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ABSTRACT 

Current silicon technologies enable the integration of billions of transistors in a single chip, supporting 
the creation of complex systems on a chip (SoCs). Networks on Chip (NoCs) constitute a suitable alternative 
for traditional SoC interconnect architectures, as they provide a high level of scalability and parallelism, 
supporting the ever-increasing number of cores in single chip.  Additionally, synchronous	
  design	
  issues	
  that	
  
were	
  easily	
  overcome	
  in	
  previous	
  decades	
  -­‐	
  such	
  as	
  clock	
  distribution,	
  skew,	
  and	
  power	
  consumption	
  -­‐	
  
are	
  becoming	
   increasingly	
   complex	
   to	
   solve	
   in	
  modern	
   state	
   of	
   the	
   art	
   technology	
  designs.	
   Together,	
  
these	
   trends	
   constitute	
   a	
   good	
  motivator	
   for	
   the	
   development	
   of	
   an	
   asynchronous	
   SoC	
   interconnect	
  
architecture.	
  This	
  work	
  presents	
  the	
  design	
  and	
  implementation	
  of	
  an	
  asynchronous	
  NoC	
  router	
  using	
  a	
  
transition-­‐signaling	
  bundled-­‐data	
  protocol.	
  Additionally,	
   a	
  methodology	
   for	
   synthesis	
  of	
  bundled-­‐data	
  
circuits	
   using	
   commercial	
   CAD	
   tools,	
   together	
  with	
   an	
   automated	
   environment	
   for	
   enforcing	
   relative	
  
timing	
  constraints,	
  is	
  proposed.	
  The	
  router	
  design	
  was	
  validated	
  through	
  behavioral	
  simulation,	
  and	
  its	
  
basic	
  block	
  (a	
  port)	
  was	
  synthesized,	
  validating	
  the	
  implementation	
  through	
  post-­‐synthesis	
  simulation.	
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1. INTRODUCTION 

According to the International Technology Roadmap for Semiconductors (ITRS), increasing transistor 
density, higher operating frequencies, short time-to-market, and reduced product life cycle characterize 
today’s semiconductor industry [ITR11]. Smaller transistor feature sizes, now reaching ultra-deep submicron 
levels, enable the integration of billions of transistors in a single chip, supporting the creation of complex 
systems on a chip (SoCs). Typically, an SoC is composed by intellectual property (IP) cores, an 
interconnection architecture, and interfaces to peripheral devices [MOR04]. IP cores are pre-designed 
functional blocks such as a processor or a memory controller. The reuse of cores helps reducing the system’s 
time to market.  

Traditionally, the interconnect architecture of SoCs was based on dedicated wires or shared buses. The 
former approach is only applicable to systems containing a small number of cores, since the number of 
connecting wires increases quite fast as the number of cores grows. Shared buses are more scalable, but only 
one communication at a time is allowed, limiting its scalability to a few dozen IP cores [MOR04]. Networks 
on chip (NoCs), on the other hand, provide a higher level of communication parallelism and even higher 
scalability, when compared to bus-based interconnects [PON10b]. An NoC is an infrastructure that manages 
communication between IP cores. A NoC-based SoC typically consists of cores connected to routers, which 
are connected among themselves by communication channels [MOR04]. Each router may handle several 
simultaneous connections, increasing the available bandwidth. The TILE64™ [BEL08], the Cell processors 
[KAH05], the Intel Single Chip Cloud Computer [WIJ11] and the Intel Xeon Phi Coprocessor [INT13] are 
commercial examples of SoCs using an NoC as interconnect architecture.  

Most of today’s digital circuits are designed employing the synchronous paradigm: an externally 
generated global clock signal is used to create a discrete notion of time. This signal controls every storage 
element, as Figure 1.1(a) illustrates. When the clock transitions, registers sample the data at the input ports, 
and the stored values are displayed at the output ports – making data flow from one register to the next. The 
clock period is determined by the computation time of the slowest combinational logic block. This guarantees 
that data is only sampled when all signals are stable. Therefore, feedback hazards and signal glitches that may 
occur as combinational circuits stabilize can be ignored, greatly simplifying the design process. However, 
synchronous design issues that were easily overcome in previous decades - such as clock distribution, skew, 
and power consumption, are becoming increasingly complex to solve in modern state of the art technology 
designs. For instance, the clock signal in a high-speed processor represents an average of 45% of the total 
power [AMD05]. This makes complex synchronous systems less attractive for low power applications. 

Asynchronous circuits are an alternative to tackle the problems created in advanced nodes by the use of 
the synchronous paradigm. As Figure 1.1(b) exemplifies, this class of circuits does not employ a clock signal. 
Instead, local handshakes between adjacent components perform the necessary synchronization, 
communication and sequencing of operations [SPA01]. This potentially reduces power consumption, and 
eliminates problems related to clock distribution and skew [HAU95] [SPA01]. However, the lack of 
techniques, methodologies and electronic design automation (EDA) tools fully supporting asynchronous 
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systems prevents traditional circuit designers from taking full advantage of asynchronous circuits [PON10a] 
[HAU95]. 

 
Figure 1.1 - Example of (a) a synchronous circuit, and (b) an asynchronous circuit. CLi represent 

combinational logic blocks, R symbolizes registers, and CTRL indicates control logic. Adapted from 
[SPA01]. 

A globally asynchronous locally synchronous (GALS) [CHA84] system is intermediate between a fully 
synchronous and a fully asynchronous design. In a GALS system, distinct clock signals are used to govern 
different modules. Internally, each module works as a fully synchronous system; different modules may 
operate at different clock rates. GALS techniques eliminate the burden of creating a clock distribution 
network across the whole chip, simplifying the achievement of timing closure in SoC designs [PON10b]. 
However, synchronization interfaces must be employed to enable reliable communication between distinct 
clock domains, introducing latency penalties in the system [PON10b] [SHE08]. 

Networks on chip can be implemented as fully synchronous, GALS, or asynchronous circuits. To avoid 
a bottleneck at the interconnection, a fully synchronous NoC needs to operate at a frequency high enough to 
meet bandwidth requirements of the most demanding core, which may result in significant, wasteful power 
consumption on routers that do not require high throughput [GEB10]. A GALS NoC allows controlling the 
operating frequency (and bandwidth) of each router, potentially reducing the dynamic power consumption 
when compared to a single-frequency NoC. However, as mentioned before, synchronization interfaces must 
be added between routers and cores operating in different clock domains [SHE08].  

An asynchronous NoC allows a more flexible integration of components with different timing 
characteristics. Besides presenting reduced overall power consumption when compared with other 
implementation styles, zero dynamic power is naturally achieved when the NoC is idle [GIL11] [GEB10] 
[BJE05]. Also, latency overheads caused by the synchronization interfaces in GALS NoCs reduce the data 
throughput of the system. An approach to ease this issue is to reduce as much as possible the number of 
synchronization points throughout the SoC. By employing an asynchronous NoC as communication 
architecture, only two synchronization interfaces need to be traversed by each packet: one at the sender’s 
output port, and another at the receiver’s input port [PON10a]. 

A
dA

B
dB

d2

C
dC

d3

d1

...

Global Clock Signal

a) Synchronous Pipeline

...
b) Asynchronous Pipeline

......

R CL1 R CL2 R

Clock

a) Synchronous Circuit

R

CT
RL

b) Asynchronous Circuit

CT
RL

CT
RL

CT
RL

R R R RCL1 CL2



	
   3	
  

Since the last decade, the research on asynchronous routers and NoCs has gained momentum 
[PON10b]. Asynchronous NoCs can reduce interconnect overall power consumption, while eliminating 
increasingly complex clock-related design problems [GIL11] [BJE05]. However, most of the previous works 
make use of delay insensitive data encodings, usually resulting in large area overheads, or bundled-data level-
signaling implementations, which increase the overall latency of the system, when compared to transition-
signaling protocols [GHI13]. 

The main goal of this work was the design of a bundled-data asynchronous network-on-chip router. 
Along with it, a methodology for synthesis of bundled-data circuits using commercial CAD tools was 
proposed and an automated environment for enforcing relative timing constraints was developed. In this work, 
the Author explored several topics not covered during the undergraduate program in Computer Engineering, 
in particular asynchronous circuits and NoC design, while gaining practical knowledge about the digital 
system design process. Furthermore, due to the lack of automated design and synthesis tools for asynchronous 
systems, many challenges had to be overcome to synthesize bundled-data circuits. This presented a unique 
opportunity to study about how EDA tools work, and learn how to adapt them to provide some degree of 
automation to the process of designing asynchronous systems.  

The remainder of this work is organized as follows. Chapter 2 provides relevant background 
information. Chapter 3 presents the state of the art in asynchronous NoCs. Chapters 4 and 5 present developed 
work. The specification and architecture of the designed router is detailed in Chapter 4. The synthesis process 
is presented in Chapter 5. Final remarks and directions for future work are explored in Chapter 6. 
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2. CONCEPTS 

This Chapter presents some basic concepts about Network-on-Chips (NoCs) and asynchronous circuits, 
which are needed to support this work. 

2.1 Networks on Chip 

On-chip communication implemented with dedicated wires is only effective for systems with a small 
number of cores, as it presents poor reusability and scalability. Shared buses are more scalable and reusable, 
but only one communication at a time is allowed and the bandwidth is shared among all cores. Moreover, it 
also lacks scalability, given that all cores share the same communication medium. The NoC approach address 
all these issues. It consists of a communication infrastructure in which cores are connected to routers and these 
communicate among themselves through channels. NoCs are reliable, energy efficient, reusable, and present 
much better bandwidth scalability when compared to traditional bus architectures [MOR04]. In fact, the use of 
NoCs is already a well-established concept for creating effective intrachip communication infrastructures for 
contemporary systems. The TILE64™ [BEL08], the Cell processors [KAH05], the Intel Single Chip Cloud 
Computer [WIJ11] and the Intel Xeon Phi Coprocessor [INT13] are commercial examples of NoC usage. 

2.1.1 Hermes NoC 

The Hermes NoC, proposed in [MOR04], comprises routers with a set of bidirectional ports that 
connect to an IP core and to other routers, according to a topology [MOR04]. Figure 2.1 exemplifies a 3x3 
Hermes NoC with a 2D mesh topology. Each router has five bi-directional ports: East, West, North, South, 
and Local. The Local port links to a local IP core, and the other ports link to neighbor routers. Each router’s 
address is expressed by its XY coordinates. 

 
Figure 2.1 – 3x3 Hermes NoC, connected in a 2D mesh topology. Adapted from [MOR04]. 
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IP cores communicate with each other through message exchange. To forward messages across the 
network, routers employ a wormhole packet switching approach; therefore, a packet is transmitted between 
routers in units called flits, an abbreviation of flow control digits. A 2-flit header and a variable length payload 
compose each packet: the first flit contains the packet’s destination address and the second indicates the 
number of flits in the payload. When the header flit goes through a router, it reserves a path from an input port 
to an output port for the whole packet; the succeeding flits of the packet flow through this reserved path. 
Wormhole switching provides low latency, requires less memory, and facilitates the multiplexing of one 
physical channel into more than one logic channel [MOR04]. 

Each router can handle up to five simultaneous connections. The router’s control logic is centralized in 
a single block and comprises two basic modules: routing and arbitration. The routing logic analyzes the 
packet’s header, calculates to which port the packet should be sent, and connects the input port to the correct 
output port. The arbiter acts as a tiebreaker when more than one input port attempts to connect to the same 
output port. One of its goals it to prevent starvation, i.e. provide a balanced and fair usage of the output ports 
between input ports. Each input port has a buffer to help reduce performance degradation caused by a possibly 
blocked flit [MOR04]. 

2.2 Asynchronous Circuits 

Most of today’s digital systems are synchronous, which means they employ a global clock signal to 
synchronize the operation of all sequential components. This creates the abstraction of discrete time. In an 
asynchronous circuit, the coordination of modules is performed without a clock signal [MYE01]. Instead, 
handshake protocols are used to perform the necessary synchronization, communication and sequencing of 
operations [SPA01]. The discrete-time abstraction of synchronous circuits helps simplifying the design, but 
removing it can grant several other benefits, like lower power consumption, higher operating speed, lower 
electromagnetic noise emission, and eliminating clock distribution problems [HAU95] [SPA01]. However, 
depending on the handshake protocol and data-encoding scheme chosen, asynchronous control logic may 
introduce significant area, circuit speed, and power consumption overheads [SPA01]. Another drawback of 
asynchronous circuits is the lack of mature EDA tools supporting their design. 

2.2.1 Delay Models 

Asynchronous circuits can be classified with respect to the assumptions employed on gate and wire 
delays during their design. A delay-insensitive (DI) circuit can operate correctly no matter the magnitude of 
all delays found in the circuit. This means, referring for example to Figure 2.2, that the circuit in that Figure 
works for any arbitrary values of dA, dB, dC, d1, d2, and d3 [SPA01]. DI is the most robust class of 
asynchronous circuits, but it is very limited, since systems respecting this assumption can only contain C-
elements as multiple-input operators [MAR90]. 

A circuit that operates correctly without assumptions regarding delays, except on some specific wire 
forks, called isochronic forks, is called quasi-delay-insensitive (QDI) [MYE01]. A fork is isochronic if the 
delays at all endpoints of the fork are identical (or differ by a very small amount that is controlled during 
design) [SPA01]. Considering the circuit represented in Figure 2.2, this means that either d2 = d3, or δ=|d2 - d3| 
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is smaller than some given value κ. Even though this assumption may seem of little significance, it does 
change model properties considerably. By making forks isochronic, only one end of the fork needs to be 
sensed; therefore, when the sensing gate fires, the signal will have guaranteedly reached all ends of the fork 
[HAU95]. A further discussion about QDI circuits is outside the scope of this work, and can be found, for 
example, in references [SPA01] and [HAU95]. 

 
Figure 2.2 - A circuit fragment with gate and wire delays [SPA01]. 

A circuit is called speed-independent (SI) when it can operate correctly assuming unknown gate delays 
and zero-delay wires. Again, considering the circuit shown in Figure 2.2, this means that the circuit work 
regardless of the values of dA, dB, and dC, but assuming that d1 = d2 = d3 = 0. Of course, it is often unrealistic 
to assume zero-delay wires in today’s semiconductor processes [SPA01].  

Delay-insensitivity and speed-independence have mathematically well-defined properties. Circuits 
whose correct operation relies on more elaborate timing assumptions are called self-timed (ST) [SPA01]. An 
ST circuit assumes that both gate and wire delays are known, and delay lines are used to satisfy timing 
assumptions. These are often called matched-delay asynchronous circuits, and are usually simpler than QDI in 
terms of the required hardware [STE09]. However, some of the drawbacks are its worst-case operation and the 
sensitiveness to process, voltage, and temperature (PVT) variations [KRZ10]. However, several works 
available on literature report that these circuits are usually more suited to high speed and low power 
applications than those designed using QDI techniques and assumptions [GHI13][BHA13][NOW11][STE09]. 

2.2.2 Handshake Protocols 

Instead of using a clock signal, asynchronous circuits use handshake protocols between components to 
perform synchronization [SPA01]. A handshake consists in the exchange of a request and an acknowledge 
signaling between an active and a passive element, establishing synchronization between both. The active 
component starts the communication by issuing a request (req); then it waits for the arrival of the 
corresponding acknowledge (ack), generated by the passive element [PEE96]. This communication 
mechanism can be implemented using two basic approaches: transition-signaling and level-signaling; also, 
implementations usually rely on one of four possible channel configurations: nonput, push, pull, and biput 
[KRZ10].  

The level-signaling handshake protocol takes four signal events to complete a communication cycle – 
this signaling scheme is accordingly called a four-phase protocol, and sometimes named return-to-zero (RTZ) 
handshake [SPA01]. The events required to complete the handshake, as exemplified in Figure 2.3(a), are: (1) 
the active component initiates the communication by asserting req; (2) the passive component senses the 
request and, in response, asserts ack; (3) the active element detects the acknowledge and deasserts req; (4) 
finally, the passive component notices the deasserted request, and responds by deasserting ack. At this point 
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the handshake is completed, and the active component may start another communication cycle. A big 
disadvantage of level-signaling protocols is its return-to-zero phase (events 3 and 4), as they cost extra time 
and energy [SPA01]. The transition-signaling protocol eliminates this disadvantage. 

On the transition-signaling protocol, often called two-phase protocol or non-return-to-zero (NRZ) 
signaling, handshake events are encoded as signal transitions – there is no difference between a low-to-high 
and a high-to-low transition, as both imply the same type of event [SPA01]. This signaling scheme is 
illustrated in Figure 2.3(b). The active component starts the communication by issuing a request event – that 
is, switching the logic level of req. Then, the passive component senses the request transition, and ends the 
communication by sending out an acknowledge event – that is, changing the logic level of ack. At this point, 
the active component may start a new communication. Transition-signaling protocols can complete a 
handshake in half the time of a level-signaling one. However, depending on the used data encoding, the 
transition-signaling control unit may introduce more significant area and power overheads [SPA01]. 

 
Figure 2.3– Handshake operations using (a) a level-signaling protocol and (b) a transition-signaling 

protocol. Adapted from [SPA01]. 

In addition to establishing synchronization between components, handshakes can also be used to 
transfer data between elements – this can be achieved by encoding data in the request, acknowledge, or in 
both events [PEE96]. Handshake channels that do not convey data are called nonput channels. They only have 
the request and acknowledge wires, as shown in Figure 2.4(a), and are used for synchronization purposes 
only. A push channel has, in addition to the req and ack wires, a data bus going from the active component to 
the passive component, as Figure 2.4(b) shows – it can be said that the active component pushes data through 
the channel [PEE96]. In this type of channel, data needs to be valid before issuing a request event. If the data 
flows from the passive to the active component, as depicted in Figure 2.4(c), it is said that the active 
component pulls the data through the channel – characterizing a pull channel configuration. A channel with 
such configuration requires that data be valid before the acknowledge event occurs. Data flowing both ways 
characterizes a biput channel – in this situation, data sent by the active element needs to be valid before the 
req event, and data coming from the passive component needs to be valid before the ack event. This channel 
configuration is illustrated in Figure 2.4(d). 

 
Figure 2.4 – Handshake channel types: (a) Nonput; (b) Push; (c) Pull; (d) Biput. 
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2.2.3 Bundled-Data 

In a synchronous circuit, the role of the clock is to define points in time where data and control signals 
are stable and valid. Between cycles, signals may present hazards and make multiple transitions as 
combinational circuits stabilize [SPA01]. Asynchronous circuits, on the other hand, are usually designed to 
detect the arrival of data. Assuming a push channel, data validity must be inferred either from the data 
channel, as in QDI, or the explicit request signal, as in ST [KRZ10]. This choice is a trade-off between speed, 
robustness, area, and power [SPA01]. For instance, dual-rail is a very robust, delay-insensitive, data encoding 
scheme employed in several QDI designs. It consists of encoding each bit with a pair of wires – one, marked 
as the true wire, represents the bit value 1 when at the logic level 1, and the other, called false wire, denotes 
the bit value 0 when at the logic level 1 [SPA01]. When viewed together, each wire pair is a codeword that 
represents one bit of data or the absence of data (when both wires are at the logic level 0). Due to the DI 
characteristic of this encoding scheme, the passive element can detect data validity, when all bits have arrived, 
and, from this, infer the request event and generate an acknowledgement, which can be signaled using a single 
wire. However, the use of two wires per bit implies silicon area overhead and increases the circuit switching 
activity, given that every data sent requires the switching of exactly one wire per bit of information [KRZ10].  

An alternative is the use of regular Boolean encoding, where one data bit is represented by one wire. 
This encoding scheme, however, does not convey data validity information. Therefore, an explicit signal (the 
request mentioned before) is required and the circuit designer needs to guarantee that data is valid before the 
detection of an event on this signal [SPA01]. The term bundled-data is commonly used to designate this kind 
of encoding: it suggests that the request and acknowledge wires are bundled with the data signals, hinting on 
the timing relationship between them. Figure 2.5(a) illustrates a bundled-data push channel. In the example, a 
delay line is used to match the delay of req to the worst-case delay of the data channel. A circuit using 
bundled-data scheme falls under the ST category, and either handshake protocol can be used. 

The operations of the bundled-data level-signaling and the transition-signaling protocols are illustrated 
in Figure 2.5(b) and in Figure 2.5(c), respectively. The events required to complete the communication are the 
same discussed in Section 2.2.2. However, the designer needs to guarantee that, whenever there is a data 
exchange between an active and a passive components, data signals are valid and stable before the handshake 
event that notifies the data arrival is detected – that is, the request event on a push channel, the acknowledge 
event on a pull channel, and both events on a biput channel. 

 
Figure 2.5 – An example 8-bit bundled-data channel scheme and its operation: (a) a bundled-data push 

channel;  (b) an example of a level signaling communication; (c) an example transition-signaling 
communication. Adapted from [SPA01]. 

Therefore, asynchronous circuits' communication protocols are characterized by choices of: a data 
encoding scheme, a channel configuration, and a handshake protocol. Dual rail encoding is a good choice for 
robustness and delay-insensitivity, but it introduces significant power and area overheads [KRZ10]. 
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Transition-signaling bundled-data circuits are a suitable choice for systems with high-speed requirements 
[GHI13] [BHA13] [NOW11] [STE09] [SPA01]. However, some extra design effort is needed to guarantee the 
fulfillment of delay constraints between data and handshake signals. Since the throughput of the circuit 
depends on the time it takes to complete a handshake cycle, level-signaling bundled-data has a speed penalty 
inherent to its handshake protocol [SPA01]. 

2.2.4 Asynchronous Logic Components 

Unlike synchronous systems, asynchronous circuits operate with a continuous notion of time – that is, 
events, represented by signal transitions, may occur at any moment. To support this characteristic, several 
asynchronous logic components have been proposed throughout the years. Two of these components are used 
in this work: the C-element and the mutual exclusion (mutex) gates. 

A mutex is used to arbitrate between events that can happen simultaneously. Its task is to forward 
independently generated request signals at inputs RA and RB to its corresponding outputs GA and GB 
guaranteeing that at most one output is active at any given time [SPA01]. The C-element is a state-holding 
gate that can be used for event synchronization: its current output value is held when its inputs are distinct; 
when all its inputs have the same value, the output changes to reflect that same value. For example, a 2-input 
C-element changes its output to 0 when both inputs are 0 and to 1 when both inputs are 1, for other 
combinations the output is kept unchanged [SPA01]. 

The ASCEnD cell library [MOR11a] [MOR11b], designed at the GAPH, includes more than six 
hundreds instances of the components mentioned in this Section in several forms, some of which were 
employed in this work. 

2.2.5 High Performance Pipelines 

Pipelining is a technique classically used to increase parallelism in a digital system and, consequently, 
increase the throughput of the latter. In synchronous systems, a pipeline design consists in partitioning 
complex logic blocks into smaller blocks, where adjacent blocks are separated by registers all of which are 
controlled by a single clock signal. Since asynchronous circuits do not have such a clock signal, a protocol to 
control the interaction of neighboring stages must be defined in an asynchronous pipeline, along with the 
choice of a data encoding and of storage elements [NOW11]. Together, these design choices compose a 
design template for asynchronous pipelines. 

Figure 2.6(a) shows an abstract view of a synchronous pipeline. In such a system, data moves to the 
next stage at the end of every clock cycle, and this occurs simultaneously in all stages. To work properly, the 
pipeline clock period needs to be larger than the computation time of the slowest stage. In an asynchronous 
pipeline, exemplified in Figure 2.6(b), the data flow is controlled by handshakes between stages. Usually, a 
stage accepts new data if the previous stage is providing new data and the next stage has already stored the 
previous data item. Unlike what happens in synchronous pipelines, in an asynchronous pipeline different data 
values can flow at different rates, given that data propagation is not constrained by the worst case delay – 
which may improve the system’s average latency and throughput [NOW11]. 
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Figure 2.6 – An abstract view of pipelines: (a) a synchronous pipeline; (b) an asynchronous pipeline. 

Adapted from [NOW11]. 

Asynchronous pipelines can be classified based on the logic style of its datapath: static or dynamic. 
Classically, dynamic logic refers to circuit implementations where the pull-up network is removed, resulting 
in smaller area usage and higher switching speed [RAB03]. However, this type of implementation increases 
the design and validation effort [NOW11]. For this reason, this work considers only static logic pipelines. 

 

 
Figure 2.7 – Two transition-level asynchronous pipelines: (a) Sutherland’s; (b) Mousetrap. Adapted 

from [NOW11]. 
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in Figure 2.7 (b), is based on Sutherland’s micropipeline [SUT89], but features less complex signaling and 
lower overhead [NOW11]. Mousetrap is controlled by a 2-input XNOR gate, and data is stored in a bank of 
standard active-high level-sensitive D latches. Figure 2.8 exemplifies the operation of a Mousetrap pipeline 
stage: 1) the incoming request (req1) traverses the latch and causes the XNOR gate to switch its output to low 
(en2), making the latch opaque; in parallel, the latch produces the acknowledge (ack2) signal; 2) once the 
acknowledge is received in the previous stage, the latter can start a new handshake; 3) the output request 
(req2) flows through the delay line and arrives at the next stage; 4) the next stage acknowledges it, causing the 
XNOR gate to switch its output to high, making the latch of stage 2 transparent again, which is the original 
state for all latches. From this moment on, a new handshake cycle can start. 

 
Figure 2.8 – Example of the Mousetrap pipeline operation for Stage 2 signals. 

Many practical applications can be implemented with linear pipelines. However, complex system 
architectures often require nonlinear pipelines [SIN07]. This implies using pipelines with parallel stages, as 
Figure 2.9 – Nonlinear pipelines: (a) shows. The Mousetrap template can be easily adapted to support such 
systems. A pipeline fork stage can only accept a new request when all forking stages have acknowledged the 
current one. This behavior can be achieved by the use of a C-element to join the ack signals coming from 
parallel stages, as Figure 2.9(b) shows. Similarly, a join stage must wait until all requests from the parallel 
stages have arrived to start processing new data, which can be accomplished by employing a C-element at the 
incoming request signals, as Figure 2.9 – Nonlinear pipelines: (c) illustrates. 

 
Figure 2.9 – Nonlinear pipelines: (a) Example of a nonlinear pipeline structure; (b) a Mousetrap fork 

stage; (c) a Mousetrap join stage. Adapted from [SIN07].
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3. STATE OF THE ART 

This Chapter presents an overview of the current literature on asynchronous network on chip routers 
based on 5-port architectures. As metrics used by each author differ from one another and the designs target 
different technologies using different delay models, there is not enough data to draw a fair comparison of all 
implementations. However, most authors provide area usage and throughput information in units of flits/s. 
Table 1 summarizes the attributes of the NoCs covered in this Section. 

Table 1 – Comparison of 5-port asynchronous NoC routers. 

Router Asynchronous 
Style 

Technology 
feature size Flit Size Area Average 

Latency 
Average 

Throughput 

Ghiribaldi et al. 
[GHI13] 

Bundled-data, 
transition-
signaling 

40nm 32 bits 4,691µm2 1.195ns 35.4 Gbytes/s 
per port 

Hermes-AA 
[PON10b] 

Dual-rail, level-
signaling 65nm 8 bits 

114,456µm2 
for XY routing, 
116,031µm2 

for WF routing 

3.709ns for 
input port, 1.351 
for output port 

7.7 Gbits/s 
per router 

ASPIN 
[SHE08] 

Bundled-data, 
level-signaling 90nm 32 bits 36,199µm2 1.5ns 4.4 Gbytes/s 

per router 

ANoC 
[BEI05] 

QDI, level-
signaling 160nm 34 bits 0.25mm2 

2ns and 2.5ns, 
depending on 
traffic priority 

5.0 Gbytes/s 
per router 

MANGO 
[BJE05] 

Bundled-data, 
level-signaling 120nm 32 bits 0.188mm2 N.A. 

15.4 Gbytes/s 
per router 

(under typical 
conditions) 

Hermes-A 
[PON10a] 

Dual-rail, level-
signaling 180nm 8 bits 0.33mm2 N.A. 3.6 Gbits/s 

per router 

Async. QNoC 
[DOB09] 

Bundled-data, 
level-signaling 180nm 8 bits N.A. N.A. 1.1 Gbytes/s 

per router 

3.1 The NoC of Ghiribaldi et al. 

Ghiribaldi et al. [GHI13] propose an asynchronous NoC router based on the Mousetrap pipeline 
template, accordingly using a transition-signaling bundled-data protocol. The router features wormhole 
switching, 32-bit flits, and algorithmic dimension-order routing. The design was synthesized using a low-
power standard-Vt 40nm cell library, with normal process, 1.2V supply voltage, and operating temperature of 
300K.  

The router presents in average a latency of 1,195ps, and a cycle time of 903ps. Latency is defined as the 
time it takes for a head flit to traverse from the input port to the output port, assuming an empty router and no 
congestion. Cycle time is the interval between two successive acknowledgments received at the router output 
port. The area usage is 4,691µm2. Based on the average cycle time and on the flit size it is possible to compute 
the NoC average throughput: 35.4 Gbits/s per port. 
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3.2 The ANoC 

Proposed by Beigné et al., the ANoC [BEI05] is a QDI router implemented with level-signaling 
handshake protocol and support for two virtual channels – one for real-time low latency packets, and other for 
best-effort traffic. It features wormhole routing, odd-even turn model adaptive routing algorithm, and 34-bit 
flits – 32 bits of data, plus 2 control bits. The router was synthesized using STMicroelectronic’s HCMOS9LL 
0.16µm technology. The area used by each router is 0.25mm2 and the average cycle time is 4ns, giving the 
maximum throughput of 5Gbytes/sec, when all inputs and outputs run concurrently. The router latency is 2ns 
for the high priority virtual channel and 2.5ns for the low priority one. 

3.3 The MANGO NoC 

The MANGO [BJE05] NoC, proposed by Bjerregaard and Sparso, employs virtual channels to provide 
connection-oriented guaranteed services and connectionless best-effort routing. Communication is performed 
using a level-signaling bundled-data protocol. Each router implements wormhole packet switching, 32-bit flit 
size, and XY routing algorithm. The NoC was synthesized using 0.12µm CMOS standard cell technology. 
Under worst-case timing parameters (1.08V supply voltage and 125ºC operating temperature), each port 
presents a performance of 515MHz; under typical conditions, 795MHz was obtained. This corresponds to a 
worst-case maximum throughput of roughly 10GBytes/sec and a typical case of roughly 15.4GBytes/sec. The 
router area usage is 0.188mm2. 

3.4 The Asynchronous QNoC 

Dobkin et al. [DOB09] proposed the asynchronous QNoC, a network on chip supporting quality-of-
service in four distinct service levels, each with two virtual channels. The routers are implemented using a 
level-signaling bundled-data protocol, XY routing algorithm, and wormhole packet switching with 8-bit flit 
size. The NoC was synthesized using a 0.18µm CMOS standard cell library from Tower Semiconductor Ltd. 
The minimal router data cycle was 4.5ns, resulting in a throughput of 220Mflits/s per port, or 1.1GBytes/sec 
per router. 

3.5 The ASPIN NoC 

Proposed by Sheibanyrad et al., the ASPIN NoC [SHE08] uses both bundled-data and dual-rail data 
encoding: the latter is used only for long wires. Each router features wormhole packet switching, 32-bit flit 
size, and the XY routing algorithm. Synthesis was targeted at the STMicroelectronics 90nm low-voltage 
threshold technology. The area used by each router was 36,199µm2. The maximum throughput is 131Mflits or 
4.423Gbytes/s, and the average packet latency is 1.5ns.  
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3.6 The Hermes-A and Hermes-AA NoCs 

Pontes et al. proposed two asynchronous delay-insensitive NoC router designs: Hermes-A [PON10a] 
and Hermes-AA [PON10b]. In both cases, routers implement wormhole packet switching, 8-bit flit width, and 
operate using a QDI dual-rail level-signaling protocol. The first design, Hermes-A, features a distributed XY 
routing algorithm and uses the XFab 180nm technology – with typical transistor models, 1.8V supply voltage, 
and operating temperature of 25ºC. The second design uses another option of routing algorithm: West-First 
(WF); Hermes-AA was synthesized using general-purpose standard-Vt 65nm technology from 
STMicroelectronics; the router operates at 25ºC with a supply voltage of 1V.  

Hermes-A has a throughput of 727Mbits/s on each router link. In the best case, this performance level 
can be sustained on all five ports, resulting in a maximum throughput of approximately 3.6Gbits/s for the 
whole router. In this situation, the total power is 11.14mW. The total area usage is 0.33mm2, of which 
0.22mm2 correspond to standard cell area. 

Hermes-AA was able to produce 1.55Gbits/s of throughput on each router link – resulting in a 
maximum router throughput of 7.75Gbits/s, when all five ports are transmitting in parallel. According to the 
authors, per-port throughput can reach up to 6.3Gbits/s when asynchronous FIFOs are added to the input 
ports. However, this value goes back to the saturation throughput (1.55 Gbits/s) when FIFOs are full. Starting 
from an idle router, the input port latency reaches 3.709ns, and the output port latency is 1.351ns. When using 
the XY routing algorithm, the area usage is 114456µm2 (75144µm2 of standard cell area); with the WF 
algorithm, there was a slight increase of area: 116034µm2 (76455µm2 of standard cell area). For both routers, 
asynchronous cells such as C-elements were taken from the ASCEnD library [MOR11a] [MOR11b]. 
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4. DESIGN 

This work focuses on the design of a high-performance asynchronous NoC router based on the Hermes 
NoC. A transition-signaling bundled-data handshake protocol is a suitable choice for systems with high-speed 
requirements [SPA01], as they have the potential to lead to low area overheads, when compared to delay-
insensitive encoding. Due to its simple control logic, the Mousetrap pipeline template [SIN07] is used for 
controlling the communication between components.  

This Chapter details the specification and architecture of proposed router, and presents the functional 
validation of the design, obtained through behavioral simulation. The VHDL implementation files are 
available in Appendix A. 

4.1 Specification 

4.1.1 Target Architecture 

The YeAH! NoC router, designed by the Hardware Design Support Group (GAPH) from the PUCRS, 
employs a fully distributed control logic to implement functionality similar to that of a Hermes router, 
introduced in section 2.1.1. In its design, routing and arbitration responsibilities are assigned, respectively, to 
each input and output interface of the router, instead of being centralized in a control block. This results in a 
highly modular design that avoids bottlenecks in the control unit, improving performance in congested 
networks. Figure 4.1 illustrates the architecture of the YeAH! router. Each port comprises two independent 
components: the input interface and the output interface. Each input interface has a set of independent control 
channels connected to all output interfaces. Up to five simultaneous internal connections can be handled by 
the router. 

 
Figure 4.1 – Architecture of the YeAH! router. 
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Figure 4.2(a) displays the input interface architecture, which consists of an input buffer, a control unit, 
and the routing algorithm. When the Buffer outputs a header flit, the Control activates the Routing block that 
issues a request to the chosen output port. Once the request is granted, the packet is transmitted. The Control 
logic uses the payload size information contained in the second flit of each packet to identify header flits from 
payload flits. The buffer is implemented as a circular FIFO. Currently, the XY routing algorithm is the only 
one supported in YeAH!. 

Each output interface, as Figure 4.2(b) illustrates, comprises an Arbiter and a (output) Control. The 
former implements a round-robin algorithm to select which input port should gain access to the output port 
when multiple simultaneous requests are pending. The (output) Control acts as a multiplexor, selecting which 
data channel should be sent to the output based on the arbiter’s choice. 

 
Figure 4.2 - Detailed view of input (a) and output (b) interfaces of the YeAH! router. 

4.1.2 BaT-Hermes Specification 

The architecture of the bundled-data transition-signaling Hermes router (BaT-Hermes) is based on the 
YeAH! router. Its highly decoupled architecture makes it a good starting point for the design of an 
asynchronous router as each individual module can be implemented as a handshaking module. In fact, the 
basic structure shown in Figure 4.1 can be kept, as communication between modules is replaced by handshake 
protocols. The router can have up to 5 ports, each composed of an Input and an Output Interface. Each Input 
Interface (II) is connected to all Output Interfaces (OI), but the one located in the same port – that is, there is 
no loopback connection. Figure 4.3 shows the top view of each interface. IIs are responsible for buffering and 
routing incoming packets to the correct OI. OIs, in turn, arbitrate between incoming packets from different IIs. 
Therefore, a 5-port router can handle up to five simultaneous connections, where all OIs receive a packet from 
a different II. BaT-Hermes is parameterizable with respect to flit size, buffer depth, and which ports are 
available. At this time, only the XY routing algorithm is implemented. However other routing algorithms can 
be easily implemented due to the high modularity of the router. 

 
Figure 4.3 – Top view of a) Input Interface and b) Output Interface of BaT-Hermes. 
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The BaT-Hermes communication protocol determines the handshakes between Input and Output 
Interfaces. It defines that the first flit of each packet must be sent through a req_outport request – that is, a 
request event issued from the II’s req_outport_o port to the OI’s req_outport_i port -, while the remaining 
flits are sent over req_data requests – similarly, sent from II’s req_data_o port to the OI’s req_data_i port. 
Routing and arbitration tasks take place during the first handshake (through a req_outport request), in a 
specific II and OI, respectively. In the remaining handshakes, until the last flit is detected, flits flow directly 
from the II to the OI. The protocol also specifies that the last_flit_i signal needs to switch before the last flit is 
sent. All communication between interfaces is transition-encoded. The signals req_data_o, last_flit_o and 
data_o of each II are shared across all OIs, which arbitrate incoming requests. BaT-Hermes uses the same 
packet layout as the original Hermes NoC: a two-flit header, comprising the packet’s target address and 
payload size, and a variable-length payload. The implementation details of each module is described in 
Section 4.2. 

The key difference between the architectures of BaT-Hermes and the NoC proposed in [GHI13] is the 
router’s control unit. In the former, the detection of head and tail flits is based on the payload size, contained 
in the packet header. The latter uses a 2-bit flit-type field, embedded in each flit, to identify head and tail. The 
approach taken on the latter greatly simplifies the control units when compared to the Finite State Machines 
(FSM) required by the former to count the number of flits sent, but reduces the amount of data carried by each 
flit, since two bits are always employed as control. Additionally, all communications between IIs and OIs in 
BaT-Hermes is performed with transition-signaling handshakes, while the router proposed in [GHI13] 
employs level-signaling handshakes to start and finish the transmission of packets – which increases the 
circuit’s switching activity. 

4.1.3 Timing Constraints 

Bundled-data circuits rely on carefully designed delay-lines to ensure that handshake events take place 
only when data is valid. Due to the lack of EDA tools supporting such circuits, the timing relationships 
between wires and modules must be manually extracted. During the design phase of BaT-Hermes, the timing 
constraints of each circuit were identified and documented using the following technique: i) for each register, 
identify all data signal paths connected to the data input pin; ii) identify the control signal path of the register; 
iii) create a delay line at the control signal in order to guarantee that the path of step 1 is faster than the one of 
step 2. The list of timing constraints is available in Appendix B. 

4.2 Architecture 

This Section details the architecture of each component of BaT-Hermes. The techniques described in 
Section 4.3.1 were employed to obtain the waveforms used to illustrate the operation of the circuits. 

4.2.1 Transition Merger and Phase Matcher 

Transition-signaling handshake protocols relate changes in the logic value of control signals to actions. 
Therefore, it is imperative that the request and acknowledge signals remain stable until their related actions 
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have taken place. Linear transition-signaling pipelines are designed to behave this way, and can be easily 
modified to support non-linear concurrent stages, as discussed in Section 2.2.5. Furthermore, a pipeline can 
fork to or join from stages that work in a mutually exclusive manner, that is, only one parallel stage will 
perform a handshake at a time, while all control signals of the remaining stages are kept stable. This construct, 
exemplified in Figure 4.4, is widely used in BaT-Hermes to decouple routing handshakes from data 
transferring handshakes, as the former takes longer to complete due to routing and arbitration overheads. 
Additional hardware is needed in order to support mutually exclusive joins and forks in transition-signaling 
pipelines. 

The approach taken in BaT-Hermes design to implement forks and joins makes use of two circuits: the 
transition merger and the phase matcher. The former is used to merge independent signals of the same type to 
a single wire while keeping the number of transitions at the output consistent – that is, any transition in any of 
the inputs results in a transition at the output. Note that the inputs do not need to be synchronized and are 
agnostic of the logic level of the output. The phase-matcher is employed to keep the input control signals of 
deactivated stages stable while shared control signals switch to perform handshakes with the active stage. As 
Figure 4.4(a)-(b) show, a pipeline fork requires the use of a transition merger on the acknowledge signals and 
phase matchers at each parallel stage request signal input; on pipeline joins, as showed in Figure 4.4(c)-(d), 
phase matchers are used at each parallel stage acknowledge signal input, and a transition merger on the 
request signals.  

 
Figure 4.4 – Example of a mutually exclusive pipeline fork with a) transition merging and b) phase-

matching circuits and pipeline join with c) phase-matching and d) transition merging circuits. 

Both the transition merger and the phase matcher rely on the usage of n-input XOR gates, where n is 
the number of parallel stages in the pipeline fork or join. For instance, a transition merger circuit operating 
with the request signals, as Figure 4.4(d) shows, takes all output request signals from the parallel stages and 
generates one signal that switch every time one of its inputs switch, given the logic behavior of the XOR. The 
waveforms on Figure 4.5(a) show the operation of this circuit. As it can be seen, when ack_o_1 switch to ‘1’, 
the output ack_o also go to ‘1’. Next, when ack_o_2 switch to ‘1’, ack_o switch back to ‘0’. Finally, a new 
transition in ack_o_1, to ‘0’, makes ack_o to switch, back to ‘1’. The phase matcher is used to mask 
transitions directed to the active stages, keeping the logic levels of disabled stages stable. Its operation is 
similar to the transition merger circuit, but for each handshake cycle its output transitions twice – canceling 
out the transition that originated the handshake. A latch is used to prevent these two transitions from 
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propagating to the disabled stage. The XOR gate takes as input the shared control signal, req_i in the example 
of  Figure 4.4(b), and one control signal from each of the other stages. Even though either control signal (req 
or ack) can be used, as both will eventually transition during the handshake cycle, it is more efficient to use 
the signal that switches first, req_o in this example, in order to propagate the transition to the other stages as 
soon as possible. Figure 4.5(b) shows the operation of the circuit depicted in Figure 4.4(b): 1) a request action 
on req_i generates a transition at the output of every XOR gate connected to it; 2) the latch on the disable 
stage (LT2) blocks the propagation of the transition, while the enabled stage (LT1) propagates it, generating a 
request event on that stage; 3) the signal flows from the latch LT1 and arrives at the XOR gate at the disabled 
stage, switching it for the second time and restoring the previous logic level. 

 
Figure 4.5 – Waveform showing the operation of the a) transition merger and the b) phase matcher 

circuit. 

Although only one request will be received at any given time, as the stages work in a mutually 
exclusive manner, the pipeline join can be improved to support multiple simultaneous requests being made at 
the parallel stages. This can be done by the addition of the latch LT3, in Figure 4.4(c), and control logic to 
choose which stage will be enabled. If it is guaranteed by design that only one request will be made at a time, 
and during that handshake cycle the other stages will not attempt to start a handshake, the latch LT3 and the 
control logic can be removed. Also, in pipeline joins, the control of the phase matcher latch (LT4) is 
performed with an XOR gate. The latch is enabled when a request arrives and automatically disables itself 
when the acknowledge signal propagates through it. In pipeline forks this task is handled by the control logic 
used to activate the stage. The logic block that enables the parallels stages may be based on the data input of 
the stage or on previous handshakes. These circuits are also used in the NoC router proposed by Ghiribaldi et. 
al. [GHI13]. 

4.2.2 Input Interface 

The II, shown in Figure 4.6, combines an Input Buffer and a Routing Control unit. The Input Buffer is 
composed of a parameterizable depth First-In First-Out (FIFO) queue and a Buffer Control, responsible for 
identifying header flits from the payload. The Routing Control implements an algorithm to select the target OI 
and signal a request to it. Transition-signaling handshake protocol is used in all communications between 
these components. This circuit implements the mutually exclusive parallel stages mentioned in Section 4.2.1: 
when a handshake is made through the req/ack_outport signals, the req/ack_data signals are not used, and 
vice versa.   
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Figure 4.6 – Architecture of the Input Interface. 

A pair of dedicated handshake signals (req_outport_o and ack_outport_i) is connected to each 
communicating OI - there is no loopback connection between the IIs and OIs on the same port. The Routing 
Control uses the req_outport_o wires to request access to the target OI. An ack_outport_i acknowledge means 
that the target interface has received the flit on data_o (target address flit), and is ready to receive other flits 
from the packet. Note that, albeit handshake cycles on these signals take a long time to complete due to 
routing and arbitration overheads, they are performed a single time for each packet, only in the first flit for 
directing the packet to the correct OI. Subsequent flits flow directly from the Input Buffer Control to the 
selected OI. 

The Input Buffer Control uses the req_data_o signal, shared with all communicating OIs, to send the 
remaining flits. Each communicating OI has a dedicated ack_data_i wire used to acknowledge data requests 
destined to it. The shared request signal helps reduce the number of wires and control logic between IIs and 
OIs. Note that the OI was designed to support out-of-phase req_data_o and ack_data_i signals, in order to 
support the shared req_data wire. Hence, a transition merger circuit is used at the II to prevent out-of-phase 
signals in the Input Buffer Control. A transition on the last_flit_o signal indicates that the next data request 
will deliver the last flit of the packet – freeing the OI to accept requests from another IIs after the last flit is 
received. 

Figure 4.7 shows the operation of the II: 1) data received in the II is buffered in the FIFO and delivered 
to the Input Buffer Control; 2) the Input Buffer Control receives data from the FIFO, detects that it is a target 
address flit, and sends a request to the Routing Control; 3) the Routing Control choses the target output port 
based on the routing algorithm and requests its use; 4) the OI of the selected port acknowledges the request, 
indicating that it is ready to receive the packet; 5) the other flits are transmitted by the Input Buffer Control 
using the shared req_data_o signal; 6) only the OI requested on step 3 acknowledges the request made on step 
5; 7) before the last flit of the packet is sent, the Input Buffer Control notifies the OI switching the last_flit_o 
signal. The FIFO works in parallel with the Input Buffer Control, buffering the flits sent to the input interface 
while the handshakes take place. 
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Figure 4.7 – Waveform showing the operation of the Input Interface on the Local port (4) of a BaT-

Hermes router with address x11. 

4.2.3 FIFO 

Buffering is a technique commonly used in NoC design to help reducing performance degradation 
caused by a possibly blocked flit [MOR04]. The buffer used in BaT-Hermes is a transition-signaling bundled-
data First-In First-Out (FIFO) circular queue proposed by Ghiribaldi et al. in [GHI13]. Figure 4.8 details the 
three building blocks of the FIFO: (a) write controller (wr_ctrl); (b) read controller (rd_ctrl); (c) 1-hot ring 
counter (read/write_counter). Write and read controllers work in pairs, as they access the same data register. 
The wr_ctrl circuit employs a phase matcher controlled by an XNOR gate and an enable signal (en_i) – very 
similar to the Mousetrap stage, introduced in Section 2.2.5. The signal reg_en_o controls the active-high latch 
that stores data. full_o is a request signal employed to inform the pairing rd_ctrl that new data is available to 
be read. empty_o is an acknowledge signal indicating that the data has been read. New data can only be 
written when the wr_ctrl is active (i.e. en_i is high) and the currently stored data has been read – which can be 
detected by the XNOR of full_o and empty_i, resembling a Mousetrap stage. The rd_ctrl works as the phase 
matcher circuit when employed in pipeline joins, as explained in Section 4.2.1. The ring counter is controlled 
by the XNOR of a request and an acknowledge signal (e.g. req_i and ack_i) – making it increment at the end 
of each handshake cycle, when ack_i transitions. 
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Figure 4.8 – Building blocks of the FIFO proposed in [GHI13]: a) write controller; b) read controller; 

c) 1-hot ring counter. 

Figure 4.9 shows the FIFO’s architecture. The pair of signals req_wr_i and ack_wr_o and req_rd_o and 
ack_rd_i are used to write to and read from the buffer, respectively. Note that a transition merger is used join 
the ack_o signals from the multiple wr_ctrl into a single ack_wr_o signal. Similarly, the req_o signal from the 
rd_ctrl employ the same circuit to generate req_rd_o. The enable signal of each wr_ctrl and rd_ctrl is 
generated by the write_counter and read_counter, respectively. The latter is also used as the mux selector for 
choosing the data output signals.  

Since the order of activation of each controller is known, it is possible to reduce the number of signals 
used in the phase matcher to two: the shared control signal (req_i or ack_i) and a phase_select_i signal that is 
a function of the FIFO’s depth and the controller’s index. 

• For even-depth FIFOs:  

o The phase_select_i of even-index controllers is the next full_i/empty_i signal 
(phase_select_i[i]   ←   full/empty[i + 1], when  i  mod  2   =   0);  

o The phase_select_i of odd-index controllers is the previous full_i/empty_i signal 
(𝑝ℎ𝑎𝑠𝑒_𝑠𝑒𝑙𝑒𝑐𝑡_𝑖[𝑖]   ←   𝑓𝑢𝑙𝑙/𝑒𝑚𝑝𝑡𝑦[𝑖 − 1], 𝑤ℎ𝑒𝑛  𝑖  𝑚𝑜𝑑  2   ≠   0).  

• For odd-depth FIFOs:  

o The phase_select_i of even-index controllers is 0, which means that the req_i/ack_i signal can 
be connected directly to the latch;  

o The phase_select_i of odd-index controllers is 1, which means that the XOR gate can be 
replaced by an inverter. 

The waveform presented in Figure 4.10 illustrates the operation of a 2-place FIFO: 1) a request to write 
in the fifo is made (req_wr_i switches) and directed to the active write controller; 2) the data latch controlled 
by the active wr_ctrl is disabled, storing the data, while both full_o and ack_o signals switch; 3) ack_o 
propagates, switching ack_wr_o and incrementing the write_counter; 4) simultaneously with step 3, full_o 
propagates to rd_ctrl switching req_rd_o, indicating that there is data in the queue; 5) once this data is read, 
ack_rd_i switches, incrementing read_counter and freeing the data register to receive new data. These steps 
repeat for each position of the queue. 
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Figure 4.9 – Architecture of the transition-signaling bundled-data FIFO proposed in [GHI13]. 

 

 
Figure 4.10 – Waveform showing the operation of a 2-place FIFO. 

4.2.4 Input Buffer Control 

The Input Buffer Control implements the BaT-Hermes communication protocol and is responsible for 
interacting with the OI. The protocol defines that the first flit of each packet must to be sent through a 
req_outport_o request, while the remaining flits are sent over req_data_o requests. It is also stated that the 
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signal last_flit_o must switch its logic value before the request sending the last flit of the packet is made. The 
Input Buffer Control circuit, detailed in Figure 4.11, implements a Finite State Machine capable of fulfilling 
the requirements of the protocol. A Mousetrap stage (LT1 and LT2) was inserted to reduce the average latency 
of the router. It allows the FIFO to fetch new data while the Input Buffer Control is busy. All latches and flip-
flops of the circuit are reset to zero, except FF2 and FF5. 

The FSM circuit can be split in two blocks: a counter and the control logic for selecting which signal 
will be used to perform the handshake (req_outport_o or req_data_o), depending if the current flit is the first 
or the remaining flits of the packet. Flip-flops FF1, FF2, and FF3 compose the counter circuit. The signal 
flit_counter, stored in FF1 denotes the number of flits that remain to be sent. Its value is initialized with the 
payload size, read from the second flit, and decremented as each flit is sent. last_flit_lvl is a level-encoded 
signal stored in FF2 that indicates when the handshake of the last flit is occurring. The output of FF3, called 
size_flit, controls the mux that selects which value will be stored in FF1: the flit in the data_i bus, or the 
current value of flit_counter decremented by 1. The data stored in these three registers are updated every time 
the Mousetrap stage accepts a request – therefore, the sampled values correspond to what was taking place on 
the previous handshake. For example, when the last_flit_lvl register (FF2) detects that the value of 
flit_counter is 1, it means that when the previous handshake took place there was still one flit remaining to be 
sent; consequently, the current flit is the last flit. This allows the computation of the next values to start as 
soon as the request is made, which means that the circuit doesn’t need to be delayed if the computation time is 
smaller than the handshake round-trip time – that is the sum of: propagation delay of request signal, 
propagation delay of acknowledge signal, and the minimum amount of time it takes for the OI to issue an 
acknowledge. 

 
Figure 4.11 – Architecture of the Input Buffer Control. 

The second block of the FSM, composed by LT3, LT4, FF5 and the adjoining logic gates implements a 
mutually exclusive pipeline fork to control which output signal will perform the next request: req_header_o 
or req_data_o. A transition merger connects ack_header_i and ack_data_i to the Mousetrap stage. The Phase 
Matcher circuits are implemented with latches LT3 and LT4, plus connecting XOR gates. The signal data_hs, 
generated by FF5, controls the phase matcher’s enable signal: when data_hs is asserted, the request is 
signaled by req_data_o; when deasserted, req_header_o performs the request. The value stored in FF5 is 
updated as soon as the request signal propagates through the active phase matcher latch – the XNOR gate 
performs this detection: its output switches to low when the inputs have a different logic value. The mux 
prevents temporary transitions on the deactivated stage from reaching FF5. The new value of FF5, calculated 
by the NAND gate, is determined as follows: i) If data_hs is deasserted (req_header_o handshake), the next 
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data_hs will be asserted (data_hs handshake); ii) If data_hs is asserted and last_flit_lvl is also asserted, the 
next data_hs will be deasserted; iii) otherwise, data_hs is kept asserted. 

In order to reduce latency, the Input Buffer Control was designed to avoid stricting timing constraints 
on the request signal path. Even though the last_flit_lvl signal is shared between both blocks of the FSM, its 
propagation delay only affects FF5, as the signal at the input data pin needs to arrive before the one at the 
clock pin. As long as this delay is smaller than the round-trip time of the request signal, it does not affect the 
performance of the circuit.  

Figure 4.12 shows the step-by-step operation of the Input Buffer Control circuit: 1) req_i request is 
made; 2) as soon as the data is stored in the Mousetrap stage, an acknowledge is issued by switching ack_o; 3) 
in parallel with step 2, the flip-flops FF1, FF2 and FF3 update the stored values – note the size_flit signal 
rising to select data_i as the input of FF1 for the next handshake. Also in parallel, the request propagates to 
req_header_o, and the data_hs signal is updated; 4) when the acknowledge signal ack_header_i arrives, the 
payload size is stored in flit_counter and size_flit is disabled – changing the mux to decrement the counter. In 
parallel, the request is made using the signal req_data_o; 5) the following flits are sent through req_data_o, 
while the flit_counter is decremented; 6) when flit_counter reaches 1, it asserts the last_flit_lvl signal, 
indicating that the next flit is the last of the packet. As a consequence, the positive edge-triggered flip-flop 
FF4 updates its output with the inverse of the current value, causing last_flit_o to switch. As soon as the 
req_data_o propagates through LT4, data_hs is deasserted, restoring the initial conditions of the circuit. 

 
Figure 4.12 – Waveform showing the Input Buffer Control Operation. 

The simulation technique used for functional validation doesn’t simulate gate delays. For this reason, 
the signals seem to switch at the same time – for example, the en signal appears as a spike instead of a pulse 
long enough to fulfill the timing restrictions of the connected gates. Details about how the behavioral 
simulations were performed can be found in Section 4.3.1. 
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Unit is deactivated when routing is not taking place. The VHDL implementation of this module, through the 
use of “if generate” statements, can optimize the circuit by removing logic related to inexistent OI. This 
situation may happen, for example, in routers placed at the corner of a mash network. 

 
Figure 4.13 – Routing Control Architecture. 

Figure 4.14 shows the operation of this circuit: 1) the arrival of a req_route_i activates the Routing 
Unit. A request on the correct req_outport_o is made as soon as routing algorithm completes its computation; 
2) the acknowledge sent by the OI through the respective ack_out_port_i signal is forwarded to ack_route_o. 

 
Figure 4.14 – Waveform showing the operation of the Routing Control at a local port on a BaT-Hermes 

router of address x11. 
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signal remains asserted, the Outport Control circuit can interact with the output channel through req_o, ack_i, 
and data_o signals. 

Unlike the handshakes between the other components of BaT-Hermes, the Arbiter communicates using 
a level-signaling protocol. This was mandatory, since no transition-sensitive mutex is available in the cell 
library used.  

 
Figure 4.15 – Architecture of the Output Interface  

Figure 4.16 illustrates the operation of the circuit: 1) two simultaneous req_outport_i requests are made 
(0 and 1); 2) the Arbiter grants access to the output channel to one of the Outport Control blocks that issued a 
request on step 1; 3) Once the initial handshake is completed, the next flits are sent using the shared 
req_data_i signal; 4) the Outport Control circuit handles the out-of-phase handshake signals gracefully; 5) the 
last flit detector, built inside the Outport Control, senses the transition on the last_flit_i wire and deasserts the 
arbiter request signal; 6) the arbiter grants access to the output channel to another Outport Control block. The 
transition of req_data_i[0] before the first handshake is generated by the test bench to simulate an out-of-
phase req_data_i signal. 
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Figure 4.16 – Waveform showing the Output Interface communicating with two Input Interfaces. 

4.2.7 Outport Control 

The Outport Control implements the BaT-Hermes communication protocol and is responsible for 
controlling the interactions between II, Arbiter and output channel. The circuit, detailed in Figure 4.17, can be 
split into six blocks: i) last flit detector, formed by FF2, FF3 and the adjoining XOR gate; ii) programmable 
phase matcher for the signal req_data_i, implemented with FF1, LT2 and the connected XOR gates; iii) phase 
matcher circuit to control ack_outport_o, composed by LT1 and the adjoining XOR gates; iv) phase matcher 
to control ack_data_o, comprised of LT3 and the connected XOR gates; v) transition merger circuit, 
connecting the input request signals to LT5; vi) arbiter handshake control, implemented with LT4 and the 
remaining gates. 

The interaction between Arbiter and Outport Control is similar to a level-signaling handshake: first the 
Outport Control asserts the signal arbiter_request_i to request use of the output channel. Once the request is 
granted, the Arbiter signals the Outport Control by asserting arbiter_grant_i. From this moment on, the 
Outport Control has exclusive use of the output channel. This use can be relinquished by deasserting the 
signal arbiter_request_o. A new request can only be made after the deasserted arbiter_grant_i propagates to 
the Outport Control. The four-phase handshake prevents a new req_outport_i request, received soon after the 
end of the previous packet, from being sent to the output channel due to a delayed deassertion of 
arbiter_grant_i. The handshake behavior, implemented by the AND gate connected to the set pin of LT4, 
blocks new requests while the signal arbiter_grant_i is asserted. The grant signal, generated by the AND gate 
connecting arbiter_request_o and arbiter_grant_i, enables the latches LT1, LT2, and LT5, allowing 
handshake signals to propagate. This signal is disabled as soon as arbiter_request_o is deasserted in order to 
prevent incoming handshake signals from propagating. An example of this situation is given at the end of this 
Section. 
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The programmable phase matcher circuit is needed in order to support out-of-phase data requests. An 
XOR gate tests if the signal stored in LT2 is equal to req_data_i. The output of this gate is stored in FF1 on 
the low-to-high transition of the grant signal – that is, when the arbiter grant is given, through arbiter_grant_i. 
The stored value is fed to another XOR gate, which acts as a programmable inverter of req_data_i. When the 
signals are out-of-phase, logic ‘1’ is stored in FF1, inverting req_data_i in order to match the value stored in 
LT2. 

Similar to FF1, FF3 stores the value of last_flit_i when the arbiter grant is given. The last flit of a 
packet can be detected when the last_flit_i becomes different from the value stored in FF3. This test is 
performed by the negative edge-sensitive flip-flop FF2 at the end of each data handshake cycle. Logic ‘1’ is 
stored in FF2 when the arrival of the last flit is identified, which causes LT4 to reset – deasserting 
arbiter_request_o. FF2 is reset when the grant signal goes to zero. 

BaT-Hermes has timing constraints to guarantee that the signals req_data_i and last_flit_i are stable 
before a req_outport_i request can be issued. 

 
Figure 4.17 – Outport Control Architecture, with logic blocks highlighted. 

Figure 4.18 exemplifies the Outport Control operation: 1) the arrival of a req_outport_i request causes 
LT1 to be set, requesting use of the output channel to the Arbiter; 2) once the Arbiter grant is given, the last 
flit detector and programmable phase matcher are initialized in parallel, while the req_outport_i propagates to 
the output req_o; 3) the ack_i signal propagates to ack_outport_o, making LT1 become opaque and LT2 
transparent; 4) a sequence of req_data_i requests and ack_data_o acknowledges takes place while the packet 
is transferred; 5) at the end of the data handshake cycle the last flit detector notices the transition on last_flit_i, 
which makes the output of FF3 (last_flit) to switch to ‘1’, resetting LT4, and, as a consequence, deasserting 
arbiter_request_o. The internal grant signal falls as soon as the signal arbiter_request_o becomes a logic ‘0’, 
resetting FF3 – this is shown in the waveform as a spike on the last_flit signal. 6) A new req_outport_i 
request arrives, but is blocked until the deasserted arbiter_grant_i signal propagates to the Outport Control. If 
the four-phase handshake with the Arbiter was not implemented, the request that was blocked in step 6 would 
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have been propagated to the output channel, as the arbiter_grant_i signal was still high when the 
req_outport_i request arrived. 

 
Figure 4.18 – Waveform showing the operation of an Output Control circuit. 

4.2.8 Arbiter 

The Arbiter is responsible for mediating simultaneous output channel usage requests, granting access to 
only one Outport Control at a time. As discussed in Section 2.2.4, arbitration tasks in asynchronous circuits 
are usually performed with mutual exclusion gates. Bat-Hermes requires a 4-input arbiter, as each OI can 
communicate with up to 4 IIs. Figure 4.19 shows the 4-input arbiter proposed by Ghiribaldi et. al., and used in 
BaT-Hermes. Details about its design can be found in [GHI13]. The C-element and mutex gates needed to 
implement this circuit are available in the ASCEnD Cell Library. 

 
Figure 4.19 – 4-input arbiter design proposed in [GHI13]. 

Figure 4.20 illustrates the operation of the Arbiter: 1) in the absence of contention the grant is 
immediately given; 2) in the presence of contention, similar to the 2-input mutex, only one grant is given at a 
time and is retained for as long as the request signal is asserted; once the request is deasserted, grant is given 
to next request. This design provides a certain degree of fairness when choosing the next request to be 
granted: two requests signals that share the same mutex will not be given consecutive access if a request has 
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been made on the other mutex. This is similar to a round robin policy implemented between the requests on 
the left and right sides of the arbiter [GHI13]. This behavior can be seen on the waveform below. 

 
Figure 4.20 – Waveform showing the operation of the Arbiter. 

4.3 Functional Validation 

The function validation of BaT-Hermes was performed through behavioral simulation using Mentor 
Graphics’ ModelSim. This section describes the techniques used to enable the simulation of an asynchronous 
circuit using a commercial tool designed for synchronous systems. Simulation results are also presented. 

4.3.1 Simulation Wrappers  

The behavioral simulation of asynchronous circuits using tools designed for synchronous system 
simulation can be problematic, since there is no clock signal giving a timing reference to the circuit. 
Nevertheless, there are several ways to overcome this problem. One simple technique is to use the VHDL 
statement “after” on signal assignments to simulate propagation delays. This method, however, requires a 
careful planning of the amount of delay applied to each signal in order to fulfill all timing constrains of the 
circuit. Another approach is to treat each module as an independent self-contained block with internal delay 
long enough to fulfill its timing requirements. For the simulation of BaT-Hermes, this technique was 
implemented in the form of circuit wrappers. 

A wrapper is a VHDL entity with interface identical to the circuit under test (CUT). It employs external 
latches between the control ports of the instantiated CUT and the ports of the wrapper to control signal 
propagation. The order in which latches are enabled and disabled depends on the functionality of the block, 
and must emulate the circuit’s desired sequence of operations – during synthesis, this is achieved by the use of 
relative timing constraints. Only modules capable of generating requests and acknowledges need to be 
wrapped – for example, a Mousetrap stage, that issues an acknowledge when a request is received. However, 
other blocks can be wrapped to simulate propagation delay. Extra latches may be needed in order to fulfill 
dependencies related to signals coming from other blocks.  

Wrappers for the following circuits were created to simulate BaT-Hermes: Input Buffer Control, FIFO 
Write Control, FIFO Read Control, and Routing Control. The first two actively perform handshakes, while 
the remaining were wrapped to simulate the propagation delay. Implementation files for these wrappers are 
available in Appendix A. Figure 4.21 shows the control logic of the wrapper used to simulate the Input Buffer 
Control circuit. Signals whose name starts with “hold” are used to control the extra latches – by asserting 
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them, the latches become opaque. Signals starting with “aux” are the outputs of the CUT that are connected to 
the inputs of their respective latches. In this wrapper, latches to hold the following control signals are used: 
ack_o, req_header_o, and req_data_o. Initially, after reset, the propagation of all these signals is blocked by 
making the latches opaque. Next, the wrapper waits for a request signal to arrive and for the respective 
acknowledge generated by the circuit under test – which, happens immediately, since there is no gate or wire 
delays. After 1 ns, the acknowledge signals is released, by deasserting hold_ack_o. This simulates the time 
needed by the data latch inside Input Buffer Control to store data. After 4 ns, the signals req_header_o and 
req_data_o are released. This delay simulates the propagation time of the logic inside the circuit under test. 
After that, all latches become opaque again, and the wrapper waits for a new request signal. 

 
Figure 4.21 – Fragment showing the control logic of the wrapper used to simulate the Input Buffer 

Control circuit. 

4.3.2 Simulation Results 

Three test cases were used to perform functional validation of BaT-Hermes. In the first, three packets 
were sent from the east port to the north and local ports – the first and last packets to the latter. This test shows 
packets flowing through the router and illustrates the operation of the programmable phase matcher 
implemented in the Outport Control. Figure 4.22 shows the waveforms generated when the test was 
performed: 1) the first flit was sent to the local port using the req_outport signal, causing the initialization of 
the programmable phase matcher associated with the Outport Control interacting with the east port; 2) the 
next flits are sent through the shared req_data signal; 3) the second packet is sent to the north port; by the end 
of the transmission, the phase of the shared req_data signal will be different than its initial state; 4) similarly 

Page 1 of 1/Users/Matheus/Dropbox/TCC/Implementação/Bat-NoC/v4/wrappers/input_buffer_ctrl_wrapper.vhd
Saved: 25/11/13 10:45:42 Printed For: Matheus Gibiluka

--! @file input_buffer_ctrl_wrapper.vhd1
--! @brief Wrapper for input_buffer_ctrl2
--! @author Matheus Gibiluka, matheus.gibiluka@acad.pucrs.br3
--! @date 2013-08-064

5
------------------------------------------------------------------------6
-- Dependencies:7
-- > hermes_bd_package.vhd8
------------------------------------------------------------------------9
-- Interface description:10
--                       ! -------------11
--     !                  |             |12
--     !reset_i---------->|             |13
--        ! !             |             |14
--      ! req_i---------->|             |---------->req_header_o15
--         !!             |             |16
--       !ack_o<----------|             |<----------ack_header_i17
--           !!           |             |18
--                  !     |             |---------->req_data_o 19
--                      ! |             |20
--                     !! |             |<----------ack_data_i21
--                     !  |             |22
-- !! !         FLIT_SIZE |             | FLIT_SIZE23
--       !data_i====/====>|             |=====/====>data_o24
--              !         |             |---------->last_flit_o25
--                   !    |             |26
--                       ! -------------27
------------------------------------------------------------------------28
-- Wrapper Behavior:29
--   0) Output signals related to handshake should be held (ack_o, 30
--      req_header_o, req_data_o)31
--   1) Input handshake starts when req_i /= ack_o.32
--   2) Wait for input handshake acknowledge (req_i = ack_o). If stage is33
--      empty, this will happen right away. 34
--   3) Release ack_o after 1 ns. [Simulating the latch hold constraint. 35
--      These latches in question hold req_i and data_i.]36
--   4) Release req_header_o and req_data_o after 4 ns. [Simulating the 37
--      logic delay of the control circuit.]38
--  39
------------------------------------------------------------------------40

41
42

library ieee;43
use ieee.std_logic_1164.all;44
use work.hermes_bd_package.all;45

46
entity input_buffer_ctrl_wrapper is47
! port(48
! ! reset_i      : in  std_logic; --! Active-high reset signal.49
! ! req_i        : in  std_logic; --! Request signal indicating that new data is available on data_i.50
! ! ack_o        : out std_logic; --! Acknowledge relative to req_i. Indicates that the data was consumed.51
! ! data_i       : in  std_logic_vector(FLIT_SIZE-1 downto 0); --!  Data input.52
! ! req_header_o : out std_logic; --! Request signal indicating that the flit on data_o is the packet header.53
! ! ack_header_i : in  std_logic; --! Acknowledge signal relative to req_header_o. Indicates that header was consumed.54
! ! req_data_o   : out std_logic; --! Request signal indicating that the flit on data_o is payload.55
! ! ack_data_i   : in  std_logic; --! Acknowledge relative to req_data_o. Indicates that the payload was consumed.56
! ! data_o       : out std_logic_vector(FLIT_SIZE-1 downto 0); --! Data output.57
! ! last_flit_o  : out std_logic  --! Active-high signal indicating that the flit on data_o is the last flit of the current packet.58
! );59
end input_buffer_ctrl_wrapper;60

61
architecture sim of input_buffer_ctrl_wrapper is    62
     -- Control signals63
    signal hold_ack_o  !!  : std_logic;64
    signal hold_req_header_o : std_logic;65
    signal hold_req_data_o   : std_logic;66
    67
    -- Aux signals68
    signal aux_ack_o! ! : std_logic;69
    signal aux_req_header_o : std_logic;70
    signal aux_req_data_o   : std_logic;71

72
begin73
    74
    -- Instance of input_buffer_ctrl75
    input_buffer_ctrl_i: entity work.input_buffer_ctrl76
    port map (77
        reset_i  ! => reset_i,78
! ! req_i ! !  => req_i,79
! ! ack_o        => aux_ack_o,80
! ! data_i       => data_i,81
! ! req_header_o => aux_req_header_o,82
! ! ack_header_i => ack_header_i,83
! ! req_data_o   => aux_req_data_o,84
! ! ack_data_i   => ack_data_i,85
! ! data_o   ! => data_o,86
! ! last_flit_o  => last_flit_o87
    );88
    89
    -- Control Logic    90
    control: process91
    begin92
        -- Initializing control signals93
        hold_ack_o <= '0';94
!       hold_req_header_o <= '0';95
    !   hold_req_data_o <= '0';96
        wait until reset_i = '0';97
        loop98
            -- Hold all signals99
            hold_ack_o <= '1';100
            hold_req_header_o <= '1';101
!     !     hold_req_data_o <= '1';102
            103
            -- Wait for req_i request104
            if (req_i = aux_ack_o) then105
                wait until (req_i /= aux_ack_o);106
            end if;107

108
! ! !       -- Wait for ack_o acknowledge. (Mousetrap stage generates ACK right away)109
! ! !       if (req_i /= aux_ack_o) then110
                wait until (req_i = aux_ack_o);111
            end if;112

113
            -- Release #1: ack_o, after 1 ns (latch setup constraint)114
            wait for 1 ns;115
            hold_ack_o <= '0';            116

117
! ! !       -- Release #2, req_header_o and req_data_o, after 4 ns (ctrl logic delay)118
! !       ! wait for 4 ns;119
! !       ! hold_req_header_o <= '0';120
! ! !       hold_req_data_o <= '0';121
! ! !   122
            -- Wait 1 ns before holding it again123
            wait for 1 ns;124
        end loop;125
    end process;126

127
    128
    -- Latches to hold signals129
    latch_ack_o: process(reset_i, hold_ack_o, aux_ack_o)130
    begin131
        if ((reset_i = '1') OR (hold_ack_o = '0')) then132
            ack_o <= aux_ack_o;133
        end if;134
    end process;135
    136
    latch_req_header_o: process(reset_i, hold_req_header_o, aux_req_header_o)137
    begin138
        if ((reset_i = '1') OR (hold_req_header_o = '0')) then139
            req_header_o <= aux_req_header_o;140
        end if;141
    end process;142
    143
    latch_req_data_o: process(reset_i, hold_req_data_o, aux_req_data_o)144
    begin145
        if ((reset_i = '1') OR (hold_req_data_o = '0')) then146
            req_data_o <= aux_req_data_o;147
        end if;148
    end process;149
    150
end sim;151

152
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to step 1, the programmable phase matcher is initialized to allow the out-of-phase req_data signal interact 
with the Outport Control.  

 
Figure 4.22 – Operation of  BaT-Hermes when sending packets from the East port to the North and 

Local ports. 

The second test simulates the router operating at its maximum throughput, which happens when there 
are five connections simultaneously active. In the situation shown in Figure 4.23(a), the connections happen 
as follows: i) from the east port to the local port; ii) from the local port to the north port; iii) from the north 
port to the west port; iv) from the west port to the south port; v) from the south port to the east port.  

The last scenario, shown in Figure 4.23(b), tests the router with presence of contention: all input ports, 
with the exception of the local port, try to send packets to the local output port. It can be seen that the Arbiter 
circuit works as expected, allowing only one Input Interface access the Output Interface at any given time.  
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Figure 4.23 – BaT-Hermes a) operating at peak performance scenario, and b) with contention on the 

output of the local port. 
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5. IMPLEMENTATION 

After functional validation, the Input and Output Interfaces of BaT-Hermes were synthesized to layout 
level using the STMicroelectronics 65nm CMOS technology. The ASCEnD cell library, designed at GAPH, 
provided the mutex and C-element cells required by the Arbiter circuit. The timing constraints identified 
during design were applied in the synthesis process to ensure the correct operation of the circuit. This Chapter 
details how the timing constraints were enforced and describes the synthesis flow used to generate the layouts. 
It also describes post-synthesis simulation with back-annotated delays performed to validate the circuit’s 
functionality.  

5.1 Relative Timing Constraints 

Bundled-data circuits fall under the category of self-timed asynchronous circuits, as they rely on 
carefully designed delay lines to ensure that handshake events take place only when data is valid – that is, the 
request signal must arrive only after the data signal is stable. Relative timing constraints define signal-arrival 
order, and can be used to fulfill these requirements. These constraints relate a base path, an enforced path, and 
a delay line: the enforced-path delay must be greater than the base-path delay; if it is not, a delay line must be 
inserted in the enforced path to fulfill the requirement. Commercial EDA tools, however, are not adapted to 
deal with such constraints in a natural manner [GHI13].  

5.1.1 Enforcing Relative Timing Constraints on Synopsys Tools 

Even though Synopsys tools do not natively support relative timing constraints, an approach for 
enforcing them is proposed in [GHI13], but no EDA support is made available in that reference. The 
methodology consists in iteratively extracting delays from base paths, using the get_timing_path command, 
and applying to enforced paths, using the set_min_delay command, until all constraints are met. However, 
several issues, explained below, may arise when setting minimum delay values. In order to avoid such 
problems, the following guidelines were defined during the development of this work for creating or enforcing 
constraints:  

Gi) A delay-line cannot be inserted in a path that is common to both base and enforced paths of the 
same constraint;  

Gii) Delays cannot be set on paths with forks;  

Giii) Given that d(x,y) calculates the path delay from point x to point y, the delay of a path that goes 
through a delay line should be calculated as:   d(a, b)   =   d(a,m)   +   d(m, n)   +   d(n, b), where 
a and b are, respectively, the start and endpoints of the path; and m and n are, respectively, the 
start and endpoints of the delay line;  

Giv) A delay-line start and endpoint must be referenced by pin, not by net name. 
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The FIFO’s write control circuit, introduced in Section 4.2.3, can be used to illustrate the issues related 
to the set_min_delay command. Figure 5.1(a) shows this circuit after logic synthesis. The detailed part has one 
relative timing constraint: signal phase_select_i must arrive at pin D of full_reg (full_reg/D) before req_i. If 
the delay is set on the path from req_i to full_reg/D, it is not possible to infer where the tool will insert the 
delay line, which can be: a) between U10/Z and U9/D or U9/Z and full_reg/D the delay is applied to both 
req_i and phase_select_i, preventing the constraint from ever being met, and justifying the first guideline 
(Gi); b) from the fork of req_i to U9/B or U10/B the delay is not applied to all paths from req_i to full_reg/D, 
therefore, more iterations may be needed in order to fix delays of remaining paths, which creates redundant 
delay lines, and justifies the second guideline (Gii); c) from req_i to its first wire fork, which is the right place 
to add the delay-line as it affects the whole path of req_i without interfering with phase_select_i. A timing 
path, defined by a timing start and endpoint, is used by Synopsys’ Static Timing Analysis (STA) tool to 
calculate the delays across wires and gates. The timing at these points is broken by the STA tool, therefore 
delays can only be calculated to and from these points – the tool cannot compute the delay across a timing 
points. When the start and endpoints of a delay line are not timing start and endpoints, they become one, 
breaking the timing path through them. For this reason, the delay of a path that goes through a delay line must 
be measured as stated on the third guideline (Giii). Also for this reason, nets should not be used as start or 
endpoints, as it is not possible to infer in which cell the timing path will be broken, justifying the guideline 
number four (Giv). 

 
Figure 5.1 – FIFO’s write controller circuit a) after logic synthesis and b) after adding extra cells to 

control the place where the delay line will be inserted. 

a)

b)
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As stated above, for the circuit shown in Figure 5.1(a) it is desired to insert a delay line between req_i 
and its first wire fork. However, wire forks are not referable in Synopsys’ tools, and, according to guideline 
number four, a delay-line start and endpoints must not be referenced by a net name. The approach taken to 
overcome these issues is the insertion of extra cells in order to create a path where delay lines can be 
appropriately placed. These extra cells cannot change the circuit’s logic - therefore, only buffers and pairs of 
inverters can be used. In an attempt to avoid inserting extra delay where interconnect delay alone are enough 
to fulfill timing requirements, a custom “wire cell”, composed of a single wire with input and output pins, was 
created. This cell was called HS65_GS_BFX0 to maintain the naming pattern used by the standard-cell library, 
and the property size_only was set, preventing it from being removed in logical optimizations, but allowing it 
to be replaced by actual buffers when needed. The extra cells were manually inserted, based on the timing 
constraints defined during design. Figure 5.1(b) shows the FIFO’s write control circuit with a pair of wire 
cells inserted. The delay-line can be created from the startpoint of the wire cell connected to req_i to the 
endpoint of the wire cell connected to the wire fork, ensuring that (Giv) is respected. 

Situations where, due to how the circuit was synthesized, it is not possible to find a place meeting the 
guidelines to insert the extra cells can be solved by creating a new entity wrapping the problematic circuit. 
Since the synthesis flow keeps the hierarchy of the circuit, the additional entity will have a port for each 
signal, creating a place to insert extra cells. 

The wire cell was modeled as a single wire with an input and an output pin, where the output is directly 
connected to the input pins. Parasitics were extracted using Mentor Graphic’s Calibre PEX tool. Electrical 
characterization was performed using Cadence’s Encouter Library Characterization tool employing the same 
non-linear table stimuli used in the characterization of a minimum-size buffer (output capacitance vector and 
input slope vector). The abstract view, shown in Figure 5.2, was created using Cadence’s Abstract Editor. 
Nota that the wire had to be split to generate the .LEF files, since the tool does not allow input and output pins 
to share the same net. However, this does not compromise the functionality of the circuit, given that this view 
is only required for place and route, and power and timing models employed the RC model of a full wire. 
Additionally, the wire cell had the same height of a standard-cell of the library, in order for it to be compatible 
during the placement; VDD and GND rails are also in the default position of the library. For this design, after 
the physical synthesis, all wire cells used in the IIs and OIs were substituted by buffers, suggesting that 
interconnect delay was not enough to fulfill the timing constraints on these circuits.  

 
Figure 5.2 – Abstract view of wire cell, rotated by 90º. 

5.1.2 Automated Constraint Enforcement 

Scripts and functions were created to generate an automated environment for the iterative process of 
constraint enforcement described in the previous Section. This environment was called Asynchronous 
Constraints for Design Compiler (ACDC) and comprises a set of scripts written in TCL and Python that take 
as input an XML file describing the relative timing constraints of the circuit after logic synthesis, as 
exemplified in Figure 5.3. From this file, it generates TCL scripts capable of checking, setting and reporting 
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the defined constraints inside Synopsys’ tools. ACDC performs consistency checks in order to find mistakes 
in the manually generated XML file. At first, it checks if the file is well formatted and semantically correct – 
it verifies, for example, if there is exactly one delay target set on the enforced path, among many other 
verifications. After that, the validity of path names is check with Synopsys’ tools, and constraints containing 
non-existent paths are disabled. If a delay target is shared between constraints, the tool calculates the 
maximum target delay value of all shared constraints, and applies it as the path’s minimum delay, ensuring 
that all constraints are fulfilled. 

The XML structure used by ACDC, shown in Figure 5.3, is very flexible and allows the representation 
of complex paths. Sets, which can be nested, are used to represent a group of paths. Each set has an action 
property that defines how its delay is calculated. The “sum” action returns the sum of all enclosed path- and 
set- delays, which is useful to represent linear paths. The “max” action returns the maximum delay among all 
enclosed paths and sets, and is helpful to represent path branches.  

 
Figure 5.3 – XML file describing the relative timing constraints of the FIFO Write Control circuit, 

shown in Figure 5.1(b). 

Additionally, two TCL functions were created to simplify delay extraction and enforcement. The 
custom_get_delay function returns the delay between the start and endpoints used as, respectively, the first 
and second parameters of the function. A third optional parameter is the type of delay, which can be 
maximum (max, the default option), or minimum (min). Custom_set_delay wraps the set_min_delay 
command to check if the delay constraint was properly set – stopping the execution if an error occurs. It takes 
three parameters: the start and endpoints of the delay line, and the target delay value. 

Page 1 of 1/Users/Matheus/Desktop/fifo_wr_ctrl.xml
Saved: 24/11/13 02:35:28 Printed For: Matheus Gibiluka

<?xml version="1.0" encoding="UTF-8"?>1
2
<design name="input_interface">3

4
! <constraint type="relative" name="wr_ctrl:: req_i vs. phase_select ">5
    <description>data_o vs. wr/full_o to fifo/req_rd for all registers </description>6
!   <base>7
      <path>8
        <startpoint>phase_select_i</startpoint>9
       !<endpoint>full_reg/D*</endpoint>10
! ! ! </path>11
    </base>12
    13
    <enforced>14
      <set action="sum">15
        <path>16
          <startpoint>req_i</startpoint>17
          <endpoint>eco_req_i_1/A</endpoint>18
        </path>19
        <path delayTarget="true">20
          <startpoint>eco_req_i_1/A</startpoint>21
          <endpoint>eco_req_i/Z</endpoint>22
        </path>23
        <path> 24
          <startpoint>eco_req_i/Z</startpoint>25
          <endpoint>full_reg/D*</endpoint>26
        </path>27
      </set>28
 !  </enforced>29
! </constraint>30

31
</design>32

33
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Figure 5.4 – Fragment of the TCL scripts generated by ACDC. This function sets minimum delay 

constraints.  

Figure 5.4 shows the ACDC-generated function used to set the constraints described in the XML file 
shown in Figure 5.3. Lines 4 through 11 extract the minimum and maximum delays of each path referenced in 
the XML file and assign them to custom variables. Line 19 calculates the maximum delay of the base path 
(AC_path1), while the next line calculates the minimum delay of the enforced path – composed by the delay 
from the path’s startpoint to the delay-line’s startpoint (AC_path0_min), delay-line’s delay (AC_path2_min), 
and delay from the delay-line’s endpoint to the path’s endpoint (AC_path3_min). Line 22 calculates the delay-
target’s delay, as shown in Equation 1(b). Lines 25 and 26 apply the previously calculated delay to the delay 
line. If the delay line was shared between constraints, the maximum delay target value of all constraints would 
be calculated in line 25. 

Equation 1 – (a) The enforced-path’s delay must be equal or grater to the base-path’s delay; (b) 
equation to calculate the delay-line’s delay, by isolating it from (a). 

𝐴𝐶_𝑝𝑎𝑡ℎ0_𝑚𝑖𝑛   +   𝐴𝐶_𝑝𝑎𝑡ℎ2_𝑚𝑖𝑛   +   𝐴𝐶_𝑝𝑎𝑡ℎ3_𝑚𝑖𝑛   ≥   𝐴𝐶_𝑝𝑎𝑡ℎ1             (a) 

𝐴𝐶_𝑝𝑎𝑡ℎ2_𝑚𝑖𝑛   ≥   𝐴𝐶_𝑝𝑎𝑡ℎ1   −   (𝐴𝐶_𝑝𝑎𝑡ℎ0_𝑚𝑖𝑛   +   𝐴𝐶_𝑝𝑎𝑡ℎ3_𝑚𝑖𝑛)        (b) 

5.2 Synthesis 

Synthesis was the most challenging step in the development of this work. Synthesis flows for bundled-
data asynchronous circuits using commercial tools are scarse. In fact, the only reference found was [GHI13], 
where very little details are given about the synthesis process. During the many synthesis attempts throughout 
the development of this work, it was observed that, as systems become larger, more relative timing constraints 
are needed in order to ensure proper operation of the circuit. Also, as the number of constraints grows, more 
overlaps may happen, which can cause the addition of redundant delay lines, degrading the circuit’s 
performance. Additionally, the number of iterations needed to fulfill the constraints increases. 

Page 1 of 1/Users/Matheus/Desktop/ACRun/AC_functions.tcl
Saved: 24/11/13 14:04:52 Printed For: Matheus Gibiluka

# AC_set_constraints Function (Generated Automatically) 1
proc AC_set_constraints {} { 2
! # Get Delays 3
! set AC_path0 [custom_get_delay req_i eco_req_i_1/A] 4
! set AC_path0_min [custom_get_delay req_i eco_req_i_1/A min] 5
! set AC_path1 [custom_get_delay phase_select_i full_reg/D*] 6
! set AC_path1_min [custom_get_delay phase_select_i full_reg/D* min] 7
! set AC_path2 [custom_get_delay eco_req_i_1/A eco_req_i/Z] 8
! set AC_path2_min [custom_get_delay eco_req_i_1/A eco_req_i/Z min] 9
! set AC_path3 [custom_get_delay eco_req_i/Z full_reg/D*] 10
! set AC_path3_min [custom_get_delay eco_req_i/Z full_reg/D* min] 11
!12
! # Set Constraints 13
! echo "\n**************************************************** "14
! echo " Setting min_delay Constraints: "15
!16
! ###### Set Constraints 17
! # Constraint 'wr_ctrl:: req_i vs. phase_select ' : 18
! set AC_aux_base [expr $AC_path1 ] 19
! set AC_aux_enforced [expr [expr $AC_path0_min + $AC_path2_min + $AC_path3_min ]  ] 20
! set AC_aux_delta [expr $AC_aux_base - $AC_aux_enforced + $AC_path2_min ]  21
! set AC_cnst0 $AC_aux_delta 22
! echo "\tConstraint 'wr_ctrl:: req_i vs. phase_select ' set. "23
!24
! set AC_aux $AC_cnst0 25
! custom_set_min_delay eco_req_i_1/A eco_req_i/Z $AC_aux 26
!27
} 28

29
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Based on those observations, a synthesis flow was created in order to avoid conflicts between 
constraints. It consists of synthesizing each module of the system individually, in a bottom up manner. The 
post physical synthesis netlist of each circuit, generated after the respective timing constraints were met, is 
used, instead of its behavioral VHDL implementation, to instantiate the module. Even though it is not 
guaranteed that the constraints will still be fulfilled once the netlist is instantiated, as the placement and 
routing of the new circuit will be different from the one when the netlist was generated, it is fair to assume 
that, if needed, the amount of extra delay to meet the constraints will be small. Therefore, when synthesizing a 
circuit that instantiates other blocks, the relative timing constraints calculations can take into account the 
delays of these blocks, which are known at this stage (post-synthesis), possibly creating smaller delay lines. 
Note that the XML constraints file has to include the internal timing constraints of the instantiated modules as 
well, in order to guarantee that all constraints are met. 

The following logic and physical flows were used to perform the synthesis of every component of BaT-
Hermes. Synopsys’ Design Compiler and IC Compiler were used to perform, respectively, logic and physical 
synthesis. 

5.2.1 Logic Synthesis Flow 

The logic synthesis flow can be divided in three phases: settings, initial synthesis, and optimization. In 
the first phase, tool configurations and design-specific settings are applied. Next, an initial synthesis is 
performed in order to map the design using the standard cell library. Finally, the design is optimized to a 
given target: low area, high performance, or low power. 

In asynchronous systems, not only the logic function, but also the structure of the circuit defines the 
system’s behavior [GHI13]. To guarantee that Design Compiler does not make structural changes during 
synthesis, logic optimizations can be disabled with the command set_structure. Next, timing loops of the 
instantiated modules need to be disabled to avoid the insertion of loopbreakers. A timing loop is a 
combinational circuit with feedback signal – for example, the Mousetrap stage control latch, where its output 
signal is fed back as the enable signal, after passing through an XNOR gate. As such loops prevent Design 
Compiler from performing static timing analysis, the tool inserts extra buffers in the feedback path and 
disables the timing through them, breaking the feedback path – these buffers are called loopbreakers. If 
loopbreakers are inserted in a path with a relative timing constraint, ACDC may not be able to calculate the 
delay of the path, and may fail. Also, the dont_touch flag is set for instantiated modules to preserve the delay 
lines and prevent logic changes. 

 After these initial settings, logic synthesis is performed with the command compile_ultra. The flag 
no_autoungroup is used to keep the hierarchical structure of the circuit. The optimization phase consists in 
setting constraints to achieve a desired target and running compile_ultra again to optimize the circuit. BaT-
Hermes aims for high performance, therefore maximum delay constraints for critical paths were set with the 
set_max_delay command. Additionally, timing loops related to the newly synthesized circuit also have to be 
disabled. The insertion of extra buffers to allow the creation of delay lines can be performed after the 
optimizations. Before storing the design, the size_only flag is applied to the circuit to allow cell resize and 
buffer insertion while preventing logic changes. 
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5.2.2 Physical Synthesis Flow 

Similarly to the logic synthesis, the physical synthesis flow can also be divided in three phases: 
settings, initial synthesis and constraint enforcement. The input to this flow is the mapped netlist generated in 
the logic synthesis. Initially, the timing loops of the circuit to be synthesized are disabled and the dont_touch 
property is applied to the circuit. The set_cost_priority command is used to increase the priority of minimum 
delay constraints, since they are used by ACDC to enforce the relative timing constraints. Next, the initial 
physical synthesis is performed using a standard synthesis flow. 

After initial synthesis, the dont_touch property is replaced by size_only in order enable cell resize and 
buffer insertion. The buffers and inverters from the core library present asymmetric rise and fall times, which 
can greatly degrade the performance of the circuit if used to create the delay lines. This is because the circuit 
is based on transition signaling and, therefore, the worst case between rising and falling propagation delays is 
employed for dimensioning the delay lines. The bigger the difference between these delays, the bigger is the 
impact in the average latency, as the handshake protocol relies on alternated falling and rising edges of the 
request signal. The solution found was to build the delay lines with standard cells designed for clock tree 
synthesis, as they are symmetric with respect to rise and fall times. The ACDC environment is then employed 
to enforce the relative timing constraints.   

5.2.3 BaT-Hermes Synthesis  

The BaT-Hermes router is composed by a set of ports, each with IIs and OIs. Each interface can be 
synthesized individually and saved as a hard macro. The same OI macro can be instantiated across all ports, 
whereas a different II macro must be generated for each port, since the Routing Control logic depends on the 
address of the router and the in which port it will be used. The router is assembled by interconnecting IIs to 
OIs, as discussed in Section 4.1.2. 

Unfortunately, due to the problems that had to be overcome in order to create the synthesis flow, a full 
router could not be synthesized in time to be included in this work. However, the local port of a router, 
featuring 16-bit flit size and an 8-flit input buffer, was successfully synthesized and validated. 

 
Figure 5.5 – Layout of synthesized a) Input Interface and b) Output Interface circuits. 

a) b)
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The synthesis targeted the STMicroelectronics 65nm general-purpose standard-Vt CMOS technology. 
The ASCEnD cell library, available for this technology, provided the required asynchronous cells. Figure 5.5 
shows the layout of the synthesized interfaces. Table 2 compares the total cell area of each circuit with the 
area occupied by buffers and inverters, most of which were used in delay lines. Post-synthesis functional 
validation is shown in Section 4.3. 

Table 2 – Area used by the synthesized Input and Output Interfaces. 

 Total Cell Area Buffer and 
Inverter Area 

% of Buffers 
and Inverters 

Input Interface 4357µm2 1489µm2 34,1% 

Output Interface 1428µm2 600µm2 42,0% 

5.3 Post-Synthesis Validation 

After physical synthesis, the netlist and .SDF file of the Input and Output Interfaces were exported and 
used to perform the post-synthesis functional validation with back-annotated delays. Cadence’s SimVision 
simulator was employed in this task.  

5.3.1 Input Interface 

The test case applied to the II simulates an IP Core connected to the local port sending packets to all 
other cores of a 3x3 mesh network. Figure 5.6 shows an overview of the waveforms generated by this test 
case. Note the stalled ack_o signal (1) generated when the input buffer becomes full. The signals that 
communicate with the Output Interface were grouped to help identifying the destination of each request: 
Outport 0 groups signals sent to the east port; Outport 1 combine signals sent to the west port; signals 
intended for the north port are grouped under Outport 2; Outport 3 combines signals sent to the south port. 
Shared signals, like data_o, req_data_o, and last_flit_o were replicated in each of these groups to help to 
comprehend which handshakes are taking place at each instant. The signals from Outport 4 refer to the local 
port and are not shown, since loopback connections are not supported by BaT-Hermes. 
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Figure 5.6 – Post-synthesis simulation of an Input Interface sending packets to the a) west, b) east, c) 

north, and d) south Output Interfaces. 

Figure 5.7 shows a detailed view of Figure 5.6(a) to illustrate the flits flowing through the II. Arrows 
show the propagation of the first flit of each packet sent to the west OI. 

 
Figure 5.7 - Detailed view of Figure 5.6(a), showing flits propagating through the Input Interface. 

The forward latency, measured as the time it takes for an incoming request to propagate to the output, is 
2.255ns.  The average time between data handshakes is 1.08ns. At the input, the average delay between 
successive acknowledges is 0.745ns. 

5.3.2 Output Interface 

The test case applied to the Output Interface simulates four IIs trying to send a packet simultaneously. 
Figure 5.8 shows the simulation waveforms. Note that the req_data_i (1) signals, connected to Outputs 0 and 
2, are out-of-phase with the respective ack_data_o. This allows simulating the programmable phase matcher 
circuit, for the sake of validation. All req_outport_i (2) signals switch at the same time, competing for access 
to the output channel. Arbitration works as expected, grating access to only one Outport Control at any given 
time.  
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Figure 5.8 - Post-synthesis simulation of an Output Interface receiving four packets simultaneously. 

The average forward delay, computed from the req_data_i to req_o, is 0.677ns. The average cycle time 
at the output channel is 0.95ps. 
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6. CONCLUSIONS AND FUTURE WORK 

This work proposed an asynchronous transition-signaling bundled-data NoC router, called BaT-
Hermes. The design, based on the highly decoupled architecture of the YeAH! router, is composed of several 
independent modules, that can be connected to assemble a router. A full BaT-Hermes was validated through 
behavioral simulation.  

Unfortunately, the synthesis process was far more complex than anticipated and a full router could not 
be synthesized in time to be included in this work, and is left as a future work. However, one port, composed 
by an II and OI was synthesized to the STMicroelectronics 65nm CMOS technology and validated through 
post-synthesis simulation, enabling the validation of the proposed synthesis methodology and the ACDC 
environment. In this way, apart from the designed NoC router, another contribution from this work is the 
methodology for synthesis of bundled-data circuits using commercial CAD tools, along with automated 
environment for enforcing relative timing constraints, namely ACDC. 

6.1 Future Work 

This work presents many topics for further research. The most immediate is the synthesis of a full BaT-
Hermes router and its comparison with the fully synchronous YeAH! router. Due to the many structural 
similarities between them, this is a great opportunity to assess the differences of each implementation style 
with respect to metrics like latency, throughput, area, and power consumption. 

Another interesting topic for research is alternative ways to implement the router, aiming for a simpler 
synthesis process. One idea is to only use Mousetrap stages as storage elements, implementing the router as a 
“pure pipeline”. This approach can greatly simplify the synthesis because relative timing constraints are 
restricted to each pair of stages. An interesting study could be conducted comparing the final circuit 
performance with the synthesis effort for various design techniques.   

Other possibility for future work is on the improvement of the ACDC environment to support automatic 
constraint detection. Additionally, related work could be conducted about synchronization interfaces that need 
to be used when interfacing asynchronous and synchronous circuits. 
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A. BaT-Hermes VHDL Description 

This appendix contains the VHDL implementation code and simulation wrappers for each module of 
BaT-Hermes. 

A.1 Settings Package 

 
Figure A.1 – VHDL source code for the settings package (part 1 of 2). 

--! @file hermes_bd_package.vhd !1
--! @brief Global definitions for the Hermes Bundled-data Network !2
--! @author Matheus Gibiluka, mgibiluka@me.com !3
--! @date 2013-07-13 !4
!5
!6
library ieee; !7
use ieee.std_logic_1164.all; !8
use ieee.std_logic_unsigned.all; !9
!10
package hermes_bd_package is        !11
    -- The flit size should be modified with scripts !12
    -- since was not possible to change its value !13
    -- with genereics yet !14
" constant FLIT_SIZE : integer range 1 to 64 := 16; !15
" !16
" constant PORTS_NUMBER: integer := 5; !17
!18
" -- Port IDs !19
" constant EAST  : integer := 0; !20
" constant WEST  : integer := 1; !21
" constant NORTH : integer := 2; !22
" constant SOUTH : integer := 3; !23
" constant LOCAL : integer := 4; !24
" !25
" -- Types !26
" type flit_size_array is array(natural range<>) of std_logic_vector(FLIT_SIZE-1 downto 0); !27
" !28
" -- Functions !29
" -- Helper functions useful to implement phase-matching !30
" function xor_all_bits_considering_comm_ports (X : std_logic_vector; COMM_PORTS : std_logic_vector; THIS_PORT: integer ) 31
return std_logic; !…
" function xor_all_bits_but_one_considering_comm_ports (X : std_logic_vector; N : integer; COMM_PORTS : std_logic_vector; 32
THIS_PORT : integer) return std_logic; !…
!33
    function number_of_used_ports (COMM_PORTS : std_logic_vector; THIS_PORT : integer) return integer; !34
" !35
" !36
end package; !37
!38
!39
package body hermes_bd_package is!40
" !41
" -- Helper function to XOR all bits, considering COMM_PORTS and THIS_PORT values. !42
" function xor_all_bits_considering_comm_ports (X : std_logic_vector; COMM_PORTS : std_logic_vector; THIS_PORT: integer ) 43
return std_logic is!…
" " variable aux : std_logic := '0'; !44
" begin!45
" " for i in X'range loop!46
" "     if ((i /= THIS_PORT) and (COMM_PORTS(i) = '1')) then!47
    " " " aux := aux XOR X(i); !48
"     " end if;"!49
"   " end loop; !50
  " " return aux; !51
" end xor_all_bits_considering_comm_ports; !52
" !53
" !54
" -- Helper function to XOR all bits but one, considering COMM_PORTS and THIS_PORT values. !55
" function xor_all_bits_but_one_considering_comm_ports (X : std_logic_vector; N : integer; COMM_PORTS : std_logic_vector; 56
THIS_PORT : integer) return std_logic is !…
" " variable aux : std_logic := '0'; !57
" begin!58
" " for i in X'range loop!59
" " " if ((i /= N) and (i /= THIS_PORT) and (COMM_PORTS(i) = '1')) then!60
" " "     aux := aux XOR X(i); !61
" " " end if; !62
"   " end loop; !63
  " " return aux; !64
" end xor_all_bits_but_one_considering_comm_ports; !65
" !66
"  -- Helper function to calculate the actual number of outports being used !67
" function number_of_used_ports (COMM_PORTS : std_logic_vector; THIS_PORT : integer) return integer is!68
"     variable cnt : integer := 0; !69
" begin!70
"     for i in COMM_PORTS'range loop!71
"         if ((i /= THIS_PORT) and (COMM_PORTS(i) = '1')) then!72
"             cnt := cnt + 1; !73
"         end if; !74
"     end loop; !75
"     return cnt; !76
" end number_of_used_ports; !77
" !78
end package body; !79

80
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Figure A.2 – VHDL source code for the settings package (part 2 of 2). 

A.2 FIFO  

 
Figure A.3 – VHDL source code for FIFO Write Control module. 

--! @file hermes_bd_package.vhd !1
--! @brief Global definitions for the Hermes Bundled-data Network !2
--! @author Matheus Gibiluka, mgibiluka@me.com !3
--! @date 2013-07-13 !4
!5
!6
library ieee; !7
use ieee.std_logic_1164.all; !8
use ieee.std_logic_unsigned.all; !9
!10
package hermes_bd_package is        !11
    -- The flit size should be modified with scripts !12
    -- since was not possible to change its value !13
    -- with genereics yet !14
" constant FLIT_SIZE : integer range 1 to 64 := 16; !15
" !16
" constant PORTS_NUMBER: integer := 5; !17
!18
" -- Port IDs !19
" constant EAST  : integer := 0; !20
" constant WEST  : integer := 1; !21
" constant NORTH : integer := 2; !22
" constant SOUTH : integer := 3; !23
" constant LOCAL : integer := 4; !24
" !25
" -- Types !26
" type flit_size_array is array(natural range<>) of std_logic_vector(FLIT_SIZE-1 downto 0); !27
" !28
" -- Functions !29
" -- Helper functions useful to implement phase-matching !30
" function xor_all_bits_considering_comm_ports (X : std_logic_vector; COMM_PORTS : std_logic_vector; THIS_PORT: integer ) 31
return std_logic; !…
" function xor_all_bits_but_one_considering_comm_ports (X : std_logic_vector; N : integer; COMM_PORTS : std_logic_vector; 32
THIS_PORT : integer) return std_logic; !…
!33
    function number_of_used_ports (COMM_PORTS : std_logic_vector; THIS_PORT : integer) return integer; !34
" !35
" !36
end package; !37
!38
!39
package body hermes_bd_package is!40
" !41
" -- Helper function to XOR all bits, considering COMM_PORTS and THIS_PORT values. !42
" function xor_all_bits_considering_comm_ports (X : std_logic_vector; COMM_PORTS : std_logic_vector; THIS_PORT: integer ) 43
return std_logic is!…
" " variable aux : std_logic := '0'; !44
" begin!45
" " for i in X'range loop!46
" "     if ((i /= THIS_PORT) and (COMM_PORTS(i) = '1')) then!47
    " " " aux := aux XOR X(i); !48
"     " end if;"!49
"   " end loop; !50
  " " return aux; !51
" end xor_all_bits_considering_comm_ports; !52
" !53
" !54
" -- Helper function to XOR all bits but one, considering COMM_PORTS and THIS_PORT values. !55
" function xor_all_bits_but_one_considering_comm_ports (X : std_logic_vector; N : integer; COMM_PORTS : std_logic_vector; 56
THIS_PORT : integer) return std_logic is!…
" " variable aux : std_logic := '0'; !57
" begin!58
" " for i in X'range loop!59
" " " if ((i /= N) and (i /= THIS_PORT) and (COMM_PORTS(i) = '1')) then!60
" " "     aux := aux XOR X(i); !61
" " " end if; !62
"   " end loop; !63
  " " return aux; !64
" end xor_all_bits_but_one_considering_comm_ports; !65
" !66
"  -- Helper function to calculate the actual number of outports being used !67
" function number_of_used_ports (COMM_PORTS : std_logic_vector; THIS_PORT : integer) return integer is!68
"     variable cnt : integer := 0; !69
" begin!70
"     for i in COMM_PORTS'range loop!71
"         if ((i /= THIS_PORT) and (COMM_PORTS(i) = '1')) then!72
"             cnt := cnt + 1; !73
"         end if; !74
"     end loop; !75
"     return cnt; !76
" end number_of_used_ports; !77
" !78
end package body; !79

80

--! @file fifo_wr_ctrl.vhd !1
--! @brief Write control unit for circular FIFO. All handshake signals use transition signaling protocol. !2
--! @author Matheus Gibiluka, matheus.gibiluka@acad.pucrs.br !3
--! @date 2013-07-24 !4
!5
------------------------------------------------------------------------ !6
-- Interface description: !7
--  "                       ------------- !8
--"                     "  |             | !9
--         reset_i---------->|             | !10
--                           |             | !11
--            en_i---------->|             | !12
--                           |             | !13
--  phase_select_i---------->|             | !14
--           req_i---------->|             |---------->full_o !15
--                           |             | !16
--           ack_o<----------|             |<----------empty_i !17
--                           |             | !18
--" " " " " " "  |" " "    |---------->reg_en_o !19
--                            ------------- !20
------------------------------------------------------------------------ !21
!22
!23
library ieee; !24
use ieee.std_logic_1164.all; !25
!26
entity fifo_wr_ctrl is!27
" port( !28
" " reset_i        : in  std_logic; --! Active-high reset signal. !29
" " en_i           : in  std_logic; --! Signal to enable this controller. !30
" " req_i          : in  std_logic; --! Request signal indicating that new data is available to be written. !31
" " ack_o          : out std_logic; --! Acknowledge signal relative to req_i. Indicates that the data has been stored. !32
" " phase_select_i : in  std_logic; --! Signal used for full_o phase matching. !33
" " full_o         : out std_logic; --! Request signal indicating that new data has been written on the register. !34
" " empty_i        : in  std_logic; --! Acknowledge signal relative to full_o. Indicates that the data has been read. !35
" " reg_en_o       : out std_logic  --! Signal to control the register(latch). High makes latch transparent(store); low 36
turns it opaque(hold). !…
" ); !37
end fifo_wr_ctrl; !38
!39
!40
architecture fifo_wr_ctrl of fifo_wr_ctrl is !41
    signal full   : std_logic; -- Same as full_o !42
    signal req    : std_logic; -- req_i signal phase-matched to full_o !43
    signal reg_en : std_logic; -- Signal that controls the full_o latch; Same as reg_en_o !44
    !45
begin!46
    full_o <= full; !47
    ack_o <= full; !48
    reg_en_o <= reg_en; !49
!50
    -- Matching req_i signal to the phase of full_o !51
    req <= req_i XOR phase_select_i; !52
    !53
    -- Enables next write if the register's data has been read !54
    -- [It's this register's turn to write AND the register is empty (full/empty handshake is complete)] !55
    reg_en <= en_i AND (empty_i XNOR full); !56
!57
    -- Latch that controls requests (full_o) !58
    process(reset_i, reg_en, req) !59
    begin!60
        if (reset_i = '1') then!61
            full <= '0'; !62
        elsif (reg_en = '1') then!63
            full <= req; !64
        end if; !65
    end process; !66
!67
end fifo_wr_ctrl; !68

69
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Figure A.4 – VHDL source code for simulation wrapper of FIFO Write Control (part 1 of 2). 

--! @file fifo_wr_ctrl_wrapper.vhd !1
--! @brief Wrapper for fifo_wr_ctrl !2
--! @author Matheus Gibiluka, matheus.gibiluka@acad.pucrs.br !3
--! @date 2013-07-24 !4
!5
------------------------------------------------------------------------ !6
-- Interface description: !7
--  "                       ------------- !8
--"                     "  |             | !9
--         reset_i---------->|             | !10
--                           |             | !11
--            en_i---------->|             | !12
--                           |             | !13
--  phase_select_i---------->|             | !14
--           req_i---------->|             |---------->full_o !15
--                           |             | !16
--           ack_o<----------|             |<----------empty_i !17
--                           |             | !18
--" " " " " " "  |" " "    |---------->reg_en_o !19
--                            ------------- !20
------------------------------------------------------------------------ !21
-- Wrapper Behavior: !22
--   0) Output handshake signals should be held (ack_o, full_o) !23
--   1) Handshake starts when (full_o /= empty_i) !24
--   2) Release order: full_o > ack_o !25
--   3) Wait for Ack (full_o = empty_i) !26
-- !27
--   * Unlike the fifo_rd_ctrl_wrapper, there is no need to hold the en_i !28
--     signal. The internal closed loop issue is handled by making !29
--     sure that the ack_o is released after the full_o. This guarantees !30
--     that the right value of full will be available when the write_ptr !31
--     changes. !32
-- !33
--  ** Because there is no internal delay, the reg_en_o signal will appear !34
--     as an impulse on the simulation. This signal will look as expected !35
--     when the request "req_i" is made after both "empty_i" ack arrives !36
--     and "en_i" is asserted. !37
--     (I.e: empty_i > en_i > req_i, or en_i > empty_i > req_i) !38
-- !39
------------------------------------------------------------------------ !40
!41
!42
library ieee; !43
use ieee.std_logic_1164.all; !44
!45
entity fifo_wr_ctrl_wrapper is!46
" port( !47
" " reset_i        : in  std_logic; --! Active-high reset signal. !48
" " en_i           : in  std_logic; --! Signal to enable this controller. !49
" " req_i          : in  std_logic; --! Request signal indicating that new data is available to be written. !50
" " ack_o          : out std_logic; --! Acknowledge signal relative to req_i. Indicates that the data has been stored. !51
" " phase_select_i : in  std_logic; --! Signal used for full_o phase matching. !52
" " full_o         : out std_logic; --! Request signal indicating that new data has been written on the register. !53
" " empty_i        : in  std_logic; --! Acknowledge signal relative to full_o. Indicates that the data has been read. !54
" " reg_en_o       : out std_logic  --! Signal to control the register(latch). High makes latch transparent(store); 55
low turns it opaque(hold). !…
" ); !56
end fifo_wr_ctrl_wrapper; !57
!58
architecture sim of fifo_wr_ctrl_wrapper is    !59
     -- Control signals !60
    signal hold_ack_o    : std_logic; !61
    signal hold_full_o   : std_logic; !62
    !63
    -- Aux signals !64
    signal aux_ack_o    : std_logic; !65
    signal aux_full_o   : std_logic; !66
    !67
begin!68
    !69
    -- Instance of fifo_wr_ctrl !70
    fifo_wr_ctrl_i: entity work.fifo_wr_ctrl !71
    port map ( !72
        reset_i        => reset_i, !73
" " en_i           => en_i, !74
" " req_i          => req_i, !75
" " ack_o          => aux_ack_o, !76
" " empty_i        => empty_i, !77
" " full_o         => aux_full_o, !78
    " phase_select_i => phase_select_i, !79
" " reg_en_o       => reg_en_o !80
    ); !81
!82
    -- Control Logic !83
    control: process!84
    begin!85
        -- Initializing control signals !86
        hold_ack_o <= '0'; !87
        hold_full_o <= '0'; !88
        wait until reset_i = '0'; !89
        -- Hold handshake signals !90
        hold_ack_o <= '1'; !91
        hold_full_o <= '1'; !92
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Figure A.5 - VHDL source code for simulation wrapper of FIFO Write Control (part 2 of 2). 

 

 
Figure A.6 - VHDL source code for FIFO Read Control module (part 1 of 2). 

        loop!93
            -- Wait request (full_o transitions when a valid req_i transition is made) !94
            if ((en_i /= '1') OR (aux_full_o = empty_i)) then!95
                wait until ((en_i = '1') AND (aux_full_o /= empty_i)); !96
            end if; !97
            -- Release #1: full_o, after 1 ns !98
            wait for 1 ns;           !99
            hold_full_o <= '0'; !100
            -- Release #2: ack_o, after 1 ns; !101
            wait for 1 ns; !102
            hold_ack_o <= '0';       !103
            wait for 1 ns; !104
            -- Hold handshake signals !105
            hold_ack_o <= '1'; !106
            hold_full_o <= '1'; !107
!108
            -- Wait acknowledge from full/empty handshake !109
            if (empty_i /= aux_full_o) then!110
                wait until empty_i = aux_full_o; !111
            end if; !112
            !113
        end loop; !114
    end process; !115
!116
    !117
    -- Latches to hold signals !118
    latch_ack_o: process(reset_i, hold_ack_o, aux_ack_o) !119
    begin!120
        if ((reset_i = '1') OR (hold_ack_o = '0')) then!121
            ack_o <= aux_ack_o; !122
        end if; !123
    end process; !124
    !125
    latch_full_o: process(reset_i, hold_full_o, aux_full_o) !126
    begin!127
        if ((reset_i = '1') OR (hold_full_o = '0')) then!128
            full_o <= aux_full_o; !129
        end if; !130
    end process; !131
!132
end sim; !133

134

--! @file fifo_rd_ctrl.vhd !1
--! @brief Read control unit for circular FIFO. All handshake signals use transition signaling protocol. !2
--! @author Matheus Gibiluka, matheus.gibiluka@acad.pucrs.br !3
--! @date 2013-07-24 !4
!5
------------------------------------------------------------------------ !6
-- Interface description: !7
--                            ------------- !8
--                           |             | !9
--         reset_i---------->|             | !10
--                           |             | !11
--             en_i--------->|             | !12
--                           |             | !13
--           full_i----------|             |---------->req_o !14
--                           |             | !15
-- "" " " "          |             |<----------phase_select_i !16
--"        empty_o<----------|" " "    |<----------ack_i !17
--" " "     " " "  |" " "    | !18
--                            ------------- !19
------------------------------------------------------------------------ !20
!21
!22
library ieee; !23
use ieee.std_logic_1164.all; !24
!25
entity fifo_rd_ctrl is!26
" port( !27
" " reset_i        : in  std_logic; --! Active-high reset signal. !28
" " en_i           : in  std_logic; --! Signal to enable this controller. !29
" " full_i         : in  std_logic; --! Request signal indicating that new data has been written on the register. !30
" " empty_o        : out std_logic; --! Acknowledge signal relative to full_i. Indicates that the data has been read. !31
" " phase_select_i : in  std_logic; --! Signal used for empty_o phase matching. !32
" " req_o          : out std_logic; --! Request signal indicating that new data is available to be read. !33
" " ack_i          : in  std_logic  --! Acknowledge signal relative to req_o. Indicates that the data has been read. !34
" ); !35
end fifo_rd_ctrl; !36
!37
!38
architecture fifo_rd_ctrl of fifo_rd_ctrl is !39
    signal ack         : std_logic; -- ack_i signal phase-matched to empty_o !40
    signal req         : std_logic; -- Same as req_o !41
    signal empty       : std_logic; -- Same as empty_o !42
    signal waiting_ack : std_logic; -- Signal that controls the empty_o latch !43
    !44
begin!45
    req_o <= req; !46
    empty_o <= empty; !47
!48
    -- Matching ack_i signal to the phase of empty_o !49
    ack <= ack_i XOR phase_select_i; !50
    !51
    -- Signal indicating that a req_o request has been made, but hasn't received ack_i acknowledge yet !52
    waiting_ack <= empty XOR req; !53
    !54
    -- Latch that controls requests (req_o) !55
    process(reset_i, en_i, full_i) !56
    begin!57
        if (reset_i = '1') then!58
            req <= '0'; !59
        elsif (en_i = '1') then!60
            req <= full_i; !61
        end if; !62
    end process; !63
    !64
    -- Latch that controls acknowledges (empty_o) !65
    process(reset_i, waiting_ack, ack) !66
    begin!67
        if (reset_i = '1') then!68
            empty <= '0'; !69
        elsif (waiting_ack = '1') then!70
            empty <= ack; !71
        end if; !72
    end process; !73
    !74
end fifo_rd_ctrl; !75

76
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Figure A.7 - VHDL source code for FIFO Read Control module (part 2 of 2). 

 
Figure A.8 - VHDL source code for simulation wrapper of FIFO Read Control (part 1 of 2). 

--! @file fifo_rd_ctrl.vhd !1
--! @brief Read control unit for circular FIFO. All handshake signals use transition signaling protocol. !2
--! @author Matheus Gibiluka, matheus.gibiluka@acad.pucrs.br !3
--! @date 2013-07-24 !4
!5
------------------------------------------------------------------------ !6
-- Interface description: !7
--                            ------------- !8
--                           |             | !9
--         reset_i---------->|             | !10
--                           |             | !11
--             en_i--------->|             | !12
--                           |             | !13
--           full_i----------|             |---------->req_o !14
--                           |             | !15
-- "" " " "          |             |<----------phase_select_i !16
--"        empty_o<----------|" " "    |<----------ack_i !17
--" " "     " " "  |" " "    | !18
--                            ------------- !19
------------------------------------------------------------------------ !20
!21
!22
library ieee; !23
use ieee.std_logic_1164.all; !24
!25
entity fifo_rd_ctrl is!26
" port( !27
" " reset_i        : in  std_logic; --! Active-high reset signal. !28
" " en_i           : in  std_logic; --! Signal to enable this controller. !29
" " full_i         : in  std_logic; --! Request signal indicating that new data has been written on the register. !30
" " empty_o        : out std_logic; --! Acknowledge signal relative to full_i. Indicates that the data has been read. !31
" " phase_select_i : in  std_logic; --! Signal used for empty_o phase matching. !32
" " req_o          : out std_logic; --! Request signal indicating that new data is available to be read. !33
" " ack_i          : in  std_logic  --! Acknowledge signal relative to req_o. Indicates that the data has been read. !34
" ); !35
end fifo_rd_ctrl; !36
!37
!38
architecture fifo_rd_ctrl of fifo_rd_ctrl is !39
    signal ack         : std_logic; -- ack_i signal phase-matched to empty_o !40
    signal req         : std_logic; -- Same as req_o !41
    signal empty       : std_logic; -- Same as empty_o !42
    signal waiting_ack : std_logic; -- Signal that controls the empty_o latch !43
    !44
begin!45
    req_o <= req; !46
    empty_o <= empty; !47
!48
    -- Matching ack_i signal to the phase of empty_o !49
    ack <= ack_i XOR phase_select_i; !50
    !51
    -- Signal indicating that a req_o request has been made, but hasn't received ack_i acknowledge yet !52
    waiting_ack <= empty XOR req; !53
    !54
    -- Latch that controls requests (req_o) !55
    process(reset_i, en_i, full_i) !56
    begin!57
        if (reset_i = '1') then!58
            req <= '0'; !59
        elsif (en_i = '1') then!60
            req <= full_i; !61
        end if; !62
    end process; !63
    !64
    -- Latch that controls acknowledges (empty_o) !65
    process(reset_i, waiting_ack, ack) !66
    begin!67
        if (reset_i = '1') then!68
            empty <= '0'; !69
        elsif (waiting_ack = '1') then!70
            empty <= ack; !71
        end if; !72
    end process; !73
    !74
end fifo_rd_ctrl; !75

76

--! @file fifo_rd_ctrl_wrapper.vhd !1
--! @brief Wrapper for fifo_rd_ctrl !2
--! @author Matheus Gibiluka, matheus.gibiluka@acad.pucrs.br !3
--! @date 2013-07-25 !4
!5
------------------------------------------------------------------------ !6
-- Interface description: !7
--                            ------------- !8
--                           |             | !9
--         reset_i---------->|             | !10
--                           |             | !11
--             en_i--------->|             | !12
--                           |             | !13
--           full_i----------|             |---------->req_o !14
--                           |             | !15
-- "" " " "          |             |<----------phase_select_i !16
--"        empty_o<----------|" " "    |<----------ack_i !17
--" " "     " " "  |" " "    | !18
--                            ------------- !19
------------------------------------------------------------------------ !20
-- Wrapper Behavior: !21
--   0) Enable and output handshake signals should be held (en_i, full_o) !22
--   1) Handshake starts when (full_i /= empty_o) and (en_i = '1') !23
--   2) Release en_1 after 1 ns. To simulate delay and account for close !24
--      loop signal inside fifo_rd_ctrl (req_o controls the empty_o latch) !25
--   3) Wait for Ack (full_i = empty_i) !26
--   4) Release empty_o after 1 ns (To simulate delay) !27
--  !28
--   * The closed loop signal makes the latch that controls empty_o become !29
--     opaque instantly due to a phase mismatch introduced by the delay !30
--     of the empty_next_i signal. To fix this without having to change !31
--     the fifo_rd_ctrl we had to simulate a delay on the assertion of the !32
--     en_i signal (there is no wrapper arround the pointer counter). By !33
--     holding en_i for the duration of the empty_next_i delay, this !34
--     "race condition" is resolved (for simulation purpose). !35
------------------------------------------------------------------------ !36
!37
!38
library ieee; !39
use ieee.std_logic_1164.all; !40
!41
entity fifo_rd_ctrl_wrapper is!42
" port( !43
" " reset_i        : in  std_logic; --! Active-high reset signal. !44
" " en_i           : in  std_logic; --! Signal to enable this controller. !45
" " full_i         : in  std_logic; --! Request signal indicating that new data has been written on the register. !46
" " empty_o        : out std_logic; --! Acknowledge signal relative to full_i. Indicates that the data has been read. !47
" " phase_select_i : in  std_logic; --! Signal used for empty_o phase matching. !48
" " req_o          : out std_logic; --! Request signal indicating that new data is available to be read. !49
" " ack_i          : in  std_logic  --! Acknowledge signal relative to req_o. Indicates that the data has been read. !50
" ); !51
end fifo_rd_ctrl_wrapper; !52
!53
architecture sim of fifo_rd_ctrl_wrapper is    !54
     -- Control signals !55
    signal hold_en_i    : std_logic; !56
    signal hold_empty_o : std_logic; !57
    !58
    -- Aux signals !59
    signal aux_empty_o : std_logic; !60
    signal aux_en_i    : std_logic; !61
!62
begin!63
    !64
    -- Instance of fifo_rd_ctrl !65
    fifo_rd_ctrl_i: entity work.fifo_rd_ctrl !66
    port map ( !67
        reset_i        => reset_i, !68
" " en_i           => aux_en_i, !69
" " full_i         => full_i, !70
" " empty_o        => aux_empty_o, !71
" " phase_select_i => phase_select_i, !72
" " req_o          => req_o, !73
    " ack_i          => ack_i !74
    ); !75
    !76
    -- Control Logic !77
    control: process!78
    begin!79
        -- Initializing control signals !80
        hold_en_i <= '0'; !81
        hold_empty_o <= '0'; !82
        wait until reset_i = '0'; !83
        loop!84
            -- Hold all signals !85
            hold_en_i <= '1'; !86
            hold_empty_o <= '1'; !87
            !88
            -- Wait for valid handshake (rd_ctrl enabled and full_i request) !89
            if ((en_i /= '1') OR (full_i = aux_empty_o)) then!90
                wait until ((en_i = '1') AND (full_i /= aux_empty_o)); !91
            end if; !92
            -- Release #1: en_i, after 1 ns !93
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Figure A.9 - VHDL source code for simulation wrapper of FIFO Read Control (part 2 of 2). 

--! @file fifo_rd_ctrl_wrapper.vhd !1
--! @brief Wrapper for fifo_rd_ctrl !2
--! @author Matheus Gibiluka, matheus.gibiluka@acad.pucrs.br !3
--! @date 2013-07-25 !4
!5
------------------------------------------------------------------------ !6
-- Interface description: !7
--                            ------------- !8
--                           |             | !9
--         reset_i---------->|             | !10
--                           |             | !11
--             en_i--------->|             | !12
--                           |             | !13
--           full_i----------|             |---------->req_o !14
--                           |             | !15
-- "" " " "          |             |<----------phase_select_i !16
--"        empty_o<----------|" " "    |<----------ack_i !17
--" " "     " " "  |" " "    | !18
--                            ------------- !19
------------------------------------------------------------------------ !20
-- Wrapper Behavior: !21
--   0) Enable and output handshake signals should be held (en_i, full_o) !22
--   1) Handshake starts when (full_i /= empty_o) and (en_i = '1') !23
--   2) Release en_1 after 1 ns. To simulate delay and account for close !24
--      loop signal inside fifo_rd_ctrl (req_o controls the empty_o latch) !25
--   3) Wait for Ack (full_i = empty_i) !26
--   4) Release empty_o after 1 ns (To simulate delay) !27
--  !28
--   * The closed loop signal makes the latch that controls empty_o become !29
--     opaque instantly due to a phase mismatch introduced by the delay !30
--     of the empty_next_i signal. To fix this without having to change !31
--     the fifo_rd_ctrl we had to simulate a delay on the assertion of the !32
--     en_i signal (there is no wrapper arround the pointer counter). By !33
--     holding en_i for the duration of the empty_next_i delay, this !34
--     "race condition" is resolved (for simulation purpose). !35
------------------------------------------------------------------------ !36
!37
!38
library ieee; !39
use ieee.std_logic_1164.all; !40
!41
entity fifo_rd_ctrl_wrapper is!42
" port( !43
" " reset_i        : in  std_logic; --! Active-high reset signal. !44
" " en_i           : in  std_logic; --! Signal to enable this controller. !45
" " full_i         : in  std_logic; --! Request signal indicating that new data has been written on the register. !46
" " empty_o        : out std_logic; --! Acknowledge signal relative to full_i. Indicates that the data has been read. !47
" " phase_select_i : in  std_logic; --! Signal used for empty_o phase matching. !48
" " req_o          : out std_logic; --! Request signal indicating that new data is available to be read. !49
" " ack_i          : in  std_logic  --! Acknowledge signal relative to req_o. Indicates that the data has been read. !50
" ); !51
end fifo_rd_ctrl_wrapper; !52
!53
architecture sim of fifo_rd_ctrl_wrapper is    !54
     -- Control signals !55
    signal hold_en_i    : std_logic; !56
    signal hold_empty_o : std_logic; !57
    !58
    -- Aux signals !59
    signal aux_empty_o : std_logic; !60
    signal aux_en_i    : std_logic; !61
!62
begin!63
    !64
    -- Instance of fifo_rd_ctrl !65
    fifo_rd_ctrl_i: entity work.fifo_rd_ctrl !66
    port map ( !67
        reset_i        => reset_i, !68
" " en_i           => aux_en_i, !69
" " full_i         => full_i, !70
" " empty_o        => aux_empty_o, !71
" " phase_select_i => phase_select_i, !72
" " req_o          => req_o, !73
    " ack_i          => ack_i !74
    ); !75
    !76
    -- Control Logic !77
    control: process!78
    begin!79
        -- Initializing control signals !80
        hold_en_i <= '0'; !81
        hold_empty_o <= '0'; !82
        wait until reset_i = '0'; !83
        loop!84
            -- Hold all signals !85
            hold_en_i <= '1'; !86
            hold_empty_o <= '1'; !87
            !88
            -- Wait for valid handshake (rd_ctrl enabled and full_i request) !89
            if ((en_i /= '1') OR (full_i = aux_empty_o)) then!90
                wait until ((en_i = '1') AND (full_i /= aux_empty_o)); !91
            end if; !92
            -- Release #1: en_i, after 1 ns !93

            wait for 1 ns; !94
            hold_en_i <= '0';            !95
            -- Wait for ack_i acknowledge !96
            if (aux_empty_o /= full_i) then!97
                wait until (aux_empty_o = full_i); !98
            end if; !99
            -- Release #2: empty_o, after 1 ns !100
            wait for 1 ns; !101
            hold_empty_o <= '0'; !102
            -- Wait 1 ns before holding it again !103
            wait for 1 ns; !104
        end loop; !105
    end process; !106
!107
    !108
    -- Latches to hold signals !109
    latch_en_i: process(reset_i, hold_en_i, en_i) !110
    begin!111
        if ((reset_i = '1') OR (hold_en_i = '0')) then!112
            aux_en_i <= en_i; !113
        end if; !114
    end process; !115
    !116
    latch_empty_o: process(reset_i, hold_empty_o, aux_empty_o) !117
    begin!118
        if ((reset_i = '1') OR (hold_empty_o = '0')) then!119
            empty_o <= aux_empty_o; !120
        end if; !121
    end process; !122
    !123
end sim; !124

125
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Figure A.10 - VHDL source code for FIFO module (part 1 of 3). 

--! @file fifo.vhd !1
--! @brief Handshake-based FIFO using transition signaling protocol. !2
--! @author Matheus Gibiluka, matheus.gibiluka@acad.pucrs.br !3
--! @date 2013-07-14 !4
!5
------------------------------------------------------------------------ !6
-- Dependencies: !7
-- > hermes_bd_package.vhd !8
------------------------------------------------------------------------ !9
-- Generics for configuration: !10
--  BUFFER_DEPTH: Defines the depth of the buffer !11
------------------------------------------------------------------------ !12
-- Interface description: !13
--                           ------------- !14
--                          |             | !15
--    "   reset_i---------->|             | !16
--                          |             | !17
--    "  req_wr_i---------->|             |---------->req_rd_o !18
--         "                |             | !19
--    "  ack_wr_o<----------|             |<----------ack_rd_i !20
--           "             |             | !21
--             "    WIDTH   |             |   WIDTH !22
--       " data_i====/====>|             |=====/====>data_o !23
--            "             |             | !24
--             "             ------------- !25
------------------------------------------------------------------------ !26
!27
!28
library ieee; !29
use ieee.std_logic_1164.all; !30
use ieee.std_logic_misc.all; !31
use work.hermes_bd_package.all; !32
!33
entity fifo is!34
" generic( !35
" " BUFFER_DEPTH : integer := 8 --! Defines the depth of the buffer. !36
" ); !37
" port( !38
" " reset_i  : in  std_logic; --! Active-high reset signal. !39
" " req_wr_i : in  std_logic; --! Request signal indicating that new data is available to be written. !40
" " ack_wr_o : out std_logic; --! Acknowledge signal relative to req_wr_i. Indicates that the data has been stored. !41
" " data_i   : in  std_logic_vector(FLIT_SIZE-1 downto 0); --! Data input. !42
" " req_rd_o : out std_logic; --! Request signal indicating that new data is available to be read. !43
" " ack_rd_i : in  std_logic; --! Acknowledge signal relative to req_rd_o. Indicates that the data has been read. !44
" " data_o   : out std_logic_vector(FLIT_SIZE-1 downto 0) --! Data output. !45
" ); !46
end fifo; !47
!48
architecture circular of fifo is!49
    signal write_ptr   : std_logic_vector(BUFFER_DEPTH-1 downto 0); -- Write Pointer (1-hot) !50
    signal read_ptr    : std_logic_vector(BUFFER_DEPTH-1 downto 0); -- Read Pointer (1-hot) !51
    signal ack_wr_ctrl : std_logic_vector(BUFFER_DEPTH-1 downto 0); -- Acknowledge signals generated by wr_ctrl (data has 52
been written) !…
    signal req_rd_ctrl : std_logic_vector(BUFFER_DEPTH-1 downto 0); -- Request signals generated by rd_ctrl (data is 53
available to be read) !…
    signal full        : std_logic_vector(BUFFER_DEPTH-1 downto 0); -- Request signals generated by wr_ctrl (data is 54
available to be read) !…
    signal empty       : std_logic_vector(BUFFER_DEPTH-1 downto 0); -- Acknowledge signals generated by rd_ctrl (data has 55
been read) !…
    signal reg_en      : std_logic_vector(BUFFER_DEPTH-1 downto 0); -- Register enable signals generated by wr_ctrl. !56
    !57
    signal ack_wr      : std_logic; -- Same as ack_wr_o !58
    signal req_rd      : std_logic; -- Same as req_rd_o !59
    signal next_wr_ptr : std_logic; -- Control signal for Write Counter (increment on rising edge) !60
    signal next_rd_ptr : std_logic; -- Control signal for Read Counter (increment on rising edge) !61
!62
    type reg_t is array (0 to BUFFER_DEPTH-1) of std_logic_vector(FLIT_SIZE-1 downto 0); !63
    signal reg : reg_t; -- Register bank (latches) !64
    !65
begin!66
!67
    -- Write Interface !68
    --========================================================================= !69
" ack_wr <= xor_reduce(ack_wr_ctrl); -- Generates ack_wr with the correct phase !70
    ack_wr_o <= ack_wr; !71
    !72
    -- Write Counter !73
    next_wr_ptr <= req_wr_i XNOR ack_wr; -- Rising edge means that handshake was completed !74
" write_counter: process(reset_i, next_wr_ptr) !75
    begin!76
        if (reset_i = '1') then!77
            write_ptr <= (others=>'0'); !78
            write_ptr(0) <= '1'; !79
        elsif next_wr_ptr'event and (next_wr_ptr = '1') then!80
            -- Ring counter !81
            write_ptr <= write_ptr(BUFFER_DEPTH-2 downto 0) & write_ptr(BUFFER_DEPTH-1) ; !82
        end if;   !83
    end process; !84
            !85
    -- Write Control !86
    wr_ctrl: for i in 0 to BUFFER_DEPTH-1 generate!87
        -- Generate for even-depth FIFO !88
        wr_ctrl_even: if ((BUFFER_DEPTH rem 2) = 0) generate!89
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Figure A.11 - VHDL source code for FIFO module (part 2 of 3). 

            --  Generating control for even-depth FIFO and even control index !90
            wr_full_gen_1: if ((i rem 2) = 0) generate!91
                wr_ctrl_i: entity work.fifo_wr_ctrl_wrapper !92
                port map ( !93
                    reset_i        => reset_i, !94
            " " en_i           => write_ptr(i), !95
" "             req_i          => req_wr_i, !96
        " "     ack_o          => ack_wr_ctrl(i), !97
    " "         empty_i        => empty(i), !98
            " " full_o         => full(i), !99
                " phase_select_i => full(i+1), !100
        "     " reg_en_o       => reg_en(i) !101
                );    !102
            end generate wr_full_gen_1; !103
        !104
            -- Generating control for even-depth FIFO and odd control index !105
            wr_full_gen_2: if ((i rem 2 ) /= 0) generate!106
               wr_ctrl_i: entity work.fifo_wr_ctrl_wrapper !107
                port map ( !108
                    reset_i        => reset_i, !109
            " " en_i           => write_ptr(i), !110
"     "         req_i          => req_wr_i, !111
            " " ack_o          => ack_wr_ctrl(i), !112
" "             empty_i        => empty(i), !113
            " " full_o         => full(i), !114
                " phase_select_i => full(i-1), !115
            " " reg_en_o       => reg_en(i) !116
                ); !117
            end generate wr_full_gen_2; !118
        end generate wr_ctrl_even;    !119
        !120
        -- Generate for odd-depth FIFO !121
        wr_ctrl_odd: if ((BUFFER_DEPTH rem 2) /= 0) generate!122
            --  Generating control for odd-depth FIFO and even control index !123
            wr_full_gen_3: if ((i rem 2) = 0) generate!124
                wr_ctrl_i: entity work.fifo_wr_ctrl_wrapper !125
                port map ( !126
                    reset_i        => reset_i, !127
            " " en_i           => write_ptr(i), !128
" "             req_i          => req_wr_i, !129
        " "     ack_o          => ack_wr_ctrl(i), !130
    " "         empty_i        => empty(i), !131
            " " full_o         => full(i), !132
                " phase_select_i => '0', !133
        "     " reg_en_o       => reg_en(i) !134
                );    !135
            end generate wr_full_gen_3; !136
        !137
            -- Generating control for even-depth FIFO and odd control index !138
            wr_full_gen_4: if ((i rem 2 ) /= 0) generate!139
               wr_ctrl_i: entity work.fifo_wr_ctrl_wrapper !140
                port map ( !141
                    reset_i        => reset_i, !142
            " " en_i           => write_ptr(i), !143
"     "         req_i          => req_wr_i, !144
            " " ack_o          => ack_wr_ctrl(i), !145
" "             empty_i        => empty(i), !146
            " " full_o         => full(i), !147
                " phase_select_i => '1', !148
            " " reg_en_o       => reg_en(i) !149
                ); !150
            end generate wr_full_gen_4; !151
        end generate wr_ctrl_odd;    !152
    end generate wr_ctrl; !153
   !154
   !155
    -- Read Interface !156
    --========================================================================= !157
    req_rd <= xor_reduce(req_rd_ctrl); -- Generates req_rd with the correct phase !158
    req_rd_o <= req_rd; !159
    !160
    -- Read Counter !161
    next_rd_ptr <= ack_rd_i XNOR req_rd; -- Rising edge means that handshake was completed !162
" read_counter: process(reset_i, next_rd_ptr) !163
    begin!164
        if (reset_i = '1') then!165
            read_ptr <= (others=>'0'); !166
            read_ptr(0) <= '1'; !167
        elsif next_rd_ptr'event and (next_rd_ptr = '1') then!168
            -- Ring counter !169
            read_ptr <= read_ptr(BUFFER_DEPTH-2 downto 0) & read_ptr(BUFFER_DEPTH-1) ; !170
        end if;   !171
    end process;    !172
!173
    -- Read Control !174
    rd_ctrl: for i in 0 to BUFFER_DEPTH-1 generate!175
        -- Generate for even-depth FIFO !176
        rd_ctrl_even: if ((BUFFER_DEPTH rem 2) = 0) generate!177
            -- Generating control for even-depth FIFO and even control index  !178
            rd_ctrl_gen_1: if ((i rem 2) = 0) generate!179
                rd_ctrl_i: entity work.fifo_rd_ctrl_wrapper !180
                port map ( !181
                    reset_i        => reset_i, !182
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Figure A.12 - VHDL source code for FIFO module (part 3 of 3). 

            " " en_i           => read_ptr(i), !183
            " " full_i         => full(i), !184
            " " empty_o        => empty(i), !185
        "     " phase_select_i => empty(i+1), !186
        " "     req_o          => req_rd_ctrl(i), !187
                " ack_i          => ack_rd_i !188
                );     !189
            end generate rd_ctrl_gen_1; !190
                !191
            -- Generating control for even-depth FIFO and odd control index  !192
            rd_ctrl_gen_2: if ((i rem 2 ) /= 0) generate!193
                rd_ctrl_i: entity work.fifo_rd_ctrl_wrapper !194
                port map ( !195
                    reset_i        => reset_i, !196
        " "     en_i           => read_ptr(i), !197
            " " full_i         => full(i), !198
            " " empty_o        => empty(i), !199
            " " phase_select_i => empty(i-1), !200
        "     " req_o          => req_rd_ctrl(i), !201
            "     ack_i          => ack_rd_i !202
                ); !203
            end generate rd_ctrl_gen_2; !204
        end generate rd_ctrl_even; !205
        !206
        -- Generate for odd depth FIFO !207
        rd_ctrl_odd: if ((BUFFER_DEPTH rem 2) /= 0) generate!208
            -- Generating control for odd-depth FIFO and even control index !209
            rd_ctrl_gen_3: if ((i rem 2) = 0) generate!210
                rd_ctrl_i: entity work.fifo_rd_ctrl_wrapper !211
                port map ( !212
                    reset_i        => reset_i, !213
            " " en_i           => read_ptr(i), !214
            " " full_i         => full(i), !215
            " " empty_o        => empty(i), !216
        "     " phase_select_i => '0', !217
        " "     req_o          => req_rd_ctrl(i), !218
                " ack_i          => ack_rd_i !219
                );     !220
            end generate rd_ctrl_gen_3; !221
                !222
            -- Generating control for odd-depth FIFO and odd control index !223
            rd_ctrl_gen_4: if ((i rem 2 ) /= 0) generate!224
                rd_ctrl_i: entity work.fifo_rd_ctrl_wrapper !225
                port map ( !226
                    reset_i        => reset_i, !227
        " "     en_i           => read_ptr(i), !228
            " " full_i         => full(i), !229
            " " empty_o        => empty(i), !230
            " " phase_select_i => '1', !231
        "     " req_o          => req_rd_ctrl(i), !232
            "     ack_i          => ack_rd_i !233
                ); !234
            end generate rd_ctrl_gen_4; !235
        end generate rd_ctrl_odd; !236
    end generate rd_ctrl; !237
   !238
    -- Data Path !239
    --========================================================================= !240
    !241
    -- Data registers (latches) !242
    reg_gen: for i in 0 to BUFFER_DEPTH-1 generate!243
        data_reg: process(reg_en(i), data_i) !244
        begin!245
            if (reg_en(i) = '1') then!246
                reg(i) <= data_i; !247
            end if; !248
        end process; !249
    end generate reg_gen; !250
    !251
    -- MUX that selects which register will be read !252
    reg_mux_gen: for i in 0 to BUFFER_DEPTH-1 generate!253
        data_o <= reg(i) when read_ptr(i) = '1' else !254
                  (others => 'Z'); !255
    end generate reg_mux_gen; !256
    !257
end circular; !258

259
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A.3 Input Buffer 

 
Figure A.13 - VHDL source code for Mousetrap stage. 

--! @file mousetrap_ctrl.vhd !1
--! @brief Control stage of the Mousetrap pipeline template. !2
--! @author Matheus Gibiluka, matheus.gibiluka@acad.pucrs.br !3
--! @date 2013-11-10 !4
!5
------------------------------------------------------------------------ !6
-- Interface description: !7
--                       "  ------------- !8
--     "                    |             | !9
--     "  reset_i---------->|             | !10
--     "                    |             | !11
--      " req_i---------->|             |---------->req_o !12
--           " "         |             | !13
--      " ack_o<----------|             |<----------ack_i !14
--           " "         |             | !15
--           " "         |             |---------->en_o !16
--           " "         |             | !17
--                       "  ------------- !18
------------------------------------------------------------------------ !19
!20
library ieee; !21
use ieee.std_logic_1164.all; !22
!23
entity mousetrap_ctrl is!24
" port( !25
" " reset_i : in  std_logic; --! Active-high reset signal. !26
" " req_i   : in  std_logic; --! Incoming Request signal. !27
" " ack_o   : out std_logic; --! Acknowledge relative to req_i. !28
" " req_o   : out std_logic; --! Outgoing request signal. Same as req_i, after passing through the latch. !29
" " ack_i   : in  std_logic; --! Acknowledge relative to req_o. !30
" " en_o    : out std_logic  --! Active-high enable signal used to control the latch. May be used to control a data 31
latch. !…
" ); !32
end mousetrap_ctrl; !33
!34
architecture mousetrap_ctrl of mousetrap_ctrl is   !35
    signal req : std_logic; -- req_i after passing through latch. !36
    signal en  : std_logic; -- Signal to control the latch. !37
!38
begin!39
    en <= req XNOR ack_i; !40
    en_o <= en; !41
    req_o <= req; !42
    ack_o <= req; !43
!44
    -- Latch !45
" process(reset_i, en, req_i) !46
" begin!47
" " if (reset_i = '1') then!48
" " " req <= '0'; !49
" " elsif (en = '1') then!50
" " " req <= req_i; !51
" " end if; !52
" end process; !53
    !54
end mousetrap_ctrl; !55

56
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Figure A.14 - VHDL source code for request splitter circuit. 

--! @file request_splitter.vhd !1
--! @brief Circuit to split the request signal into req_header and req_data, handling phase-matching and latch-enable 2
signals. !…
--! @author Matheus Gibiluka, matheus.gibiluka@acad.pucrs.br !3
--! @date 2013-11-10 !4
!5
------------------------------------------------------------------------ !6
-- Interface description: !7
--                       "  ------------- !8
--     "                    |             | !9
--     "  reset_i---------->|             | !10
--     "                    |             | !11
--          req_i---------->|             |---------->req_header_o !12
--      " ack_o<----------|             |<----------ack_header_i !13
--           " "         |             | !14
--           " "         |             |---------->req_data_o !15
--last_flit_lvl_i---------->|             |<----------ack_data_i !16
--           " "         |             | !17
--                       "  ------------- !18
------------------------------------------------------------------------ !19
!20
library ieee; !21
use ieee.std_logic_1164.all; !22
!23
entity request_splitter is!24
" port( !25
" " reset_i         : in  std_logic; --! Active-high reset signal. !26
" " req_i           : in  std_logic; --! Request signal. !27
" " ack_o           : out std_logic; --! Acknowledge relative to req_i (ack_header_i xored with ack_data_i). !28
        req_header_o    : out std_logic; --! Header request signal. The next req will be redirected to req_data_o. !29
        ack_header_i    : in  std_logic; --! Acknowledge relative to req_header_o. !30
        req_data_o      : out std_logic; --! Data request signal. This request will be repeatedly made until 31
last_flit_lvl_i becomes high, then the next one will be redirected to req_header_o. !…
        ack_data_i      : in  std_logic; --! Acknowledge relative to req_data_o. !32
        last_flit_lvl_i : in  std_logic  --! Signal indicating that the next request to be made is a header request. !33
" ); !34
end request_splitter; !35
!36
architecture request_splitter of request_splitter is!37
    signal req_header_phasematched : std_logic; -- req_i after being phase-matched to req_header. !38
    signal req_header              : std_logic; -- Same as req_header_o. !39
    signal req_data_phasematched   : std_logic; -- req_i after being phase-matched to req_data. !40
    signal req_data                : std_logic; -- Same as req_data_o. !41
    signal data_hs                 : std_logic; -- Signal that indicates when a data handshake will be performed. !42
    signal hs_complete             : std_logic; -- Signal that indicates when the handshake was completed). !43
!44
!45
begin!46
    ack_o <= ack_header_i XOR ack_data_i; !47
    req_header_o <= req_header; !48
    req_data_o <= req_data; !49
!50
!51
    -- Latch Enable Controller (Low-to-high transition when a handshake is completed) !52
    hs_complete <= (req_data XNOR req_data_phasematched) when (data_hs = '1') else !53
" " "        (req_header XNOR req_header_phasematched); !54
!55
    process(reset_i, hs_complete) !56
" begin!57
" " if (reset_i = '1') then!58
" " " data_hs <= '0'; !59
" " elsif (hs_complete'event and (hs_complete = '1')) then!60
" " " data_hs <= not(data_hs and last_flit_lvl_i); !61
" " end if; !62
" end process; !63
!64
!65
    -- req_header Latch !66
    req_header_phasematched <= req_i XOR req_data; !67
    !68
    process(reset_i, data_hs, req_header_phasematched) !69
" begin!70
" " if (reset_i = '1') then!71
" " " req_header <= '0'; !72
" " elsif (data_hs = '0') then!73
" " " req_header <= req_header_phasematched; !74
" " end if; !75
" end process; !76
" !77
" !78
" -- req_header Latch !79
    req_data_phasematched <= req_i XOR req_header; !80
    !81
    process(reset_i, data_hs, req_data_phasematched) !82
" begin!83
" " if (reset_i = '1') then!84
" " " req_data <= '0'; !85
" " elsif (data_hs = '1') then!86
" " " req_data <= req_data_phasematched; !87
" " end if; !88
" end process; !89
    !90
end request_splitter; !91
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Figure A.15 - VHDL source code for Input Buffer Control module (part 1 of 2). 

--! @file input_buffer_ctrl.vhd !1
--! @brief Control unit for the input_buffer. All handshake signals use transition signaling protocol. !2
--! @author Matheus Gibiluka, matheus.gibiluka@acad.pucrs.br !3
--! Originally created in 2013-08-06. !4
--! @date 2013-11-10 !5
!6
------------------------------------------------------------------------ !7
-- Dependencies: !8
-- > hermes_bd_package.vhd !9
------------------------------------------------------------------------ !10
-- Interface description: !11
--                       "  ------------- !12
--     "                    |             | !13
--     "  reset_i---------->|             | !14
--        " "             |             | !15
--      " req_i---------->|             |---------->req_header_o !16
--         ""             |             | !17
--       " ack_o<----------|             |<----------ack_header_i !18
--           " "         |             | !19
--                  "     |             |---------->req_data_o !20
--                      " |             | !21
--                     "" |             |<----------ack_data_i !22
--                     "    |             | !23
-- "" "       FLIT_SIZE |             | FLIT_SIZE !24
--       " data_i====/====>|             |=====/====>data_o !25
--              "         |             |---------->last_flit_o !26
--                   "     |             | !27
--                       "  ------------- !28
------------------------------------------------------------------------ !29
!30
!31
library ieee; !32
use ieee.std_logic_1164.all; !33
use ieee.std_logic_unsigned.all; !34
use work.hermes_bd_package.all; !35
!36
entity input_buffer_ctrl is !37
" port( !38
" " reset_i      : in  std_logic; --! Active-high reset signal. !39
" " req_i        : in  std_logic; --! Request signal indicating that new data is available on data_i. !40
" " ack_o        : out std_logic; --! Acknowledge relative to req_i. Indicates that the data was consumed. !41
" " data_i       : in  std_logic_vector(FLIT_SIZE-1 downto 0); --!  Data input. !42
" " req_header_o : out std_logic; --! Request signal indicating that the flit on data_o is the packet header. !43
" " ack_header_i : in  std_logic; --! Acknowledge signal relative to req_header_o. Indicates that header was consumed. !44
" " req_data_o   : out std_logic; --! Request signal indicating that the flit on data_o is payload. !45
" " ack_data_i   : in  std_logic; --! Acknowledge relative to req_data_o. Indicates that the payload was consumed. !46
" " data_o       : out std_logic_vector(FLIT_SIZE-1 downto 0); --! Data output. !47
" " last_flit_o  : out std_logic  --! Transition-encoded signal indicating that the flit on data_o is the last flit of 48
the current packet. !…
" ); !49
end input_buffer_ctrl; !50
!51
architecture input_buffer_ctrl of input_buffer_ctrl is!52
" signal en" "      : std_logic; -- Signal that controls the registers in the data path. !53
" signal req" "      : std_logic; -- Request signal after passing through the Mousetrap Control. !54
" signal ack           : std_logic; -- Acknowledge signal after passing through the request_splitter. !55
" signal data "      : std_logic_vector(FLIT_SIZE-1 downto 0); -- Latch that holds data_i. !56
    signal flit_counter  : std_logic_vector(FLIT_SIZE-1 downto 0); -- Holds how many flits still need to be sent !57
    signal last_flit_lvl : std_logic; -- Level-encoded active-high signal indicating that the flit on the data latch is 58
the last of the current packet. !…
    signal size_flit     : std_logic; -- Level-encoded active_high signal indicating that the flit on the data latch has 59
the size of the current packet. !…
    signal last_flit     : std_logic; -- Same as last_flit_o. !60
    !61
    !62
begin!63
    data_o <= data; !64
    !65
    -- Mousetrap stage at the input !66
    --========================================================================= !67
    -- Control Latch !68
    mousetrap_ctrl_i: entity work.mousetrap_ctrl !69
    port map ( !70
" " reset_i => reset_i, !71
" " req_i   => req_i, !72
" " ack_o   => ack_o, !73
" " req_o   => req, !74
" " ack_i   => ack, !75
" " en_o    => en !76
" ); !77
!78
    -- Data Latch !79
    process(reset_i, en, data_i) !80
    begin!81
    " if (reset_i = '1') then!82
    " " data <= (others => '0'); !83
    " elsif (en = '1') then!84
    " " data <= data_i; !85
    " end if; !86
    end process; !87
    !88
    !89
    -- Request Splitter, to generate req_header_o and req_data_o !90
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Figure A.16 - VHDL source code for Input Buffer Control module (part 2 of 2). 

    --========================================================================= !91
    request_splitter_i: entity work.request_splitter !92
    port map ( !93
" " reset_i         => reset_i, !94
" " req_i           => req, !95
" " ack_o           => ack, !96
        req_header_o    => req_header_o, !97
        ack_header_i    => ack_header_i, !98
        req_data_o      => req_data_o, !99
        ack_data_i      => ack_data_i, !100
        last_flit_lvl_i => last_flit_lvl !101
" ); !102
    !103
    !104
" -- Control State Machine !105
    --========================================================================= !106
    -- flit_counter Flip-Flop (Sampled at the request transition, reset by last_flit_lvl) !107
    process(last_flit_lvl, en) !108
    begin!109
    " if (last_flit_lvl = '1') then!110
    " " flit_counter <= (others => '0'); !111
    " elsif (en'event and (en = '0')) then!112
    " " if (size_flit = '1') then!113
    " " " flit_counter <= data_i; !114
    " " else!115
    " " " flit_counter <= flit_counter - 1; !116
    " " end if; !117
    " end if; !118
    end process; !119
    !120
    !121
    -- last_flit_lvl Flip-Flop (Sampled at request transition)  !122
    process(reset_i, en) !123
    begin!124
    " if (reset_i = '1') then!125
    " " last_flit_lvl <= '1'; !126
    " elsif (en'event and (en = '0')) then!127
    " " if (flit_counter = x"1") then!128
    " " " last_flit_lvl <= '1'; !129
    " " else!130
    " " " last_flit_lvl <= '0'; !131
    " " end if; !132
    " end if; !133
    end process; !134
    !135
    !136
    -- size_flit Flip-Flop (Sampled at request transition !137
    process(reset_i, en) !138
    begin!139
    " if (reset_i = '1') then!140
    " " size_flit <= '0'; !141
    " elsif (en'event and (en = '0')) then!142
    " " size_flit <= last_flit_lvl; !143
    " end if; !144
    end process; !145
    !146
    !147
    -- Transition-encoded last_flit_o Generator !148
    --========================================================================= !149
    -- last_flit_o Flip-Flop (Sampled at low-to-high transition of last_flit_lvl) !150
    last_flit_o <= last_flit; !151
    !152
    process(reset_i, last_flit_lvl) !153
    begin!154
    " if (reset_i = '1') then!155
    " " last_flit <= '0'; !156
    " elsif (last_flit_lvl'event and (last_flit_lvl = '1')) then!157
    " " last_flit <= not(last_flit); !158
    " end if; !159
    end process; !160
    !161
    !162
end input_buffer_ctrl; !163

164
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Figure A.17 - VHDL source code for simulation wrapper of Input Buffer Control (part 1 of 2). 

--! @file input_buffer_ctrl_wrapper.vhd !1
--! @brief Wrapper for input_buffer_ctrl !2
--! @author Matheus Gibiluka, matheus.gibiluka@acad.pucrs.br !3
--! @date 2013-08-06 !4
!5
------------------------------------------------------------------------ !6
-- Dependencies: !7
-- > hermes_bd_package.vhd !8
------------------------------------------------------------------------ !9
-- Interface description: !10
--                         ------------- !11
--     "                  |             | !12
--     "reset_i---------->|             | !13
--        " "           |             | !14
--        req_i---------->|             |---------->req_header_o !15
--                        |             | !16
--        ack_o<----------|             |<----------ack_header_i !17
--           " "       |             | !18
--                  "   |             |---------->req_data_o !19
--                        |             | !20
--                     "  |             |<----------ack_data_i !21
--                     "  |             | !22
-- "" "     FLIT_SIZE |             | FLIT_SIZE !23
--        data_i====/====>|             |=====/====>data_o !24
--              "       |             |---------->last_flit_o !25
--                   "   |             | !26
--                         ------------- !27
------------------------------------------------------------------------ !28
-- Wrapper Behavior: !29
--   0) Output signals related to handshake should be held (ack_o, !30
--      req_header_o, req_data_o) !31
--   1) Input handshake starts when req_i /= ack_o. !32
--   2) Wait for input handshake acknowledge (req_i = ack_o). If stage is !33
--      empty, this will happen right away. !34
--   3) Release ack_o after 1 ns. [Simulating the latch hold constraint. !35
--      These latches in question hold req_i and data_i.] !36
--   4) Release req_header_o and req_data_o after 4 ns. [Simulating the !37
--      logic delay of the control circuit.] !38
--  !39
------------------------------------------------------------------------ !40
!41
!42
library ieee; !43
use ieee.std_logic_1164.all; !44
use work.hermes_bd_package.all; !45
!46
entity input_buffer_ctrl_wrapper is!47
" port( !48
" " reset_i      : in  std_logic; --! Active-high reset signal. !49
" " req_i        : in  std_logic; --! Request signal indicating that new data is available on data_i. !50
" " ack_o        : out std_logic; --! Acknowledge relative to req_i. Indicates that the data was consumed. !51
" " data_i       : in  std_logic_vector(FLIT_SIZE-1 downto 0); --!  Data input. !52
" " req_header_o : out std_logic; --! Request signal indicating that the flit on data_o is the packet header. !53
" " ack_header_i : in  std_logic; --! Acknowledge signal relative to req_header_o. Indicates that header was consumed. !54
" " req_data_o   : out std_logic; --! Request signal indicating that the flit on data_o is payload. !55
" " ack_data_i   : in  std_logic; --! Acknowledge relative to req_data_o. Indicates that the payload was consumed. !56
" " data_o       : out std_logic_vector(FLIT_SIZE-1 downto 0); --! Data output. !57
" " last_flit_o  : out std_logic  --! Active-high signal indicating that the flit on data_o is the last flit of the 58
current packet. !…
" ); !59
end input_buffer_ctrl_wrapper; !60
!61
architecture sim of input_buffer_ctrl_wrapper is    !62
     -- Control signals !63
    signal hold_ack_o  ""  : std_logic; !64
    signal hold_req_header_o : std_logic; !65
    signal hold_req_data_o   : std_logic; !66
    !67
    -- Aux signals !68
    signal aux_ack_o" " : std_logic; !69
    signal aux_req_header_o : std_logic; !70
    signal aux_req_data_o   : std_logic; !71
!72
begin!73
    !74
    -- Instance of input_buffer_ctrl !75
    input_buffer_ctrl_i: entity work.input_buffer_ctrl !76
    port map ( !77
        reset_i  "  => reset_i, !78
" " req_i " "  => req_i, !79
" " ack_o        => aux_ack_o, !80
" " data_i       => data_i, !81
" " req_header_o => aux_req_header_o, !82
" " ack_header_i => ack_header_i, !83
" " req_data_o   => aux_req_data_o, !84
" " ack_data_i   => ack_data_i, !85
" " data_o   "  => data_o, !86
" " last_flit_o  => last_flit_o !87
    ); !88
    !89
    -- Control Logic    !90
    control: process!91
    begin!92
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Figure A.18 - VHDL source code for simulation wrapper of Input Buffer Control (part 2 of 2). 

        -- Initializing control signals !93
        hold_ack_o <= '0'; !94
"       hold_req_header_o <= '0'; !95
    "   hold_req_data_o <= '0'; !96
        wait until reset_i = '0'; !97
        loop!98
            -- Hold all signals !99
            hold_ack_o <= '1'; !100
            hold_req_header_o <= '1'; !101
"     "     hold_req_data_o <= '1'; !102
            !103
            -- Wait for req_i request !104
            if (req_i = aux_ack_o) then!105
                wait until (req_i /= aux_ack_o); !106
            end if; !107
!108
" " "       -- Wait for ack_o acknowledge. (Mousetrap stage generates ACK right away) !109
" " "       if (req_i /= aux_ack_o) then!110
                wait until (req_i = aux_ack_o); !111
            end if; !112
!113
            -- Release #1: ack_o, after 1 ns (latch setup constraint) !114
            wait for 1 ns; !115
            hold_ack_o <= '0';            !116
!117
" " "       -- Release #2, req_header_o and req_data_o, after 4 ns (ctrl logic delay) !118
" "       " wait for 4 ns; !119
" "       " hold_req_header_o <= '0'; !120
" " "       hold_req_data_o <= '0'; !121
" " "   !122
            -- Wait 1 ns before holding it again !123
            wait for 1 ns; !124
        end loop; !125
    end process; !126
!127
    !128
    -- Latches to hold signals !129
    latch_ack_o: process(reset_i, hold_ack_o, aux_ack_o) !130
    begin!131
        if ((reset_i = '1') OR (hold_ack_o = '0')) then!132
            ack_o <= aux_ack_o; !133
        end if; !134
    end process; !135
    !136
    latch_req_header_o: process(reset_i, hold_req_header_o, aux_req_header_o) !137
    begin!138
        if ((reset_i = '1') OR (hold_req_header_o = '0')) then!139
            req_header_o <= aux_req_header_o; !140
        end if; !141
    end process; !142
    !143
    latch_req_data_o: process(reset_i, hold_req_data_o, aux_req_data_o) !144
    begin!145
        if ((reset_i = '1') OR (hold_req_data_o = '0')) then!146
            req_data_o <= aux_req_data_o; !147
        end if; !148
    end process; !149
    !150
end sim; !151

152
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Figure A.19 - VHDL source code for Input Buffer module. 

--! @file input_buffer.vhd !1
--! @brief Handshake-based Input Buffer using transition signaling protocol. !2
--! @author Matheus Gibiluka, matheus.gibiluka@acad.pucrs.br !3
--! @date 2013-07-13 !4
!5
------------------------------------------------------------------------ !6
-- Dependencies: !7
-- > hermes_bd_package.vhd !8
------------------------------------------------------------------------ !9
-- Generics for configuration: !10
--  BUFFER_DEPTH: Defines the depth of the buffer !11
------------------------------------------------------------------------ !12
-- Interface description: !13
--                            ------------- !14
--                           |             | !15
--     "   reset_i---------->|             | !16
--                           |             | !17
--           req_i---------->|             |---------->req_header_o !18
--                           |             | !19
--           ack_o<----------|             |<----------ack_header_i !20
--                           |             | !21
--                           |             |---------->req_data_o !22
--                           |             | !23
-- "" " "              |             |<----------ack_data_i !24
--                           |             | !25
--                 FLIT_SIZE |             | FLIT_SIZE !26
--           data_i====/====>|             |=====/====>data_o !27
--                           |             |---------->last_flit_o !28
--                           |             | !29
--                            ------------- !30
------------------------------------------------------------------------ !31
!32
library ieee; !33
use ieee.std_logic_1164.all; !34
use ieee.std_logic_misc.all; !35
use work.hermes_bd_package.all; !36
!37
entity input_buffer is!38
" generic( !39
" " BUFFER_DEPTH : integer := 8 --! Defines the depth of the buffer. !40
" ); !41
" port( !42
" " reset_i      : in  std_logic; --! Active-high reset signal. !43
" " req_i        : in  std_logic; --! Request signal indicating that new data is available to be written. !44
" " ack_o        : out std_logic; --! Acknowledge signal relative to req_i. Indicates that the data has been stored. !45
" " data_i       : in  std_logic_vector(FLIT_SIZE-1 downto 0); --! Data input. !46
" " req_header_o : out std_logic; --! Request signal indicating that the flit on data_o is the packet header. !47
" " ack_header_i : in  std_logic; --! Acknowledge signal relative to req_header_o. Indicates that header was consumed. !48
" " req_data_o   : out std_logic; --! Request signal indicating that the flit on data_o is payload. !49
" " ack_data_i   : in  std_logic; --! Acknowledge relative to req_data_o. Indicates that the payload was consumed. !50
" " data_o       : out std_logic_vector(FLIT_SIZE-1 downto 0); --! Data output. !51
" " last_flit_o  : out std_logic --! signal indicating that the flit on data_o is the last flit of the current packet. !52
" ); !53
end input_buffer; !54
!55
architecture input_buffer of input_buffer is!56
    signal data : std_logic_vector(FLIT_SIZE-1 downto 0); -- Signal that holds the data coming out of the buffer !57
    signal req_rd : std_logic; -- Request signal from buffer (new data to be read)" !58
    signal ack_rd : std_logic; -- Acknowledge relative to req_rd (data was read)" !59
    !60
begin!61
!62
" -- Buffer Instantiation !63
" fifo_i: entity work.fifo !64
" generic map( !65
" " BUFFER_DEPTH => BUFFER_DEPTH !66
" ) !67
" port map( !68
" " reset_i  => reset_i, !69
" " req_wr_i => req_i, !70
" " ack_wr_o => ack_o, !71
" " data_i   => data_i, !72
" " req_rd_o => req_rd, !73
" " ack_rd_i => ack_rd, !74
" " data_o   => data !75
" );"     !76
" !77
    -- Controller Instantiation !78
    buffer_ctrl_i: entity work.input_buffer_ctrl_wrapper !79
    port map ( !80
        reset_i      => reset_i, !81
" " req_i        => req_rd, !82
" " ack_o        => ack_rd, !83
" " data_i       => data, !84
" " req_header_o => req_header_o, !85
" " ack_header_i => ack_header_i, !86
" " req_data_o   => req_data_o, !87
" " ack_data_i   => ack_data_i, !88
" " data_o       => data_o, !89
" " last_flit_o  => last_flit_o !90
" ); !91
!92
end input_buffer; !93
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A.4 Routing Control 

 
Figure A.20 - VHDL source code for Routing Unit module. 

--! @file routing_ctrl.vhd !1
--! @brief Control unit for the input router. All handshake signals use transition signaling protocol. !2
--! @author Matheus Gibiluka, matheus.gibiluka@acad.pucrs.br !3
--! @date 2013-08-09 !4
!5
------------------------------------------------------------------------ !6
-- Dependencies: !7
-- > hermes_bd_package.vhd !8
------------------------------------------------------------------------ !9
-- Generics for configuration: !10
--   ROUTING_ALGORITHM: Currently only XY !11
--      ROUTER_ADDRESS: Address of the router in which this port is inserted. !12
--           THIS_PORT: Defines which port is this interface representing (East, West, North, South, Local). !13
--          COMM_PORTS: Defines to which ports this interface connects (index THIS_PORT is ignored). Ports with '0' are 14
disconnected. !…
------------------------------------------------------------------------ !15
-- Interface description: !16
--                       "  ------------- !17
--     "                    |             | !18
--     "  reset_i---------->|             | !19
--           " "         |             |PORTS_NUMBER !20
--    req_route_i---------->|             |=====/====>req_outport_o !21
--         ""             |             | !22
--    ack_route_o<----------|             |PORTS_NUMBER !23
--                  "     |             |<=====/====ack_outport_i !24
-- "" "      FLIT_SIZE/2|             | !25
--target_address_i====/====>|             | !26
--                      " |             | !27
--                       "  ------------- !28
------------------------------------------------------------------------ !29
!30
!31
library ieee; !32
use ieee.std_logic_1164.all; !33
use ieee.std_logic_misc.all; !34
use work.hermes_bd_package.all; !35
!36
entity routing_ctrl is!37
" generic( !38
" " ROUTING_ALGORITHM : string := "XY"; --! Choice of routing algorithm. !39
" " ROUTER_ADDRESS    : std_logic_vector((FLIT_SIZE/2)-1 downto 0) := x"11"; --! Address of the router. !40
" " THIS_PORT         : integer := LOCAL; --! Defines which port is this interface representing  (East, West, North, 41
South, Local). !…
" " COMM_PORTS        : std_logic_vector(PORTS_NUMBER-1 downto 0) := "11111" --! Defines to which ports this interface 42
connects (index THIS_PORT is ignored). Ports with '0' are disconnected. !…
" ); !43
" port( !44
" " reset_i      "  : in  std_logic; --! Active-high reset signal. !45
" " req_route_i      : in  std_logic; --! Signal requesting a route towards the target_address_i router. !46
" " ack_route_o      : out std_logic; --! Acknowledge relative to req_route_i. Indicates that the outport towards the 47
destination is ready to receive data. !…
" " target_address_i : in  std_logic_vector((FLIT_SIZE/2)-1 downto 0); --! Address of the destination router. !48
" " req_outport_o    : out std_logic_vector(PORTS_NUMBER-1 downto 0); --! Signal requesting the use of an output port. !49
" " ack_outport_i    : in  std_logic_vector(PORTS_NUMBER-1 downto 0)  --! Acknowledge signal relative to 50
req_outport_i. Indicates that the port use has been granted. !…
" ); !51
end routing_ctrl; !52
!53
architecture routing_ctrl of routing_ctrl is !54
" signal outport_en  : std_logic_vector(PORTS_NUMBER-1 downto 0); -- Signal to enable a given port's handshake !55
" signal req_outport : std_logic_vector(PORTS_NUMBER-1 downto 0); -- Used to phase-match req_route_i with each 56
req_outport_o !…
" signal ack_route   : std_logic; -- Same as ack_route_o !57
" signal routing_en  : std_logic; -- Signal to enable all handshakes (Request has been made, but hasn't received 58
acknowledge yet) !…
" !59
!60
begin!61
" routing_en <= req_route_i XOR ack_route; -- Enables the computation of the output port; High when handshake hasn't 62
been completed yet !…
" ack_route <= xor_all_bits_considering_comm_ports(ack_outport_i, COMM_PORTS, THIS_PORT); -- Generates ack_route with 63
the correct phase !…
" ack_route_o <= ack_route; !64
" !65
    -- Routing algorithm !66
" xy_routing_i : if (ROUTING_ALGORITHM = "XY") generate!67
" " routing_unit_i : entity work.routing_unit(XY) !68
" " generic map ( !69
" "     ROUTER_ADDRESS => ROUTER_ADDRESS, !70
" "     THIS_PORT      => THIS_PORT, !71
" "     COMM_PORTS     => COMM_PORTS !72
" " ) !73
" " port map ( !74
" " " en_i             => routing_en, !75
" " " target_address_i => target_address_i, !76
" " " req_outport_o    => outport_en !77
" " ); !78
" end generate xy_routing_i; !79
    !80
    !81
    -- Latches and phase-matchers for req_outport_o !82
    req_outport_ctrl_gen: for i in 0 to PORTS_NUMBER-1 generate!83
       !84
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Figure A.21 - VHDL source code for Routing Control module (part 1 of 2). 

--! @file routing_ctrl.vhd !1
--! @brief Control unit for the input router. All handshake signals use transition signaling protocol. !2
--! @author Matheus Gibiluka, matheus.gibiluka@acad.pucrs.br !3
--! @date 2013-08-09 !4
!5
------------------------------------------------------------------------ !6
-- Dependencies: !7
-- > hermes_bd_package.vhd !8
------------------------------------------------------------------------ !9
-- Generics for configuration: !10
--   ROUTING_ALGORITHM: Currently only XY !11
--      ROUTER_ADDRESS: Address of the router in which this port is inserted. !12
--           THIS_PORT: Defines which port is this interface representing (East, West, North, South, Local). !13
--          COMM_PORTS: Defines to which ports this interface connects (index THIS_PORT is ignored). Ports with '0' are 14
disconnected. !…
------------------------------------------------------------------------ !15
-- Interface description: !16
--                       "  ------------- !17
--     "                    |             | !18
--     "  reset_i---------->|             | !19
--           " "         |             |PORTS_NUMBER !20
--    req_route_i---------->|             |=====/====>req_outport_o !21
--         ""             |             | !22
--    ack_route_o<----------|             |PORTS_NUMBER !23
--                  "     |             |<=====/====ack_outport_i !24
-- "" "      FLIT_SIZE/2|             | !25
--target_address_i====/====>|             | !26
--                      " |             | !27
--                       "  ------------- !28
------------------------------------------------------------------------ !29
!30
!31
library ieee; !32
use ieee.std_logic_1164.all; !33
use ieee.std_logic_misc.all; !34
use work.hermes_bd_package.all; !35
!36
entity routing_ctrl is!37
" generic( !38
" " ROUTING_ALGORITHM : string := "XY"; --! Choice of routing algorithm. !39
" " ROUTER_ADDRESS    : std_logic_vector((FLIT_SIZE/2)-1 downto 0) := x"11"; --! Address of the router. !40
" " THIS_PORT         : integer := LOCAL; --! Defines which port is this interface representing  (East, West, North, 41
South, Local). !…
" " COMM_PORTS        : std_logic_vector(PORTS_NUMBER-1 downto 0) := "11111" --! Defines to which ports this interface 42
connects (index THIS_PORT is ignored). Ports with '0' are disconnected. !…
" ); !43
" port( !44
" " reset_i      "  : in  std_logic; --! Active-high reset signal. !45
" " req_route_i      : in  std_logic; --! Signal requesting a route towards the target_address_i router. !46
" " ack_route_o      : out std_logic; --! Acknowledge relative to req_route_i. Indicates that the outport towards the 47
destination is ready to receive data. !…
" " target_address_i : in  std_logic_vector((FLIT_SIZE/2)-1 downto 0); --! Address of the destination router. !48
" " req_outport_o    : out std_logic_vector(PORTS_NUMBER-1 downto 0); --! Signal requesting the use of an output port. !49
" " ack_outport_i    : in  std_logic_vector(PORTS_NUMBER-1 downto 0)  --! Acknowledge signal relative to 50
req_outport_i. Indicates that the port use has been granted. !…
" ); !51
end routing_ctrl; !52
!53
architecture routing_ctrl of routing_ctrl is!54
" signal outport_en  : std_logic_vector(PORTS_NUMBER-1 downto 0); -- Signal to enable a given port's handshake !55
" signal req_outport : std_logic_vector(PORTS_NUMBER-1 downto 0); -- Used to phase-match req_route_i with each 56
req_outport_o !…
" signal ack_route   : std_logic; -- Same as ack_route_o !57
" signal routing_en  : std_logic; -- Signal to enable all handshakes (Request has been made, but hasn't received 58
acknowledge yet) !…
" !59
!60
begin!61
" routing_en <= req_route_i XOR ack_route; -- Enables the computation of the output port; High when handshake hasn't 62
been completed yet !…
" ack_route <= xor_all_bits_considering_comm_ports(ack_outport_i, COMM_PORTS, THIS_PORT); -- Generates ack_route with 63
the correct phase !…
" ack_route_o <= ack_route; !64
" !65
    -- Routing algorithm !66
" xy_routing_i : if (ROUTING_ALGORITHM = "XY") generate!67
" " routing_unit_i : entity work.routing_unit(XY) !68
" " generic map ( !69
" "     ROUTER_ADDRESS => ROUTER_ADDRESS, !70
" "     THIS_PORT      => THIS_PORT, !71
" "     COMM_PORTS     => COMM_PORTS !72
" " ) !73
" " port map ( !74
" " " en_i             => routing_en, !75
" " " target_address_i => target_address_i, !76
" " " req_outport_o    => outport_en !77
" " ); !78
" end generate xy_routing_i; !79
    !80
    !81
    -- Latches and phase-matchers for req_outport_o !82
    req_outport_ctrl_gen: for i in 0 to PORTS_NUMBER-1 generate!83
       !84
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Figure A.22 - VHDL source code for Routing Control module (part 2 of 2). 

 
Figure A.23 - VHDL source code for simulation wrapper of Routing Control (part 1 of 2). 

        -- Test if there will be communication with port i !85
        used_req_outport_ctrl_gen:if ((i /= THIS_PORT) and (COMM_PORTS(i) = '1')) generate    !86
           !87
            -- Phase-matcher [req_route_i XORed with all ack_outport_i but ack_outport_i(i)] !88
        " req_outport(i) <= req_route_i XOR (xor_all_bits_but_one_considering_comm_ports(ack_outport_i,i, COMM_PORTS, 89
THIS_PORT)); !…
    " !90
        " -- Latch !91
    "     req_outport_latch_i: process(reset_i, outport_en, req_outport(i)) !92
        " begin!93
        " " if (reset_i = '1') then!94
    "     " " req_outport_o(i) <= '0'; !95
    " "     elsif (outport_en(i) = '1') then!96
    " " "     req_outport_o(i) <= req_outport(i); !97
        " " end if; !98
        " end process; !99
        end generate; !100
    end generate; !101
    !102
end routing_ctrl; !103

104

--! @file routing_ctrl_wrapper.vhd !1
--! @brief Wrapper for routing_ctrl !2
--! @author Matheus Gibiluka, matheus.gibiluka@acad.pucrs.br !3
--! @date 2013-08-09 !4
!5
------------------------------------------------------------------------ !6
-- Dependencies: !7
-- > hermes_bd_package.vhd !8
------------------------------------------------------------------------ !9
-- Generics for configuration: !10
--   ROUTING_ALGORITHM: Currently only XY !11
------------------------------------------------------------------------ !12
-- Interface description: !13
--                       "  ------------- !14
--     "                    |             | !15
--     "  reset_i---------->|             | !16
--           " "         |             |PORTS_NUMBER !17
--    req_route_i---------->|             |=====/====>req_outport_o !18
--         ""             |             | !19
--    ack_route_o<----------|             |PORTS_NUMBER !20
--                  "     |             |<=====/====ack_outport_i !21
--                      " |             | !22
-- "" "      FLIT_SIZE/2|             | !23
--router_address_i====/====>|             | !24
--                      " |             | !25
-- "" "      FLIT_SIZE/2|             | !26
--target_address_i====/====>|             | !27
--                      " |             | !28
--                       "  ------------- !29
------------------------------------------------------------------------ !30
-- Wrapper Behavior: !31
--   0) Output signals related to handshake should be held (ack_o, !32
--      req_header_o, req_data_o) !33
--   1) Input handshake starts when req_i /= ack_o. !34
--   2) Wait for input handshake acknowledge (req_i = ack_o). If stage is !35
--      empty, this will happen right away. !36
--   3) Release ack_o after 1 ns. [Simulating the latch hold constraint. !37
--      These latches in question hold req_i and data_i.] !38
--   4) Release req_header_o and req_data_o after 4 ns. [Simulating the !39
--      logic delay of the control circuit.] !40
--  !41
------------------------------------------------------------------------ !42
!43
!44
library ieee; !45
use ieee.std_logic_1164.all; !46
use work.hermes_bd_package.all; !47
!48
entity routing_ctrl_wrapper is!49
" generic( !50
" " ROUTING_ALGORITHM : string := "XY"; --! Choice of routing algorithm. !51
        ROUTER_ADDRESS    : std_logic_vector((FLIT_SIZE/2)-1 downto 0) := x"11"; --! Address of the router. !52
" " THIS_PORT         : integer := LOCAL; --! Defines which port is this interface representing  (East, West, North, 53
South, Local). !…
" " COMM_PORTS        : std_logic_vector(PORTS_NUMBER-1 downto 0) := "11111" --! Defines to which ports this interface 54
connects (index THIS_PORT is ignored). Ports with '0' are disconnected. !…
" ); !55
" port( !56
" " reset_i      "  : in  std_logic; --! Active-high reset signal. !57
" " req_route_i      : in  std_logic; --! Signal requesting a route towards the target_address_i router. !58
" " ack_route_o      : out std_logic; --! Acknowledge relative to req_route_i. Indicates that the outport towards the 59
destination is ready to receive data. !…
" " target_address_i : in  std_logic_vector((FLIT_SIZE/2)-1 downto 0); --! Address of the destination router. !60
" " req_outport_o    : out std_logic_vector(PORTS_NUMBER-1 downto 0); --! Signal requesting the use of an output port. !61
" " ack_outport_i    : in  std_logic_vector(PORTS_NUMBER-1 downto 0)  --! Acknowledge signal relative to 62
req_outport_i. Indicates that the port use has been granted. !…
" ); !63
end routing_ctrl_wrapper; !64
!65
architecture sim of routing_ctrl_wrapper is    !66
     -- Control signals !67
    signal hold_ack_route_o   : std_logic; !68
    signal hold_req_outport_o : std_logic; !69
    !70
    -- Aux signals !71
    signal aux_ack_route_o  : std_logic; !72
    signal aux_req_outport_o : std_logic_vector(PORTS_NUMBER-1 downto 0); !73
!74
begin!75
    !76
    -- Instance of routing_ctrl !77
    routing_ctrl_i: entity work.routing_ctrl !78
    generic map( !79
    " ROUTING_ALGORITHM => ROUTING_ALGORITHM, !80
    " ROUTER_ADDRESS    => ROUTER_ADDRESS, !81
    " THIS_PORT         => THIS_PORT, !82
    " COMM_PORTS        => COMM_PORTS !83
    ) !84
    port map ( !85
        reset_i      "  => reset_i, !86
" " req_route_i      => req_route_i, !87
" " ack_route_o      => aux_ack_route_o, !88
" " target_address_i => target_address_i, !89
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Figure A.24 - VHDL source code for simulation wrapper of Routing Control (part 2 of 2). 

--! @file routing_ctrl_wrapper.vhd !1
--! @brief Wrapper for routing_ctrl !2
--! @author Matheus Gibiluka, matheus.gibiluka@acad.pucrs.br !3
--! @date 2013-08-09 !4
!5
------------------------------------------------------------------------ !6
-- Dependencies: !7
-- > hermes_bd_package.vhd !8
------------------------------------------------------------------------ !9
-- Generics for configuration: !10
--   ROUTING_ALGORITHM: Currently only XY !11
------------------------------------------------------------------------ !12
-- Interface description: !13
--                       "  ------------- !14
--     "                    |             | !15
--     "  reset_i---------->|             | !16
--           " "         |             |PORTS_NUMBER !17
--    req_route_i---------->|             |=====/====>req_outport_o !18
--         ""             |             | !19
--    ack_route_o<----------|             |PORTS_NUMBER !20
--                  "     |             |<=====/====ack_outport_i !21
--                      " |             | !22
-- "" "      FLIT_SIZE/2|             | !23
--router_address_i====/====>|             | !24
--                      " |             | !25
-- "" "      FLIT_SIZE/2|             | !26
--target_address_i====/====>|             | !27
--                      " |             | !28
--                       "  ------------- !29
------------------------------------------------------------------------ !30
-- Wrapper Behavior: !31
--   0) Output signals related to handshake should be held (ack_o, !32
--      req_header_o, req_data_o) !33
--   1) Input handshake starts when req_i /= ack_o. !34
--   2) Wait for input handshake acknowledge (req_i = ack_o). If stage is !35
--      empty, this will happen right away. !36
--   3) Release ack_o after 1 ns. [Simulating the latch hold constraint. !37
--      These latches in question hold req_i and data_i.] !38
--   4) Release req_header_o and req_data_o after 4 ns. [Simulating the !39
--      logic delay of the control circuit.] !40
--  !41
------------------------------------------------------------------------ !42
!43
!44
library ieee; !45
use ieee.std_logic_1164.all; !46
use work.hermes_bd_package.all; !47
!48
entity routing_ctrl_wrapper is!49
" generic( !50
" " ROUTING_ALGORITHM : string := "XY"; --! Choice of routing algorithm. !51
        ROUTER_ADDRESS    : std_logic_vector((FLIT_SIZE/2)-1 downto 0) := x"11"; --! Address of the router. !52
" " THIS_PORT         : integer := LOCAL; --! Defines which port is this interface representing  (East, West, North, 53
South, Local). !…
" " COMM_PORTS        : std_logic_vector(PORTS_NUMBER-1 downto 0) := "11111" --! Defines to which ports this interface 54
connects (index THIS_PORT is ignored). Ports with '0' are disconnected. !…
" ); !55
" port( !56
" " reset_i      "  : in  std_logic; --! Active-high reset signal. !57
" " req_route_i      : in  std_logic; --! Signal requesting a route towards the target_address_i router. !58
" " ack_route_o      : out std_logic; --! Acknowledge relative to req_route_i. Indicates that the outport towards the 59
destination is ready to receive data. !…
" " target_address_i : in  std_logic_vector((FLIT_SIZE/2)-1 downto 0); --! Address of the destination router. !60
" " req_outport_o    : out std_logic_vector(PORTS_NUMBER-1 downto 0); --! Signal requesting the use of an output port. !61
" " ack_outport_i    : in  std_logic_vector(PORTS_NUMBER-1 downto 0)  --! Acknowledge signal relative to 62
req_outport_i. Indicates that the port use has been granted. !…
" ); !63
end routing_ctrl_wrapper; !64
!65
architecture sim of routing_ctrl_wrapper is    !66
     -- Control signals !67
    signal hold_ack_route_o   : std_logic; !68
    signal hold_req_outport_o : std_logic; !69
    !70
    -- Aux signals !71
    signal aux_ack_route_o  : std_logic; !72
    signal aux_req_outport_o : std_logic_vector(PORTS_NUMBER-1 downto 0); !73
!74
begin!75
    !76
    -- Instance of routing_ctrl !77
    routing_ctrl_i: entity work.routing_ctrl !78
    generic map( !79
    " ROUTING_ALGORITHM => ROUTING_ALGORITHM, !80
    " ROUTER_ADDRESS    => ROUTER_ADDRESS, !81
    " THIS_PORT         => THIS_PORT, !82
    " COMM_PORTS        => COMM_PORTS !83
    ) !84
    port map ( !85
        reset_i      "  => reset_i, !86
" " req_route_i      => req_route_i, !87
" " ack_route_o      => aux_ack_route_o, !88
" " target_address_i => target_address_i, !89

" " req_outport_o    => aux_req_outport_o, !90
" " ack_outport_i    => ack_outport_i !91
    ); !92
    !93
    -- Control Logic    !94
    control: process!95
    begin!96
        -- Initializing control signals !97
        hold_ack_route_o <= '0'; !98
"     hold_req_outport_o <= '0'; !99
        wait until reset_i = '0'; !100
        loop!101
            -- Hold all signals !102
            hold_ack_route_o <= '1'; !103
" "     hold_req_outport_o <= '1'; !104
            !105
            -- Wait for req_route_i request !106
            if (req_route_i = aux_ack_route_o) then!107
                wait until (req_route_i /= aux_ack_route_o); !108
            end if; !109
            !110
            -- Release #1: req_outport_o, after 4 ns (routing logic delay) !111
            wait for 4 ns; !112
            hold_req_outport_o <= '0'; !113
!114
" " " -- Wait for ack_outport_i acknowledge. !115
" " " if (req_route_i /= aux_ack_route_o) then!116
                wait until (req_route_i = aux_ack_route_o); !117
            end if;            !118
!119
" " " -- Release #2, ack_route_o, after 1 ns (phase-matching delay) !120
" " " wait for 1 ns; !121
" " " hold_ack_route_o <= '0'; !122
" " " !123
            -- Wait 1 ns before holding it again !124
            wait for 1 ns; !125
        end loop; !126
    end process; !127
!128
    !129
    -- Latches to hold signals !130
    latch_ack_route_o: process(reset_i, hold_ack_route_o, aux_ack_route_o) !131
    begin!132
        if ((reset_i = '1') OR (hold_ack_route_o = '0')) then!133
            ack_route_o <= aux_ack_route_o; !134
        end if; !135
    end process; !136
    !137
    latch_req_outport_o: process(reset_i, hold_req_outport_o, aux_req_outport_o) !138
    begin!139
        if ((reset_i = '1') OR (hold_req_outport_o = '0')) then!140
            req_outport_o <= aux_req_outport_o; !141
        end if; !142
    end process; !143
    !144
end sim; !145

146
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A.5 Input Interface 

 
Figure A.25 - VHDL source code for Input Interface module (part 1 of 2). 

--! @file input_interface.vhd !1
--! @brief Handshake-based Input Interface using transition signaling protocol. !2
--! @author Matheus Gibiluka, matheus.gibiluka@acad.pucrs.br !3
--! @date 2013-08-09 !4
!5
------------------------------------------------------------------------ !6
-- Dependencies: !7
-- > hermes_bd_package.vhd !8
------------------------------------------------------------------------ !9
-- Generics for configuration: !10
--  ROUTING_ALGORITHM: Choice of routing algorithm. !11
--       BUFFER_DEPTH: Defines the depth of the buffer. !12
--     ROUTER_ADDRESS: Address of the router in which this port is inserted. !13
--          THIS_PORT: Defines which port is this interface representing (East, West, North, South, Local). !14
--         COMM_PORTS: Defines to which ports this interface connects (index THIS_PORT is ignored). Ports with '0' are 15
disconnected. !…
------------------------------------------------------------------------ !16
-- Interface description: !17
--                            ------------- !18
--                           |             | !19
--     "   reset_i---------->|             | !20
--                           |             |PORTS_NUMBER !21
--           req_i---------->|             |======/===>req_outport_o !22
--                           |             |PORTS_NUMBER !23
--           ack_o<----------|             |<=====/====ack_outport_i !24
--                           |             | !25
--                           |             |---------->req_data_o !26
--                           |             |PORTS_NUMBER !27
-- "" " "              |             |<=====/====ack_data_i !28
--                           |             | !29
--                 FLIT_SIZE |             | FLIT_SIZE !30
--           data_i====/====>|             |=====/====>data_o !31
--                           |             |---------->last_flit_o !32
--                           |             | !33
--                            ------------- !34
------------------------------------------------------------------------ !35
!36
!37
library ieee; !38
use ieee.std_logic_1164.all; !39
use ieee.std_logic_misc.all; !40
use work.hermes_bd_package.all; !41
!42
entity input_interface is!43
" generic( !44
"     ROUTING_ALGORITHM : string := "XY"; --! Choice of routing algorithm. !45
" " BUFFER_DEPTH      : integer := 8; --! Defines the depth of the buffer. !46
" " ROUTER_ADDRESS    : std_logic_vector((FLIT_SIZE/2)-1 downto 0) := x"11"; --! Address of the router. !47
" " THIS_PORT         : integer := LOCAL; --! Defines which port is this interface representing  (East, West, North, 48
South, Local). !…
" " COMM_PORTS        : std_logic_vector(PORTS_NUMBER-1 downto 0) := "11111" --! Defines to which ports this interface 49
connects (index THIS_PORT is ignored). Ports with '0' are disconnected. !…
" ); !50
" port( !51
" " reset_i       : in  std_logic; --! Active-high reset signal. !52
" " req_i         : in  std_logic; --! Request signal indicating that new data is available on data_i. !53
" " ack_o         : out std_logic; --! Acknowledge signal relative to req_i. Indicates that the data has been stored. !54
" " data_i        : in  std_logic_vector(FLIT_SIZE-1 downto 0); --! Data input. !55
" " req_outport_o : out std_logic_vector(PORTS_NUMBER-1 downto 0); --! Signal requesting use of an output port. !56
" " ack_outport_i : in  std_logic_vector(PORTS_NUMBER-1 downto 0); --! Acknowledge signal relative to req_outport_o. 57
Indicates that the port use has been granted, and the flit on data_o has been consumed. !…
" " req_data_o    : out std_logic; --! Request signal indicating that new payload is available on data_o. !58
" " ack_data_i    : in  std_logic_vector(PORTS_NUMBER-1 downto 0); --! Acknowledge relative to req_data_o. Indicates 59
that the payload was consumed. !…
" " data_o        : out std_logic_vector(FLIT_SIZE-1 downto 0); --! Data output. !60
" " last_flit_o   : out std_logic --! Active-high signal indicating that the flit on data_o is the last flit of the 61
current packet. !…
" ); !62
end input_interface; !63
!64
architecture input_interface of input_interface is !65
    signal data       : std_logic_vector(FLIT_SIZE-1 downto 0); -- Same as data_o !66
    signal req_header : std_logic; -- Signal requesting a route towards the address on data_i." !67
    signal ack_header : std_logic; -- Acknowledge from req_header. The routing is completed, and data_o has been stored !68
    signal ack_data   : std_logic; -- Acknowledge from req_data (same as all ack_data_i XORed) !69
" !70
" !71
begin!72
" data_o <= data; !73
    !74
    -- XOR of all relevant ack_data_i !75
    ack_data <= xor_all_bits_considering_comm_ports(ack_data_i, COMM_PORTS, THIS_PORT); !76
    !77
" -- Buffer Instantiation !78
    input_buffer_i: entity work.input_buffer !79
    generic map( !80
" " BUFFER_DEPTH => BUFFER_DEPTH !81
" ) !82
    port map( !83
        reset_i      => reset_i, !84
" " req_i        => req_i, !85
" " ack_o        => ack_o, !86
" " data_i       => data_i, !87
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Figure A.26 - VHDL source code for Input Interface module (part 2 of 2). 

A.6 Outport Control 

 
Figure A.27 - VHDL source code for Outport Control module (part 1 of 3). 

" " req_header_o => req_header, !88
" " ack_header_i => ack_header, !89
" " req_data_o   => req_data_o, !90
" " ack_data_i   => ack_data, !91
" " data_o       => data, !92
" " last_flit_o  => last_flit_o !93
" ); !94
" !95
" -- Routing control !96
" routing_ctrl_i: entity work.routing_ctrl_wrapper !97
" generic map( !98
        ROUTING_ALGORITHM => ROUTING_ALGORITHM, !99
    " ROUTER_ADDRESS    => ROUTER_ADDRESS, !100
    " THIS_PORT         => THIS_PORT, !101
    " COMM_PORTS        => COMM_PORTS !102
" ) !103
" port map( !104
        reset_i          => reset_i, !105
" " req_route_i      => req_header, !106
" " ack_route_o      => ack_header, !107
" " target_address_i => data((FLIT_SIZE/2)-1 downto 0), !108
" " req_outport_o    => req_outport_o, !109
" " ack_outport_i    => ack_outport_i !110
" ); !111
!112
end input_interface; !113

114

--! @file outport_ctrl.vhd !1
--! @brief Control unit for each outport (Phase converter between input port and output port). !2
--! @author Matheus Gibiluka, matheus.gibiluka@acad.pucrs.br !3
--! @date 2013-10-02 !4
!5
------------------------------------------------------------------------ !6
-- Dependencies: !7
-- > hermes_bd_package.vhd !8
------------------------------------------------------------------------ !9
-- Interface description: !10
--                       "  ------------- !11
--     "                    |             | !12
--     "  reset_i---------->|             | !13
--           " "         |             | !14
--  req_outport_i---------->|             |---------->arbiter_request_o !15
--         ""             |             | !16
--  ack_outport_o<----------|             |<----------arbiter_grant_i !17
--                  "     |             | !18
-- "    " " "         |             | !19
--" " req_data_i--------->|             |---------->req_o !20
-- "" " " "         |             | !21
--" " ack_data_o<---------|             |<----------ack_i !22
--                      " |             | !23
-- "" " " "         |             | !24
--"    last_flit_i--------->|             | !25
--                      " |             | !26
--                       "  ------------- !27
------------------------------------------------------------------------ !28
!29
!30
library ieee; !31
use ieee.std_logic_1164.all; !32
use work.hermes_bd_package.all; !33
!34
entity outport_ctrl is!35
" port( !36
" " reset_i      "   : in  std_logic; --! Active-high reset signal. !37
" " req_outport_i     : in  std_logic; --! Signal requesting use of the outport. !38
" " ack_outport_o     : out std_logic; --! Acknowledge relative to req_outport_i. Indicates that port use has been 39
granted and the data at data out port was received. !…
" " arbiter_request_o : out std_logic; --! Level-encoded signal requesting use of the outport. !40
" " arbiter_grant_i   : in  std_logic; --! Level-encoded grant relative to arbiter_request_o. This signal is kept high 41
as long as the arbiter_request_o is asserted. !…
" " req_data_i        : in  std_logic; --! Signal indicating that a new data flit is ready to be sent. !42
" " ack_data_o        : out std_logic; --! Acknowledge relative to req_data_i. Indicates that the data flit has been 43
sent. !…
" " last_flit_i       : in  std_logic; --! Transition-encoded signal indicating that the current flit is the last flit 44
of the packet. !…
" " req_o             : out std_logic; --! Signal indicating that there is a new flit ready to be sent. !45
" " ack_i" " "   : in  std_logic  --! Acknowledge relative to req_o. Indicates that the flit has been sent. !46
" ); !47
end outport_ctrl; !48
!49
architecture outport_ctrl of outport_ctrl is !50
" signal outport_request : std_logic; -- Level-encoded signal that indicates when a request at [req/ack]_outport_i is 51
detected !…
" signal ack_outport     : std_logic; -- Same as ack_outport_o !52
" signal req_data        : std_logic; -- Phase-matched version of req_data_i !53
" signal req_data_phase  : std_logic; -- Signal to indicate when the phase of req_data_ needs to be inverted !54
" signal ack_data        : std_logic; -- Same as ack_data_o !55
" signal data_request    : std_logic; -- Level-encoded signal that indicates when a request at [req/ack])_data_i is 56
detected !…
" signal last_flit       : std_logic; -- last_flit_i sampled at the acknowledge of [req/ack]_data handshake !57
" signal last_flit_phase : std_logic; -- Sample of last_flit_i taken when abriter_grant is given !58
" signal arbiter_grant   : std_logic; -- arbiter_grant_i "filtered", to avoid a race condition (guarantees that 59
arbiter_grant_i goes low when arbiter_request goes low) !…
" signal arbiter_request : std_logic; -- Same as arbiter_request_o !60
" signal data_hs         : std_logic; -- Signal used to indicate when a data handshake can take place. (bec !61
" !62
begin!63
" ack_outport_o <= ack_outport; !64
" ack_data_o <= ack_data; !65
" arbiter_request_o <= arbiter_request; !66
" !67
" outport_request <= req_outport_i XOR ack_outport; -- High when request has been made, but ack hasn't been issued yet !68
" data_request <= req_data XOR ack_data; -- High when request has been made, but ack hasn't been issued yet !69
" arbiter_grant <= arbiter_grant_i AND arbiter_request; -- Part of a race-condition avoidance mechanism !70
!71
" data_hs <= arbiter_grant AND not(outport_request); -- High after [req/ack]_outport handshake takes place !72
" !73
" -- arbiter_request latch !74
" process (reset_i, arbiter_grant_i, outport_request, last_flit) !75
" begin!76
" " if ((reset_i = '1') or (last_flit = '1')) then!77
" " " arbiter_request <= '0'; !78
" " elsif ((arbiter_grant_i = '0') AND (outport_request = '1')) then!79
" " " arbiter_request <= '1'; !80
" " end if; !81
" end process; !82
!83
!84
" -- req_o latch !85
" process (reset_i, arbiter_grant, req_outport_i, req_data) !86
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Figure A.28 - VHDL source code for Outport Control module (part 2 of 3). 

--! @file outport_ctrl.vhd !1
--! @brief Control unit for each outport (Phase converter between input port and output port). !2
--! @author Matheus Gibiluka, matheus.gibiluka@acad.pucrs.br !3
--! @date 2013-10-02 !4
!5
------------------------------------------------------------------------ !6
-- Dependencies: !7
-- > hermes_bd_package.vhd !8
------------------------------------------------------------------------ !9
-- Interface description: !10
--                       "  ------------- !11
--     "                    |             | !12
--     "  reset_i---------->|             | !13
--           " "         |             | !14
--  req_outport_i---------->|             |---------->arbiter_request_o !15
--         ""             |             | !16
--  ack_outport_o<----------|             |<----------arbiter_grant_i !17
--                  "     |             | !18
-- "    " " "         |             | !19
--" " req_data_i--------->|             |---------->req_o !20
-- "" " " "         |             | !21
--" " ack_data_o<---------|             |<----------ack_i !22
--                      " |             | !23
-- "" " " "         |             | !24
--"    last_flit_i--------->|             | !25
--                      " |             | !26
--                       "  ------------- !27
------------------------------------------------------------------------ !28
!29
!30
library ieee; !31
use ieee.std_logic_1164.all; !32
use work.hermes_bd_package.all; !33
!34
entity outport_ctrl is!35
" port( !36
" " reset_i      "   : in  std_logic; --! Active-high reset signal. !37
" " req_outport_i     : in  std_logic; --! Signal requesting use of the outport. !38
" " ack_outport_o     : out std_logic; --! Acknowledge relative to req_outport_i. Indicates that port use has been 39
granted and the data at data out port was received. !…
" " arbiter_request_o : out std_logic; --! Level-encoded signal requesting use of the outport. !40
" " arbiter_grant_i   : in  std_logic; --! Level-encoded grant relative to arbiter_request_o. This signal is kept high 41
as long as the arbiter_request_o is asserted. !…
" " req_data_i        : in  std_logic; --! Signal indicating that a new data flit is ready to be sent. !42
" " ack_data_o        : out std_logic; --! Acknowledge relative to req_data_i. Indicates that the data flit has been 43
sent. !…
" " last_flit_i       : in  std_logic; --! Transition-encoded signal indicating that the current flit is the last flit 44
of the packet. !…
" " req_o             : out std_logic; --! Signal indicating that there is a new flit ready to be sent. !45
" " ack_i" " "   : in  std_logic  --! Acknowledge relative to req_o. Indicates that the flit has been sent. !46
" ); !47
end outport_ctrl; !48
!49
architecture outport_ctrl of outport_ctrl is !50
" signal outport_request : std_logic; -- Level-encoded signal that indicates when a request at [req/ack]_outport_i is 51
detected !…
" signal ack_outport     : std_logic; -- Same as ack_outport_o !52
" signal req_data        : std_logic; -- Phase-matched version of req_data_i !53
" signal req_data_phase  : std_logic; -- Signal to indicate when the phase of req_data_ needs to be inverted !54
" signal ack_data        : std_logic; -- Same as ack_data_o !55
" signal data_request    : std_logic; -- Level-encoded signal that indicates when a request at [req/ack])_data_i is 56
detected !…
" signal last_flit       : std_logic; -- last_flit_i sampled at the acknowledge of [req/ack]_data handshake !57
" signal last_flit_phase : std_logic; -- Sample of last_flit_i taken when abriter_grant is given !58
" signal arbiter_grant   : std_logic; -- arbiter_grant_i "filtered", to avoid a race condition (guarantees that 59
arbiter_grant_i goes low when arbiter_request goes low) !…
" signal arbiter_request : std_logic; -- Same as arbiter_request_o !60
" signal data_hs         : std_logic; -- Signal used to indicate when a data handshake can take place. (bec !61
" !62
begin!63
" ack_outport_o <= ack_outport; !64
" ack_data_o <= ack_data; !65
" arbiter_request_o <= arbiter_request; !66
" !67
" outport_request <= req_outport_i XOR ack_outport; -- High when request has been made, but ack hasn't been issued yet !68
" data_request <= req_data XOR ack_data; -- High when request has been made, but ack hasn't been issued yet !69
" arbiter_grant <= arbiter_grant_i AND arbiter_request; -- Part of a race-condition avoidance mechanism !70
!71
" data_hs <= arbiter_grant AND not(outport_request); -- High after [req/ack]_outport handshake takes place !72
" !73
" -- arbiter_request latch !74
" process (reset_i, arbiter_grant_i, outport_request, last_flit) !75
" begin!76
" " if ((reset_i = '1') or (last_flit = '1')) then!77
" " " arbiter_request <= '0'; !78
" " elsif ((arbiter_grant_i = '0') AND (outport_request = '1')) then!79
" " " arbiter_request <= '1'; !80
" " end if; !81
" end process; !82
!83
!84
" -- req_o latch !85
" process (reset_i, arbiter_grant, req_outport_i, req_data) !86

" begin!87
" " if (reset_i = '1') then!88
" " " req_o <= '0'; !89
" " elsif (arbiter_grant = '1') then!90
" " " req_o <= req_outport_i XOR req_data; -- Phase-matching of req_o !91
" " end if; !92
" end process; !93
" !94
" !95
" -- ack_outport latch !96
" process (reset_i, arbiter_grant, outport_request, ack_i, req_data) !97
" begin!98
" " if (reset_i = '1') then!99
" " " ack_outport <= '0'; !100
" " elsif ((arbiter_grant = '1') AND (outport_request = '1')) then!101
" " " ack_outport <= ack_i XOR req_data; -- Phase-matching of ack_outport !102
" " end if; !103
" end process; !104
" " " !105
" " " !106
" -- req_data latch !107
" process (reset_i, arbiter_grant, outport_request, req_data_i, req_data_phase) !108
" begin!109
" " if (reset_i = '1') then !110
" " " req_data <= '0'; !111
" " elsif (data_hs = '1') then!112
" " " req_data <= req_data_i XOR req_data_phase; -- Phase-matches req_data !113
" " end if; !114
" end process; !115
!116
" !117
" -- req_data_phase flip-flop !118
" process (arbiter_grant) !119
" begin!120
" " if (arbiter_grant'event AND (arbiter_grant = '1')) then!121
" " " req_data_phase <= req_data_i XOR req_data; -- High if they are different !122
" " end if; !123
" end process; !124
!125
!126
" -- ack_data latch !127
" process (reset_i, data_request, ack_i, req_outport_i) !128
" begin!129
" " if (reset_i = '1') then!130
" " " ack_data <= '0'; !131
" " elsif (data_request = '1') then!132
" " " ack_data <= ack_i XOR req_outport_i; -- Phase-matches ack_data !133
" " end if; !134
" end process; !135
" !136
" !137
" -- last_flit flip-flop !138
" process(reset_i, data_hs, last_flit_i, data_request) !139
" begin!140
" " if ((reset_i = '1') OR (data_hs = '0')) then!141
" " " last_flit <= '0'; !142
" " elsif (data_request'event AND (data_request = '0')) then!143
" " " last_flit <= last_flit_i XOR last_flit_phase; -- Phase-matches last_flit !144
" " end if; !145
" end process; !146
" !147
" -- last_flit_phase flip-flop !148
" process(arbiter_grant) !149
" begin!150
" " if (arbiter_grant'event AND (arbiter_grant = '1')) then!151
" " " last_flit_phase <= last_flit_i; !152
" " end if; !153
" end process; !154
" !155
"     !156
end outport_ctrl; !157

158
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A.7 Arbiter 

 
Figure A.29 - VHDL source code for Arbiter module (part 1 of 3). 

--! @file arbiter.vhd !1
--! @brief Arbiter for output interface. Based on design proposed by Ghiribaldi et. al. !2
--! @author Matheus Gibiluka, matheus.gibiluka@acad.pucrs.br !3
--! @date 2013-10-03 !4
!5
------------------------------------------------------------------------ !6
-- Dependencies: !7
-- > hermes_bd_package.vhd !8
------------------------------------------------------------------------ !9
-- Interface description: !10
--                       "  ------------- !11
--     "                    |             | !12
--                   SIZE  "|             |    SIZE !13
--     "request_i=====/====>|             |=====/====>grant_o !14
--           " "         |             | !15
--                      " |             | !16
--                       "  ------------- !17
------------------------------------------------------------------------ !18
!19
!20
library ieee; !21
use ieee.std_logic_1164.all; !22
use work.hermes_bd_package.all; !23
!24
entity arbiter is !25
" generic( !26
" " SIZE : integer := 4 --! Number of requests supported (max. 4). !27
" ); !28
" port( !29
" " request_i : in  std_logic_vector(SIZE-1 downto 0); --! Vector of level-encoded requests. !30
" " grant_o"  : out std_logic_vector(SIZE-1 downto 0)  --! Vector of grants, based of the requests made in request_i. !31
" ); !32
end arbiter; !33
!34
architecture arbiter of arbiter is!35
" -- Declaration of MUTEX implemented in ascend_behavioral.v and ascend_behavioral_udps.v !36
" component MUTEX2 !37
" " port ( !38
" " " RA : in  std_logic; !39
" " " RB : in  std_logic; !40
" " " AA : out std_logic; !41
" " " AB : out std_logic !42
" " ); !43
" end component; !44
!45
" -- Declaration of C-Element implemented in ascend_behavioral.v and ascend_behavioral_udps.v !46
" component GPSVT_BP_CSYM2X1 !47
" " port ( !48
" " " Q : out std_logic; !49
" " " A : in  std_logic; !50
" " " B : in  std_logic !51
" " ); !52
" end component; !53
!54
!55
begin!56
!57
" -- Arbiter with 1 input (Just to make it very generic) !58
" arb1: if (SIZE = 1) generate!59
" " grant_o <= request_i;" !60
" end generate arb1; !61
!62
" !63
" -- Arbiter with 2 inputs !64
" arb2: if (SIZE = 2) generate!65
" " -- Instanciation of Mutex !66
" " mutex_1: MUTEX2 !67
" " port map ( !68
" " " RA => request_i(0), !69
" " " RB => request_i(1), !70
" " " AA => grant_o(0), !71
" " " AB => grant_o(1) !72
" " ); !73
" end generate arb2; !74
!75
!76
" -- Arbiter with 3 inputs !77
" arb3: if (SIZE = 3) generate!78
" " signal grant       : std_logic_vector(1 downto 0); !79
" " signal request     : std_logic_vector(1 downto 0); !80
" " signal grant_mutex : std_logic_vector(3 downto 0); !81
" " signal mutex_2_ra  : std_logic; !82
" " !83
" begin!84
" " grant_o(1 downto 0) <= grant(1 downto 0); !85
" " grant_o(2) <= grant_mutex(3); !86
" " !87
" " !88
" " request(0) <= request_i(0) AND not(grant(1)); !89
" " request(1) <= request_i(1) AND not(grant(0)); !90
" " mutex_2_ra <= request(0) OR request(1); !91
" " !92
" " -- Instanciation of Mutexes !93
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Figure A.30 - VHDL source code for Arbiter module (part 2 of 3). 

--! @file arbiter.vhd !1
--! @brief Arbiter for output interface. Based on design proposed by Ghiribaldi et. al. !2
--! @author Matheus Gibiluka, matheus.gibiluka@acad.pucrs.br !3
--! @date 2013-10-03 !4
!5
------------------------------------------------------------------------ !6
-- Dependencies: !7
-- > hermes_bd_package.vhd !8
------------------------------------------------------------------------ !9
-- Interface description: !10
--                       "  ------------- !11
--     "                    |             | !12
--                   SIZE  "|             |    SIZE !13
--     "request_i=====/====>|             |=====/====>grant_o !14
--           " "         |             | !15
--                      " |             | !16
--                       "  ------------- !17
------------------------------------------------------------------------ !18
!19
!20
library ieee; !21
use ieee.std_logic_1164.all; !22
use work.hermes_bd_package.all; !23
!24
entity arbiter is !25
" generic( !26
" " SIZE : integer := 4 --! Number of requests supported (max. 4). !27
" ); !28
" port( !29
" " request_i : in  std_logic_vector(SIZE-1 downto 0); --! Vector of level-encoded requests. !30
" " grant_o"  : out std_logic_vector(SIZE-1 downto 0)  --! Vector of grants, based of the requests made in request_i. !31
" ); !32
end arbiter; !33
!34
architecture arbiter of arbiter is!35
" -- Declaration of MUTEX implemented in ascend_behavioral.v and ascend_behavioral_udps.v !36
" component MUTEX2 !37
" " port ( !38
" " " RA : in  std_logic; !39
" " " RB : in  std_logic; !40
" " " AA : out std_logic; !41
" " " AB : out std_logic !42
" " ); !43
" end component; !44
!45
" -- Declaration of C-Element implemented in ascend_behavioral.v and ascend_behavioral_udps.v !46
" component GPSVT_BP_CSYM2X1 !47
" " port ( !48
" " " Q : out std_logic; !49
" " " A : in  std_logic; !50
" " " B : in  std_logic !51
" " ); !52
" end component; !53
!54
!55
begin!56
!57
" -- Arbiter with 1 input (Just to make it very generic) !58
" arb1: if (SIZE = 1) generate!59
" " grant_o <= request_i;" !60
" end generate arb1; !61
!62
" !63
" -- Arbiter with 2 inputs !64
" arb2: if (SIZE = 2) generate!65
" " -- Instanciation of Mutex !66
" " mutex_1: MUTEX2 !67
" " port map ( !68
" " " RA => request_i(0), !69
" " " RB => request_i(1), !70
" " " AA => grant_o(0), !71
" " " AB => grant_o(1) !72
" " ); !73
" end generate arb2; !74
!75
!76
" -- Arbiter with 3 inputs !77
" arb3: if (SIZE = 3) generate!78
" " signal grant       : std_logic_vector(1 downto 0); !79
" " signal request     : std_logic_vector(1 downto 0); !80
" " signal grant_mutex : std_logic_vector(3 downto 0); !81
" " signal mutex_2_ra  : std_logic; !82
" " !83
" begin!84
" " grant_o(1 downto 0) <= grant(1 downto 0); !85
" " grant_o(2) <= grant_mutex(3); !86
" " !87
" " !88
" " request(0) <= request_i(0) AND not(grant(1)); !89
" " request(1) <= request_i(1) AND not(grant(0)); !90
" " mutex_2_ra <= request(0) OR request(1); !91
" " !92
" " -- Instanciation of Mutexes !93

" " mutex_1: MUTEX2 !94
" " port map ( !95
" " " RA => request(0), !96
" " " RB => request(1), !97
" " " AA => grant_mutex(0), !98
" " " AB => grant_mutex(1) !99
" " ); !100
" " !101
" " mutex_2: MUTEX2 !102
" " port map ( !103
" " " RA => mutex_2_ra, !104
" " " RB => request_i(2), !105
" " " AA => grant_mutex(2), !106
" " " AB => grant_mutex(3) !107
" " ); !108
" " !109
" " -- Instanciation of C-Elements !110
" " cel_1: GPSVT_BP_CSYM2X1 !111
" " port map ( !112
" " " Q => grant(0), !113
" " " A => grant_mutex(0), !114
" " " B => grant_mutex(2) !115
" " ); !116
" " !117
" " cel_2: GPSVT_BP_CSYM2X1 !118
" " port map ( !119
" " " Q => grant(1), !120
" " " A => grant_mutex(1), !121
" " " B => grant_mutex(2) !122
" " ); !123
" " !124
" end generate arb3; !125
" !126
" !127
" -- Arbiter with 4 inputs !128
" arb4: if (SIZE = 4) generate!129
" " signal grant       : std_logic_vector(3 downto 0); !130
" " signal request     : std_logic_vector(3 downto 0); !131
" " signal grant_mutex : std_logic_vector(5 downto 0); !132
" " signal mutex_3_ra  : std_logic; !133
" " signal mutex_3_rb  : std_logic; !134
" " !135
" begin!136
" " grant_o <= grant; !137
" " !138
" " request(0) <= request_i(0) AND not(grant(1)); !139
" " request(1) <= request_i(1) AND not(grant(0)); !140
" " request(2) <= request_i(2) AND not(grant(3)); !141
" " request(3) <= request_i(3) AND not(grant(2)); !142
" " mutex_3_ra <= request(0) OR request(1); !143
" " mutex_3_rb <= request(2) OR request(3); !144
" !145
" " -- Instanciation of Mutexes !146
" " mutex_1: MUTEX2 !147
" " port map ( !148
" " " RA => request(0), !149
" " " RB => request(1), !150
" " " AA => grant_mutex(0), !151
" " " AB => grant_mutex(1) !152
" " ); !153
" " !154
" " mutex_2: MUTEX2 !155
" " port map ( !156
" " " RA => request(2), !157
" " " RB => request(3), !158
" " " AA => grant_mutex(2), !159
" " " AB => grant_mutex(3) !160
" " ); !161
" " !162
" " mutex_3: MUTEX2 !163
" " port map ( !164
" " " RA => mutex_3_ra, !165
" " " RB => mutex_3_rb, !166
" " " AA => grant_mutex(4), !167
" " " AB => grant_mutex(5) !168
" " ); !169
" " !170
" " -- Instanciation of C-Elements !171
" " cel_1: GPSVT_BP_CSYM2X1 !172
" " port map ( !173
" " " Q => grant(0), !174
" " " A => grant_mutex(0), !175
" " " B => grant_mutex(4) !176
" " ); !177
" " !178
" " cel_2: GPSVT_BP_CSYM2X1 !179
" " port map ( !180
" " " Q => grant(1), !181
" " " A => grant_mutex(1), !182
" " " B => grant_mutex(4) !183
" " ); !184
" " !185
" " cel_3: GPSVT_BP_CSYM2X1 !186
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Figure A.31 - VHDL source code for Arbiter module (part 3 of 3). 

A.8 Output Interface 

 
Figure A.32 - VHDL source code for Output Interface module (part 1 of 2). 

" " port map ( !187
" " " Q => grant(2), !188
" " " A => grant_mutex(2), !189
" " " B => grant_mutex(5) !190
" " ); !191
" " !192
" " cel_4: GPSVT_BP_CSYM2X1 !193
" " port map ( !194
" " " Q => grant(3), !195
" " " A => grant_mutex(3), !196
" " " B => grant_mutex(5) !197
" " ); !198
" end generate arb4; !199
" !200
end arbiter; !201

202

--! @file output_interface.vhd !1
--! @brief Handshake-based Output Interface using transition signaling protocol. !2
--! @author Matheus Gibiluka, matheus.gibiluka@acad.pucrs.br !3
--! @date 2013-10-07 !4
!5
------------------------------------------------------------------------ !6
-- Dependencies: !7
-- > hermes_bd_package.vhd !8
------------------------------------------------------------------------ !9
-- Generics for configuration: !10
--   THIS_PORT: Defines which port is this interface representing (East, West, North, South, Local). !11
--  COMM_PORTS: Defines to which ports this interface connects (index THIS_PORT is ignored). Ports with '0' are 12
disconnected. !…
------------------------------------------------------------------------ !13
-- Interface description: !14
--                       "  ------------- !15
--     "                    |             | !16
--     "  reset_i---------->|             | !17
--     "                    |             | !18
--           " PORTS_NUMBER|             | !19
--  req_outport_i======/===>|             | !20
--         "" PORTS_NUMBER|             | !21
--  ack_outport_o<=====/====|             | !22
--                  "     |             | !23
-- "    " " PORTS_NUMBER|             | !24
--"    req_data_i=====/====>|             |---------->req_o !25
-- "" " " PORTS_NUMBER|             | !26
--"    ack_data_o<=====/====|             |<----------ack_i !27
--                      " |             | !28
-- "PORTS_NUMBER x FLIT_SIZE|             | FLIT_SIZE !29
--         data_i=====/====>|             |=====/====>data_o !30
-- "" " " PORTS_NUMBER|             | !31
--"   last_flit_i=====/====>|             | !32
--                      " |             | !33
--                       "  ------------- !34
------------------------------------------------------------------------ !35
!36
!37
library ieee; !38
use ieee.std_logic_1164.all; !39
use ieee.std_logic_misc.all; !40
use work.hermes_bd_package.all; !41
!42
entity output_interface is!43
" generic( !44
" " THIS_PORT  : integer := LOCAL; --! Defines which port is this interface representing  (East, West, North, South, 45
Local). !…
" " COMM_PORTS : std_logic_vector(PORTS_NUMBER-1 downto 0) := "11111" --! Defines to which ports this interface 46
connects (index THIS_PORT is ignored). Ports with '0' are disconnected. !…
" ); !47
" port( !48
" " reset_i       : in  std_logic; --! Active-high reset signal. !49
" " req_outport_i : in  std_logic_vector(PORTS_NUMBER-1 downto 0); --! Signal requesting use of the output port. !50
" " ack_outport_o : out std_logic_vector(PORTS_NUMBER-1 downto 0); --! Acknowledge signal relative to req_outport_i. 51
Indicates that the port use has been granted, and the flit on data_i has been consumed."" !…
" " req_data_i    : in  std_logic_vector(PORTS_NUMBER-1 downto 0); --! Request signal indicating that new payload is 52
available on data_i. !…
" " ack_data_o    : out std_logic_vector(PORTS_NUMBER-1 downto 0); --! Acknowledge relative to req_data_i. Indicates 53
that the payload was consumed. !…
" " data_i        : in  flit_size_array(PORTS_NUMBER-1 downto 0); --! Data input. !54
" " last_flit_i   : in  std_logic_vector(PORTS_NUMBER-1 downto 0); --! Active-high signal indicating that the flit on 55
data_i is the last flit of the current packet. !…
" " req_o         : out std_logic; --! Request signal indicating that new data is available on data_o. !56
" " ack_i         : in  std_logic; --! Acknowledge signal relative to req_o. Indicates that the data has been stored. !57
" " data_o        : out std_logic_vector(FLIT_SIZE-1 downto 0) --! Data output. !58
" ); !59
end output_interface; !60
!61
architecture output_interface of output_interface is!62
   "constant OUTPORTS_NUMBER : integer := number_of_used_ports(COMM_PORTS, THIS_PORT); -- Constant to indicate the number 63
of OUTPORTS in this interface !…
    !64
    signal arbiter_req_aux : std_logic_vector(OUTPORTS_NUMBER-1 downto 0); -- Auxiliary signal to connect arbiter_request 65
to the arbiter !…
    signal arbiter_grn_aux : std_logic_vector(OUTPORTS_NUMBER-1 downto 0); -- Auxiliary signal to connect arbiter_grant to 66
the arbiter !…
    signal arbiter_request : std_logic_vector(PORTS_NUMBER-1 downto 0); -- Signal used to make an arbiter request !67
    signal arbiter_grant   : std_logic_vector(PORTS_NUMBER-1 downto 0); -- Signal used to indicate an arbiter grant"!68
    signal ctrl_req        : std_logic_vector(PORTS_NUMBER-1 downto 0); -- Request signals generated by outport_ctrl" !69
    signal ctrl_ack        : std_logic_vector(PORTS_NUMBER-1 downto 0); -- Phase-matched Acknowledge signals for the 70
outport_ctrl !…
    !71
    !72
    -- Helper function to connect arbiter_request according to the COMM_PORTS !73
    function arbiter_request_connect(X : std_logic_vector; N : integer; COMM_PORTS : std_logic_vector; THIS_PORT: integer) 74
return std_logic_vector is!…
        variable aux : std_logic_vector(N-1 downto 0); !75
        variable j   : integer := 0; !76
    begin!77
        for i in COMM_PORTS'range loop!78
            if ((i /= THIS_PORT) and (COMM_PORTS(i) = '1')) then!79
                aux(j) := X(i); !80
                j := j + 1; !81
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Figure A.33 - VHDL source code for Output Interface module (part 2 of 2). 

--! @file output_interface.vhd !1
--! @brief Handshake-based Output Interface using transition signaling protocol. !2
--! @author Matheus Gibiluka, matheus.gibiluka@acad.pucrs.br !3
--! @date 2013-10-07 !4
!5
------------------------------------------------------------------------ !6
-- Dependencies: !7
-- > hermes_bd_package.vhd !8
------------------------------------------------------------------------ !9
-- Generics for configuration: !10
--   THIS_PORT: Defines which port is this interface representing (East, West, North, South, Local). !11
--  COMM_PORTS: Defines to which ports this interface connects (index THIS_PORT is ignored). Ports with '0' are 12
disconnected. !…
------------------------------------------------------------------------ !13
-- Interface description: !14
--                       "  ------------- !15
--     "                    |             | !16
--     "  reset_i---------->|             | !17
--     "                    |             | !18
--           " PORTS_NUMBER|             | !19
--  req_outport_i======/===>|             | !20
--         "" PORTS_NUMBER|             | !21
--  ack_outport_o<=====/====|             | !22
--                  "     |             | !23
-- "    " " PORTS_NUMBER|             | !24
--"    req_data_i=====/====>|             |---------->req_o !25
-- "" " " PORTS_NUMBER|             | !26
--"    ack_data_o<=====/====|             |<----------ack_i !27
--                      " |             | !28
-- "PORTS_NUMBER x FLIT_SIZE|             | FLIT_SIZE !29
--         data_i=====/====>|             |=====/====>data_o !30
-- "" " " PORTS_NUMBER|             | !31
--"   last_flit_i=====/====>|             | !32
--                      " |             | !33
--                       "  ------------- !34
------------------------------------------------------------------------ !35
!36
!37
library ieee; !38
use ieee.std_logic_1164.all; !39
use ieee.std_logic_misc.all; !40
use work.hermes_bd_package.all; !41
!42
entity output_interface is!43
" generic( !44
" " THIS_PORT  : integer := LOCAL; --! Defines which port is this interface representing  (East, West, North, South, 45
Local). !…
" " COMM_PORTS : std_logic_vector(PORTS_NUMBER-1 downto 0) := "11111" --! Defines to which ports this interface 46
connects (index THIS_PORT is ignored). Ports with '0' are disconnected. !…
" ); !47
" port( !48
" " reset_i       : in  std_logic; --! Active-high reset signal. !49
" " req_outport_i : in  std_logic_vector(PORTS_NUMBER-1 downto 0); --! Signal requesting use of the output port. !50
" " ack_outport_o : out std_logic_vector(PORTS_NUMBER-1 downto 0); --! Acknowledge signal relative to req_outport_i. 51
Indicates that the port use has been granted, and the flit on data_i has been consumed."" !…
" " req_data_i    : in  std_logic_vector(PORTS_NUMBER-1 downto 0); --! Request signal indicating that new payload is 52
available on data_i. !…
" " ack_data_o    : out std_logic_vector(PORTS_NUMBER-1 downto 0); --! Acknowledge relative to req_data_i. Indicates 53
that the payload was consumed. !…
" " data_i        : in  flit_size_array(PORTS_NUMBER-1 downto 0); --! Data input. !54
" " last_flit_i   : in  std_logic_vector(PORTS_NUMBER-1 downto 0); --! Active-high signal indicating that the flit on 55
data_i is the last flit of the current packet. !…
" " req_o         : out std_logic; --! Request signal indicating that new data is available on data_o. !56
" " ack_i         : in  std_logic; --! Acknowledge signal relative to req_o. Indicates that the data has been stored. !57
" " data_o        : out std_logic_vector(FLIT_SIZE-1 downto 0) --! Data output. !58
" ); !59
end output_interface; !60
!61
architecture output_interface of output_interface is!62
   "constant OUTPORTS_NUMBER : integer := number_of_used_ports(COMM_PORTS, THIS_PORT); -- Constant to indicate the number 63
of OUTPORTS in this interface !…
    !64
    signal arbiter_req_aux : std_logic_vector(OUTPORTS_NUMBER-1 downto 0); -- Auxiliary signal to connect arbiter_request 65
to the arbiter !…
    signal arbiter_grn_aux : std_logic_vector(OUTPORTS_NUMBER-1 downto 0); -- Auxiliary signal to connect arbiter_grant to 66
the arbiter !…
    signal arbiter_request : std_logic_vector(PORTS_NUMBER-1 downto 0); -- Signal used to make an arbiter request !67
    signal arbiter_grant   : std_logic_vector(PORTS_NUMBER-1 downto 0); -- Signal used to indicate an arbiter grant"!68
    signal ctrl_req        : std_logic_vector(PORTS_NUMBER-1 downto 0); -- Request signals generated by outport_ctrl" !69
    signal ctrl_ack        : std_logic_vector(PORTS_NUMBER-1 downto 0); -- Phase-matched Acknowledge signals for the 70
outport_ctrl !…
    !71
    !72
    -- Helper function to connect arbiter_request according to the COMM_PORTS !73
    function arbiter_request_connect(X : std_logic_vector; N : integer; COMM_PORTS : std_logic_vector; THIS_PORT: integer) 74
return std_logic_vector is!…
        variable aux : std_logic_vector(N-1 downto 0); !75
        variable j   : integer := 0; !76
    begin!77
        for i in COMM_PORTS'range loop!78
            if ((i /= THIS_PORT) and (COMM_PORTS(i) = '1')) then!79
                aux(j) := X(i); !80
                j := j + 1; !81

            end if; !82
        end loop; !83
        return aux; !84
    end arbiter_request_connect; !85
" !86
" -- Helper function to connect arbiter_grant according to the COMM_PORTS !87
" function arbiter_grant_connect(X : std_logic_vector; N : integer; COMM_PORTS : std_logic_vector; THIS_PORT: integer) 88
return std_logic_vector is!…
        variable aux : std_logic_vector(PORTS_NUMBER-1 downto 0); !89
        variable j   : integer := 0; !90
    begin!91
        for i in COMM_PORTS'range loop!92
            if ((i /= THIS_PORT) and (COMM_PORTS(i) = '1')) then!93
                aux(i) := X(j); !94
                j := j + 1; !95
            end if; !96
        end loop; !97
        return aux; !98
    end arbiter_grant_connect; !99
    !100
begin!101
" -- Req phase encoder !102
" req_o <= xor_all_bits_considering_comm_ports(ctrl_req, COMM_PORTS, THIS_PORT); !103
" !104
" !105
" -- Outport Control Unit !106
    outport_ctrl_gen: for i in 0 to PORTS_NUMBER-1 generate!107
        used_outport_ctrl_gen: if ((i /= THIS_PORT) and (COMM_PORTS(i) = '1')) generate    !108
    " " ctrl_ack(i) <= ack_i XOR xor_all_bits_but_one_considering_comm_ports(ctrl_req,i, COMM_PORTS, THIS_PORT); !109
    !110
            outport_ctrl_i: entity work.outport_ctrl !111
" "     port map ( !112
    " " " reset_i      "   => reset_i, !113
"     " " req_outport_i     => req_outport_i(i), !114
" "     " ack_outport_o     => ack_outport_o(i), !115
" " "     arbiter_request_o => arbiter_request(i), !116
    " " " arbiter_grant_i   => arbiter_grant(i), !117
"     " " req_data_i        => req_data_i(i), !118
" "     " ack_data_o        => ack_data_o(i), !119
" " "     last_flit_i       => last_flit_i(i), !120
    " " " req_o             => ctrl_req(i), !121
"     " " ack_i" " "   => ctrl_ack(i) !122
" "     );    !123
        end generate used_outport_ctrl_gen;     !124
" end generate outport_ctrl_gen; !125
" " !126
" -- Map arbiter's wires (this is needed due to the use of COMM_PORTS to determine which ports are connected and which 127
are not, making it more generic) !…
" arbiter_req_aux <= arbiter_request_connect(arbiter_request, OUTPORTS_NUMBER, COMM_PORTS, THIS_PORT); -- Connect the 128
used arbiter_request to the arbiter !…
" arbiter_grant <= arbiter_grant_connect(arbiter_grn_aux, OUTPORTS_NUMBER, COMM_PORTS, THIS_PORT); -- Connect grants 129
from arbiter to the arbiter_grants used !…
!130
" -- Arbiter Instance !131
    arbiter_i: entity work.arbiter !132
" generic map( !133
" " SIZE => OUTPORTS_NUMBER !134
" ) !135
    port map( !136
" " request_i => arbiter_req_aux, !137
" " grant_o"  => arbiter_grn_aux !138
" ); !139
" !140
" -- MUX to select data input !141
    mux_gen: for i in 0 to PORTS_NUMBER-1 generate!142
        used_mux_gen: if ((i /= THIS_PORT) and (COMM_PORTS(i) = '1')) generate!143
            data_o <= data_i(i) when arbiter_grant(i) = '1' else !144
                      (others => 'Z'); !145
        end generate used_mux_gen; !146
    end generate mux_gen; !147
" !148
end output_interface; !149

150
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A.9 BaT-Hermes 

 
Figure A.34 - VHDL source code for router port (part 1 of 2). 

--! @file hermes_bd_port.vhd !1
--! @brief Entity to group an input_interface with an output_interface. !2
--! @author Matheus Gibiluka, matheus.gibiluka@acad.pucrs.br !3
--! @date 2013-10-14 !4
!5
-------------------------------------------------------------------------------------- !6
-- Dependencies: !7
-- > hermes_bd_package.vhd !8
-------------------------------------------------------------------------------------- !9
-- Generics for configuration: !10
-- ROUTING_ALGORITHM: Choice of routing algorithm. !11
--      BUFFER_DEPTH: Defines the depth of the buffer !12
--    ROUTER_ADDRESS: Address of the router in which this port is inserted !13
--         THIS_PORT: Defines which port is this interface representing (East, West, North, South, Local) !14
--        COMM_PORTS: Defines to which ports this interface connects (index THIS_PORT is ignored). Ports with '0' are left 15
disconnected. !…
-------------------------------------------------------------------------------------- !16
-- Interface description: !17
--                                    ------------- !18
--                                   |             | !19
--     "           reset_i---------->|      I      | !20
--                                   |      N      |PORTS_NUMBER !21
--            inport_req_i---------->|      P      |======/===>inport_req_outport_o !22
--                                   |      U      |PORTS_NUMBER !23
--            inport_ack_o<----------|      T      |<=====/====inport_ack_outport_i !24
--                                   |             | !25
--                                   |      I      |---------->inport_req_data_o !26
--                                   |      N      |PORTS_NUMBER !27
-- "" " "                      |      T      |<=====/====inport_ack_data_i !28
--                                   |      F      | !29
--                         FLIT_SIZE |      A      | FLIT_SIZE !30
--            inport_data_i====/====>|      C      |=====/====>inport_data_o !31
--                                   |      E      |---------->inport_last_flit_o !32
--                                   |             | !33
--                                    ------------- !34
--             "                     |             | !35
--                   "  PORTS_NUMBER|      O      | !36
--   outport_req_outport_i======/===>|      U      | !37
--               " "  PORTS_NUMBER|      T      |---------->outport_req_o !38
--   outport_ack_outport_o<=====/====|      P      | !39
--                           "      |      U      |<----------outport_ack_i !40
-- "    " "          PORTS_NUMBER|      T      | !41
--"     outport_req_data_i=====/====>|             | !42
--      " " " "  PORTS_NUMBER|      I      | !43
--"     outport_ack_data_o<=====/====|      N      | !44
--                              "  |      T      | !45
--       "  PORTS_NUMBER x FLIT_SIZE|      F      | !46
--          outport_data_i=====/====>|      A      | FLIT_SIZE !47
-- "        " " "  PORTS_NUMBER|      C      |=====/====>outport_data_o !48
--"    outport_last_flit_i=====/====>|      E      | !49
--                               "  |             | !50
--                               "   ------------- !51
-------------------------------------------------------------------------------------- !52
!53
!54
library ieee; !55
use ieee.std_logic_1164.all; !56
use work.hermes_bd_package.all; !57
!58
entity hermes_bd_port is!59
" generic( !60
"     ROUTING_ALGORITHM : string := "XY"; --! Choice of routing algorithm. !61
" " BUFFER_DEPTH      : integer := 8; --! Defines the depth of the buffer. !62
" " ROUTER_ADDRESS    : std_logic_vector((FLIT_SIZE/2)-1 downto 0) := x"11"; --! Address of the router. !63
" " THIS_PORT         : integer := LOCAL; --! Defines which port is this interface representing  (East, West, North, 64
South, Local). !…
" " COMM_PORTS        : std_logic_vector(PORTS_NUMBER-1 downto 0) := "11111" --! Defines to which ports this interface 65
connects (index THIS_PORT is ignored). Ports with '0' are disconnected. !…
" ); !66
" port( !67
" " reset_i               : in  std_logic; --! Active-high reset signal. !68
" " -- Input Interface Signals !69
" " inport_req_i          : in  std_logic; --! Request signal indicating that new data is available on inport_data_i. !70
" " inport_ack_o          : out std_logic; --! Acknowledge signal relative to req_i. Indicates that the data on 71
inport_data_i has been stored. !…
" " inport_data_i         : in  std_logic_vector(FLIT_SIZE-1 downto 0); --! Data input of the input interface. !72
" " inport_req_outport_o  : out std_logic_vector(PORTS_NUMBER-1 downto 0); --! Signal requesting use of an output 73
port. !…
" " inport_ack_outport_i  : in  std_logic_vector(PORTS_NUMBER-1 downto 0); --! Acknowledge signal relative to 74
req_outport_o. Indicates that the port use has been granted, and the flit on input_data_o has been consumed. !…
" " inport_req_data_o     : out std_logic; --! Request signal indicating that new payload is available on 75
input_data_o. !…
" " inport_ack_data_i     : in  std_logic_vector(PORTS_NUMBER-1 downto 0); --! Acknowledge relative to req_data_o. 76
Indicates that the payload was consumed. !…
" " inport_data_o         : out std_logic_vector(FLIT_SIZE-1 downto 0); --! Input interface data output. !77
" " inport_last_flit_o    : out std_logic; --! Active-high signal indicating that the flit on data_o is the last flit 78
of the current packet. !…
" " -- Output Interface Signals !79
" " outport_req_outport_i : in  std_logic_vector(PORTS_NUMBER-1 downto 0); --! Signal requesting use of the output 80
port. !…
" " outport_ack_outport_o : out std_logic_vector(PORTS_NUMBER-1 downto 0); --! Acknowledge signal relative to 81
req_outport_i. Indicates that the port use has been granted, and the flit on outport_data_i has been consumed." " !…
" " outport_req_data_i    : in  std_logic_vector(PORTS_NUMBER-1 downto 0); --! Request signal indicating that new 82
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Figure A.35 - VHDL source code for router port (part 2 of 2). 

 
Figure A.36 - VHDL source code for BaT-Hermes router (part 1 of 2). 

payload is available on outport_data_i. !82…
" " outport_ack_data_o    : out std_logic_vector(PORTS_NUMBER-1 downto 0); --! Acknowledge relative to req_data_i. 83
Indicates that the payload was consumed. !…
" " outport_data_i        : in  flit_size_array(PORTS_NUMBER-1 downto 0); --! Output interface data input. !84
" " outport_last_flit_i   : in  std_logic_vector(PORTS_NUMBER-1 downto 0); --! Active-high signal indicating that the 85
flit on data_i is the last flit of the current packet. !…
" " outport_req_o         : out std_logic; --! Request signal indicating that new data is available on outport_data_o. !86
" " outport_ack_i         : in  std_logic; --! Acknowledge signal relative to req_o. Indicates that the data has been 87
stored. !…
" " outport_data_o        : out std_logic_vector(FLIT_SIZE-1 downto 0) --! Output interface data output. !88
" ); !89
end hermes_bd_port; !90
!91
architecture hermes_bd_port of hermes_bd_port is" !92
begin!93
" !94
" -- Input Interface Instance !95
    input_interface_i: entity work.input_interface !96
" generic map( !97
"     ROUTING_ALGORITHM => ROUTING_ALGORITHM, !98
"     BUFFER_DEPTH      => BUFFER_DEPTH, !99
" " ROUTER_ADDRESS    => ROUTER_ADDRESS, !100
" " THIS_PORT         => THIS_PORT, !101
" " COMM_PORTS        => COMM_PORTS !102
" ) !103
" port map ( !104
" " reset_i  "   => reset_i, !105
" " req_i "       => inport_req_i, !106
" " ack_o " "   => inport_ack_o, !107
" " data_i        => inport_data_i, !108
" " req_outport_o => inport_req_outport_o, !109
" " ack_outport_i => inport_ack_outport_i, !110
" " req_data_o    => inport_req_data_o, !111
" " ack_data_i    => inport_ack_data_i, !112
" " data_o        => inport_data_o, !113
" " last_flit_o   => inport_last_flit_o !114
" ); !115
!116
    -- Output Interface Instance !117
" output_interface_i: entity work.output_interface !118
" generic map ( !119
"     THIS_PORT  => THIS_PORT, !120
" " COMM_PORTS => COMM_PORTS !121
" ) !122
    port map ( !123
        reset_i       => reset_i, !124
" " req_outport_i => outport_req_outport_i, !125
" " ack_outport_o => outport_ack_outport_o, !126
" " req_data_i    => outport_req_data_i, !127
" " ack_data_o    => outport_ack_data_o, !128
" " data_i        => outport_data_i, !129
" " last_flit_i   => outport_last_flit_i, !130
" " req_o         => outport_req_o, !131
" " ack_i         => outport_ack_i, !132
" " data_o        => outport_data_o !133
    ); !134
!135
end hermes_bd_port; !136

137

--! @file hermes_bd_router.vhd !1
--! @brief A bundled-data transition-signaling handshake-based parameterizable NoC router. !2
--! @author Matheus Gibiluka, matheus.gibiluka@acad.pucrs.br !3
--! @date 2013-10-14 !4
!5
-------------------------------------------------------------------------------------- !6
-- Dependencies: !7
-- > hermes_bd_package.vhd !8
-------------------------------------------------------------------------------------- !9
-- Generics for configuration: !10
-- ROUTING_ALGORITHM: Choice of routing algorithm. !11
--      BUFFER_DEPTH: Defines the depth of each input buffer. !12
--    ROUTER_ADDRESS: Address of the router. !13
--             PORTS: Defines which ports are implemented in the router. Ports with '0' are left unconnected. !14
-------------------------------------------------------------------------------------- !15
-- Interface description: !16
--                            ------------- !17
--                           |             | !18
--     "   reset_i---------->|             | !19
--                           |             | !20
--              PORTS_NUMBER |             | PORTS_NUMBER !21
--           req_i======/===>|             |======/===>req_o !22
--              PORTS_NUMBER |             | PORTS_NUMBER !23
--           ack_o<=====/====|             |<=====/====ack_i !24
--                           |             | !25
--   PORTS_NUMBER x FLIT_SIZE|             |PORTS_NUMBER x FLIT_SIZE !26
--           data_i====/====>|             |=====/====>data_o !27
--                           |             | !28
--                            ------------- !29
-------------------------------------------------------------------------------------- !30
!31
!32
library ieee; !33
use ieee.std_logic_1164.all; !34
use work.hermes_bd_package.all; !35
!36
entity hermes_bd_router is!37
" generic( !38
"     ROUTING_ALGORITHM : string := "XY"; --! Choice of routing algorithm. !39
" " BUFFER_DEPTH      : integer := 8; --! Defines the depth of the buffer. !40
" " ROUTER_ADDRESS    : std_logic_vector((FLIT_SIZE/2)-1 downto 0) := x"11"; --! Address of the router. !41
"     PORTS             : std_logic_vector(PORTS_NUMBER-1 downto 0) := "11111" --! Defines which ports are implemented 42
in the router. Ports with '0' are left unconnected. !…
" ); !43
" port( !44
" " reset_i : in  std_logic; --! Active-high reset signal. !45
" " req_i   : in  std_logic_vector(PORTS_NUMBER-1 downto 0); --! Request signal indicating that new data is available 46
on data_i. !…
" " ack_o   : out std_logic_vector(PORTS_NUMBER-1 downto 0); --! Acknowledge signal relative to req_i. Indicates that 47
the data on data_i has been stored. !…
" " data_i  : in  flit_size_array(PORTS_NUMBER-1 downto 0); --! Data input for the input ports. !48
" " req_o   : out std_logic_vector(PORTS_NUMBER-1 downto 0); --! Request signal indicating that new data is available 49
nm data_o. !…
" " ack_i   : in  std_logic_vector(PORTS_NUMBER-1 downto 0); --! Acknowledge signal relative to req_o. Indicates that 50
the data has been stored. !…
" " data_o  : out flit_size_array(PORTS_NUMBER-1 downto 0) --! Output interface for the output ports. !51
" ); !52
end hermes_bd_router; !53
!54
architecture hermes_bd_router of hermes_bd_router is" !55
    type ports_array_t is array(0 to PORTS_NUMBER-1) of std_logic_vector(PORTS_NUMBER-1 downto 0); !56
    !57
    signal req_outport     : ports_array_t; -- Signal to hold each inport_req_outport_o. Use: 58
req_outport(input_port)(output_port)    !…
    signal req_outport_inv : ports_array_t; -- Signal to hold each inport_req_outport_o. Use: 59
req_outport(output_port)(input_port)    !…
    signal ack_outport     : ports_array_t; -- Signal to hold each outport_ack_outport_o. Use: 60
ack_outport(output_port)(input_port) !…
    signal ack_outport_inv : ports_array_t; -- Signal to hold each outport_ack_outport_o. Use: 61
ack_outport(input_port)(output_port) !…
    signal req_data        : std_logic_vector(PORTS_NUMBER-1 downto 0); -- Signal to hold each inport_req_data_o. Use: 62
req_data(input_port) !…
    signal ack_data        : ports_array_t; -- Signal to hold each inport_req_data_o. Use: (output_port)(input_port) !63
    signal ack_data_inv    : ports_array_t; -- Signal to hold each inport_req_data_o. Use: (input_port)(output_port) !64
    signal data            : flit_size_array(PORTS_NUMBER-1 downto 0); -- Signal to hold each inport_data_o. Use: 65
data(input_port) !…
    signal last_flit       : std_logic_vector(PORTS_NUMBER-1 downto 0); -- Signal to hold each inport_last_flit_o Use: 66
last_flit(input_port) !…
!67
begin!68
    -- Generation of inverted wires to facilitate connection between input and output interfaces !69
    inv_wire_gen: for i in 0 to PORTS_NUMBER-1 generate!70
        inv_wire2_gen: for j in 0 to PORTS_NUMBER-1 generate!71
            req_outport_inv(j)(i) <= req_outport(i)(j); !72
            ack_outport_inv(j)(i) <= ack_outport(i)(j); !73
            ack_data_inv(j)(i) <= ack_data(i)(j); !74
        end generate inv_wire2_gen; !75
    end generate inv_wire_gen; !76
" !77
" !78
" -- Generating ports !79
" port_gen: for i in 0 to PORTS_NUMBER-1 generate!80
"     used_port_gen: if (PORTS(i) = '1') generate!81
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Figure A.37 - VHDL source code for BaT-Hermes router (part 1 of 2). 

--! @file hermes_bd_router.vhd !1
--! @brief A bundled-data transition-signaling handshake-based parameterizable NoC router. !2
--! @author Matheus Gibiluka, matheus.gibiluka@acad.pucrs.br !3
--! @date 2013-10-14 !4
!5
-------------------------------------------------------------------------------------- !6
-- Dependencies: !7
-- > hermes_bd_package.vhd !8
-------------------------------------------------------------------------------------- !9
-- Generics for configuration: !10
-- ROUTING_ALGORITHM: Choice of routing algorithm. !11
--      BUFFER_DEPTH: Defines the depth of each input buffer. !12
--    ROUTER_ADDRESS: Address of the router. !13
--             PORTS: Defines which ports are implemented in the router. Ports with '0' are left unconnected. !14
-------------------------------------------------------------------------------------- !15
-- Interface description: !16
--                            ------------- !17
--                           |             | !18
--     "   reset_i---------->|             | !19
--                           |             | !20
--              PORTS_NUMBER |             | PORTS_NUMBER !21
--           req_i======/===>|             |======/===>req_o !22
--              PORTS_NUMBER |             | PORTS_NUMBER !23
--           ack_o<=====/====|             |<=====/====ack_i !24
--                           |             | !25
--   PORTS_NUMBER x FLIT_SIZE|             |PORTS_NUMBER x FLIT_SIZE !26
--           data_i====/====>|             |=====/====>data_o !27
--                           |             | !28
--                            ------------- !29
-------------------------------------------------------------------------------------- !30
!31
!32
library ieee; !33
use ieee.std_logic_1164.all; !34
use work.hermes_bd_package.all; !35
!36
entity hermes_bd_router is!37
" generic( !38
"     ROUTING_ALGORITHM : string := "XY"; --! Choice of routing algorithm. !39
" " BUFFER_DEPTH      : integer := 8; --! Defines the depth of the buffer. !40
" " ROUTER_ADDRESS    : std_logic_vector((FLIT_SIZE/2)-1 downto 0) := x"11"; --! Address of the router. !41
"     PORTS             : std_logic_vector(PORTS_NUMBER-1 downto 0) := "11111" --! Defines which ports are implemented 42
in the router. Ports with '0' are left unconnected. !…
" ); !43
" port( !44
" " reset_i : in  std_logic; --! Active-high reset signal. !45
" " req_i   : in  std_logic_vector(PORTS_NUMBER-1 downto 0); --! Request signal indicating that new data is available 46
on data_i. !…
" " ack_o   : out std_logic_vector(PORTS_NUMBER-1 downto 0); --! Acknowledge signal relative to req_i. Indicates that 47
the data on data_i has been stored. !…
" " data_i  : in  flit_size_array(PORTS_NUMBER-1 downto 0); --! Data input for the input ports. !48
" " req_o   : out std_logic_vector(PORTS_NUMBER-1 downto 0); --! Request signal indicating that new data is available 49
nm data_o. !…
" " ack_i   : in  std_logic_vector(PORTS_NUMBER-1 downto 0); --! Acknowledge signal relative to req_o. Indicates that 50
the data has been stored. !…
" " data_o  : out flit_size_array(PORTS_NUMBER-1 downto 0) --! Output interface for the output ports. !51
" ); !52
end hermes_bd_router; !53
!54
architecture hermes_bd_router of hermes_bd_router is" !55
    type ports_array_t is array(0 to PORTS_NUMBER-1) of std_logic_vector(PORTS_NUMBER-1 downto 0); !56
    !57
    signal req_outport     : ports_array_t; -- Signal to hold each inport_req_outport_o. Use: 58
req_outport(input_port)(output_port)    !…
    signal req_outport_inv : ports_array_t; -- Signal to hold each inport_req_outport_o. Use: 59
req_outport(output_port)(input_port)    !…
    signal ack_outport     : ports_array_t; -- Signal to hold each outport_ack_outport_o. Use: 60
ack_outport(output_port)(input_port) !…
    signal ack_outport_inv : ports_array_t; -- Signal to hold each outport_ack_outport_o. Use: 61
ack_outport(input_port)(output_port) !…
    signal req_data        : std_logic_vector(PORTS_NUMBER-1 downto 0); -- Signal to hold each inport_req_data_o. Use: 62
req_data(input_port) !…
    signal ack_data        : ports_array_t; -- Signal to hold each inport_req_data_o. Use: (output_port)(input_port) !63
    signal ack_data_inv    : ports_array_t; -- Signal to hold each inport_req_data_o. Use: (input_port)(output_port) !64
    signal data            : flit_size_array(PORTS_NUMBER-1 downto 0); -- Signal to hold each inport_data_o. Use: 65
data(input_port) !…
    signal last_flit       : std_logic_vector(PORTS_NUMBER-1 downto 0); -- Signal to hold each inport_last_flit_o Use: 66
last_flit(input_port) !…
!67
begin!68
    -- Generation of inverted wires to facilitate connection between input and output interfaces !69
    inv_wire_gen: for i in 0 to PORTS_NUMBER-1 generate!70
        inv_wire2_gen: for j in 0 to PORTS_NUMBER-1 generate!71
            req_outport_inv(j)(i) <= req_outport(i)(j); !72
            ack_outport_inv(j)(i) <= ack_outport(i)(j); !73
            ack_data_inv(j)(i) <= ack_data(i)(j); !74
        end generate inv_wire2_gen; !75
    end generate inv_wire_gen; !76
" !77
" !78
" -- Generating ports !79
" port_gen: for i in 0 to PORTS_NUMBER-1 generate!80
"     used_port_gen: if (PORTS(i) = '1') generate!81

"         !82
"         hermes_bd_port_i: entity work.hermes_bd_port !83
        " generic map( !84
        "     ROUTING_ALGORITHM => ROUTING_ALGORITHM, !85
    " "     BUFFER_DEPTH      => BUFFER_DEPTH, !86
        " " ROUTER_ADDRESS    => ROUTER_ADDRESS, !87
"     "     THIS_PORT         => i, !88
" "         COMM_PORTS        => PORTS !89
        " ) !90
        " port map ( !91
    "         reset_i  "           => reset_i, !92
    "     " inport_req_i "       => req_i(i), !93
" "         inport_ack_o " "   => ack_o(i), !94
    "     " inport_data_i         => data_i(i), !95
"         " inport_req_outport_o  => req_outport(i), !96
    " "     inport_ack_outport_i  => ack_outport_inv(i), !97
    " "     inport_req_data_o     => req_data(i), !98
"         " inport_ack_data_i     => ack_data_inv(i), !99
"     "     inport_data_o         => data(i), !100
        " " inport_last_flit_o    => last_flit(i), !101
" "         outport_req_outport_i => req_outport_inv(i), !102
        " " outport_ack_outport_o => ack_outport(i), !103
    "     " outport_req_data_i    => req_data, !104
" "         outport_ack_data_o    => ack_data(i), !105
    "     " outport_data_i        => data, !106
"         " outport_last_flit_i   => last_flit, !107
    " "     outport_req_o         => req_o(i), !108
    " "     outport_ack_i         => ack_i(i), !109
"         " outport_data_o        => data_o(i) !110
        " ); !111
"     end generate used_port_gen;"!112
" end generate port_gen; !113
!114
end hermes_bd_router; !115

116
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B. Relative Timing Constraints 

This appendix contains graphical representations of the relative timing constraints found in BaT-
Hermes. Wires are color-coded green and red, representing, respectively, base and enforced paths. Delay lines 
are inserted in the latter. Constraints between blocks are accounted in the input and output signals of each 
circuit – for example, the timing restrictions between the FIFO and the Input Buffer Control are accounted in 
the req_rd_o, ack_rd_i, data_o, req_i, ack_o and data_i signals of these modules. 

B.1 FIFO 

 
Figure B.1 – FIFO: constraint ensuring that phase_select_i arrives before req_i in the write control 

circuit and phase_select_i arrives before ack_i in the read control circuit. 

 
Figure B.2 – FIFO: constraints ensuring that, for each buffer position, data_i arrives before req_wr_i 

and data_o arrives before req_rd_o. 
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Figure B.3 – FIFO: constraint ensuring that, for each buffer position, reg_en arrives at the register 

before full_o arrives at the read control circuit. 

 
Figure B.4 – FIFO: constraints ensuring that, for each read and write control circuit, phase_select_i 

arrives before en_i. 
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Figure B.5 – FIFO: constraints ensuring that, for each read control circuit, en_i is disabled before a 

new full_o request can be made. 

 
Figure B.6 – FIFO: constraints ensuring that, for each register, the data is stored before an ack_wr_o is 

issued. 
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B.2 Input Buffer Control 

 
Figure B.7 – Input Buffer Control: constraint ensuring that data_i arrives before req_i. 

 
Figure B.8 – Input Buffer Control: constraints ensuring that data_o and last_flit_o arrives before 

req_header_o or req_data_o. 

 
Figure B.9 – Input Buffer Control: constraint ensuring that data_o is properly stored in LT2 and FF1 

before ack_o is issued. 
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Figure B.10 – Input Buffer Control: constraint ensuring that, when a request is received, the mux 

remains stable until FF1 stores the data currently at its input. 

 
Figure B.11 – Input Buffer Control: constraint ensuring that, when a request is received, the data at the 

input pin of FF3 only changes after it has been captured. 

 
Figure B.12 – Input Buffer Control: constraint ensuring that, when a request is received, FF5 only 

captures the data at its input pin after last_flit_lvl has propagated. 
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Figure B.13 – Input Buffer Control: constraint ensuring that LT3 is enabled only after all its input 

signals have propagated. 

 
Figure B.14 – Input Buffer Control: constraint ensuring that LT4 is enabled only after all its input 

signals have propagated. 

 
Figure B.15 – Input Buffer Control: constraint ensuring that all FSM data signals propagate during a 

handshake cycle. 
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Figure B.16 – Input Buffer Control: constraints ensuring the minimum period of the signal used to 

clock FF5 is large enough to fulfill the flip-flop’s timing requirements. 

 

 
Figure B.17 – Input Buffer Control: constraints ensuring that the control signal of the mux only 

changes after the signals at the clock input of FF5 have propagated. 
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B.3 Routing Control 

 
Figure B.18 – Routing Control: constraints ensuring that, for each latch connected to a req_outport_o 

signal, the signals at the input propagate before the enable signal. 

 
Figure B.19 – Routing Control: constraints ensuring that, for each latch connected to a req_outport_o 

signal, the enable signal disabling the latch propagates before ack_route_o. 
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B.4 Outport Control 

 
Figure B.20 – Outport Control: constraint ensuring the last flit detector is activated before the 

connected Input Interface receives the ack_data_o acknowledge. 

 
Figure B.21 – Outport Control: constraint ensuring the programmable phase matcher and the last flit 

detector are initialized before an ack_outport_o acknowledge is issued. 
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Figure B.22 – Outport Control: constraint ensuring that a new req_outport_i request is received after 

LT5 has been disabled. 

 
Figure B.23 – Outport Control: constraint ensuring that the last flit detector only tests a valid last_flit_i 

signal. 
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Figure B.24 – Outport Control: constraints ensuring that the signals to be stored in FF1 and FF3 arrive 

before the arbiter grant is given. 
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B.5 Output Interface 

 
Figure B.25 – Output Interface: constraint ensuring that data_o signal is stable before a req_o request is 

issued. 
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