data_out output. An

acknowledgement must be signaled in the data_out input and another operation may take

place.

In order to verify the functionality of the circuit, a set of public and private keys were

generated according to [SCH96]. The obtained public key was (3233D, 17D) and the private

key (2753D, 17D). A test bench for a 32 bit asynchronous RSA circuit was described, also in

Balsa language, and simulated using the Teak System. The test bench consisted in a looping

procedure that, firstly, encrypted the message “123D” and then decrypted the obtained

encrypted message. Figure 6.2 shows the obtained results. By encrypting “123D” with the

public key (3233D, 17D), the message “855D” was obtained. This message was decrypted

using the private key (2753D, 17D) and the original message, “123D”, was recovered.

73

Figure 6.2 – Simulation of a test bench for the Balsa description, using Teak System.

Next, this circuit was synthesized with Teak System into handshaking components and

a Teak netlist of the circuit was obtained. So far, the data encoding and the handshaking

protocol, were not defined. However, after the Teak synthesis, the generated circuit

implements a four phase dual rail codification. This circuit is optimized by Teak by replacing

data-less activation channels with separate control channels. The diagrams of the obtained

circuits, before and after Teak optimization, are showed in Appendix D.

The Teak netlist is automatically exported to a Verilog netlist composed of a set of

components of a target library. This netlist was simulated in Incisive in a test bench described

in VHDL that implemented the same function of the Balsa test bench described before. The

message “123D” is encrypted with the key (3233D, 17D) and its result decrypted with the key

(2753D, 17D). The results of this simulation are presented in Figure 6.3. Each ellipsis denotes

the beginning of a new encryption/decryption. In the black square it is shown the request for a

encryption operation. Initially, a message is loaded by signaling “0x0”1 in the control channel

and loading the value “123D” in the data_in channel. Next, the two values of the public key

are loaded by signaling “0x1” and “0x2” in the control channel and loading the values “17D”

and “3233D” in the data_in channel, respectively. After that, an encryption request is issued

by signaling “0x4” in the control channel. After computation, as it is showed in the red

rectangle, the circuit responds with the encrypted message “855D” in the data_out channel

and a new operation may start. The time taken to cryptograph the message was 9.702µs.

1 For simplicity sake, the handshaking protocol and data codification have been abstracted in the example. Each channel

consists of a true and a false line. The original value is represented in the true line and its complement in the false line.

74

Figure 6.3 – Behavioral simulation of a test bench of the netlist generated from the Teak

synthesis, using Incisive.

After the behavioral simulation, the circuit netlist was placed and routed through

Encounter by using the LEF files provided by STM and ASCEnD ST65. Figure 6.4 shows the

obtained layout. A total of 744095 standard cells were used in the design, which presented a

total area of 2.314mm2. Seven metal layers were employed to route the circuit with a total

wire length of 9,673,661.965µm. After the place and route, the delay of each path of the

circuit was annotated, by using the LIB files provided by STM and ASCEnD ST65, and

exported to a SDF file. Without taking into account filler cells, 38% of the standard cells used

in this design were C-Elements, proving the importance of the C-Element in an asynchronous

circuit.

75

Figure 6.4 – Asynchronous RSA design routed through Encounter.

The generated circuit was exported to a Verilog netlist. A timing simulation was

performed through Incisive with the same test bench used in the behavioral simulation and

the delays annotated in the SDF file. Figure 6.5 shows the results of this run. This time, the

circuit took 12.280467µs to encrypt a message. When compared with the unitary delay

simulation (behavioral) the timing simulation presented 2.578467µs extra delay. This is due

to the fact that this simulation is much more precise and considers the information generated

in the electrical characterization of the cells.

Figure 6.5 – Timing simulation of a test bench of the netlist generated from the circuit

placed and routed by Encounter.

76

6.2 Asynchronous NoC Router

In previous works, an asynchronous NoC router was described and implemented in two

different CMOS technology processes. The Hermes-A [PON10b] and the Hermes-AA

[PON10] routers were implemented in an 180nm and a 65nm gate length CMOS processes,

respectively. In the latter, an abridge version of ASCEnD ST65 was designed, this version

counted with only a few C-Elements, required to implement the router and a metastability

filter. With the development of the new library, ASCEnD ST65, Hermes-AA was redesigned

through the same flow proposed in [PON10], showed in Figure 6.6.

RTL

Compiler
VHDL Source Encounter IC Layout

Figure 6.6 – IC design flow adopted to describe and implement an asynchronous NoC router.

Hermes-AA is described in VHDL. A netlist was generated through RTL compiler,

implementing the circuit into the cells of ASCEnD ST65 and placed and routed through

Encounter. The obtained circuit was simulated in order to verify its functionality. This work

will not present neither Hermes-AA architecture nor its design flow in detail due to the

constrained period of time available for its development. However, more details can be found

in [PON10] and [PON10b].

77

7 CONCLUSIONS

The work described in this document has produced a standard cell library for designing

asynchronous ASICs for a STM 65nm gate length CMOS process. This library was called

ASCEnD ST65 (currently at version 0.1) and counts with 251 standard cells, where 247 are

different implementations of C-Elements and 4 are metastability filters. Each cell has the

following views: schematic, symbol, layout, abstract and Verilog. Moreover, physical

characteristics are given in a LEF file, which is used in the automation of the design of

standard cell based ICs and is widely accepted among CAD tools. Each standard cell has its

electrical characterization for three different process variations: worst, typical and best cases.

This information is given in a LIB file, which is used by synthesis tools to generate the netlist

of circuits.

An early version of ASCEnD ST65, which contains 8 standard cells, was previously

designed and used to implement an asynchronous NoC router, described in [PON10].

However, the library was totally redesigned here by adopting a new flow to design each cell.

Currently, in ASCEnD ST65, a large set of C-Elements is available for three different CMOS

implementations (Conventional, Symmetric and Weak Feedback), 21 different functional

specifications and different output drive strengths. Simulation results showed that the

symmetric C-Element proved to consume less dynamic power and presented better

performance. The conventional C-Element on the other hand, proved to consume less leakage

power, a major problem in current ICs. The weak feedback C-Element presented poor

performance but requires less area. In this way, a tradeoff between performance, power

consumption and density can be achieved for circuits with different requirements.

Another major contribution of this work is a novel flow to specify the transistors size of

C-Elements. This is fully automated by two specially designed tools, ROGen and CeS, both

implemented in C++. The result of the flow is the specification of two versions of each C-

Element cell, a high performance and a low power driven CMOS implementations. These can

be used to provide fine grain tuning of IC designs. Another tool, which was not mentioned in

this document, was developed to aid in the design of layouts. The tool is called Sticky and

78

was implemented in C++ language. Sticky is responsible for automatically drawing stick

diagrams from Spice descriptions. It was used to ease the design of the layout for ASCEnD

ST65 cells. However, some functionalities are not yet automated and were manually

implemented. Future work includes upgrading this tool.

To validate the views generated for ASCEND ST65 standard cells, two ASIC design

flows were used. Initially, a conventional flow, consisting of VHDL circuit descriptions

synthesized, placed and routed with the Cadence Framework, was used to design an

asynchronous NoC router. Next, a novel IC design flow consisting of Balsa sources

synthesized through the Teak System and placed and routed by Cadence Encounter, was used

to design an asynchronous RSA based cryptography circuit. The validation consisted of

behavioral and timing simulations. Future work includes prototyping test chips for these and

other circuits.

Finally, the objective of the proposed work was achieved through the design and

validation of ASCEnD ST65. The integration of the library with the Teak System was

achieved by the generation of a layout for an asynchronous RSA-based cryptographic circuit

and the simulation of its netlist.

7.1 Future Work

The work described in this document presents numerous topics for further research.

Firstly, work will be carried out in order to allow the library to support the Balsa System

native synthesis from Balsa descriptions. This can be easily done by designing another set of

gates and generating the required technology mapping files required by Balsa System.

Another important topic is the extension of ASCEnD to other technology processes. A

previous version of the library was designed for a 180nm process. This version could be

upgraded by designing the standard cells present in ASCEnD ST65. Moreover, a macro cell

library to support different FPGA families can also be designed, as showed in [PON08]. In

this way, asynchronous circuits design could be also experienced for array based approaches,

which cost much less design time.

The ASCEnD ST65 is implemented for GPSVT devices. Other versions of this library

can be designed in order to support a wider range of devices. Moreover, effort may also be

employed to generate standard cells that support low power asynchronous circuits design. In

order to do so, a set of cells implementing techniques like power shut off must be designed.

However, this can easily achieved once the architecture of typical asynchronous standard cells

is already defined by the present library.

Another possibility is the creation of macro cell generator based on ASCEnD cells.

Such generators may be used to produce complex modules like multipliers, adders and

79

parameterizable handshake components. The circuits generated by such tools may use

different C-Element implementations guided by the tradeoffs presented in this work. Finally,

a possible future work is upgrading the Sticky tool, to enable it automate more extensively the

generation of stick diagrams from Spice descriptions.

81

REFERENCES

[AMD05] Amde, M.; Felicijan, T.; Efthymiou A.; Edwards, D.; Lavagno, L.: “Asynchronous on-

chip Networks”. Computers and Digital Techniques, IEEE Proceedings, 152(2), March

2005, pp. 273-283.

[AMI10] “American Megatrends Inc.” Available at http://www.ami.com

[APT10] “Advanced Processor Technologies Group” Available at

http://intranet.cs.man.ac.uk/apt.

[ASC10] “ASCEnD: Asynchronous Standard Cells Enabling n-Designs” Available at

https://corfu.pucrs.br/redmine/embedded/asynclib

[BAR00] Bardsley, A. “Implementing Balsa Handshake Circuits”. PhD. Thesis, Faculty of

Science & Engineering, University of Manchester, 2000, 187p.

[BAR09] Bardsley, A.; Tarazona, L.; Edwards, D.: “Teak: A Token-Flow Implementation for the

Balsa Language” In: Application of Concurrency to System Design (ACSD), 2009, pp.

23-31.

[BAR98] Bardsley, A. “Balsa: An Asynchronous Circuit Synthesis System”. MSc Dissertation,

Faculty of Science & Engineering, University of Manchester, 1998, 162p.

[BER91] van Berkel, K.; Kessels, J.; Roncken, M.; Saejis, R.; Schalij, F.: “The VLSI-

programming language Tangram and its translation into handshake circuits” In:

Proceedings of the European Conference on Design Automation (EDAC), 1991, pp.

384-389.

[BER99] van Berkel, C. H.; Josephs, M. B., Nowick, S. M.: “Scanning the Technology:

Applications of Asynchronous Circuits”. Proceedings of the IEEE, 1999, pp. 223-233.

[BER99b] van Berkel, C. H.; Molnar, C. E.: “Beware the Three-Way Arbiter”, Solid State

Circuits, IEEE Journal of, 34(6), June 1999, pp.840-848.

82

[BOU07] Bouesse, F.; Ninon, N.; Sicard, G.; Renaudin, M.; Boyer, A.; Sicard, E.: “Asynchronous

Logic Vs Synchronous Logic: Concrete Results on Electromagnetic Emissions and

Conducted Susceptibility”. In: 6th International Workshop on Electromagnetic

Compatibility of Integrated Circuits (EMC), 2007, 5p.

[BRO05] Brown, S.; Vranesic, Z.: “Fundamentals of Digital Logic With VHDL” New York:

McGraw Hill, 2005, 939 p.

[CAD07] Cadence Design Systems “Cadence Abstract Generator User Guide”. San Jose, 2007,

434p.

[CAD09] Cadence Design Systems “LEF/DEF Language Reference”. San Jose, 2009, 413p.

[CAD10] “Cadence Design Systems Inc.” Available at http://www.cadence.com.

[CAD10b] Cadence Design Systems “Encounter Library Characterizer User Guide”. San Jose,

2010, 174p.

[CHO07] Chong, K. S.; Gwee, B. H., Chang, J. S.: “Design of Several Asynchronous-Logic

Macrocells for a Low-Voltage Micropower Cell Library”. Circuits, Devices & Systems,

IET, 1(2), April 2007, pp. 161-169

[CHO92] Chong, J. W. W.; Forbes, R. G.: “Design of Basic CMOS Cell Library” Circuits,

Devices and Systems, IEEE Proceedings G, 139(2), April 1992, pp 256-260.

[CIL02] Ciletti, M. D.: “Advanced Digital Design with the Verilog HDL” Prentice Hall, 2002,

1008p.

[CLE00] Clein, D.: “CMOS IC Layout: Concepts, Methodologies, and Tools” Woburn:

Butterworth-Heinemann. 2000, 261 p.

[COR06] Cortadella, J.; Kondratyev, A.; Lavagno, L.; Sotiriou, C. S.: “Desynchronization:

Synthesis of Asynchronous Circuits from Synchronous Specifications”. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 25(10),

October 2006, pp. 1904-1921

[CRI10] Cristófoli, L. F.; Henglez, A.; Benfica, J.; Bolzani, L.; Vargas, F.; Atienza, A.; Silva, F.:

“On the Comparison of Synchronous Versus Asynchronous Circuits Under the Scope of

Conducted Power-Supply Noise”. In Electromagnetic Compatibility (APEMC), 2010

Asia Pacific Symposium on, 2010, pp. 1047-1050.

[DJI07] Djigbenou, J. D.; Ha D., S.: “Development and Distribution of TSMC 0.25 µm Standard

CMOS Library Cells”. In: Microelectronic Systems Education, 2007. MSE ’07. IEEE

83

International Conference on, 2007, pp. 27-28.

[DOA05] Doan, C. H.; Emami, S.; Niknejad, A. M.; Brodersen, R. W.: “Milimeter-wave CMOS

Design” Solid-State Circuits, IEEE Journal of, 2005, pp. 144-155.

[EDW06] Edwards, D.; Bardsley, A; Janin, L.; Plana, L.; Toms, W. “Balsa: A Tutorial Guide”.

2006, 157p.

[ERI03] Eriksson, H.; Larsson-Edefors, P.; Henriksson, T.; Svensson, C. “Full-Custom vs.

Standard-Cell Design Flow – an Adder Case Study“. In: Asia and South Pacific Design

Automation Conference (ASP-DAC), 2003, pp. 507-510.

[FER04] Ferretti, M.: “Single-Track Asynchronous Pipeline Template”. Doctor Thesis, Faculty

of The Graduate School, Electrical Engineering, University of Southern California,

2004, 170p.

[FER06] Ferretti, M.; Beerel, P. A.: “High Performance Asynchronous Design Using Single-

Track Full-Buffer Standard Cells”. Solid-State Circuits, IEEE Journal of, 41(6), June

2006, pp. 1444-1454.

[GRA03] Grad, J.; Stine, J. E. “A Standard Cell Library for Student Projects”. In:

Microelectronic Systems Education, IEEE International Conference on, 2003, pp. 98-

99.

[HAS03] Hashimoto, M.; Fujimori, K.; Onodera, H.: “Standard Cell Libraries with Various

Driving Strength Cells for 0.13, 0.18 and 0.35µm Technologies” In: Asia and South

Pacific Design Automation Conference (ASP-DAC), 2003, pp. 589-590

[HEN02] Hennessy, J. L.; Patterson, D.: “Computer Architecture: A Quantitative Approach”. San

Mateo, CA: Morgan Kaufmann, 2002, 1336p.

[IEE01] IEEE Computer Society “IEEE Standard for Standard Delay Format (SDF) for the

Electronic Design Process”. 2001, 88p.

[INT10] “Intel Corporation” Available at http://www.intel.com

[ITR01] International Technology Roadmap for Semiconductors. “ITRS 2001 Edition”

http://www.itrs.net/, 2001.

[ITR08] International Technology Roadmap for Semiconductors. “ITRS 2008 Edition”

http://www.itrs.net/, 2008.

[ITR09] International Technology Roadmap for Semiconductors. “ITRS 2009 Edition”

http://www.itrs.net/, 2009.

http://www.itrs.net/
http://www.itrs.net/
http://www.itrs.net/

84

[JAM99] Jambek, A. B.; NoorBeg, A. R.; Ahmad, M. R. “Standard Cell Library Development”.

In: 11th International Conference on Microelectronics (ICM), 1999, pp. 161-163.

[KES01] Kessels, J.; Peeters, A.: “The Tangram Framework: asynchronous circuits for low

power” In: Asia and South Pacific Design Automation Conference (ASP-DAC), 2001,

pp. 255-260.

[KSC07] Kwen-Siong, C.; Bah-Hwee G.; Chang, J. S.: “A Simple Methodology of Designing

Asynchronous Circuits Using Commercial IC Design Tools and Standard Library

Cells”. In: International Symposium on Integrated Circuits (ISIC), 2007, pp. 176-179.

[KWE07] Kwen-Siong, C.; Bah-Hwee G.; Chang, J. S.: “Energy-Efficient Synchronous-Logic and

Asynchronous-Logic FFT/IFFT Processors”. IEEE Journal of Solid-State Circuits,

42(9), September 2007, pp. 2034-2045.

[MAR06] Martin, A. J.; Nyström, M. “Asynchronous Techniques for System-on-Chip Design”.

Proceedings of the IEEE, 94(6), 2006, pp. 1089-1120.

[MAU03] Maurine, P.; Rigaud, J. B.; Bouesse, F.; Sicard, G.; Renaudin M.: “Static

Implementation of QDI Asynchronous Primitives” In: International Workshop on Power

and Timing Modeling, Optimization and Simulation, 2003, pp. 181-191.

[MIC94] De Micheli, G. “Synthesis and Optimization of Digital Circuits”. New York: McGraw-

Hill, 1994, 579p.

[MOS10] “MOSIS Integrated Circuit Fabrication Service” Available at http://www.mosis.com.

[MUL57] Muller, D. E.; Bartky, W. S. “A Theory of Asynchronous Circuits” In: Proceedings of

an International Symposium on the Theory of Switching, Cambridge, 1957, pp. 204-243.

[MYE01] Myers, C. J.: “Asynchronous Circuit Design”. New York: John Wiley & Sons, Inc.

2001, 422p.

[OZD04] Ozdag, R. O.; Beerel, P. A.: “A Channel Based Asynchronous Low Power High

Performance Standard-Cell Based Sequential Decoder Implemented with QDI

Templates” In: International Symposium on Asynchronous Circuits and Systems

(ASYNC), 2004, pp. 187-197

[OZD06] Ozdag, R. O.; Beerel, P. A.: “An Asynchronous Low-Power High-Performance

Sequential Decoder Implemented with QDI Templates” IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, 14(9), September 2006, pp. 975-985

[PON08] Pontes, J. “Design and Prototyping of Non-synchronous Interfaces and Intrachip

Networks in FPGAs.” MSc. Dissertation, Faculty of Science Informatics, Pontifícia

85

Universidade Católica do Rio Grande do Sul, 2008, 116p. In Portuguese.

[PON10] Pontes, J. J. H.; Moreira, M. T.; Moraes, F. G.; Calazans, N. L. V.: “Hermes-AA: A

65nm Asynchronous NoC Router with Adaptive Routing” In: IEEE International SoC

Conference (SOCC), 2010, pp. 493-498.

[PON10b] Pontes, J. J. H.; Moreira, M. T.; Moraes, F. G.; Calazans, N. L. V.: “Hermes-A – An

Asynchronous NoC Router with Distributed Routing” In: International Workshop on

Power and Timing Modeling, Optimization and Simulation, 2010, 10p.

[RAB03] Rabaey, J. M.; Chandrakasan A.; Nikolic, B. “Digital Integrated Circuits a Design

Perspective”. Upper Saddle River: Pearson Education, 2003, 761p.

[REI00] Reis, R. “Concepção de Circuitos Integrados”. Porto Alegre: Sagra Luzzato, 2000,

252p. In Portuguese.

[SAI02] Saint, C.; Saint, J. “IC Layout Basics a Pratical Guide”. New York: McGraw-Hill,

2002, 300p.

[SAI04] Saint, C.; Saint, J. “IC Mask Design Essential Layout Techniques”. New York:

McGraw-Hill, 2004, 394p.

[SCH96] Schneier, B.: “Applied Cryptography, Second Edition” New York: John Wiley & Sons,

INC. 1996, 758 p.

[SHA96] Shams, M.; Ebergen, J. C.; Elmasry, M. I.: “A Comparison of CMOS Implementations

of an Asynchronous Circuits Primitive: the C-Element” In: International Symposium on

Low Power Electronics and Design (ISLPED), 1996, pp. 93-96.

[SHA97] Shams, M.; Ebergen, J. C.; Elmasry, M. I.: “Optimizing CMOS Implementations of the

C-Element” In: IEEE International Conference on Computer Design: VLSI in

Computers and Processors (ICCD), 1997, pp. 700-705.

[SHA98] Shams, M.; Ebergen, J. C.; Elmasry, M. I.: “Modeling and Comparing CMOS

Implementations of the C-Element” IEEE Transactions on Very Large Scale Integration

Systems, 6(4), December 1998, pp. 563-567.

[SMI05] Smirnov A.; Taubin A.; Su M.; Karpovsky M.: “An Automated Fine-Grain Pipelining

Using Domino Style Asynchronous Library”. In: Application of Concurrency to System

Design, 2005, pp. 68-76

[SMI97] Smith, M. J. S.: “Application-Specific Integrated Circuits”. Addison-Wesley

Professional, 1997, 1040p.

86

[SPA01] Sparso, J.; Furber, S. “Principles of Asynchronous Circuit Design – A Systems

Perspective”. London: Kluwer Academic Publishers, 2001, 337p.

[STM10] “STMicroelectronics” Available at http://www.st.com.

[SYN07] Synopsys Inc. “Liberty Reference Manual” 2007, 305p.

[SYN10] “Synopsys Inc.” Available at http://www.synopsys.com

[TOM06] Toms, W. B. “Synthesis of Quasi-Delay-Insensitive Datapath Circuits”. Phd. Thesis,

Faculty of Science & Engineering, University of Manchester, 2006, 237p.

[TSM10] “Taiwan Semiconductor Manufacturing Company Limited” Available at

http://www.tsmc.com

[VAH10] Vahid, F. “Digital Design with RTL Design, VHDL and Verilog” Riverside: John Wiley

& Sons, Inc. 2010, 592 p.

[WON05] Wong, B. P.; Mittal, A.; Cao, Y.; Starr, G. “Nano-CMOS Circuit and Physical Design”

New Jersey: John Willey & Sons, INC. 2005, 383 p.

[WON09] Wong, B. P.; Zach, F.; Moroz, V.; Mittal, A.; Starr, G.; Kahng, A.: “Nano-CMOS

Design for Manufacturability: Robust Circuit and Physical Design for Sub-65nm

Technology Nodes” New Jersey: John Willey & Sons, Inc. 2009, 385 p.

[XFA10] “XFab Mixed Signal Foundry” Available at http://www.xfab.com

[XIL10] “Xilinx Inc.” Available at http://www.xilinx.com.

[YAH06] Yahya E.; Renaudin M.: “QDI Latches Characteristics and Asynchronous Linear-

Pipeline Performance Analysis” In: International Workshop on Power and Timing

Modeling, Optimization and Simulation, 2006, 2p.

[YEO09] Yeoh, K. L.; Lim, J. S.; Goh, K. L.; Tee, S. M.: “Custom Digital Cell Generation Flow

for 65nm Processes” In: International SoC Design Conference, 2009, pp. 177-181

87

A APPENDIX A

This appendix present the results of the simulations of different sizes of inverters used

to define the PMOS-to-NMOS ratio and the output driving strength of different cell

implementations.

PMOS-to-NMOS ratio:

The PMOS-to-NMOS ratio is a constant that defines the size of the PMOS as a function

of the size of the NMOS. This constant was defined by simulating an inverter for a fixed

output load and input slope with varying NMOS and PMOS sizes. A total of 244 values for

the PMOS transistor size were simulated for each size of the NMOS. The results are

demonstrated in Figure A.1-Figure A.8 and summarized in Table A.1. From the obtained

results, an average ratio of 2.11 was found and adopted by this work.

Table A.1 – Summarized results for different PMOS-to-NMOS ratio simulations.

NMOS size (µm) PMOS size (µm) PMOS-to-NMOS ratio

0.135 0.295 2.19

0.2 0.43 2.15

0.3 0.645 2.15

0.4 0.855 2.14

0.5 1.03 2.06

0.6 1.24 2.07

0.7 1.45 2.07

0.8 1.67 2.09

88

Figure A.1 – Results for the simulation of an inverter with varying PMOS sizing and an NMOS

transistor size of 0.135µm.

Figure A.2 – Results for the simulation of an inverter with varying PMOS sizing and an NMOS

transistor size of 0.200µm.

89

Figure A.3 – Results for the simulation of an inverter with varying PMOS sizing and an NMOS

transistor size of 0.300µm.

Figure A.4 – Results for the simulation of an inverter with varying PMOS sizing and an NMOS

transistor size of 0.400µm.

90

Figure A.5 – Results for the simulation of an inverter with varying PMOS sizing and an NMOS

transistor size of 0.500µm.

Figure A.6 – Results for the simulation of an inverter with varying PMOS sizing and an NMOS

transistor size of 0.600µm.

91

Figure A.7 – Results for the simulation of an inverter with varying PMOS sizing and an NMOS

transistor size of 0.700µm.

Figure A.8 – Results for the simulation of an inverter with varying PMOS sizing and an NMOS

transistor size of 0.800µm.

92

Driving Strength:

The availability of different driving strengths for each cell is strongly related to the

performance of a standard cell based design. Therefore, the definition of the load that each

version of a standard cell is able to drive is essential in the design of a standard cell library.

The definition adopted by the present work is that a X1 gate is able to drive an equivalent

load of the one drove by an inverter at minimum size in a period of time of 1ns. A X2 drives

two times this load, a X3 three times and so on.

Through simulation, it was verified that an inverter at minimum size was capable of

driving 0.27pF in 1ns. From there, simulations were performed to determine what transistors

size an inverter needed for every drive from X2 to X8. The results of the simulations are

showed in Figure A.9 to Figure A.15. The red lines represent the time taken for each

transistors dimension to drive the output load, while green lines correspond to the balance for

rise and fall propagation delays. The point where the red lines cross the 1ns line is the best

transistors size for that output drive. Moreover, the closer the green lines are to 1, the more

balanced is the cell.

Figure A.9 – Results of simulations for an inverter with variable transistors size and an output

load of 0.54pF (X2).

93

Figure A.10 – Results of simulations for an inverter with variable transistors size and an output

load of 0.81pF (X3).

Figure A.11 – Results of simulations for an inverter with variable transistors size and an output

load of 1.08pF (X4).

94

Figure A.12 – Results of simulations for an inverter with variable transistors size and an output

load of 1.35pF (X5).

Figure A.13 – Results of simulations for an inverter with variable transistors size and an output

load of 1.62pF (X6).

95

Figure A.14 – Results of simulations for an inverter with variable transistors size and an output

load of 1.89pF (X7).

Figure A.15 – Results of simulations for an inverter with variable transistors size and an output

load of 2.16pF (X8).

97

B APPENDIX B

This appendix presents the functionality of each designed cell from ASCEnD ST65,

which is described through a logical function. The function that each cell must implement is

described in Table B.2.

Table B.2 – Logical specification of each gate designed for ASCEnD ST65.

Gate Logical Specification

C2)()()(1 BQBAQAQ iii

C_RST2))()()((1 BQBAQARSTQ iii

C_SET2)()()(1 BQBAQASETQ iii

C1D2)()(1 BQBAAQ ii

C1D_RST2))()((1 BQBAARSTQ ii

C1D_SET2)()(1 BQBAASETQ ii

C1U2))()((1 BQBABQ ii

C1U_RST2))()((1 BQBABRSTQ ii

C1U_SET2)))()(((1 BQBABSETQ ii

C3)()()()(1 iiii QCQBQACBAQ

C_RST3))()()()((1 iiii QCQBQACBARSTQ

C_SET3)()()()(1 iiii QCQBQACBASETQ

C1D3)()()()()(1 iiii QCQBQABACBAQ

C1D_RST3))()()()()((1 iiii QCQBQABACBARSTQ

C1D_SET3)()()()()(1 iiii QCQBQABACBASETQ

C1U3))()()()(()(1 iiii QCQBQACBACBQ

C1U_RST3))()()()(()(1 iiii QCQBQACBACBRSTQ

C1U_SET3)))()()()(()((1 iiii QCQBQACBACBSETQ

C1D1U3))()()()()(()(1 iiii QCQBQABACBACBQ

C1D1U_RST3))()()()()(()(1 iiii QCQBQABACBACBRSTQ

C1D1U_SET3)))()()()()(()((1 iiii QCQBQABACBACBSETQ

98

FILTER2
RARBAA

RBRAAB

99

C APPENDIX C

This appendix presents example of schematic and layout for the three variations of a C-

Element implemented: Conventional, Muller and Symmetric. Moreover, examples of a

Metastability Filter schematic and layout view are also presented. The complete ASCEnD

ST65 set of views can be obtained at [ASC10].

Conventional C-Element:

The schematic of a two input Conventional C-Element is showed in Figure C.16 and its

respective layout in Figure C.17.

Figure C.16 – Schematic of a two input Conventional C-Element.

100

Figure C.17 – Layout of a two input Conventional C-Element.

101

Muller C-Element:

The schematic of a two input Muller C-Element is showed in Figure C.18 and its

respective layout in Figure C.19.

Figure C.18 – Schematic of a two input Muller C-Element.

102

Figure C.19 – Layout of a two input Muller C-Element.

103

Symmetric C-Element:

The schematic of a two input Symmetric C-Element is showed in Figure C.20 and its

respective layout in Figure C.21.

Figure C.20 – Schematic of a two input Symmetric C-Element.

104

Figure C.21 – Layout of a two input Symmetric C-Element.

105

Metastability Filter:

The schematic of a two input Metastability Filter is showed in Figure C.22 and its

respective layout in Figure C.23.

Figure C.22 – Schematic of a two input Metastability Filter.

106

Figure C.23 – Layout of a two input Metastability Filter.

107

D APPENDIX D

This appendix presents the project of an asynchronous RSA based cryptography circuit.

The source files of the circuit described in Balsa language are showed in Figure D.24 – Figure

D.27. The synthesized Teak netlists before and after optimization are showed in Figure D.28

and Figure D.29, respectively.

Figure D.24 – Variable size multiplier Balsa description.

108

Figure D.25 – Variable size division remainder Balsa description.

109

Figure D.26 – Variable size asynchronous description of the function implemented by RSA.

110

Figure D.27 – Balsa description of the asynchronous RSA top circuit.

111

Figure D.28 – Diagram of Teak synthesis before optimization.

112

Figure D.29 – Diagram of Teak synthesis after optimization.

113

