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ABSTRACT 

Asynchronous techniques are regaining relevance in the VLSI 
research community as they allow increasing robustness against 
process variability considerably, by relaxing timing assump­
tions. In addition, asynchronous circuits enable achieving 
low-power and high-speed designs. However, due to the ab­
sence of commercial dedicated standard cell libraries to take 
the most of asynchronous design, such circuits implementa­
tions are relegated to full-custom approaches only. This lim­
its applicability of asynchronous solutions and avoids further 
development of dedicated design automation tools. This pa­
per describes an improvement to this situation by proposing 
a fully-automated design-flow called ASCEnD-A, able to im­
plement standard cells specifically required for asynchronous 
circuits design. The flow is capable of generating cells at the 
layout level, providing physical, power and timing models 
required by cell-based flows available in the state-of-the-art 
technologies. 
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1. INTRODUCTION AND RELATED WORK 
A key factor for the rapid growth of VLSI systems is the 

support provided by cell-based, semi-custom design flows. 
Such flows lower design complexity by using pre-designed 
and pre-characterized functional components called (stan­
dard) cells, instead of assuming that designers need to draw, 
place and connect each transistor by hand. This facilitates 
to timely build complex systems. Also, as CMOS tech­
nology evolves into deep submicron nodes, asynchronous 
techniques gain relevance in the VLSI research community, 
due to their ability to cope with problems that are hard to 
solve with the synchronous paradigm [13]. In fact, the last 
decades have witnessed a substantial development of new 
techniques and tools for semi-custom asynchronous design. 
Among the ones available in the state-of-the-art see for ex­
ample [2-7,9,11,12,16,18,20,21]' which allow automating 
and optimizing either quasi-delay-insensitive (QDI) and/or 
bundled-data design. 

The drawback is that, albeit these works allowed explor­
ing optimizations for asynchronous design, all of them have 
a common assumption: the availability of new gates at the 
cell level. Indeed, these gates are unavailable in commer­
cial standard cell libraries, severely constraining the adop­
tion of the techniques and tools proposed to date, as design­
ers need to implement the required gates by hand. In fact, 
this limits the modularity of asynchronous design and in­
creases design complexity, making it less appealing. Among 
new gates that are typically required by asynchronous de­
sign techniques and tools it is possible to cite Null Conven­
tion Logic (NCL) gates, C-Elements (which are actually a 
subset of NCL gates), precharge half-buffers and mutual ex­
clusion elements, all discussed in detail e.g. in [8,13]. Most 
mentioned components can be constructed using standard 
cells available off-the-shelf in conventional libraries. How­
ever, this is not efficient and can introduce hazards. One of 
the factors that can facilitate the adoption of asynchronous 
techniques is the availability of cell libraries to support them. 

However, designing such libraries is a very laborious task, 
as it requires significant expertise in microelectronics and 
asynchronous design. Having a mature design flow that au­
tomates the tasks involved in the library development is of 
extreme importance. Some of the few works found in current 
literature are ASCEnD [14], the former version of the flow 



proposed herein, and cellTK [10], an automated layout gen­
erator that was recently proposed by Karmazin et al. The 
drawback is that the former had no support for layout and 
characterization design phases, which imply a high degree of 
manual labor for obtaining the library. Karmazin et al. [10] 
on the other hand, propose an automated layout generator 
cellTK. The drawback is that this generator is not com­
patible with techniques and tools for asynchronous design 
automation proposed to date as it employs a non-standard 
flow, rather than targeting a cell-based semi-custom flow. 
Also, the tool provides no support for automatic transis­
tor dimensioning and there is no mention of how the gen­
erated layouts can be characterized to generate power and 
timing models, which limits its usability in semi-custom de­
sign tools. Another drawback is the area, energy and delay 
penalties imposed by cellTK when compared to manual de­
signs, 51%, 12% and 9% in average, respectively [10]. 

This work presents ASCEnD-A (ASCEnD-Astran) , a de­
sign flow devised for generating components required by 
asynchronous circuits at the cell level. The flow uses a set of 
specially designed tools, which are parameterizable for any 
CMOS technology. Its basic inputs are a transistor level 
net list , together with an electrical specification that defines 
the driving strength of the gate. From these, ASCEnD-A 
can automatically generate the layout of the cell and pro­
duce power and timing models in the Liberty format after 
layout extraction. In fact, the difference of ASCEnD-A and 
the original flow, ASCEnD, is the integration of the support 
of automatic layout generation with ASTRAN [22]. Layout 
verification and extraction relies on the use of conventional 
tools. Electrical characterization is done using LiChEn [17], 
an inhouse tool specially devised for characterizing asyn­
chronous cells. All single output gates required by contem­
porary techniques and tools can be designed using ASCEnD­
A. Hence, the flow stands off by providing an automated 
solution for the generation of cell libraries compatible with 
state-of-the-art methods and tools for asynchronous design 
automation. 

2. CELL DIMENSIONING 
The quality of a cell-based design is a direct function of the 

availability of cells with different functionality and different 
driving strengths. The former depends on the logic function 
implemented by the cells and the latter depends on the ca­
pability of charging/discharging a specific output load in a 
specific period of time. Obviously, bigger driving strengths 
require bigger transistors. Usually, cells are available in sev­
eral different driving strengths for a same logic function, to 
provide more optimization opportunities in operating speed 
and power. To allow a range of driving strengths to be im­
plemented, the first step in the ASCEnD-A flow, as Figure 
1 shows, is the process of setting the dimensions of the cell 
transistors. 

To do so, the designer must provide the following inputs: 
the transistor level schematic of the cell and a configura­
tion file for the ROGen tool, specifically designed for the 
proposed flow [14]. Note that this tool also requires the 
schematics of a basic 2-input NAND and an inverter with 
the same driving strength of the cell to be dimensioned 
(called reference inverter) . Albeit this can be library spe­
cific, i.e. for each cell library different standards for driving 
strengths may be defined, we strongly advise that standards 
defined in the core library (the basic library that typically 

ships with a design kit) are adopted. In fact, when devel­
oping our cell libraries, we employ inverters and NANDs of 
the core library to respect driving strength standards. Note 
that if the cell to be dimensioned performs a non-inverting 
functionality, it employs an output inverter, required by the 
inverting nature of CMOS logic. Hence, this inverter must 
have transistors of size similar to those of the reference in­
verter. Also, gates required for asynchronous design typi­
cally employ memory schemes and most often present feed­
back loops. Accordingly, transistors involved in feedback 
loops are always minimum size to interfere the least in the 
cell performance. However, we advise designers to use static 
versions of these schemes to avoid crosstalk and PVT varia­
tions problems [4]. Table 1 shows the variables that can be 
defined in the the configuration file provided to ROGen. 

This information is provided in a text based file and most 
of the parameters are generic for a same cell library. Given 
the set of inputs, the dimensioning process begins with the 
generation of a simulation environment described in SPICE 
that exhaustively varies transistor sizes as specified and per­
forms the following measurements for each variation: (i) 
propagation delays for rising and falling transitions, (ii) tran­
sition delays for rising and falling transitions, (iii) static 
power and (iv) dynamic power. As Figure 1 shows, simu­
lation is currently performed using Cadence Spectre, albeit 
any SPICE simulator can be supported. Note that tech­
nology models must be provided for the simulation to take 
place. From the resulting measurements, ASCEnD-A will 
dimension the transistors of the standard cell according to 
a specific cost function. As Figure 1 shows, this is done by 
feeding another in-house tool, called CeS [14], with the sim­
ulation report and a cost function using any combination of 
(i) , (ii) , (iii) and (iv) and the following arithmetic operators: 
+, -, /, *. The designer can also use parenthesis and pipes. 
The former allow ensuring the order of operations and the 
latter returns absolute values only. From this cost function, 
CeS will generate the best NMOS-PMOS size matches in 
descending order, according to the cost function. 

This allows exploring tradeoffs and cell sizing design space. 
For instance, a cost function can focus only in high-speed: 
1/ (prop_rise +prop_fall) , where prop_rise and prop_fall corre­
spond to rising and falling propagation delays, respectively. 
Another possibility is having the best tradeoff between delay 
and power: 1/( (prop_rise+prop_fall) *dynpwr), where dyn­
pwr corresponds to the measured dynamic power. Also, the 
tool allows an incremental analysis to take place. To do so, 
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Figure 1: ASCEnD-A design flow. 
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Table 1: Variables for the configuration file. 
1. The number of gate inputs; 
2. If the gate has a reset and/or set input. This is very 

useful for constructing gates employed in registers for 
QDI circuits [13] ; 

3. If a possible reset and/or set input is active low or high; 
4. If the gate has an inverted function; 
5. The interface of the cell using the reserved words in, 

out, set, rst, vdd and gnd for identifying the pins; 
6. The threshold of the gate. Used for NCL and NCL+ 

gates. For any other gate, the value must be defined as 
the same of the inputs number; 

7. If the gate assumes return-to-zero (RrZ) or return-to­
one (RTO). The default value is 0, when set to 1, it is 
used for dimensioning gates based on the RrO protocol, 
such as NCL+ [15] ; 

8. If the cell employs differential logic. Note that albeit 
transistor dimensioning and automatic layout genera­
tion are already supported for differential gates, elec­
trical characterization is not yet supported, as LiChEn 
supports only single output gates [17] ; 

9. Fanout. Default is F04; 
10. The operating temperature; 
11. The operating voltage; 
12. Voltage levels for logic 1 and 0 and low-to-high and 

high-to-low switching thresholds; 
13. Time and dimension units; 
14. Simulation step and total time; 
15. Start time and end time for measuring static and dy­

namic power; 
16. Maximum size of NMOS and PMOS transistors for a 

single transistor finger. This allows the flow to perform 
realistic measurements, while respecting layout defini­
tions; 

17. Minimum and maximum PMOS and NMOS sizes and 
variation step. Note that during dimensioning, gates 
will have their transistor dimensions varied according 
to these definitions. 

a first cost function is defined, for selecting only the best 
NMOS-PMOS size matches and next another cost function 
is applied to that set. For instance, assume that the designer 
defines an incremental analysis, providing the following ini­
tial cost function: 1/1 prop_rise-prop_!alli. This will select 
only NMOS-PMOS size matches that allow balanced rising 
and falling propagation delays. Next, if the designer pro­
vides the 1/ (prop_rise+prop_!all) / (leakpwr) cost function, 
where leakpwr is the measured leakage power, CeS will se­
lect the best NMOS-PMOS size match, from the previously 
selected set, that presents the best delay and leakage power 
tradeoffs. In other words, the selected match will present 
the best delay and leakage power tradeoff among the most 
balanced matches, in terms of rising and falling propagation 
delays. Using cost functions, the designer can specify differ­
ent versions of each gate. This enables enriching the library. 
After having the transistors dimensioned, the next step is to 
generate the layout. 

3. LAYOUT DESIGN 
The academic netlist-to-Iayout tool ASTRAN [22] is used 

in this work to synthesize cell layouts from the transistor 
level schematic using the dimensions defined by CeS. AS­
TRAN was developed to do the layout of any transistor 
network to allow the implementation of the methodology 
presented in [22] . ASTRAN supports unrestricted circuit 
structures, continuous transistor sizing, folding, poly and 
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Figure 3: ASTRAN Layout style 

over-the-cell metal 1 routing, redundant contacts insertion, 
minimum distance relaxation for DFM and conditional de­
sign rules. It features a transistors placement algorithm for 
width reduction and an intra-cell router. Mixed-Integer Lin­
ear Programming (MILP) is used for two-dimensional com­
paction. It produces the final layout according to the results 
provided by the placement/routing steps and regarding the 
technology design rules. 

The input of ASTRAN is a transistor level description of 
a circuit in SPICE format. Each circuit, denoted by ".sub­
ckt", can be synthesized into a cell-level layout. The tech­
nology rules are set according to the values defined by the 
foundry. ASTRAN supports rules defined by most of the 
processes down to 45nm. The cell topology (height, routing 
grid, wells/power rails position and other library specific as­
pects) are defined according to the target library. The flow 
employed by ASTRAN is illustrated in Figure 2. It makes 
use of the ID layout style which consists of two rows of 
PMOS and NMOS transistors with vertical gates as Figure 
3 shows. The resulting layouts can be exported to the CIF 
format and then imported into Cadence where DRC, LVS 
and extraction can be performed with conventional tools, in 
this case Mentor Calibre. In order to automate the cell lay­
out generation and integrate it in ASCEnD-A, we developed 
a set of scripts that import layouts generated by ASTRAN 
into the Cadence Framework for verification and extraction. 
After the layout is fully verified, a physical view is generated 
with Cadence Abstract Editor, albeit any other conventional 
tool could be used, and exported to the Library Exchange 
Format (LEF), widely accepted by EDA vendors. 



4. CELL CHARACTERIZATION 
Characterizing cells required for asynchronous design us­

ing conventional tools can be a challenging task. In fact, it 
is the authors own experience that their use in the charac­
terization of asynchronous standard cells is very laborious. 
The problem is that when the logic behavior of the cell is not 
automatically identified by these tools, the designer needs to 
manually specify it inside the database. This means that the 
characterization process must be stopped, while the modi­
fication is done. This requires the generation of some text 
files by the tool, which are then modified by the designer, 
according to a specific syntax. Once the correct logic behav­
ior is specified, the designer must update the database and 
the tool can continue its characterization flow. Therefore, 
LiChEn [17] was designed to overcome this problem. From 
the net list extracted from the generated layout, LiChEn au­
tomatically generates power and timing models for each cell 
in the Liberty format, widely accepted by EDA vendors. 
The tool is based on the generation of a simulation envi­
ronment where all arcs and static states of a cell are ex­
ercised. All commands are given through a command line 
interface, and text-based scripts can help the automation of 
standard cell libraries characterization. As Figure 4 shows, 
the flow employed by the tool comprises three main steps, 
represented by diamonds: (i) producing a cell simulation en­
vironment, (ii) finding static states and transition arcs, and 
(iii) generating timing and power figures through SPICE 
simulation. 

For configuring the simulation environment, technology­
specific data, providing corner selection, operating condi­
tions, electrical specifications and simulation parameters are 
required. Accordingly, the following information must be 
provided for the tool: Operating voltage; Voltage levels for 
valid logic 1 and 0 and low-to-high and high; Operating 
temperature; and Maximum simulation time and simulation 
step. Pin-to-pin propagation and transition delays and dy­
namic power are dependant of input slew rate and output 
capacitance load. Hence, these delay and power figures are 
modeled in non-linear tables, where each value depends on a 
combination of an input slew rate and an output load capaci­
tance. To do so, input slew rate and output load capacitance 
vectors are required, to generate the characterization simu­
lation environment. The quality of the provided vectors are 
strictly related to the quality of the models generated by the 
tool. In this way, we advise the designer to employ vectors 
similar to those used in the core library for same driving 
strengths. 

After configuring the simulation environment and provid­
ing the extracted net list of the cell to be characterized, the 
designer must provide the functionality of the cell. This 
guides the tool in its search for transition arcs and static 

Figure 4: Electrical characterization flow imple­
mented by LiChEn. 

states, which are used to conduct the required simulations. 
In LiChEn, logic functions can employ the following logic 
operations: conjunction ( *), disjunction (+) and comple­
ment (�) . Moreover, parenthesis can be used to express 
hierarchy. For instance, the basic C-element with inputs 
A and B and output Q has the following logic function: 
Q = (A*B)+(A *Q)+(B *Q). From this function, LiChEn 
employs a branch and bound algorithm to find all transition 
arcs and static states (SSs). Basically, the tool initially sets 
all input and output pins to logical 0 and computes the re­
sulting value of the output according to the logic function, 
obtaining the first static state. Next, it switches the logical 
value of one input at a time and evaluates the next output 
value through a recursive function. Each new input/output 
value after a transition is accounted as a new SS. To avoid 
exponential computation time, as soon as LiChEn detects 
that a previously computed SS was already computed previ­
ously, it stops the recursion. During switching of the inputs 
logical values, LiChEn evaluates in which cases the output 
value changes when an input switches. These cases are called 
Dynamic Transition Arcs (DTAs). The cases where input 
switching does not cause an output switching are called In­
ternal Transition Arcs (ITAs). This simple algorithm is ca­
pable of detecting all SSs, DTAs and ITAs. even those that 
depend on feedback loops. This allows effi�iently character­
izing the electrical behavior of asynchronous cells. Yet, cur­
rently, the tool supports only single output cells. However 
ongoing work includes implementing the support to multi­
output. 

LiChEn may start the characterization process once all 
SSs, DTAs and ITAs have been computed. Based on these 
results, the tool generates SPICE files that implement each 
transition arc and each SS. Measurements are conducted 
during SPICE simulation, based on the configuration given 
in the first stage of the characterization flow. During char­
acterization, LiChEn measures input gate capacitance for 
low-to-high and high-to-Iow transitions, static and dynamic 
power and timing figures. Timing figures are measured as 
pin-to-pin propagation delays and output transition delays. 
The static power is measured for each SS. Dynamic power, in 
turn, is divided in two parts: switching and internal power, 
measured as the power consumed in DTAs and ITAs. re­
spectively. The input gate capacitance is computed a; the 
average current for low-to-high and high-to-Iow input tran­
sitions and exported as rising and falling input capacitances, 
respectively. Static power, on the other hand. is measured 
for each SS according to the average current dr�wn from the 
power source. In addition, the static power consumption of 
each SS is measured for each power source independently. 
After simulation and data collection, LiChEn exports the 
obtained timing and power figures to a text-based file ac­
cording to the Liberty format. Finally, after characteriza­
tion symbol and behavioral Verilog views can be generated 
from templates, as they don't vary from library to library. 

5. EXPERIMENTS AND DISCUSSION 
Previously to ASCEnD-A, a library composed by more 

than 500 cells library had its layouts designed by hand tar­
geting the STMicroelectronics 65nm bulk CMOS technol­
ogy. This library was composed of C-Elements and NCL 
gates of different functionality and driving strengths. Ac­
cordingly, we selected a set of these gates and automatically 
implemented them targeting the same technology using the 



Table 2: Set of cells chosen for comparison. 
1. Resettable 2 inputs Sutherland C-Elements (RSUC2) 

with 6 driving strengths (X2, X4, X7, X9, X13, XI8); 
2. Resettable 2 inputs Weak Feedback C-Elements 

(RWFC2) with 6 driving strengths (X2 X4 X7 X9 
X13 XI8)' 

' , , , 

3. Res�ttable' 2 inputs van Berkel C-Elements (RVBC2) 
;,,�th 6 driving strengths (X2, X4, X7, X9, X13, XI8); 

4. 2 mputs Sutherland C-Elements (SUC2) with 5 driving 
strengths (X2, X4, X7, X9, XI3); 

5. 2 inputs Weak Feedback C-Elements (WFC2) with 6 
dr.iving strengths (X2, X4, X7, X9, X13, XI8); 

6. 2 mputs van Berkel C-Elements (VBC2) with 6 driving 
st�'engths (X2, X4, X7, X9, X13, XI8); 

7. 3 mputs Sutherland C-Elements (SUC2) with 6 driving 
st�engths (X2, X4, X7, X9, X13, XI8); 

8. 3 mputs Weak Feedback C-Elements (WFC2) with 5 
driving strengths (X2, X4, X7, X9, XI3); 

9. l-of-2, l-of-3, l-of-4, 2-of-3, 2-of-4, 3-of-4 and 3-of-5 
NCL gates (NCLI2, NCLI3. NCLI4. NCL23 NCL24 
NCL34 and NCL35) with X4 driving strength. 

' 

flow presented in this article for comparing the handcrafted 
gates with the automatically generated ones. This allows a 
perspective of the quality of gates delivered by ASCEnD-A. 
The chosen set of 53 cells for the comparison, described in 
Table 2, includes different topologies and functionalities of 
C-Elements [19] and NCL [8] gates. 

The different C-Element topologies allow different trade­
offs to be explored and are typically required by asynchronous 
templates. Each topology have a different transistors ar­
rangement and present different levels of internal routing 
congestion. Resettable versions are also very important as 
they are the basis for implementing QDI registers. More­
over, 3 inputs implementations of the component are usually 
required by QDI combinational blocks that require function­
ality of more than two variables. In addition, NCL gates are 
usually more complex cells and employ more transistors in 
their design. In this way, the selected set of gates allow 
comparing how the proposed design flow cope with topo­
logical aspects such as different degrees of internal routing 
congestion, different transistors arrangements and connec­
tivity. Also, having different driving strengths for each gate 
allows evaluating how the flow copes with different transis­
tors dimensions, which can be challenging because cells must 
all have the same height and big transistors may have to be 
folded. 

All results presented in this section are comparative. There­
fore we present them as a relation between aspects of cells 
generated with ASCEnD-A and ASCEnD in %. Note that 
positive % values denote improvements while negative % 
indicates overheads. Accordingly, Figure 5 presents the ob­
tained results. The area of the case study gates was mea­
sured directly from their layout. As the first row of charts 
show, ASCEnD-A provided area reductions in the majority 
of the evaluated cells. In fact, it achieved improvements of 
roughly 19.2% in average and 45% in best case. From the set 
of gates, only two versions of WFC3 presented overheads 
which were minimum (8%). Parasitics of all gates wer� 
extracted from layout using Calibre PEX assuming worst 
case RC extraction. The second row of charts of Figure 5 
shows the observed improvements and overheads provided 
by ASCEnD-A in total internal parasitics. The flow pro­
vided size reductions in the design of many of the gates, with 

a best case of 60%. However for some gates it caused over­
heads of up to 65%. In fact, improvements and overheads 
were quite balanced over the chosen set of gates and the aver­
age improvement was of roughly 1 %. Note that problematic 
gates were typically those with a complex internal routing, 
such as VBC2 and RVBC2. After extraction. the worst cases 
of observed input capacitance were also co�pared. The ob­
tained results are summarized in the third row of Figure 5. 
Accordingly, ASCEnD-A provided improvements in the ma­
jority of the gates. In fact, such improvements were of 59% 
in best case and roughly 17% in average. Note that over­
heads were limited to a small set of gates and in the worst 
case were of 21 %. 

The extracted net lists of each gate was simulated using 
Cadence Spectre and had all its transition arcs and static 
states exercised. During simulation, energy per transition 
and propagation delay of each arc and leakage power of each 
static state were measured. Simulation assumed typical pro­
cess with gates operating at typical voltage and temperature 
(1 V and 25 C). Using the measured values we computed 
average energy per transition, average delay and average 
leakage power of each gate, for enabling a fair comparison. 
Accordingly, as the fourth and fifth rows of charts in Figure 
5 show, ASTRAN typically provides better average energy 
per transition and delay figures. In fact. the observed varia­
tions between cells generated by ASTRAN and those hand­
crafted were very small for C-Elements. On the other hand 
NCL gates generated by ASTRAN presented improvement� 
of up to 46% in both average energy per transition and delay. 
This indicate the suitability of the proposed tool for coping 
with high complexity gates, as NCL gates are typically more 
complex than C-Elements. Note that the cases where AS­
TRAN caused overheads in energy and delay were precisely 
the cases that it caused overheads in internal parasitics. In 
this way, reducing the parasitics of gates generated by AS­
TRAN will lead to further improvements in the design flow. 
In fact, this is ongoing work. Finally, ASCEnD-A provided 
reductions in leakage power in the majority of the evaluated 
gates. Albeit these reductions were quite modest. 3.6% in 
average and 9% in best case, they can be substantial in the 
ultra-deep sub micron era, where leakage power is compara­
ble to dynamic power. 

The obtained results demonstrate the suitability of AS­
TRAN to automatic generation of layouts in the proposed 
flow. Accordingly, the tool enabled better figures in most 
of the cases. Also, the reductions provided in input capac­
itance do not have a direct effect in the experiments pre­
sented herein. However it is expected that circuits employ­
ing gates with lower input capacitance present better energy 
and speed trade offs, as the energy and speed of a cell are 
widely affected by the load in their outputs. Another very 
important aspect of having ASTRAN integrated in the flow 
is the fact that the case study set of gates was generated in 2 
days by a single designer. Note that, albeit layout generation 
is automated and as many layouts as the number of available 
computers can be done at the same time, the designer has 
always to verify the generated layout to guarantee that no 
abnormality was generated. Also, for some layouts, minor 
DRC errors required to be manually corrected. These errors 
were usually related to over-insertion of cores in polysili­
con and metal layers and the effort to correct them was 
minimum. Having that said, manually designed layouts of 
ASCEnD generally took half a day for a single designer to 
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Figure 5: Comparison between cells manually generated in ASCEnD and automatically generated in 
ASCEnD-A. 

project it. Moreover, complex NCL gates took several days. 
This means that 53 gates would require at least 27 days to 
be designed. In this way, ASCEnD-A allows one order of 
magnitude improvements in productivity. It is important to 
highlight that during layout generation of the case study set 
of gates, ASTRAN was configured with its most basic defi­
nitions in order for it to be easily integrated in ASCEnD-A. 
This led to non-optimum design of the cells. We are cur­
rently tuning the tool to provide a set of optimizations that 
will enable reducing parasitics and, as consequence, improv­
ing delay, energy and power figures. 

6. CONCLUSIONS AND FUTURE WORK 
ASCEnD-A enables the automatic synthesis for the rapid 

generation of cell libraries for semi-custom asynchronous de­
sign. Experimental results reported in this article demon­
strate that the quality of cells generated by the flow was 
superior to those manually generated in ASCEnD in many 
aspects such as area, parasitics, input capacitance, energy 
per transition, delay and leakage power. This is in contrast 
to state-of-the-art proposals for automatic layout generation 
for asynchronous circuits. In this way, ASCEnD-A can be­
come an important step towards wider acceptance of the 
asynchronous paradigm, as cell libraries generated by it can 
be coupled to state-of-the-art design flows to enable a semi­
custom approach. 

Currently, the access to ASCEnD-A is free of charge and 
the tools that comprise it can be adjusted to a specific tech­
nology. Also, a library composed by C-Elements, metasta­
bility filters and NCL gates targeting the STMicroelectron-

ics 65nm bulk CMOS technology is currently available given 
that the interested party has access to this technology [14] . 
A version of the library targeting the IBM 130nm bulk CMOS 
process is ongoing work. This later technology is compati­
ble with MOSIS [1] , which provides free access and proto­
typing targeting this technology for academic institutions. 
As future work the authors devise to fabricate a test-chip of 
several case study circuits employing cells designed with AS­
TRAN. Finally, the design of metastability filters in ASCEnD­
A is still manual, only automatic layout is supported. Ongo­
ing work will allow overcoming this limitation as the tools of 
the flow are being optimized to support multi-output cells. 
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