
978-1-4673-4900-0/13/$31.00 ©2013 IEEE

Design of NCL Gates with the ASCEnD Flow

Matheus T. Moreira
‡†

, Carlos H. M. Oliveira
‡
, Ricardo C. Porto

‡
, Ney L. V. Calazans

‡

‡Pontifical Catholic University of Rio Grande do Sul

Faculty of Computer Science – Porto Alegre, Brazil

{matheus.moreira, carlos.oliveira.004, ricar-

do.porto}@acad.pucrs.br, ney.calazans@pucrs.br

†University of Santa Cruz do Sul

Department of Informatics – Santa Cruz do Sul, Brazil

matheustrevisan@unisc.br

Abstract— Silicon technologies advances brought the possibil-

ity of integrating billions of transistors in a die. However, as

transistors get smaller, some of the aspects that were negligi-

ble in previous technologies emerge as difficulties for the de-

sign in current and future technology nodes. In this context,

fully synchronous circuits are harder to be built, as timing

closure constraints become difficult to be met, and the asyn-

chronous paradigm gains interest in the research community

for its ability to cope with current technologies issues. AS-

CEnD was proposed as a standard cell library for supporting

standard-cell based design of asynchronous circuits and com-

prises a design flow for asynchronous components. This work

presents the use of the ASCEnD flow to design NCL gates,

which enable design improvement opportunities for some

asynchronous templates. A total of 14 different NCL gates

were designed at the layout level and had their electrical be-

havior characterized. As a result, electrical and physical mod-

els of these gates are now part of the ASCEnD library.

Keywords- standard cell library, asynchronous circuits, null

convention logic.

I. INTRODUCTION

The synchronous paradigm prevails for integrated cir-
cuits design. This is due to the high abstractions levels
achieved when assuming that time is a discrete variable con-
trolled by a clock signal, the main characteristic of this par-
adigm. However, as silicon technologies evolved into deep-
submicron nodes, synchronous design starts to become more
constrained [1]. In fact, the ITRS [2] in its 2011 edition sug-
gests that further advances in VLSI systems need a shift of
the paradigm. By 2020, 40% of the intrachip communica-
tion is expected to use asynchronous mechanisms. Thus,
asynchronous techniques start to gain relevance.

However, there is still little design automation for asyn-
chronous circuits. EDA tools adapted to deal with asynchro-
nous design form a very limited set of resources. Even
worse, basic components required to build these circuits are
usually not available in typical standard cell libraries. In this
way, semi-custom asynchronous design is not available and
designers have to rely on full-custom approaches to build
asynchronous systems.

The ASCEnD library [3] [4] is a freely available stand-
ard cell library of asynchronous components designed to
help supporting semi-custom asynchronous circuits and
systems design. The library was first designed in the
STMicroelectronics 65nm CMOS technology (ASCEnD-
ST65), and is currently being ported to the IBM 130nm
CMOS technology. Coupled to the library, there is a design
flow, called the ASCEnD flow, used to design the library

cells. This flow is semi-automatic, based on a set of special-
ly designed tools. Currently, the only manual step is the cell
layout drawing.

This work presents an extension of ASCEnD-ST65 to
support the Null Convention Logic (NCL) style [5], with the
goal of providing increased support to additional asynchro-
nous templates and allows better design space exploration
for applications. A set of 14 different NCL gates was de-
signed at the layout level through the ASCEnD flow. Be-
sides, post-layout simulations were performed to validate
the designed gates. A mixed signal simulation environment
was the source to conduct a precise timing analysis and
power characteristics of the NCL template and to compare it
with the delay insensitive minterm-synthesis (DIMS) tem-
plate. Results show substantial improvements in terms of
power consumption and operating speed, which illustrates
the design improvement opportunities obtained for semi-
custom designs by adding NCL to the ASCEnD library.

II. ASYNCHRONOUS CIRCUITS

A digital circuit is synchronous if its operation is con-
trolled by the use of a single clock signal. Otherwise it is
called asynchronous. Asynchronous circuits employ explicit
handshaking among their components to synchronize,
communicate and operate [1]. Characterizing an asynchro-
nous design style requires the choice of: (i) a delay model,
(ii) a code to represent information, (iii) a handshake proto-
col, and (iv) a set of basic components. Each of these is ex-
plored in the rest of this Section.

The most robust and restrictive delay model is the delay-
insensitive (DI) model [6], which operates correctly regard-
less of gate and wire delay values. Unfortunately, this class
is too restrictive. The addition of an assumption on wire
delays in some carefully selected forks enables to define the
quasi-delay-insensitive (QDI) class [7]. Here, signal transi-
tions must occur nominally at the same time only at each
end point of the mentioned forks. QDI circuits are, current-
ly, the most used class of asynchronous circuits [8].

In QDI circuits, data is encoded through DI codes, to
guarantee their robustness to delay variations. The most
used DI codes belong to the m-of-n class [1] [6] [8]. These
consist of all n-bit code words where exactly m bits are at
logic ‘1’ and all other (n-m) bits are at logic ‘0’. In circuits
that use m-of-n codes, the request signal to communicate
data is encoded in the data itself and, therefore, requires
extra hardware for detection. A specific case of m-of-n code
is the dual-rail (DR) code or 1-of-2. This code uses two
wires to represent an information bit, here called d.t and d.f.

ack

d.t

d.f

0 1 1 0
sp sp sp sp

Value d.t d.f

Spacer 0 0

Logic 0 0 1

Logic 1 1 0

Invalid 1 1

A B Qi

0 0 0

0 1 Qi-1

1 0 Qi-1

1 1 1

000

100

110

010

A

B

A

Q

B

Q

111

011

001

101

A

B

A

B

(a) (b) (c) (d)
Figure 1 – 4-phase DR data transmission (a) and wire encoding (b); basic C-element truth table (c) and state diagram (d) (values inside states are ABQi).

Regardless the data encoding scheme, handshake proto-
cols can be classified in 2-phase or 4-phase, as discussed in
detail in [1]. The first is often based on wire transitions iden-
tifying values, while 4-phase handshaking usually assumes
that wire logic level combinations define data values and
transitions are required for synchronization. Usually, 2-
phase protocols enable faster speeds but consume more
hardware than 4-phase protocols.

When DR codes are associated to a 4-phase handshake
protocol, all communications start with all wires at a prede-
fined value (usually logic ‘0’), called spacer. Next, after
each valid value is acknowledged by a receiver, all wires
must return to the spacer value. Figure 1 (a) shows an ex-
ample of data transmission with this protocol, where typical
values are represented in Figure 1 (b). In the displayed
waveform, the first propagated value is a logic ‘0’, encoded
by d.t=0 and d.f=1. After the value is acknowledged by a
low-to-high transition in the ack signal, a spacer is issued,
represented in this case by d.t=0 and d.f=0. Next, the
acknowledge signal switches to logic ‘0’, and a new trans-
mission can initiate.

To synchronize data transmission, asynchronous circuits
using m-of-n codes require devices other than ordinary logic
gates and flip-flops available in current commercial standard
cell libraries. These include e.g. asynchronous registers,
event fork, join and merge devices [1]. Although most of
these may be built from logic gates this is often inefficient.
A fundamental device that enables to build such elements
more effectively is the C-element. Its importance comes
from the fact that C-elements operate as event synchroniz-
ers. Figure 1(c) depicts the truth table in and state diagram
for a basic 2-input C-element appears in Figure 1 (d). Figure
2 (a) shows the associated symbol.

The output of a C-element may only switch when all in-
puts are at the same logic value. For instance, in a 2-input
C-element, when inputs A and B are equal, output Q as-
sumes this same value. However, when inputs are different,
the output keeps the previous logic value at the output. This
enables ordering the occurrence of input events. Moreover,
C-elements allow the implementation of Boolean logic
without losing delay insensitivity through e.g. the DI
minterm synthesis (DIMS) logic style [1].

III. NULL CONVENTION LOGIC

Threshold gates with hysteresis, also called M-of-N
gates, form a class of circuit elements that have important
application in NCL [5], which have been successfully em-
ployed for implementing asynchronous systems on silicon.
Figure 2 (b) shows their associated symbol, where N is the
number of inputs and M the threshold of the gate. The out-
put will switch to logical 0 when all inputs are at logical 0

and to logical 1 when at least M (the threshold) of its N in-
puts is/are at logical 1. Otherwise, it will keep its state, simi-
larly to a C-element with different values at its inputs. In
fact, for N>1, an N-of-N gate is a N-input C-element.

0
1
2

N

...
M

Q

(a) (b)

C

A

B

Q

Figure 2 – (a) Symbol of a 2-input C-element and (b) symbol of an M-of-
N gate.

Figure 3 (a) shows the CMOS schematic of an N-of-N
threshold gate, or an N-input C-element. Figure 3 (b) shows
the CMOS schematic of a 2-of-3 gate, to demonstrate more
generally the structure of M-of-N threshold gates. Output
“Q” will only be logical 0 if the inputs are all at logical 0.
However, as the schematic shows, if any two or more inputs
are at logical 1, the output becomes logical 1. These gates
allow more efficient circuit implementations in terms of
operating speed and power consumption than those obtained
by using the DIMS logic style.

An

Vdd

Q

A0

A1

.

.

.

. . .
A0 A1 An

A0

.

.

.

A1

An

A0 A1 An. . .

(a)

C

Vdd

Q

A

B

A

B A B C

(b)

C

A B

A B

C

B

A

Figure 3 – Examples of NCL gates: (a) an N-of-N NCL gate, or a C-

element; (b) 2-of-3 NCL gate [5].

IV. THE ASCEND FLOW AND LIBRARY

The ASCEnD flow was proposed to automate the design
of the ASCEnD library standard cells. It has 3 basic steps:
specification, design and validation, as detailed in [3].

Specification includes defining the precise cell function-
ality and its electrical requirements. The goal of this step is
to find optimal dimensions of PMOS and NMOS transistors
(and the rate of their sizes), in order to meet timing and
power requirements for the cell. To do so, a specially de-
signed tool called RoGen is employed to generate a simula-
tion circuit described in SPICE. This tool is parameterizable
through a configuration file, which allows it to be used in
any CMOS technology and provides good design space ex-
ploration capabilities to the designer. The circuit generated

by RoGen is then simulated, power and timing measure-
ments are extracted and annotated to a text file. Next, anoth-
er specially designed tool called CeS automatically selects
the best transistor dimensions, according to a cost function.

The design phase, second step of the flow, consists in
taking the selected transistor sizing and producing a physi-
cal view, a layout that fulfills this specification. This in-
cludes hand-drawing the cell in a layout editor for the cho-
sen process, extracting parasitic and electrically characteriz-
ing the resulting circuit for the chosen process.

The last step checks if information produced during
electrical characterization is the same as that defined in the
cell specification. Moreover, timing simulation is carried for
a design composed by a single cell to check if the delay of
the electrical characterization is correctly annotated and
behavior is correctly implemented. If the cell passes this
step, it can be used in a design. Besides the layout, two other
views are produced: an abstract one, used for place and
route, and a behavioral one, used in HDL-level simulations.

Currently, the ASCEnD-ST65 library contains only C-
elements, which limits its automated use to DIMS logic
styles. However, DIMS logic is classically known as being
too area and power consuming and by presenting inflated
delay in combinational logic blocks. This is due to the fact
that there is a need of employing C-elements for computing
each minterm and OR gates to select values, before generat-
ing the output. In this context, NCL gates offer a greater
possibility for improving design quality.

The design of NCL gates with the ASCEnD flow is
straightforward. To do so, RoGen is configured as if the N-
of-M gates were an M input C-element. The output inverter
is dimensioned according to the sizes of the transistors of a
similar drive inverter of the core library. The feedback in-
verter employs minimum-size transistors, to reduce resistive
effects. The transistors of the logic stack have their dimen-
sions automatically varied by RoGen. The resulting circuit
is simulated and results are analyzed by CeS. To select the
best transistors dimension, the employed cost function is
given as the maximum frequency (Fr) at which the cell can
operate divided by its average dynamic power consumption
(DynPwr). In other words, transistors are dimensioned to the
best Hertz per Watt compromise. Using this flow, a set of 14
NCL gates which allow the implementation of a wide range
of functionalities was designed. Figure 4 shows the physical

layout of an example M-of-N threshold gate, drawn to fulfill
the parameters obtained by CeS.

Figure 4 – Layout of a 1-of-3 NCL gate.

V. EXPERIMENTS AND RESULTS

To validate the new set of NCL components of ASCEnD
and to evaluate the improvements that can be obtained for
asynchronous logic when employing it, a case study of a
dual-rail 4-phase handshake 32-bit ripple carry adder was
implemented and simulated in two versions: DIMS and
NCL. The choice is justified by the fact that the adder em-
ploys only combinational logic, to what NCL logic is mostly
used. Also, for the DIMS-based logic, three different types
of C-elements were employed, generating three versions of
adders: van Berkel, Sutherland and Martin. All of these are
available in the ASCEnD-ST65 library and details of their
implementation can be found in [9].

Figure 5(a) and Figure 5(b) show the gate level schemat-
ics of DIMS-based half and full adders, respectively. Figure
5(c) and Figure 5(d), in turn, show the gate level schematics
of the corresponding NCL circuits. The 4 versions of these
adders, 3 DIMS and 1 NCL, were implemented in SPICE
instantiating the standard cells of ASCEnD-ST65 and the
core library, according to the schematics of Figure 5, after
layout extraction. These were employed to generate the 32-
bit ripple carry adders, all in SPICE.

Inspection of Figure 5 shows that NCL logic clearly re-
quires fewer gates than DIMS logic. The transistors count of
the NCL half and full adders are 80 and 128, respectively.
For the DIMS adders, transistor count depends on the choice
of C-element. For the van Berkel, Sutherland and Martin
implementations the half and full adder transistors count is,
respectively: 68 and 264, 68 and 168 and 52 and 120. All
adders employed general purpose standard threshold transis-
tors from the STMicroelectronics 65nm CMOS technology.

CCCC

At

N00

Bt At Bf Af Bt Af Bf

N01N10N11

(a)

Coutt Coutf Soutt Soutf

C

N000

Af Bf Cf

C

N001

Af Bf Ct

C

N010

Af Bt Cf

C

N011

Af Bt Ct

C

N100

At Bf Cf

C

N101

At Bf Ct

C

N110

At Bt Cf

C

N111

At Bt Ct

Coutt Coutf SoutfSoutt

(b)

2 1

AfAt BfBt

2 3

Coutf Coutt Soutf Soutt

(c)

2 2

AfAt BfBt

3 3

Coutf Coutt Soutf Soutt

(d)

CfCt

Figure 5 – Schematics of adders: (a) DIMS half adder; (b) DIMS full adder; (c) NCL half adder; (d) NCL full adder.

Simulation included a mixed-signal environment with a
VHDL testbench instantiating adders described in SPICE
and a verification block described in SystemC. A VHDL-
AMS description was used for converting analog to digital
signals and vice-versa, allowing the test bench to communi-
cate with the SPICE circuits. This environment is useful for
employing the high abstraction of SystemC to verify the
electrical behavior of adders, while maintaining the preci-
sion of electrical simulation. The employed simulators for
digital and analog circuits were Cadence Incisive and Spec-
tre, respectively.

The SystemC verification block consists of a random da-
ta generator for feeding the inputs of the adders and a data
checker to verify its correct behavior. Also, this block
measured average, best and worst case delays for perform-
ing the sum of two values for forward delay and transmis-
sion delay, as well as the throughput (operations per µs).
Dynamic and static power consumptions were measured by
analog simulation. The former is given as the average power
consumption of the adder when operating and the latter as
the average power consumption when idle (filled with spac-
ers). Results are summarized in Table I.

As Table I shows, the dynamic power consumption
measured for the NCL adder is, in the worst case, roughly
3.5 times bigger than that presented by the DIMS-based
adders. However, the throughput of the NCL adder is rough-
ly 4 times larger in the best case. This leads to smaller ener-
gy per operation, roughly 0.981 for the NCL and 1.401 for
the DIMS in the worst case. This represents an energy re-
duction of 30% for NCL. Also, this adder presents a
throughput per µW relation of 1.02, while the DIMS adders
present in the best case 0.883. This type of comparison is
very useful for asynchronous circuits, because it normalizes
delay and power in a cost function.

Table I – Simulation results for the adders, DIMS-VB (van Berkel),

DIMS-SU (Sutherland) and DIMS-MA (Martin) and one NCL-based.

 DIMS-VB DIMS-SU DIMS-MA NCL
Dynamic Power (µW) 156.349 155.561 197.43 541.37
Leakage Power (nW) 13.368 13.370 15.264 3.857
Throughput (operations/µs) 138 137 141 552
Throughput/µW 0.883 0.881 0.714 1.02
Energy per operation (pJ) 1.133 1.135 1.401 0.981
Best case forward delay (ps) 2822 2840 3092 295
Average forward delay (ps) 2842 2877 3138 395
Worst case forward delay (ps) 2897 2913 3183 968
Best case transmission delay (ps) 7063 7075 6887 1037
Average transmission delay (ps) 7149 7220 7070 1553
Worst case transmission delay (ps) 7351 7368 7249 3174

As for the forward delay, the delay for valid data to be
computed (without considering the spacer delay), NCL pre-
sents an average of 395ps, while the best case average for-
ward delay for the DIMS adders is of 2842ps, more than
seven times bigger, and the worst case is 3092ps, roughly
7.83 times bigger. For the transmission delay, i.e. the delay
required for computing valid data and spacer for each
transmission, rates are roughly 4.55 and 4.65, respectively.
In addition, for the NCL adder, the forward delay represents
only 25% of the full transmission delay in average, while for
the DIMS adders, in the best case, this relation is roughly
40%. Having small forward delay is very important for an

asynchronous logic block because the faster valid data prop-
agate through it, the faster it will be acknowledged. These
results display the design improvement opportunities that
are enabled by integrating NCL gates to the ASCEnD flow
and library.

VI. CONCLUSIONS

This paper demonstrated that NCL gates can be designed
through the ASCEnD flow, which automates all design
steps but physical layout drawing. Such gates can be used to
improve an asynchronous design in terms of power con-
sumption and operating speed. ASCEnD-ST65 was enriched
with a set of 14 NCL gates, which allow design improve-
ments for semi-custom asynchronous designs. Future work
includes prototyping an NCL-based design in silicon.

ACKNOWLEDGEMENTS

This work is partially supported by the CAPES-
PROSUP (under grant 11/0455-5). Ney Calazans acknowl-
edges CNPq support under grant 310864/2011-9. Authors
acknowledge support granted by the INCT-SEC, process no.
573963/2008-8. Matheus Moreira acknowledges UNISC
support.

REFERENCES

[1] P. Beerel, R. Ozdag M. Ferretti. “A Designer’s Guide to
Asynchronous VLSI”. Cambridge University Press, 2010, 337 p.

[2] ITRS, “Design Section”, 2011, available at http://www.itrs.net.

[3] M. Moreira, B. Oliveira, J. Pontes, N. Calazans. “A 65nm Standard
Cell Set and Flow Dedicated to Automated Asynchronous Circuits
Design”. In: SOCC’11, 2011, pp. 99-104.

[4] M. Moreira, B. Oliveira, J. Pontes, F. Moraes, N. Calazans.
“Adapting a C-Element Design Flow for Low Power”. In:
ICECS’11, 2011, pp. 45-48.

[5] K. M. Fant, S. A. Brandt. “NULL convention logic: a complete and
consistent logic for asynchronous digital circuit synthesis”. In
ASAP’96, 1996, pp. 261-273.

[6] T. Verhoeff. “Delay-insensitive codes- an overview”. Distributed
Computing, vol. 3(1), 1988, pp. 1-8.

[7] A. J. Martin. “The limitations to delay-insensitivity in asynchronous
circuits”. In: AUSCRYPT’90, 1990, pp. 263-278.

[8] W. J. Bainbridge, W. B. Toms, D. A. Edwards, and S. B. Furber.
“Delay-insensitive, point-to-point interconnect using m-of-n codes”.
In: ASYNC´03, 2003, pp. 132- 140.

[9] M. T. Moreira, B. S. Oliveira, F. G. Moraes, and N. L. V. Calazans.
“Impact of C-elements in asynchronous circuits”. In: ISQED´12,
2012, pp. 438-444.

	I. Introduction
	II. Asynchronous Circuits
	III. Null Convention Logic
	IV. The ASCEnD Flow and Library
	V. Experiments and Results
	VI. Conclusions
	Acknowledgements
	References

