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1. INTRODUCTION 

The evolution of the technologies used to fabricate integrated circuits (ICs) brought the possibility of 

implementing hundreds  of millions of transistors in a single chip. Thus, modern ICs can contain all elements 

of a complex system in a single chip. Such devices receive the name of Systems on a Chip (SoCs) [MOR10]. 

A SoC is typically composed of information processing modules (the so-called intellectual property cores or 

IP cores), an intrachip interconnect architecture and interfaces for peripherals of the IC. 

Traditional intrachip interconnect architectures, such as dedicated wires and buses, can be considered 

insufficient for current SoCs. Dedicated wires have poor reusability and flexibility, while shared buses 

transmit only one data per clock cycle and offer limited scalability. The emerging Network-On-Chip (NoC) 

interconnect architecture provides an energy-efficient and scalable communication solution for multiple cores, 

serving as a powerful replacement for bus architectures. Multiple point-to-point data links interconnected by 

switching nodes typically compose an NoC. Any source module may relay messages to any destination 

module over several links, by making routing decisions at the switching nodes or at the message´s source. 

Due to increase in inter-module communication requirements and demand for reduced time-to-market, 

validation of intrachip communication infrastructures plays a major role in chip design [LOT11]. Typically, 

software or HDL simulators accomplish the validation process. The increasing complexity and size of NoCs 

mandate that simulation software deals with too many signals and data, making the validation process take a 

significant fraction of the overall chip design time, maybe affecting accuracy. In addition, real application 

speeds are not possible with software simulators. Fast, cycle-accurate FPGA emulators are an alternative to 

software simulators as they reduce validation time without compromising accuracy. FPGA emulators allow 

the user to exploit the parallel nature of hardware, thereby enabling the detection of design and architectural 

problems early and reducing the number of chip respins [LOT11]. 

1.1 Motivation 

The increasing complexity of NoCs can difficult the process of validating them by software simulator 

because of time consumption that it takes. Instead, validating complex NoCs by emulation platforms can be a 

solution, once emulation in hardware can present a three or more order of magnitude gain in terms of time 

execution when compared to software simulators. Besides this, platforms based in FPGAs are powerful, 

simple to use and are available to execute this work. 

1.2 Objectives 

The main objective of this work is to contribute to the validation process of NoCs, by ameliorating an 

existing NoC evaluation hardware environment, named HardNoC-GLP. The specific goal is the development 

of a new traffic injector module for an existing environment, making the necessary adjustments and 

enhancements in the system to ensure its correct operation. 

http://en.wikipedia.org/wiki/Link_(telecommunications)#Point-to-point
http://en.wikipedia.org/wiki/Data_link
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1.2.1 Strategic Objectives 

During its development, this work achieved several strategic objectives. Examples are the exploration 

and understanding of how NoC emulation platforms work, the use of HDL-based hardware design techniques 

and the dominium of FPGA prototyping techniques. The achievement of these objectives required the use of 

much of the knowledge acquired during the Computer Engineering course, applying concepts from various 

disciplines. This included concepts of software development, communication networks, digital circuits, 

computer organization and architecture, microelectronics and circuit design techniques that were revisited and 

solidified. Applying such knowledge to this work gave the authors additional experience, close to that needed 

to develop commercial products. 

1.2.2 Specific Objectives 

The specific objectives involved enhancing the existing HardNoC-GLP platform, developed at the 

GAPH research group, to support the standard traffic description files produced by the ATLAS NoC design 

and verification environment. The new platform denomination is HNPlus. After concluded the development 

wortk, it was possible to validate and test instances of a specific NoC (the Hermes-GLP) with several traffic 

patterns distinct from those previously possible. While the original HardNoC-GLP platform worked with only 

two traffic types, the improvement this work proposed and implemented enables the exercise of NoCs with 

virtually any traffic type, incuding real traffic data, what makes the exploration of new NoC designs more 

flexible. Additionally, this work provides en anhancement in the software used to provide interaction between 

the user and the HNPlus platform. The new software improves the original interface, rather crude and difficult 

to use, by an interface that adds semantic meaning to the NoC packet structure. 

1.3 Organization of the Document  

The rest of this work comprises five additional chapters. Chapter 2 describes the basic concepts used 

along the text. Chapter 3 describes related work. Chapter 4 presents the proposed architecture and its 

development details. Chapter 5 presents the validation and prototyping of the new platform beyond 

experiments and some analysis of the results obtained with it. Chapter 6 contains some conclusions and 

directions for future work. 
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2. BASIC CONCEPTS 

This Chapter explores basic concepts of the main subjects involved in this work. The presentation 

comprisers five Sections. General concepts include NoCs, addressed in Section 2.1, and globally 

asynchronous locally synchronous basics and a brief account of the Hermes-GLP NoC both in Section 2.2. 

The used traffic generation environment, ATLAS, is the focus of Section 2.3. Follows a brief definition and 

discussion of concepts related to emulation of digital systems, in Section 2.4. The Chapter ends with a brief 

presentation of the original HardNoC platform, in Section 2.5. 

2.1 NoCs 

Given the limitations of dedicated wires and buses in intrachip communication architectures of current 

ICs, NoCs are emerging as a solution to existing interconnection architecture constraints, due to the following 

NoC good characteristics: (i) energy efficiency and reliability; (ii) scalability of bandwidth when compared to 

traditional bus architectures; (iii) reusability; (iv) distributed routing decisions [MOR04]. 

NoCs use concepts of telecommunication networks and parallel processing networks, where 

information is organized and transferred in layers and protocols. Switching nodes and links compose a 

network. The exchange of messages among IP cores accomplishes the exchange of information between 

source node and target nodes of a system. Often, the structure of some message types is not adequate for 

communication purposes on NoCs. This leads to the concept of packet. A packet is a standard way of 

representing information in a form adequate for communication. One packet may correspond to a fraction, one 

or even several messages. In the context of NoCs, packets are frequently a fraction of a message. A header 

and a payload often compose packets. The switching nodes realize the transfer of information between the IP 

cores by routing the packets accordingly to get them closer to their destination IP cores. To do so, switching 

nodes comprise a switching fabric, a routing logic, an arbitration logic, and associated communication ports 

connecting through links to neighbor switching nodes, depending on the network topology. A network 

topology is defined by the way switching nodes connect to one another. A very popular network topology is 

the 2D Mesh topology, where switching nodes occupy two dimensions forming a square or a rectangle where 

nodes connect to neighbors in vertical and horizontal directions. The communication mechanism, the 

switching mode and the routing algorithm are functions of the network topology and are necessary items to 

the execution of services provided by the NoC. 

The communication mechanism specifies how messages travel through the network. Two methods for 

transferring packets are circuit switching and packet switching. In circuit switching, a path from source to 

target is established by the allocation of a sequence of switching nodes. This is a connection. Packets start to 

travel through the allocated path and, during this connection, any other communication desiring to use any of 

the allocated path segments is denied. In packet switching, packets follow along the network without any need 

for deploying connection establishment procedures. 

A packet switching mechanism requires the use of a switching mode, which defines how packets move 

along switches. Store-and-forward, virtual-cut-through and wormhole are the most important modes. In store-
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and-forward mode, a switch just forwards a packet when it has been completely received. The switch decides 

what to do every time a packet comes in. In virtual-cut-through mode, the switch needs a guarantee from the 

next switch that the packet can be received completely. It implies in a buffer to store the complete packet. The 

wormhole switching mode is a variant of the virtual-cut-through mode that avoids the need of large buffer 

spaces. In this mode, a packet is divided into smaller units, called flits. A flit is the smallest unit of flow 

control. Only the header flit has the routing information. The rest of the flits of the packet must follow the 

same path reserved for the header. 

The routing algorithm defines the path a packet takes to go from the source to the target. It is possible 

to classify a routing algorithm in source or distributed, depending on where the decisions are taken. In source 

routing the whole path is decided at the source switch node while in distributed routing the path is decided by 

a set of local decision taken at every switch. The XY algorithm can be a source or distributed routing 

algorithm that routes flits according to the position the switch occupies on the network topology, usually 2D 

Mesh. First, the XY algorithm checks if the incoming flit has arrived at its target. If so, the flit is routed to the 

switch’s local port, typically connected to an IP core. If not, the XY algorithm routes the flit to a switch closer 

to the target always sending it to a horizontally located neighbor. The flit is sent up or down only if there is no 

horizontally located neighbor or if the existing ones are farther from the target. 

Besides the communication system, a NoC provides communication services to the SoC. As essential 

services to a SoC, it is possible to cite data integrity, throughput and latency guarantees. In the context of 

NoCs, latency is the time a packet takes to go from the source to the target. If divided in flits, as in wormhole 

mode, latency is the time delay from the insertion of the first flit in the NoC until the time the last flit 

composing the packet leaves the NoC. 

2.2 The GALS Style and the Hermes-GLP NoC 

Due to the facility of implementation and verification, the use of a single clock signal in digital system 

design has been widely used along the years. This approach, however, brings some undesired issues, like 

clock distribution problems, clock skew and clock power consumption. It was easy to deal with these 

problems until the 80’s, but they became a major limitation with the technology scaling of VLSI circuits into 

deep submicron geometries.  

As an alternative to the synchronous design style, the asynchronous style treats time as a continuous 

variable, creating the possibility to solve clock skew and clock power problems. Completely asynchronous 

systems, though, are limited by a generalized shortage of adequate design automation (computer aided design 

or CAD) tools. 

A strategy applicable to fill the gap between synchronous and asynchronous design is the adoption of 

globally asynchronous locally synchronous (GALS) techniques [CHA84]. The adoption of GALS keeps the 

use of synchronous methods and CAD tools for the design of synchronous modules and transfers all 

synchronization problems to the interface between modules. In this context, some NoCs with GALS 

communication support have become popular [VAN08]. 

The proposition of the Hermes-GALS Low Power NoC (Hermes-GLP) NoC [PON08] intended to 

support the GALS paradigm, and at the same time reduce power consumption using mechanisms that 

dynamically adapt the operating conditions of routers in response to communication requirements [PON08]. 
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Hermes-GLP builds upon the synchronous Hermes NoC [MOR04] and includes bi-synchronous FIFOs for 

communication between each pair of routers and between a router and its local IP Core.  

Each Hermes-GLP router is locally synchronous, with all its ports switching at the same clock 

frequency. The communication between the router’s ports and the rest of the NoC, however, passes through a 

bi-synchronous FIFO, because the rest of the NoC could be using different clock signals. This occurs because 

the router has available a set of input clock signals and through an internal logic is capable to choose among 

these different clocks which to use as router clock. Clock selection is made at runtime, according to the 

priority of all traffics instantaneously passing through the router. If the priority associated with the traffic set 

is low, the router automatically selects a lower frequency to operate, thus reducing the power consumption by 

the NoC. If instead, the traffic priority is high, the router selects a higher clock frequency to send the packet 

according to the urgency it requires. If there is more than one traffic priority, the router sets its clock 

according to the highest priority one. If there is no traffic in the router, it is possible to gate all clocks and turn 

the idle router off. It returns to activity immediately if there are incoming packets asking for transmission. 

By reducing clock frequency in each router that is idle or with low priority traffic, Hermes-GLP 

reduces the power consumption of the clock signal at these routers and globally in the NoC. 

2.3 ATLAS 

ATLAS is an open source tool designed by the GAPH research group. It automates various processes 

related to the design flow for NoCs proposed by the same group. NoC Generation, synthetic Traffic 

Generation, NoC Simulation, Traffic Evaluation and Power Evaluation compose the basic current design flow.  

In the NoC generation step, it is possible to configure the parameters of the NoC that to create, such as 

channel bandwidth, buffers depth, number of virtual channels and flow control strategies. After defining the 

necessary parameters, the user can ask the software to generate all the hardware modules that compose the 

NoC and appropriate testbench files for simulation. Modules employ VHDL code, and serve as input to 

classic FPGA synthesis tools. In addition to basic testbenches, the user may generate optional SystemC files 

that correspond to the traffic injection modules associated to each IP core. 

The traffic generation step produces traffic files that simulate the behavior of the processing modules 

connected to the NoC, injecting synthetic traffic into the NoC through the previously mentioned SystemC 

modules during simulation. Traffic configuration evolves setting the frequency of packet injection, the target 

for each IP core, the number of packets to be transmitted, the size of each packet and a probability distribution 

model, which guides the injection of traffic in the NoC. It is possible to configure a separated traffic for each 

IP core, with very different parameters. After the definition of a traffic scenery, traffic files are generated for 

each IP and contain the information needed to reproduce the defined scenery and the traffic data that will be 

transmitted. The user may define as many traffic sceneries as needed, and choose one of these for simulation 

in the next step. 

The simulation files generated by ATLAS to each IP are just a set of lines describing packets to inject 

in the NoC, with the format displayed in Figure 2.1. Each flit contains the number of bits set by the user in the 

NoC generation step. The first field contains the ideal timestamp value for injecting the packet into the NoC. 

The second field contains the target IP that will receive the current packet. The third field contains the payload 

size set by the user subtracted by six flits. The reason for this is explained later. The fourth field contains the 
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source IP that will send the packet. The fifth field, composed by four flits, is the packet generation instant, and 

corresponds to the time the packet should be first inserted into the NoC (it is a repetition of the first field). 

ATLAS calculates it according to the probability distribution chosen by the user. The sixth field contains the 

packet sequence number that is the order in which the packet will be inserted into the NoC considering all the 

packets generated for all routers in the current scenery. This sixth field comprises two flits. The rest of the 

packet flits are the actual data flits and do not have a fixed number. The data information is synthetic and 

ATLAS generates it randomly. In addition, data is present only if it is expected to be transmitted, otherwise 

they do not exist. Therefore, the first six fields form the minimum amount of information sent that composes 

an ATLAS packet. The reason the third field is subtracted by six flits is the fact that the time the packet should 

be inserted into the NoC can be different of the time it is actually inserted. These values differ because the 

local router can be busy with other traffic in the moment the new packet should enter it. Therefore, the time 

information in the fifth field is not the one used by the target IP to calculate latency values. To be possible to 

calculate the latency at the target IP, the exact injection moment information must travel within the packet. To 

send the right insertion time, the simulation/emulation process produces this information and injects it in the 

packet dynamically. As the payload size is used to count the number of flits to be read from the memory and 

inserted into the NoC, it should not count reading these values from memory. Instead, these two will be 

inserted in the packet during simulation. 
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Figure 2.1 – General structure for describing traffic in ATLAS traffic files. 

The next step implies NoC simulation. It runs an external simulator (today it supports Mentor Graphics 

Modelsim natively) associated with ATLAS, performs the simulation and generates the simulation output 

files. 

The last step provides the analysis of the simulation results. The traffic evaluation mode facilitates the 

visualization of the results by presenting different type of graphs, tables and textual accounts. 

Power Evaluation is only applicable to the Hermes NoC so far, and is omitted here. 

2.4 Analysis by Emulation 

Digital systems analysis procedures can be divided into two groups: abstract and concrete analysis. In 

abstract analysis, the techniques are based on manual or computational manipulation of abstract models of the 

system to be analyzed. The physical implementation is not required. Concrete analysis, on the other hand, is 

based on manual or computational manipulation of concrete implementations of the system to be analyzed. 

The partial or complete physical implementation is necessary.  

The complexity to analize NoCs by abstract simulation is increasing with the complexity of these. 
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When the routers become more complex, more signals need to be analyzed by the simulation software. In 

addition, the increasing speeds traffic drives in a NoC make the task of analyzing a significant period of it 

really time consuming. Simulation software needs to deal with too much signals and data and can waste much 

time to do it. 

Simulation by emulation, on the other hand, is one subtype of concrete analysis and can exercise NoCs 

at actual hardware speeds, once it uses the physical implementations of the NoC under test. Emulation is a 

process similar to prototyping, but with a physic connection between the host and the prototype through a 

subsystem denominated emulator. Emulators are composed of specific hardware and software to substitute 

one or more components in the system’s prototype [CAL98]. 

Fast, cycle-accurate FPGA emulators have been used as an alternative to software simulators, as they 

reduce validation time without compromising accuracy. FPGA emulators allows the user to exploit the 

parallel nature of hardware, thereby enabling easier detection of design and architectural problems early and 

reducing the number of chip respins [LOT11]. 

2.5 The Original HardNoC Platform 

The HardNoC system is a hardware platform to exercise with NoCs in general, first developed for the 

Hermes-2VC NoC [MEL05]. Both, the HardNoC and the Hermes-2VC NoC were developed and 

implemented by the GAPH research group at PUCRS. This Chapter describes the platform’s hardware in 

detail and its use. 

2.5.1 The HardNoC Block Diagram 

The first version of the HardNoC hardware comprised six IP cores connected to a 6-router Hermes-

2VC NoC, as illustrated in Figure 2.2. The circuit was originally designed to run in a Xilinx University 

Program Virtex-II Pro Development System (XUP-V2PRO) with a Xilinx Virtex-II Pro XC2VP30 FPGA. 

The platform can easily be adapted to other boards and instances of HardNoC with more routers and IP Cores. 

The HardNoC instance depicted in Figure 2.2 includes five traffic generators (TG) IPs, each implemented 

with two 16 Kbits Block RAMs, resulting in a memory capacity of 1024 32-bit words at each TG. Also, there 

is one RS-232 serial IP that provides bi-directional communication with a host processor. The external 

interface of the HardNoC system is very simple, and comprises four signals: 

 reset, responsible to initialize the HardNoC system; 

 clock, the basic synchronization signal; 

 rxd, serial data, coming from the host computer to the HardNoC system; 

 txd, serial data going from the HardNoC system to the host computer. 

2.5.2 The HardNoC Packet Formats 

Packet formats define a set of services offered by the host and communication network to all IP Cores 

in the system. The packet formats differ depending on the layer transmission is done, if it is packets 
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transmitted by the NoC or through serial IP. The link layer encompasses a protocol employed to transmit 

information among the NoC routers, while the network layer includes different protocols to transmit data end-

to-end between IP Cores or between IPs and the host. 
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Figure 2.2 – The original HardNoC system block diagram. 

2.5.3 Link Layer Packet Format 

At the link layer, there is only one packet format, employed to transmit data within the NoC, between 

routers, as Figure 2.3 depicts. At this level, all the information needed for transmission is the target IP, the 

payload size and the payload data. Thus, the packet format at the link layer contains two control information 

in the first two flits, Target IP Core Address (destination address) and Payload Size. 
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Payload Size 
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Payload Data 

3rd flit 

 
… 

Payload Data 

 

(n+2)th flit 

Link Layer (NoC) Packet Format  

 

Figure 2.3 - The HardNoC link protocol layer and its packet format. 

2.5.4 NoC Network Layer Packet Formats 

At the network layer, it is necessary to keep information about the source IP and the action to take with 

the transmitted packet. Thus, packets between TGs need more control fields. See Figure 2.4. 
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Figure 2.4 - HardNoC TG/Serial IP NoC network layer packet formats. In the Data packet format, 

|Data| stands for the size, in flits, of the variable size Data part of the packet, from the ninth flit on. Only 

the Serial IP generates the first two formats, and only TGs generate the last two formats. 

Note that all TG packets are indeed NoC packets. A fixed binary code identifies each format uniquely 

in the Command flit. All packet formats have a fixed size, except for the Data format. The packet 

denominations/functions are: 

1. Read (command 0) - typically used by the serial IP Core to request data from some TG; 

2. Write (command 1) - typically used by the serial IP Core to store data at some TG; 

3. Read Return (command 9) - typically used by a TG to return data from a read request to the Serial IP. 

The Source IP Address (first payload flit) in the return packet is the Target IP Address (first flit of the 

packet) in the read packet. 

4. Data (command 3) - typically used to transmit a variable size data block between two TGs. 

2.5.5 Network Layer System Packet Formats 

The Serial IP Core is responsible for providing communication between the HardNoC host computer 

and the TGs of the system connected through the NoC.  When the information comes from the host computer, 

the Serial IP creates a valid NoC network layer/link layer packet. When the Serial IP receives each 16-bit flit 

from the NoC it process this flit and sends it serially to the host computer. The packet formats can be seen in 

Figure 2.5 and Figure 2.6. 
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Figure 2.5 - Messages received from the host computer by the Serial IP and corresponding packets sent 

to the NoC by the Serial IP. 
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Figure 2.6 - Packets received from the NoC by the Serial IP and corresponding data sent to the Host 

computer. 

The Serial IP accepts four commands. The host computer generates three of these: (i) read, (ii) write 

and (iii) start. The upper part of Figure 2.5 presents the byte structure of the commands sent by the host 

computer, while the lower part displays the flits structure of packets assembled and sent to the NoC by the 

Serial IP as an effect of the commands received from the host. The start command does not generate any 

traffic on the NoC itself. Instead, it activates the global start signal from the Serial IP to all TGs, 

synchronizing the start of the HardNoC traffic generation process. A global signal is necessary because all 

TGs must start their traffic generation process at the same time. The fourth command accepted by the Serial IP 

comes from the NoC and is called (iv) Read Return. This command contains the response to a read command 

generated by the host. The upper part of Figure 2.6 presents the format of the packet coming from the NoC, 

while the lower part displays the corresponding message sent to the host computer by the serial IP as a 

consequence of processing the read return command. 

2.5.6 The TG IP Core 

The TG IP is responsible for generating packets, sending these to the NoC, receiving packets from other 

cores connected to the NoC and computing packet latency values. The TG IP contains a memory built with 

two Xilinx Block RAM modules, each configured as a 2048x8-bit block, and control logic to arbitrate the 

access to the memory banks. The access to both memory banks proceeds in parallel always in a same address 

reading and writing 16-bit words. 

Although the TG IP accepts three command types, the read, write and data, all discussed in earlier 

sections, only the data command occur during NoC emulation, once it is used to transmit data packets between 

TGs. When a TG receives a data packet, it calculates its latency subtracting the time the packet should enter 

the NoC (the packet generation time, which comes with the data packet) from the time when the last flit of the 

packet has left. The target TG IP captures this last information. The latency values of all packets are 

accumulated in four 64-bit words at the end of the TG’s memory. 

The TG’s memory is divided into two parts. The last 16 Block RAM positions are reserved for the 

latency values storage while the rest is left to the information the TG needs to generate the traffic as defined 

by the user. 

Traffic parameters are stored in memory and depend on the chosen traffic distribution: Uniform or 

Pareto. The traffic distribution type is stored in the first position of the TG memory (address 0), where a 0 

value indicates Uniform distribution and a 1 value indicates Pareto distribution. The second position (address 

1) in the TG memory informs the number of times to generate that traffic. The other parameters depend on the 
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adopted traffic distribution and provide information about flow priority, flow target, packet size, number of 

packets, among others. 

2.5.7 Using HardNoC 

Using the HardNoC is simple. First, a sync signal must be sent to the system to synchronize the speeds 

of the Serial IP and the host computer. After that, the TGs must be programmed with the available options of 

traffic before they can generate traffic. Each TG must be programmed individually. This process corresponds 

to sending messages from the host computer to the TGs containing the information necessary for the TG to 

generate traffic once the system is started. This information is stored at the beginning of the TG’s memory. 

After all the TGs are programmed, the start command activates the traffic generation process in all the 

TGs that must be synchronized to calculate meaning fully related latency values. At this moment, each TG 

generates its own random data information and sends it to the target IP through the NoC accordingly to the 

traffic distribution pattern previously programmed. 

Each time a packet should enter the NoC, the global time counter value is included in the packet. Every 

time the last flit of a packet leaves the NoC, the target IP samples the global time, subtracts the insertion time 

presented in the payload of the packet and accumulates this value properly. 

HardNoC collects only the latency of each packet and accumulates them. The messages total latency or 

the comparison of the packets latency must be done by the user in the host computer. To get the data out of the 

TG’s memory and into the host computer, a read command must be individually given to each TG. 

2.5.8 HardNoC-GLP 

The original HardNoc is a fully synchronous system. To emulate instances of the HardNoC-GLP NoC 

it was necessary to adapt the design of HardNoC, which produced the HardNoC-GLP platform. The needed 

changes involved the support to two input clock frequencies, the insertion of bi-synchrounous FIFOS at the 

TGs and the adaptation of the Serial IP module and TGs structure. 

A first prototype available for this work employs a single clock source that passes through a Digital 

Clock Management (DCM) component of the target FPGA. This component has several clock outputs, from 

which two can be used. To allow for significantly different clocks, the initial prototype used a 100MHz clock 

that feeds the FPGA DCM. The DCM has been parameterized to generate a divide by 3 output clock, 

producing a 33.33MHz clock. Also, the 2x DCM output was used as a second clock. Thus, the two clock 

frequencies available for each router are 33.33MHz and 200MHz. The TGs and the Serial IP used one of these 

clock sources, too. 

The HardNoC-GLP was chosen to do this work because it is the last version of HardNoC that was 

prototyped and completely validated in hardware by GAPH research group. However, in this work will not be 

demonstrated the GLP concepts. The first prototype of the HardNoC-GLP platform used a Xilinx ML505 

Virtex5 Evaluation platform. This is the platform used for developing the present work. Mention in the rest of 

the work to HardNoC refers to the HardNoC-GLP or to both HardNoC and HardNoC-GLP. 

 



20 

3. RELATED WORK 

The time consumed in the NoC validation process during a chip design has become an important 

constraint, because the demand for reduced time-to-market plays a major role in chip design. Several 

techniques and studies exist in this area, most intended to reduce the consumed validation time. This Chapter 

discusses two typical approaches to deal with this problem. 

3.1 HW/SW Emulation Platforms 

Some recent research aims to make the NoCs validation process by emulation faster and more flexible, 

by mixing the speed of hardware and the flexibility of software. Accordingly, some platforms composed of 

hardware and software emerged, which enhanced speed and accuracy of software simulations. In [GEN05] 

and [LOT11] the respective authors present alternative platforms to emulate NoCs based on the concept of a 

hybrid SW/HW emulator system.  

The platform in [LOT11] is centered on a hybrid framework composed of FPGA hardware resources as 

the hardware part and the Xilinx Micro Blaze soft core processor as the software part. The FPGA contains all 

needed hardware structures, such as the entire NoC and its connections. The software framework, on his turn, 

contains the traffic generators, source queues, traffic receptors and the emulation clock generator. 

The main advantage of such an approach is the mixing of the FPGA hardware to simulate at speed with 

the software flexibility to generate and analyze traffic. The weakness is the tight coupling of software and 

hardware. The use of a shared bus to connect the software and hardware frameworks reduces the speed of 

emulation. Bus congestion affects results, once each framework must communicate with the other during the 

emulation process. 

The hybrid framework presented in [GEN05] uses an FPGA board with an embedded Power PC. The 

FPGA contains the NoC, the traffic generators and receptors, a control unit and a filter unit that manages the 

decoding of the address bus. The software part of the framework deals with the programming of traffic 

generators and receptors and traffic analysis. 

The main advantage here is the use of the speed of the hardware and the flexibility of the software, once 

is it possible to include traces of traffic generated by real applications, in the NoC that is being emulated. The 

limitation may be the use of FPGA space, because there are several complex modules, such as the traffic 

generators. This limits the size of the NoC to emulate. 

Wen et al. [WEN09] describe a scheme to configure traffic generators before or during NoC emulation. 

They call it OCTG (On-line Configurable Traffic Generator), which is directly configured through a JTAG 

interface, in order not to affect the NoC, if it is actively producing traffic. This NoC emulation system is quite 

similar to HardNoC.  

Tan et al. [TAN11] demonstrate a generic design flow for NoC exploration on FPGAs. The authors 

used ATLAS to generate the Hermes NoC and introduced IPs for traffic generation and traffic reception. 

These TGs and TRs are different from de HardNoC version because they are separated IPs: a TG can only 
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inject traffic and a TR can only receive traffic to compute latencies. Thus, a limitation is that before 

prototyping it is necessary to know the traffic scenery that will be emulated to create the TGs/TRs 

distribution.  

3.2 Emulating Different NoCs without Resynthesis 

Another approach to reduce NoC’s validation time is to concentrate in fast context switching. The idea 

of making an almost generic platform that could emulate a large variety of NoCs by simply programming the 

system to accept another NoC type without synthesizing it every time was the aim of some research. 

The time to synthesize a NoC design can be in the order of hours, depending on the desired network 

topology and size. Thus, when several network topologies need to be tested, the time consumed by synthesis 

can be unsatisfactorily large. In [KRA08] and [WAN10], the authors demonstrate how to emulate different 

NoCs without the need to resynthesize each time the whole system. Some options were implemented in FPGA 

that allow reconfiguring the NoCs under software control. 

The possibility to configure each router connection also brings the possibility to explore alternative 

interconnections between routers (i.e. to producxe alternative interconnection topologies at runtime). 

However, this requires more FPGA area and the reported speed up is just between 80 to 300 times in 

comparison with software simulation. 
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4. THE HNPLUS PLATFORM 

The limitations of the HardNoC platform include the availability of a fixed number of traffic 

distribution patterns.  Also, the platform is difficult to operate and results analysis has to be done manually. 

This motivated the proposition of the HNPlus (from HardNoC Plus) platform that brings two improvements to 

HardNoC: (i) a new scheme to generate and inject traffic into the NoC and (ii) a new software to control the 

platform from a host.  

In HNPlus, it is possible to generate virtually any traffic pattern of both, synthetic distributions and real 

traffic. To achieve these goals, the HardNoC’s original TG was modified to be able to read generic traffic 

descriptions from its local memory and to inject it into the NoC, without worrying about traffic distribution 

computation during emulation. The flexibility in traffic types come from integration with the ATLAS 

environment, which is capable to generate several types of traffic distribution models. ATLAS generates 

traffic files and these may be simply written in the new TG memory before emulation. Making the TG 

independent of the used traffic distribution type makes traffic generation much simpler and makes the HNPlus 

platform more flexible and powerful, because it is possible to generate virtually any kind of traffic. 

The next sections describe the modifications made in the original HardNoC platform to create HNPlus, 

always comparing and explaining the obtained advantages. 

4.1 TG 

Figure 4.1 and Figure 4.2 respectively display the original modules and the modules modified of the 

TGs. The new TG comprises traffic injector and traffic collector cores that are able to transmit and receive 

packets to and from the NoC. Both operate the same way the original HardNoC’s TGs does. However, some 

modifications in the traffic receptor, traffic generator and also in the traffic parameters written into Block 

RAM compose the upgrades that make HNPlus more generic. The external interfaces, clock cycles counter 

and simulation results remain the same as in HardNoC. The traffic generator module is no longer a generator, 

but just a traffic injector during emulation, since it just has to read packets from its memory and transmit it to 

the NoC, with just a few processing. The traffic receptor was adapted to receive some additional information 

and there is no need to write more traffic parameters into the local memory, only traffic packets. 

The new traffic injector reads from its memory the entire packet information and injects into the NoC. 

This makes the traffic injector much simpler than the HardNoC traffic generator, but memory space becomes 

a limiting factor, because each packet consumes at least 16 bytes and the entire memory space is only 2048 

bytes, so each TG can inject a maximum of 128 packets. Bigger local memories can alleviate this problem. 

Consideration of this problem was overlooked only due to lack of time. 

The packet information that coordinates traffic injection appears in Figure 4.3 and its fields are as 

follows: 

 Packet Target: Address of another TG that will be the packet target. 

 Payload Size: Packet size in flits. 
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 Insertion Time: Number of clock cycles that the packet should wait before being injected in 

the NoC. 

 Packet Sequence Number: Sequence number generated by ATLAS. Actually, this is not used 

here. 

 Packet Data: It is the only optional field, because it is not necessary for emulation and may 

occupy much space in memory. However, it is necessary when injecting real data traffic. 
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Figure 4.2 – The HNPlus TG structure. 
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Figure 4.3 – The HNPlus Packet format. 

Figure 4.4 exemplifies the new memory organization of the TG, showing how a traffic with 40 packets 

should be written, assuming no real data traffic. The first address is reserved to set some options to the traffic 

injector, such as traffic availability flag, traffic with real data flag and traffic priority. The traffic availability 
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flag is set to indicate if there is at least one packet written in its memory. The traffic with real data flag 

indicates if the written packets have real data or if the traffic injector has to generate random data flits. The 

traffic priority contributes to the choice of the clock source that will be used during the transmission of these 

packets. In the example below, just the traffic availability flag is set to indicate that there is a valid traffic. It is 

also necessary to set a flag in address after sending the last packet to indicate the end of the traffic generation 

process by this TG. A packet target with value 0xFFFF is written in memory after all packets, to stop the 

transmission state machine. Thus, considering that the memory space is 1024 words of 16 bits, the first word 

is reserved to set the options, the last packet should have an invalid target and each packet consumes at least 8 

words, so each TG can only inject 127 valid packets into the NoC for each emulation run. 
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Figure 4.4 – Memory organization example, describing a traffic with 40 packets, without real data. 

Figure 4.5 demonstrates how the same traffic of Figure 4.4 should be written into the memory but this 

time considering a real data traffic. The options must indicate that there is a real data to be sent with each 

packet, and this data must be written according to the payload size, after the packet sequence number.  
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Figure 4.5 - Memory organization example, describing traffic with 40 packets containing real data 

traffic. 
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In this case, it is very important to set the correct payload size, to avoid a wrong operation of the 

transmission state machine, because it is based on the payload size that this state machine knows where each 

packet begins and ends. The packet size is the number of flits to inject, transmitting all information and data of 

each packet. The payload size is defined by the packet size minus six, which is calculated by ATLAS during 

traffic generation, so if the payload size is ten, sixteen flits will be sent. 

The Transmission State Machine is responsible for everything that the TG sends to the NoC. Figure 4.6 

shows that it is composed of three operations: Return Packet, Pre Reading and Sending Packets. Return Packet 

activates after the TG receives a read command, when it is necessary to respond with requested data. Pre 

Reading is activated when the TG has been programmed with some traffic. Then, it is necessary to be ready to 

transmit a packet before it receives the start signal. Sending packets activates when the TG receives the start 

signal. It is during this operation that the traffic is injected into the NoC. 

S0S0

Return Packet Pre Reading Sending Packets

reset
Transmission State Machine

 

Figure 4.6 – Operating modes of Transmission State Machine. 

The Return Packet operation is responsible for answering to a read command. When the TG receives 

this command, the Transmission State Machine starts to transmit the requested data. See Figure 4.7. This set 

of states were not modified, it is the same as in the HardNoC’s TG. 
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Figure 4.7 – Return Packet States. 

The Pre Reading operation is responsible for preparing the TG to be ready to inject its first data packet 



26 

into the NoC. While the traffic file is being written into TG memory, this operation is activated after the first 

packet is written. Thus, pre reading of the first packet always occurs. After this, the TG is ready to start traffic 

injection when it receives the start signal. Figure 4.8 shows all pre reading operation states. 
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Figure 4.8 – Pre Reading States. 

The Sending Packets operation is responsible for injecting traffic packets into the NoC. When the TG 

receives the start signal, the transmission state machine starts injecting the packet read during the pre reading 

operation, so that, if necessary, it is possible to start injecting a packet in the first simulation clock cycle. This 

state machine works as a pipeline. While a packet is injected, the next packet is being read, such that when a 

packet ends to be injected, the next will be ready to start injection. Thus, packets can be injected without 

wasting clock cycles if the traffic pattern dictates so. 
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Figure 4.9 – Sending Packet States. 

The Reception State Machine is responsible for receiving commands from the serial IP and computing 

statistics results of the packets it receives. A few modifications were made in the traffic receptor module, as 

Section 2.5 discusses. There were four command types (read, write, read return and data). The new traffic 

receptor module has only three command types: read, write and read return. The data command is no more a 

command but just a packet type that is sent between TGs during NoC emulation. This modification was 

necessary to make traffic injector and receptor as similar as possible to the behavior observed in the ATLAS 

environment. Thus, the packet information sent by a traffic injector is the same that is sent during an ATLAS 

simulation. The HNPlus traffic receptor continues to calculate latencies that were calculated by the HardNoC 

traffic receptor in the same way. 
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Figure 4.10 – Reception State Machine. 

4.2 Software 

The original HardNoC software interface appears in Figure 4.11. It contains some important limitations: 

the configuration and programming of traffic generators, for example, is done manually and has not a friendly 

and intuitive interface. The following modifications were made to solve this problem, keeping the interface 

compatible with modifications conducted in the hardware. Beginning with the graphical interface, it was 

completely remodeled, showing more clearly how the information necessary to operate the platform is 

structured, and not just be a plain serial interface for sending/receiving bytes. In addition, the new version of 

the program can open, read and modify the traffic files generated by ATLAS before sending them to the 

HNPlus Platform. Figure 4.12 illustrates the new interface. 
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Figure 4.11 – HardNoC, old host software. 

The HNPlus software was developed in Java for portability. In addition, the original HardNoC software 

was implemented in Java and parts of its code could be reused. Thus, there were no major reasons to justify 

the choice of another programming language to develop the new software. There are several tools to help the 

software development available, especially in high-level languages and the Eclipse Java IDE was chosen 

because it provides tools that facilitate software development, especially in the creation of graphical 

interfaces, and the authors dominate this IDE. 

 

Figure 4.12 – The HNPlus host software, showing contents of the traffic file generated by ATLAS. 

The new software interface is more user-friendly, intuitive and easier to use. In simple steps, it is 

possible to program the HNPlus platform and start NoC emulation. The first step is to open all traffic files 

generated by ATLAS and, when some file is selected, all of its contents are shown, to easily check if it is the 

correct file. The second step is to connect to the serial port that should be linked to the HNPlus platform and 

then send all desired files to program the HNPlus TGs. The third step is to send the start signal, clicking on the 

start button. The fourth step is to request to all TGs the statistical results, so it is possible to verify if latencies 

are as expected and to confirm that all packets were transmitted between TGs in the emulation session. 
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Figure 4.13 – The HNPlus host software, showing the obtained statistical results. 

4.3 The HNPlus Platform Operation 

From the user viewpoint, the HNPlus platform operates almost in the same way the HardNoC platform 

did. The main differences to the user are in the interface software, through which emulation configuration and 

results can be better analyzed. 

HNPlus offers an intuitive software interface to the user. The numerated arrows in Figure 4.14 indicate 

the HNPlus basic flow for a simple example, with just one TG sending data to another. First, the user uploads 

the traffic files generated with ATLAS to each TG (Step 1, in this case only one file is sent to a single TG). 

Here, the user also defines the use of real traffic for emulation, already informed in the traffic file, or a 

synthetic traffic that can be generated at runtime. The traffic file is sent by the host to the Serial IP (Step 2), 

which transfers it to the correct TG 12 using the NoC infrastructure (Step 3). The TG is now programmed and 

emulation starts with a command in the software interface. During emulation, TG 12 injects traffic into the 

NoC according the configuration written in its memory (Step 4). After the emulation process finishes, a new 

command in the software interface asks for the results stored in the TG that received traffic (Step 5). Again, 

the Serial IP transfers the command to the correct TG that returns the latency information stored in the 

memory of TG 02 (Step 6). The Serial IP transfers it to the software interface (Step 7) for user analysis. 
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Figure 4.14 – HNPlus platform operation overview. 

 



32 

5. VALIDATION, PROTOTYPING AND 

EXPERIMENTATION 

This Section describes a series of simulations conducted to validate the HNPlus platform, some 

prototyping details and some experiments that show the correct operation of the new platform. Section 5.1 

presents the validation of the new platform, showing in detail its operation. Section 5.2 presents a prototyping 

analysis comparing HardNoC and HNPlus hardware synthesis. Finally, Section 5.3 presents some experiments 

with the new platform. 

5.1 Overview of HNPlus Operation 

Figure 5.1 presents an overall simulation waveform, going from TG programming until the end of the 

emulation process enabled by the start signal. The relevant details are numbered and commented in the 

respective items below: 

1. The circle marked with number 1 shows the Serial IP sending all the write commands to 

program the TG with its specific traffic. Each write command leads to a new reception in the 

TG 12 receive machine state. 

2. The previous action (1) enables the write in the TG 12 memory. Circle number 2 shows the 

traffic file being written in memory. 

3. The circle marked with number 3 shows the Serial IP sending the start signal. This signal 

synchronizes all TGs internal clocks and starts the emulation process. 

4. Here occurs the actual emulation process, with the injection of all packets from the TG 12 to 

TG 02 through the NoC. 
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Figure 5.1 – An overview of a complete simulation of the HNPlus platform: Serial IP programs the TG, 

followed by start signal generation and the emulation process. 

5.2 Validation 

The HNPlus platform improvements were validated in simulation using the Modelsim 10.0c simulator 

of Mentor Graphics. A testbench was used to simulate a traffic file generated by ATLAS for the same scenario 

of the Figure 4.14. The rest of this Section describes a simulation overview and details of the operation of the 

new features in HNPlus.  

5.2.1 TG Programming and Pre Reading 

Figure 5.2 shows an important step in programming the traffic of a TG. The pre reading event occurs 

during the writing of the first packet of the traffic file in the TG’s memory. The relevant details are numbered 

in the simulation waveform and are commented in the respective items below: 

1. The circle marked with number 1 shows the state sequence that writes traffic information in 

the TG memory and the associated information.  Here, TG 12 is receiving the last word that 

composes the first packet of traffic file, which corresponds to the last word of the header 

information for the first packet. This word always occupies memory address 0x0008 of the 

local Block RAM, as Figure 4.4 and Figure 4.5 show. This can be identified when the TG 

receives a write command from the Serial IP to this address. 

2. The previous action (1) activates the pre reading of the first packet, shown in circles marked 

with 2. The pre reading of all header information of the first packet is made to allow the TG to 

be able to start injecting traffic in the first emulation clock cycle, if necessary, once this 

information is stored in internal registers. This would not be possible if the header information 
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still had to be read after the start command, because the cycles needed to execute this task 

would delay the injection time and consequently increase transmission latency beyond the 

predicted insertion time. Besides the pre reading states S6 to S15, the TG’s memory signals 

are also marked with 2 and it is possible to see the addressing and the data read in each pre 

reading state. 

Pre reading occurs between two Serial IP write commands, in addresses 0x0008 and 0x0009 

respectively. This is possible because a serial transmission is much slower than the reading of the header 

information from the memory. If this constraint is not respected, an addressing error may occur. 

 

1 

2 

 

Figure 5.2 – TG receiving the last header information of the first packet from Serial IP and activation 

of pre reading. 

5.2.2 Start of HNPlus Emulation 

Figure 5.3 shows three relevant details of the new HNPlus platform operation, all numbered and 

commented in the items below: 

1. The circle marked with number 1 shows the Serial IP transmitting the start signal to all TGs. It 

is important to notice that there are actually three steps to make the start command to occur. 

First the user sends the start message using the software interface, asking for the start of 

emulation. The other two steps correspond to the start signal that the TG 12 receives at its 

interface and the one the TG 12 actually works with, after the signal passes through the bi-

synchronous FIFO and synchronizes with the receiving TG clock. 

2. The circle marked with number 2 shows the complete transmission of the first packet of the 

traffic. Here, it is possible to see the emulation startup and the first packet being injected in the 

first clock cycle, demonstrating the correct operation of pre reading. In addition, all the packet 

transmission states occur, including states S17 to S29. The actual data are transmitted from TG 

12 to TG 02. It is important to notice that the payload value is the same as that from the file 

generated by ATLAS plus four flits that corresponds to the actual insertion timestamp. The 
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four-flit timestamp is the time instante where the packet actually entered the NoC. The used 

traffic scenario has packet size of 16 flits. As the basic information in a packet occupies 13 flits, 

only three additional data flits were sent during emulation. These three data flits were generated 

at runtime and they correspond to a simple flit counter. If the scenario would require real 

traffic, data would be read directly from the TG’s memory and injected into the NoC. 

3. The circle marked with number 3 shows the parallel reading. The parallel reading enables the 

continuous transmission of packets. The pre reading scheme cannot be used during emulation 

time because the time between two packets transmission is not enough to load the data as it is 

possible when transmission occurs from the Serial IP. Therefore, a parallel reading procedure is 

necessary. At the same time state S17 starts the transmission of the packet, it also access the 

memory address that corresponds to the address of the beginning of the next packet. This 

address is 0x0009 in the example of Figure 5.3, because the scenario is set with packets of the 

minimum size of eight words (plus an additional reserved 0x0000 address, as can be seen in 

Figure 4.4 and Figure 4.5). In case the scenario works with real traffic, the address accessed 

would be the payload value plus the six flits that are discounted by ATLAS. The data in address 

0x0009 is read in the next clock cycle and the parallel reading should end before the previous 

packet is transmitted. This enables the immediate transmission of the next packet whose data is 

stored in internal registers if the time between both transmissions timestamps is smaller than 

the minimum of 13 clock cycles. In case this constraint is not respected, the packet latency can 

increase, once the insertion would have to wait for the parallel reading end. 
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Figure 5.3 – Start signal reception, injection of the first packet in the first clock cycle and parallel 

reading of the second packet. 

5.2.3 Emulation Packet Reception 

Figure 5.4 shows TG 02 receiving the first packet injected by TG 12 and the latency values computed at 
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the end of the transmission. Both details are numbered and commented in the items below: 

1. Number 1 shows the complete reception of the first packet by TG 02. The TG stays in the idle 

state R0 until a flit arrives and starts the receiving process before it returns to state R0. It is 

possible to notice that 16 flits arrived, although the payload transmitted is 0x000E (the defined 

16 flits, minus the 6 ATLAS discounts, plus the 4 the TG insert). In addition, it is possible to 

see the two timestamps. Both are equal, because the packet was injected without contention. 

2. Number 2 shows the latency values calculated by TG 02 and stored in memory. The first 

packet latency also appears as minimum, maximum and accumulated latency, because only 

one packet was transmitted to TG 02 so far. 
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Figure 5.4 – TG 02 receiving the first packet from TG 12. 

5.2.4 Steady State Emulation Operation 

Figure 5.5 shows an overview of the emulation start. The details are numbered and commented in the 

items below: 

1. The circle marked with number 1 shows the moment of the emulation start. The start signal 

sent by the user arrives at the Serial IP, which sends it to all TGs. The TG 12 receives the start 

signal from the bi-synchronous FIFO and starts its internal counter. 

2. Here occurs the injection of the first packet into the NoC. In the scenario used (the same 

described in Figure 4.14), the first packet is injected in timestamp zero. This injection would 

not be possible if the first packet would not be pre read during the TG 12 programming period. 

3. Number 3 shows the injection of the second packet into the NoC. Parallel reading during the 

first packet injection stored this information in internal registers before injection. 

4. Number 4, just as number 3, shows a complete packet transmission and emphasizes the parallel 

reading of the packet executed during the previous injection process. 
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Figure 5.5 – Overview of the simulation start, showing start signal processing, the first three packets 

being sent and the pre readings. 

5.2.5 End of Packet Sending during Emulation 

Figure 5.6 shows the sending of the last packet of the traffic and the end of the transmission. The details 

of how the platform identifies the last packet and the actions it takes after this are numbered and commented 

in the items below: 

1. The circle marked with number 1 shows the complete sending of the last packet from TG 12 to 

TG 02. The machine stays at state R29 until all data flits are sent. 

2. Number 2 marks two circles. The lower circle emphasizes the parallel reading in the beginning 

of the last packet transmission. This step reads the next target as 0xFFFF, meaning the end of 

the traffic. The upper circle shows that the TG returns to state S16 to wait for further packets 

from the NoC, since it identifies that the next target address is invalid, which indicates the 

transmission is over. This leads to state S0, the initial, idle state. 

3. Number 3 also marks two circles. The lower circle shows what happens when a transmission is 

over. Once the state machine returns to the state S0, an immediate pre reading of the first 

packet is triggered. This enables a new emulation with the same traffic without the need for 

reprogram the TG. It would not be possible to start a new emulation with the same traffic 

because the injection on timestamp zero would not give enough time to the TG load the first 

packet header information. The upper circle shows the pre reading states sequence. 
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Figure 5.6 – Sending the last packet of traffic, the identification by parallel reading of the traffic end 

and the pre reading activation to prepare for a possible repetition of emulation. 

5.2.6 End of Packet Reception during Emulation 

Figure 5.7 shows TG 02 receiving the last packet injected by TG 12 and the latency values computed at 

the end of the transmission. Both details are numbered and commented in the items below: 

1. The circle marked with number 1 shows the reception of the last packet by a receiving TG (TG 

12). It can be seen that the receiver state machine operation remains the same for every packet 

received, being it the last or not.  

2. Number 2 shows the computation of latency values by TG 02 and its storage in memory. These 

results contain minimum and maximum latency of a packet transmitted between TG 12 and TG 

02. The accumulated latency of all 120 packets (0x78 in hexadecimal notation) is also 

computed. 
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Figure 5.7 – TG 02 receiving the last packet of a traffic. 
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5.3 Prototyping 

The HNPlus was prototyped in the Xilinx ML505 Evaluation Platform, which contains a Virtex 5 

XC5VLX50T-FF1136 FPGA. This FPGA contains 120 18Kbits Block RAMs, or equivalently, 60 36Kbits 

Block RAMs. Figure 5.8 shows the floorplan used to optimize the physical synthesis of HardNoC-GLP and 

HNPlus, each block contains one IP and its respective router. The PlanAhead was utilized to make the 

florrplan and the implementation. The physical synthesis reports of the HardNoC and HNPlus appear in 

Figure 5.9 and in Figure 5.10 respectively. This gives an idea of the hardware occupation by both platforms. 

The HardNoC-GLP and HNPlus were synthesized with the same 3x3 Hermes-GLP NoC and the only 

differences between them are the TGs structure and the Serial IP structure. It is possible to see that the 

HNPlus platform uses simpler TG modules, reducing the logic complexity, mostly because HNPlus state 

machines were simplified compared to the HardNoC-GLP. Even though, the new platform is more flexible. 

 

Figure 5.8 – Floorplanning used to optimize the physical synthesis of HardNoC-GLP and HNPlus. 

Note that there is a decrease on the number of used slices from HardNoC-GLP to HNPlus (6024 to 

5850), but a small increase on the number of slice registers (from 14864 to 15246). The reduction occurs 

because the logic of the TGs state machines became simpler. What causes the increase is the fact that the 

HNPlus platform contains extra registers to keep pre reading and parallel reading information between packet 

transmissions. The overall number of LUTS is reduced (from 19540 to 17732) and the overall number of slice 

LUT flip-flop pairs also reduces (from 21767 to 20777) because of the simpler logic at the TGs. 
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Device Utilization Summary: 
-------------------------- 
 
Selected Device : 5vlx50tff1136-3 
 
   Number of BSCANs                          1 out of 4      25% 
   Number of BUFGs                           6 out of 32     18% 
   Number of BUFGCTRLs                       9 out of 32     28% 
   Number of DCM_ADVs                        1 out of 12      8% 
   Number of ILOGICs                         1 out of 560     1% 
   Number of External IOBs                   4 out of 480     1% 
      Number of LOCed IOBs                   4 out of 4     100% 
 
   Number of OLOGICs                         1 out of 560     1% 
   Number of RAMB18X2s                       9 out of 60     15% 
   Number of Slices                       6024 out of 7200   83% 
   Number of Slice Registers             14864 out of 28800  51% 
      Number used as Flip Flops          14863 
      Number used as Latches                 1 
      Number used as LatchThrus              0 
 
   Number of Slice LUTS                  19540 out of 28800  67% 
   Number of Slice LUT-Flip Flop pairs   21767 out of 28800  75%  

Figure 5.9 – HardNoC-GLP physical synthesis report using a 3x3 Hermes-GLP. 

Device Utilization Summary: 
-------------------------- 
 
Selected Device : 5vlx50tff1136-3 
 
   Number of BSCANs                          1 out of 4      25% 
   Number of BUFGs                           6 out of 32     18% 
   Number of BUFGCTRLs                       9 out of 32     28% 
   Number of DCM_ADVs                        1 out of 12      8% 
   Number of ILOGICs                         1 out of 560     1% 
   Number of External IOBs                   4 out of 480     1% 
      Number of LOCed IOBs                   4 out of 4     100% 
 
   Number of OLOGICs                         1 out of 560     1% 
   Number of RAMB18X2s                       9 out of 60     15% 
   Number of Slices                       5850 out of 7200   81% 
   Number of Slice Registers             15246 out of 28800  52% 
      Number used as Flip Flops          15245 
      Number used as Latches                 1 
      Number used as LatchThrus              0 
 
   Number of Slice LUTS                  17732 out of 28800  61% 
   Number of Slice LUT-Flip Flop pairs   20777 out of 28800  72%  

Figure 5.10 - HNPlus physical synthesis report using a 3x3 Hermes-GLP. 

5.4 Experimentation 

This Section describes two experiments. The first emulates two simple traffics and verifies the latency 

values at each target TG. The second tries to cause a congestion, where two TGs send packets through a 

common path to the same target TG. The latency values are calculated by the number of clock cycles that each 
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packet needed to be transmitted, but in GALS systems this could be not valid if the IPs were using different 

clocks. So because this limitation it is necessary to pay attention in the anlysis of the results if all IPs involved 

were using the same clock signal. In these experiments, all IPs were configured to use the same clock. 

5.4.1 One Source TG Sending Packets to Two Different Targets 

This experiment verifies if statistical results are coherent. Figure 5.11 shows two different traffic 

scenarios generated with ATLAS. Both have the same distribution type and characteristics, but with different 

TG targets. First, TG 02 sends 100 packets to TG 20 (blue path). Afterwards, it sends 100 packets to TG 01 

(orange path). Latency results for TG 20 should be bigger than the ones for TG 01. 

 

20 10 00 

21 01 11 

02 12 22 

 

Figure 5.11 – First traffic is the blue path and second traffic is the orange path. 

Figure 5.12 and Figure 5.13 show the statistical results obtained with the traffic emulations scenarios. It 

is noticeable that latency values in the first are higher than the second scenario. As the path for packets to go 

from TG 02 to TG 20 is longer than the one to go from TG 02 to TG 01, these results were the expected ones. 

It is also possible to verify that all the 100 packets transmitted to both of the target TGs arrived correctly. Note 

that the wormhole nature of traffic creates a pipeline, and that latency increase is small because of the pipeline 

operation.  
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Figure 5.12 – Statistical results, after first traffic emulation. 

 

  

Figure 5.13 – Statistical results, after second traffic emulation. 

5.4.2 Two TGs Sending Packets to the Same Target 

This experiment causes a hotspot on node 11. To do achieve this, the used scenario contains two TGs 

(01 and 21) sending packets to the same target TG (12). According the algorithm XY used in Hermes-GLP, 

both paths should cross node 11. The priorities and packet timestamps of both traffics are identical, causing 

concurrency in this node. Thus, each time a traffic flow finds the path from node 11 occupied (either coming 

from 01 or from 21) it must wait until the flow ends and then take this path. This scenario would be more 

interesting if it were possible to know the individual latencies of the packets. This is discussed a little more in 

Section 6.1.  
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Figure 5.14 – Traffic scenario used to cause a traffic hotspot on node 11. 

Analyzing the results, in Figure 5.15, is possible to verify that all packets from the two TGs were sent, 

because each one sent 120 packets and 240 packets arrived in TG 12. Comparing the maximum latency and 

the accumulated latency with previous experiments, this scenario presents considerably bigger latency values, 

demonstrating the occurrence of contention in the traffic hostspot. 

  

Figure 5.15 - Statistical results obtained after hotspot emulation. 
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6. CONCLUSION AND FUTURE WORK 

This work produced a new emulation platform for NoCs. This platform is called HNPlus and its main 

contribution is a new traffic injection scheme and the integration with the traffic files generated automatically 

by the ATLAS tool. The new traffic injection scheme enables testing the NoC within the platform with both 

real traffic or synthetic data. The fact that the new TG just injects traffic according the information stored in 

the TG memories makes it more flexible about the kind of traffic to use, when compared with the HardNoC-

GLP version. The integration with the ATLAS tool, in addition, enables the automatic generation of the traffic 

files for the TGs. 

A new software interface makes the use and the analysis of results simpler to the user. The software 

interface also automatically modifies the files generated by ATLAS, making it compatible with the HNPlus 

platform input traffic files used to program the TGs. 

The HNPlus platform was validated by simulation and had most of its main features verified and tested. 

After that, the prototyping of the platform was conducted using a Xilinx Evaluation Platform and the 

experiments showed its correct operation. 

The objectives of the work were thoroughly achieved. The proposed flexibility of traffic emulation was 

tested and comproved along this document.  

6.1 Future Work 

The work described in this document has several topics for further development and research. The 

HNPlus platform new scheme for generation and injection of generic traffic in NoCs allows the emulation and 

analysis of virtually any kind of traffic. The stored results in each TG at the end of the emulation process, 

however, are quite limited. The TG could provide more statistical information, not just latencies. It could 

verify if the received packets are correct, sending always the same data and checking if it is correct. It would 

also be possible to compute latencies according to the packet size, so that in just one emulation it would be 

possible to analyze latency differences of packets with different sizes. In addition, it could be possible to 

calculate the minimum and maximum waiting times, that is the time difference between the time that the 

packet should be injected and the real time that the packet was injected into the NoC, which may occur if 

some path of the NoC is congested. When the current TGs work with synthetic traffic data, it is always insert 

the same data, so the TGs could use LFSRs to inject random data. 

The TG local memory size is another important topic. Currently, each TG stores only 127 packets in its 

local memory, if the traffic is configured to work with synthetic traffic data. Although even for the small 

FPGA used here each local memory could be made to contain as much as six times more packets without 

exceeding the FPGA capacity. Even if this would still not be enough for emulations with large real traffic data 

sets or longer emulations. In addition, the HNPlus software could veify if the traffic file selected will fit into 

the memory space.  



45 

REFERENCES 

[CAL98] Calazans, N. L. V. “Projeto Lógico Automatizado de Sistemas Digitais Sequenciais”. Rio de Janeiro: 

Imprinta Gráfica e Editora Ltda, 1998, 318p. 

[CHA84] Chapiro, D. M. “Globally-Asynchronous Locally-Synchronous Systems”. PhD Thesis, CS Dept, Stanford 

University, Oct. 1984, 140 p. 

[GEN05] Genko, N.; Atienza, D.; De Micheli, G.; Mendias, J. M.; Hermida, R.; Catthoor, F. “A Complete Network-

On-Chip Emulation Framework”. In: Design, Automation and Test in Europe Conference and Exhibition 

(DATE’05), Munich, Mar. 2005, pp. 246-251. 

[KRA08] Krasteva, Y. E.; Criado, F.; de la Torre, E.; Riesgo, T. “A Fast Emulation-based NoC Prototyping 

Framework”. In: International Conference on Reconfigurable Computing and FPGAs (ReConFig'08), 

Cancun, Dec. 2008, pp. 211-216. 

[LOT11] Lotlikar, S.; Pai, V.; Gratz, P. “AcENoCs: A configurable HW/SW Platform for FPGA Accelerated NoC 

Emulation”. In: 24th International Conference on VLSI Design (VLSID’11), Chennai, Jan. 2011, pp. 147-

152. 

[MAH05] Mahadevan, S.; Angiolini, F.; Storgaard, M.; Olsen, R. G. “A Network Generator Model for Fast 

Network-on-Chip Simulation”. In: Design, Automation and Test in Europe Conference and Exhibition, 

(DATE’05), Munich, Mar. 2005, pp. 780-785. 

[MEL05] Mello, A. V. de; Tedesco, L. P.; Calazans, N. L. V.; Moraes, F. G. "Virtual Channels in Networks on 

Chip: Implementation and Evaluation on Hermes NoC". In: 18th Symposium on Integrated Circuits and 

Systems Design (SBCCI'05), Florianópolis, Sep. 2005, pp. 178-183. 

[MOR04] Moraes, F. G.; Calazans, N. L. V; Mello A. V.; Möller L.; Ost L. “Hermes: an infrastructure for low area 

overhead packet-switching networks on chip”. Integration  the VLSI journal, 38(1), Oct. 2004, pp. 69-93. 

[MOR10] Moreira, M. T. “Design and Implementation of a Standard Cell Library for Building Asynchronous 

ASICs”. Revista da Graduação, 4(1), Pontifícia Universidade Católica do Rio Grande do Sul, 2011, 125 p. 

Disponível em http://revistaseletronicas.pucrs.br/ojs/index.php/graduacao/article/viewFile/8657/6118. 

[PON08] Pontes, J. J. H.; Moreira, M. T.; Soares, R. I.; Calazans, N. L. V. “Hermes-GLP: A GALS Network on 

Chip Router with Power Control Techniques”. In: IEEE Computer Society Annual Symposium on VLSI 

Design (ISVLSI’08), Montpellier, Apr. 2008, pp. 347-352. 

[TAN11] Tan, J.; Fresse, V.; Rousseau, F. “Generation of emulation platforms for NoC exploration on FPGA”. In: 

IEEE International Symposium on Rapid System Prototyping (RSP’11), Karlsruhe, May, 2011, pp. 186-

192. 

[VAN08] Vangal, S. R.; Howard, J.; Ruhl, G.; Dighe, S.; Wilson, H.; Tschanz, J.; Finan, D.; Singh, A.; Jacob, T.; 

Jain, S.; Erraguntla, V.; Roberts, C.; Hoskote, Y.; Borkar, N.; Borkar, S. “An 80-Tile Sub-100-W 

TeraFLOPS Processor in 65-nm CMOS”. IEEE Journal of Solid-State Circuits, 43(1), Jan. 2008, pp. 29-

41. 

[WAN10] Wang, D.; Jerger, N. E.; Steffan, J. G. “DART: Fast and Flexible NoC Simulation using FPGAs”. In: 5th 

ACM/IEEE International Symposium on Networks-on-Chip (NOCS’11), Pittsburgh,May 2011, pp. 145-

152. 

[WEN09] Wen, H.; Du, C.; Zhang, D.; Geng, L.; Gao, M.; Chen, Y.; Verhoeff, T. “Design of An On-Line 

http://revistaseletronicas.pucrs.br/ojs/index.php/graduacao/article/viewFile/8657/6118


46 

Configurable Traffic Generator for NoC”. In: 3rd International Conference on Anti-counterfeiting, 

Security, and Identification in Communication (ASID’09), Hong Kong, Aug. 2009, pp. 556-559. 

 


