

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL

FACULDADE DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

ELLIPTIC CURVE CRYPTOGRAPHY

IN HARDWARE FOR SECURE SYSTEMS:

A MULTI-USE RECONFIGURABLE SOFT IP

BRUNO FIN FERREIRA

Dissertation presented as a partial require-

ment to obtain the Master’s Degree in Com-

puter Science

Advisor: Prof. Dr. Ney Laert Vilar Calazans

Porto Alegre

January 2014

Página reservada para a ficha catalográfica….

Página reservada para o termo de apresentação do mestrado…

ACKNOWLEDGMENTS

Thanks to my parents, Edite Ines Fin and João José Ferreira Filho, for their support, dedi-

cation and patience in educating me and supporting all my decisions. Without their support and

motivation, I would not have done this work.

Thanks to my advisor, Prof. Dr. Ney Calazans for the opportunities given to me, for the

confidence deposited in me and for all his support in the development of this work.

Thanks to all my friends and everyone who contributed in somehow in the development of

this work.

CRIPTOGRAFIA POR CURVAS ELÍPTICAS EM HARDWARE PARA SIS-

TEMAS SEGUROS: UM NÚCLEO IP RECONFIGURÁVEL DE MULTIUSO

RESUMO

Nos últimos anos, a indústria tem desenvolvido e colocado no mercado uma grande

quantidade de dispositivos que são capazes de acessar a Internet e outras redes. Isso está

tornando mais fácil enviar, receber, compartilhar e guardar todo tipo de informação a qual-

quer momento de qualquer lugar. Assim, há uma enorme quantidade de informações im-

portantes passando pela Internet, mas há também entidades e/ou indivíduos maliciosos

tentando capturar essas informações para roubar ou explorar isso visando obter ganhos

financeiros ou estratégicos, ou causar algum dano a outras pessoas. Apesar de existir mui-

tas maneiras de proteger tais informações, a mais relevante é o uso de criptografia. Há

muitos algoritmos criptográficos em uso atualmente, tais como DES, 3DES, AES e RSA,

que normalmente são implementados em software. Eles atingem baixo desempenho e pro-

veem baixos níveis de segurança para muitas aplicações. Portanto, é necessário criar so-

luções que disponibilizem maiores níveis de segurança e ao mesmo tempo melhorem o

desempenho de criptografar. Este trabalho propõe um sistema de comunicação seguro que

pode ser integrado a dispositivos embarcados ou computadores. O sistema de comunica-

ção seguro proposto e desenvolvido neste trabalho é baseado em Criptografia por Curvas

Elípticas (ECC), um esquema de criptografia que tem sido estudado e melhorado na última

década por muitos pesquisadores, e é indicado como um dos algoritmos de criptografia dos

mais seguros. Este trabalho descreve em detalhes a implementação das operações do ECC

em hardware, com alvo em prover maior desempenho do que a maioria dos trabalhos dis-

poníveis na literatura. Outro objetivo do trabalho é que mesmo sistemas embarcados críti-

cos possam usar o esquema proposto para criar sistemas de comunicação seguros. Este

trabalho utilizou o estado da arte operações de ECC para gerar implementações em

hardware. O resultado é um núcleo de propriedade intelectual (IP) flexível para ECC que

pode ser sintetizado para FPGAs ou ASICs. A validação deste núcleo incluiu o desenvolvi-

mento de um sistema de comunicação completo que pode criar um enlace de comunicação

segura entre dois computadores ou dispositivos similares usando ECC para criptografar

todas as informações trocadas. O núcleo IP de ECC dá suporte a qualquer uma das 5

curvas elípticas de Koblitz recomendadas pelo Instituto Nacional de Padrões e Tecnologia

(NIST) e aos Padrões para Grupo de Criptografia Eficiente (SECG). Entretanto, o núcleo IP

pode também ser facilmente adaptado para dar suporte a outras curvas elípticas. Um sis-

tema de comunicação segura foi desenvolvido, implementado e prototipado em uma placa

de desenvolvimento com FPGA Virtex 5 da Xilinx. Além disso, o trabalho demonstra as

vantagens e os ganhos de desempenho obtidos quando comparado com implementações

em software de sistemas similares.

Palavras Chave: comunicação segura, criptografia, ECC, núcleo IP, implementação

em hardware, FPGA.

ELLIPTIC CURVE CRYPTOGRAPHY IN HARDWARE FOR SECURE

SYSTEMS: A MULTI-USE RECONFIGURABLE SOFT IP

ABSTRACT

In the last years, the industry has developed and put in the market a plethora of elec-

tronic devices that are able to access the Internet and other networks. This is making easier

to send, receive, share and store all types of information at any moment, from anywhere.

Thus, there is a huge amount of important information crossing the Internet and there are

malicious entities and/or individuals trying to capture this information to steal or exploit it in

order to obtain financial or strategic gains or to cause damage to other people. There are

many ways to protect such information, the most relevant of which is the use of cryptog-

raphy. There are many cryptographic algorithms in use nowadays, such as DES, 3DES,

AES and RSA, which are usually implemented in software. This leads to low performance,

and low security levels for several applications. Therefore, it is necessary to create solutions

that provide higher security levels and that at the same time improve cryptography perfor-

mance. This work proposes and presents a secure communication system that can be inte-

grated to embedded devices or computers. The proposed secure communication system

developed in this work is based on Elliptic Curve Cryptography (ECC), which is a cryptog-

raphy scheme that has being studied and improved over the last decade by many research-

ers and is indicated as one of the most secure among cryptographic algorithms. This work

describes in detail the implementation of ECC operations in hardware, trying to provide

higher performance than most works available in the literature. Another goal of the work is

that even critical embedded systems could use the proposed scheme to build a secure com-

munication system. This work capitalizes on the state of the art in ECC operations and im-

plements these in hardware. The result is a reconfigurable soft IP core for ECC, which can

be synthesized for either FPGAs or ASICs. The validation of the soft core comprises the

development of a complete communication system that can create a secure communication

link between two computers or similar devices using ECC to encrypt all exchanged infor-

mation. The soft IP core for ECC operations supports any of the five Koblitz curves recom-

mended by the National Institute of Standards and Technology (NIST) and the Standards

for Efficient Cryptography Group (SECG). However, the IP core can also be easily adapted

to support other elliptic curves. An overall secure communication system was developed,

implemented and prototyped in a development board with a Xilinx Virtex 5 FPGA. Further-

more, the work demonstrates the advantages and gains in performance when compared to

software implementations of similar systems.

Keywords: secure communication, cryptography, ECC, soft IP core, hardware im-

plementation, FPGA.

LIST OF FIGURES

Figure 1. Hierarchy of operations in ECC. ... 24

Figure 2. Simplified view of the El Gamal cryptography algorithm. 24

Figure 3. Functional diagram of the software proposed and implemented in the scope

of this work. .. 25

Figure 4. Software architecture operating in server mode. 26

Figure 5. Software architecture operating in client mode. 26

Figure 6. Software functional sequence diagram. ... 27

Figure 7. Test scenario 1, local test without "ecc_connection". 27

Figure 8. Test scenario 2, local test with "ecc_connection" not encrypting. 28

Figure 9. Test scenario 3, local test with "ecc_connection" encrypting. 28

Figure 10. Test scenario 4, testing network communication. 28

Figure 11. Test scenario 5, testing network communication with "ecc_connection" not

encrypting. ... 28

Figure 12. Test scenario 6, testing network communication with "ecc_connection"

encrypting. ... 29

Figure 13. Overall architecture of the context for the proposed work. 31

Figure 14. Li et al. [LI08] results achieved in device utilization. 33

Figure 15. Li et al. [LI08] speedup achieved in HW vs. SW implementations. 34

Figure 16. Li et al. [LI08] comparison with related works. .. 34

Figure 17. Results obtained by Järvinen [JÄR11].. 35

Figure 18. Overall architecture of the proposed communication system. 37

Figure 19. Development platform HTG-V5-PCIE-330 of HiTech Global. 38

Figure 20. Overall component hierarchy in the hardware datapath of the proposed

ECC soft IP. ... 40

Figure 21. Squarer module interface. .. 41

Figure 22. Steps to square a number over binary finite fields. 41

Figure 23. Multiplier module interface. .. 42

Figure 24.Datapath of the generic binary finite field multiplier. 42

Figure 25. The finite field divider module interface. ... 43

Figure 26. Point adder module interface. .. 47

Figure 27. Modules that compose the point adder. ... 48

Figure 28. Module interface of negate point. ... 48

Figure 29. Module interface of the point multiplier. .. 48

Figure 30. Example of module composition to create the point multiplier. 49

Figure 31. Module interface of the key generator. ... 49

Figure 32. Composition of modules to implement the (public) key generation. 49

Figure 33. Module interface of the ECC encrypter. ... 50

Figure 34. Composition of modules to implement the ECC encrypter. 50

Figure 35. Module interface of the ECC decrypter. ... 51

Figure 36. Composition of modules to implement the ECC decrypter. 51

Figure 37. Simulation of the encrypter module. ... 52

Figure 38. Simulation of the decrypter module. ... 52

Figure 39. Total power consumption for ECC ASIC implementations. 55

Figure 40.Hardware architecture of the secure communication system. 59

Figure 41. IPv4 Ethernet frame using the TCP protocol. ... 61

Figure 42. Detailed information of the IPv4 header. .. 62

Figure 43. Detailed information of the TCP header. .. 62

Figure 44. Ethernet frame to configure the frame filter. ... 62

Figure 45. Detailed datapath of encrypter and decrypter interfaces. 63

Figure 46. Module of the encrypter interface. .. 63

Figure 47. Splitting the frame data to encrypt. ... 64

Figure 48.Format of the data block to encrypt. .. 64

Figure 49. Ethernet frame received to be encrypted. .. 65

Figure 50. Encrypted Ethernet frame 1. .. 65

Figure 51. Encrypted Ethernet frame 2. .. 65

Figure 52. Module of the decrypter interface. .. 65

Figure 53. Basic design with only Ethernet modules and control. 66

Figure 54. Hardware prototyping environment for the secure communication system.

 ... 69

LIST OF TABLES

Table 1. A comparison of the security level of ECC and RSA public-key cryptography

schemes according to the key size (in bits). .. 23

Table 2. Configuration of the used machines. ... 29

Table 3. Performance test results.. 29

Table 4. Decomposition of exponents for GF(2163). ... 44

Table 5. Decomposition of exponents for GF(2233). ... 44

Table 6. Decomposition of exponents for GF(2283). ... 45

Table 7. Decomposition of exponents for GF(2409). ... 45

Table 8. Decomposition of exponents for GF(2571). ... 46

Table 9. Initial synthesis results for the ECC encrypter and decrypter, targeting a

Xilinx XC5VLX330T FPGA. .. 52

Table 10. RELIC benchmark and modules execution time. 53

Table 11. Hardware and software comparison. ... 54

Table 12. Modelsim simulation results: synthesis results for ISE 14.1 XST and

Cadence Encounter for 65nm CMOS. ... 54

Table 13. Comparisons of performance with related works. 56

Table 14. Synthesis results for a complete ECC soft IP core. 57

Table 15. Average timing for conducted simulations. .. 67

Table 16. Synthesis results for the complete design. .. 68

Table 17.Estimating throughput of the secure communication link, in Mbits/s. 68

LIST OF ABBREVIATIONS

3DES Triple Data Encryption Standard

AES Advanced Encryption Standard

ASIC Application-Specific Integrated Circuit

CMOS Complementary Metal-Oxide-Semiconductor

DES Data Encryption Standard

DSA Digital Signature Algorithm

ECC Elliptic Curve Cryptography

ECDSA Elliptic Curve Digital Signature Algorithm

ECIES Elliptic Curve Integrated Encryption Scheme

FIFO First In First Out

GF Galois Fields

IP Intellectual Property

LUT Look-Up Table

MAC Media Access Controller

NIST National Institute of Standards and Technology

PHY Physical Layer

RSA Rivest Shamir Adleman

SECG Standards for Efficient Cryptography Group

TCP Transmission Control Protocol

VHDL Very High Speed Integrated Circuit Hardware Description Language

CONTENTS

1. INTRODUCTION .. 21

1.1. Cryptography .. 21

1.1.1. Symmetric and Asymmetric Cryptography ... 22

1.1.2. Elliptic Curve Cryptography .. 22

1.2. Software Experiment and its Limitations ... 24

1.2.1. Test Scenarios and Results .. 27

1.3. Project Context, Objectives and Motivation ... 30

1.4. Document Structure ... 31

2. RELATED WORK .. 33

2.1. Bednara et al. [BED02] ... 33

2.2. Li et al. [LI08]... 33

2.3. Keller et al. [KEL09] .. 34

2.4. Järvinen [JÄR11] .. 34

2.5. Masoumi et al. [MAS12] ... 35

2.6. Dias et al. [DIA13] ... 35

2.7. Loi et al. [LOI13] .. 36

2.8. Discussion of Related Work .. 36

3. PROPOSED DESIGN .. 37

3.1. Hardware Architecture ... 37

3.2. Target Hardware ... 37

4. SOFT IP CORE FOR ECC ... 39

4.1. Hardware Architecture ... 39

4.2. Hardware Modules for Operations over Finite Fields 40

4.2.1. The Squarer ... 41

4.2.2. The Multiplier .. 41

4.2.3. The Divider ... 43

4.3. Hardware Modules for ECC Operations ... 46

4.3.1. Point Adder ... 47

4.3.2. Negating a Point ... 48

4.3.3. Point Multiplier .. 48

4.3.4. Key Generator .. 49

4.3.5. Data Encrypter.. 50

4.3.6. Data Decrypter ... 50

4.4. Simulation, Validation and Synthesis ... 51

4.5. Exploring the Flexibility of the Soft IP Core for ECC 54

4.6. Comparing the Results with Related Work .. 55

5. SECURE COMMUNICATION SYSTEM ... 59

5.1. Hardware Architecture ... 59

5.2. Hardware Modules .. 60

5.2.1. Xilinx MAC Ethernet Wrapper ... 60

5.2.2. Main Controller ... 60

5.2.3. Frame Filter .. 61

5.2.4. Encrypter Interface ... 63

5.2.5. Decrypter Interface ... 65

5.3. Simulation, Validation and Synthesis ... 66

5.4. Hardware Prototyping .. 68

5.5. Comparing the Results with the Software Experiment 69

6. CONCLUSIONS ... 71

6.1. Applications and Viability .. 71

6.2. Future Works .. 71

REFERENCES .. 73

21

1. INTRODUCTION

In the last years, the industry of electronics and software has continually developed

numerous electronic devices, which are able to access the Internet through some connec-

tion, creating the internet of things. In addition, many applications are taking advantage of

this feature, allowing people to be online all the time. Thus, people are sending, receiving,

sharing and storing more information through the internet than ever before. However, very

few know how to protect their information adequately and they just trust that software appli-

cations or hardware devices to be already designed to protect their information. Besides,

there are also companies that do not know how to implement security mechanisms to protect

their products. Therefore, this scenario enables that malicious entities to capture and steal

important information sent through the Internet or other computer networks. One solution to

these problems is the use of cryptography to protect information. There exist many crypto-

graphic systems, like the ones explained in Section 1.1. In addition, it is possible to find

several applications and devices that transmit relevant data, such as banking transactions

or military information. These already use some kind of cryptography. However, according

to the desired security level, the use of cryptography can become prohibitive, due to the low

performance or high energy cost of most implementations. Ideally, the choice of the cryp-

tography system and its security level is always in accordance to the importance of the data

to protect.

Almenares et al. [ALM13] present a research that shows the main problems related

to secure wireless communication and the overheads associated to cryptography. They also

show that the use of mobile devices to access the Internet are becoming greater than desk-

top and that mobile devices usually are more constrained in terms of computational power,

energy and size. In that paper, the authors considered several cryptography systems imple-

mented in software, such as AES, RSA, DSA and ECDSA, and compared them to determine

their relative overhead, performance, energy consumption and efficiency. In the end, au-

thors conclude that in some cases there is a high overhead. This is reducible or passible to

optimization through the development of specific hardware for cryptography.

1.1. Cryptography

Cryptography is widely used to guarantee that information will not be exposed to eve-

ryone. Since the World War II, cryptography started to gain attention and some machines

started to be created to encrypt, decrypt and break important information, like military se-

crets, which were so important that their knowledge could determine if one side wins or loses

the war. Since then, cryptography has been studied in depth and many algorithms and pro-

tocols have been proposed. Cryptography comprises some basic definitions, such that the

algorithm must be public and security is obtainable only through the used key. Paar et al.

[PAA10] explore this concept in more detail. Cryptography algorithms must be public be-

cause if the security is based only on the algorithm, the entity that created the algorithm

would be able to break any cipher. In this way, it would not be possible to use the same

algorithm for other parts and if the algorithm was published then no system would be secure

anymore. Therefore, the security of a cryptography system must be based only on the key

22

used. Thus, everybody can have access to the algorithm and test if it is really secure. How-

ever, the key must be kept secret and it also must be long enough to make unviable for

someone to try to discover it by exhaustive search. Considering these basic definitions, a

cryptography system must be very efficient and secure for its use be viable. The reason

behind this is that if a system is very secure but it is also very slow, it can become unviable

for many applications. On the other hand, if a system is very fast but it has low security level

then it will not be useful for many applications. Therefore, all the cryptography algorithms

aim to be very efficient and secure to fulfill the requirements of most applications. Symmetric

or asymmetric algorithms implement these functionalities. The differences between these

classes of algorithms are the target of the next Section.

1.1.1. Symmetric and Asymmetric Cryptography

The main differences between symmetric and asymmetric cryptography are in the

algorithms and in the used keys. Basically, symmetric algorithms use the same algorithm

and key for encryption of the plaintext and decryption of the cipher text, while asymmetric

algorithms may use an algorithm and key for encryption and other algorithm and key for

decryption. Symmetric algorithms were created and proposed first. Examples of these are

the Data Encryption Standard (DES), the Triple Data Encryption Standard (3DES) and the

Advanced Encryption Standard (AES), accepted as standards by the United States govern-

ment. They are still widely used in several applications due to their combined requirements

of area, performance and security level. It is also already known that some of these algo-

rithms can be easily broken with powerful computers. After these, asymmetric algorithms

started to be proposed, such as the Rivest-Shamir-Adleman (RSA) and Elliptic Curves Cryp-

tography (ECC), and these started to be used for key exchange schemes in symmetric al-

gorithms. Generally, comparing symmetric and asymmetric algorithms, the first can usually

be implemented in a very efficient way, i.e. symmetric algorithms achieve higher perfor-

mance than asymmetric algorithms for encryption and decryption of data. On the other hand,

asymmetric algorithms can be optimized to fulfill more constraints of area and power when

implemented in hardware. Thus, some applications may require an encryption system with

performance of symmetric algorithms and with security level of asymmetric algorithms, re-

sulting in a solution that uses both kinds of cryptography, such as key exchange through

asymmetric algorithms and encryption with symmetric algorithms.

1.1.2. Elliptic Curve Cryptography

In the 1980s, Miller [MIL86] and Koblitz [KOB87] were the first to propose the use of

elliptic curves for cryptography. Elliptic curve cryptography is a public-key scheme just like

the widely used RSA algorithm. However, ECC has an advantage over RSA, the fact that

for a similar security level it requires smaller keys than RSA. This means that ECC imple-

mentations require less memory and computational power to execute. For example, a key

size of 163 and 571 bits in ECC has security level equivalent to a 1,024 and 15,360 bits

respectively in RSA implementation, as Table 1 shows. Lauter [LAU04] also discusses the

main advantages of ECC, mainly for mobile devices, and perform experiments in software

showing that ECC is much faster than RSA.

23

Table 1. A comparison of the security level of ECC and RSA public-key cryptography schemes according to
the key size (in bits).

Security Level Key Sizes of ECC Key Sizes of RSA

80 163 1024

128 283 3072

192 409 7680

256 571 15360

Due to these advantages, many standards for ECC appeared in the last decade. An

example are those proposed by the National Institute of Standards and Technology (NIST)

[NIST99], which recommends a set of parameters for several elliptic curves with different

sizes. Another example are those suggested by the Standard for Efficient Cryptography

Group (SECG) [BRO09], an industrial consortium dedicated to achieve interoperability

among cryptography equipment. Martínez et al. also present a survey demonstrating the

Elliptic Curve Integrated Encryption Scheme (ECIES), which is defined by many standards,

and its advantages when compared to RSA. In short, ECC has been demonstrated to be

more efficient than RSA.

In his book, Hankerson et al. [HAN04] present a guide to ECC and detail all the math-

ematical background, such as finite fields, modular arithmetic and elliptic curve arithmetic

that supports the concepts behind ECC. Stated simply, the main ECC operation is the point

multiplication, composed by a point addition and a finite field squaring operation. The hier-

archy of ECC operations is illustrated in Figure 1. The point addition comprises finite field

multiplication and inversion operators, which execute the most time-consuming operations

in ECC. There are several studies demonstrating how to implement these operations effi-

ciently in hardware or software and because of this, performance measurements are often

based on the time taken to compute a single point multiplication in elliptic curves. This is the

basic metric used in this work for comparing ECC implementations. The protocol level is not

considered in this work because there are many different ones defined by several standards

and this level can be implemented in software without significant effect on the cost of the

overall cryptography performance.

ECC can be used over different representations and sizes of finite fields. In binary

Galois Fields GF(2m), the polynomial bases and normal bases are the most used, but for

ECC in hardware, polynomial bases are the most indicated, due to their efficiency in this

kind of implementation as it is demonstrated by Deschamps et al [DES09]. Accordingly, this

work only considers ECC over binary fields GF(2m), represented in polynomial bases. The

implemented elliptic curves and parameters are the Koblitz curves recommended by NIST

[NIST99], but the core proposed here can also support the choice of other curves and pa-

rameters. Points of an elliptic curve can be represented by affine coordinates, as (x, y), or

projective coordinates, such as (x, y, z), and this is important, because some algorithms for

scalar point multiplication, which use projective coordinates, are usually more efficient than

those which employ affine coordinates. However, using projective coordinates requires a

converter between these two kinds of representation to keep the interoperability among dif-

ferent systems and standards.

24

Protocols

Point

Multiplication

Point Addition

Finite Field Arithmetic

(add, sub, mul, sqr, inv)

Figure 1. Hierarchy of operations in ECC.

At a high level of abstraction, ECC executes an algorithm composed by the elements

and steps of Figure 2. The computation uses a pre-defined elliptic curve, such as one of

Koblitz curves, to calculate the listed steps. All these steps are performed over GFs. Ele-

ments in uppercase are points of the pre-defined curve and the other elements are integers.

According to the literature, the main representations used for ECC are GFs over prime fields,

GF(pq) with p being a prime, and over the special case where p=2, called binary Galois

Fields, GF(2m). The arithmetic operations are different in GF from the traditional arithmetic

with integers or real numbers. Integer additions or subtractions in GFs are a same operation,

which correspond to just an exclusive-or between binary representations of two integers.

Point addition and point multiplication are also modular operations. Implementing these is

one of the difficulties in ECC due its time consuming, as numbers are at least 160 bits wide.

- Q is a point of the curve, which is the public key;

- d is a random number, which is the private key, and d ϵ [1, 2m]

- P is the point generator of the curve;

- M is the message to encrypt;

- k is a random number, generated for each message;

- C1 and C2 are points of the curve, which represent the encrypted message;

1. Key Generation:

Q = d * P

2. Encryption:

C1 = k * P

C2 = M + k * Q

3. Decryption:

M = C2 – d * C1

Figure 2. Simplified view of the El Gamal cryptography algorithm.

1.2. Software Experiment and its Limitations

During the study of ECC conducted by the author, a software application was devel-

oped to encrypt any communication between two computers. The ECC method was chosen

because, as showed in Section 1.1, this is one of the currently most secure and efficient

methods to have a secure communication. Some software libraries implement all mathe-

matic functions necessary to encrypt any information. One of them is the RELIC [ARA12]

that is an efficient library for cryptography, as demonstrated by Pigatto in his MSc disserta-

tion [PIG12], where the author compared this library with other libraries and with other cryp-

tography algorithms.

The developed software in this work was based on that developed by Pigatto [PIG12]

that implements an ECC algorithm using the RELIC library and is able to generate public

25

and private keys, as well as encrypt and decrypt any computer file. This software was mod-

ified to enable the cryptography of a communication link between two computers. The aim

of this new software was also to enable performance analysis of an encrypted communica-

tion with a software-only version of ECC. The code was written in C++, the communication

link employs sockets and it is possible to select any TCP port in the communication.

Figure 3 shows the functional diagram of the developed software and illustrates how

it works. Consider two computers that could also be mobile devices, connected by some

network. The network can be the Internet, a local network or even some ad hoc network,

and there are some application “x” running in computer “A” that needs to communicate with

another application “y” that is in computer “B” and all the communication between these two

applications must be encrypted. Each instance of the software developed, named “ecc_con-

nection”, will respectively create a connection among the computers and with the local ap-

plication. When the connection is created, the two instances of “ecc_connection” generate

their private and public keys and then send to each other their public keys. After this, they

are ready to receive application messages, encrypt these and send encrypted messages

over the network to the other computer. When, the latter receives the encrypted message,

its “ecc_connection” decrypts and delivers the message to the local application. Thus, the

encryption and decryption processes are transparent for both applications “x” and “y”, i.e.

both applications consider they are running in the same computer, and this transparency is

an advantage of this implementation, because no changes are necessary at the application

level.

Internet / Local Network

Computer A

Application “x”
ECC_CONNECTION

(server mode)

Computer B

Application “y”
ECC_CONNECTION

(client mode)

Figure 3. Functional diagram of the software proposed and implemented in the scope of this work.

The “ecc_connection” software has two operation modes, server and client. Figure 4

and Figure 5 respectively illustrate the two modes. Both modes work the same way, the only

difference is that one of the instances needs to be a server and the other needs to be a

client to enable communication by sockets. This is a limitation of the current implementation

that can be improved in a next version, but which does not influence in performance analy-

sis. The software architecture comprises four independent threads and two FIFO buffers in

both operation modes. Each instance has two sender threads and two receiver threads.

Each pair is used for local communication with application “x” and for external communica-

tion with the other computer. Also, the FIFO buffers enable the communication between

these threads. So, the “ecc_connection” enables a full duplex communication and there are

no dependencies between its threads. The flow of messages is indicated by the arrows in

the images and is always the same, but there are one option defined on application startup

that indicates if the messages must be encrypted or not. The only difference is that in one

case all messages will be encrypted and in the other they will be passed on without cryp-

tography. This was implemented to enable the analysis of the overhead caused by this ap-

plication without the cryptography process. Thus, it is possible to measure how much the

cryptography alone decreases the link communication speed.

26

ECC_CONNECTION (server mode)

Receiver from internal connection (client)

“Receive packet from local application”

Sender to internal connection (client)

“Send packet to local application” FIFO

Receiver from external connection (server)

“If (encrypted commnunication) then

Decrypt the message

 Put in the FIFO”

Sender to external connection (server)

“If (encrypted commnunication) then

Encrypt the message

Send out”

FIFO

Figure 4. Software architecture operating in server mode.

ECC_CONNECTION (client mode)

Receiver from external connection (client)

“If (encrypted commnunication) then

Decrypt the message

Put in the FIFO”

Sender to external connection (client)

“If (encrypted commnunication) then

Encrypt the message

Send out”

Receiver from internal connection (server)

“Receive packet from local application”

Sender to internal connection (server)

“Send packet to local application”FIFO

FIFO

Figure 5. Software architecture operating in client mode.

Figure 6 shows the initial sequence of actions to create the connections between

servers and clients processes. Initially, it is necessary to start “ecc_connection” in server

mode. Then the client mode is started and requests connection to the server. After this,

applications “x” and “y” are enabled to create their connections and use this encrypted link

to communicate.

Considering these architectures, the “ecc_connection” can be fully parameterized to

enable multiple analysis scenarios. It is possible to define the key sizes for public and private

keys, the TCP port that will be used in each communication link, and if the communication

will be encrypted or not. Next, Section 1.2.1 discusses some of the initial experiments exe-

cuted and the associated results.

27

Application "x" (client) Application "y" (server)ECC_CONNECTION (server
mode)

ECC_CONNECTION (client
mode)

Request connection

Accept and create connection

Request connection

Encrypt and send message

Decrypt and send message

Accept and create connection

Encrypt and send message

Decrypt and send message

Send application message

Encrypt and send message

Decrypt and send message

Figure 6. Software functional sequence diagram.

1.2.1. Test Scenarios and Results

The “ecc_connection” software was validated with 6 distinct test scenarios, illustrated

from Figure 7 to Figure 12. All these test scenarios were executed in different computers,

different networks and with different key sizes, to assist in performance analysis. The soft-

ware Iperf [DUG12] served as a traffic generator to test the maximum speed of an Ethernet

link. Iperf also operates with client and server modes. First, an Iperf instance must be started

in server mode, and then another instance of the same software is started in client mode

with the server IP address and the specified TCP port. Following this, the client instance

connects with the server and starts data traffic, to measure the maximum speed that the link

supports. The rest of this Section explains the main objective of each test scenario. Next, it

presents and discusses the obtained results.

The test scenario 1, depicted in Figure 7, analyzes what is the maximum communi-

cation speed between two applications in the same computer, with a direct connection

through some local TCP port.

Computer A

Port 6660Iperf (server) Iperf (client)

Figure 7. Test scenario 1, local test without "ecc_connection".

28

Figure 8 shows test scenario 2 that serves to analyze the overhead that the “ecc_con-

nection” software causes compared to the test scenario 1, because it was not encrypting

the communication, just forwarding packets.

Computer A

 Port 6665 Port 6660 Port 6666
Iperf (server)

ECC_CONNECTION

(server mode)

Not encrypting

Iperf (client)

ECC_CONNECTION

(client mode)

Not encrypting

Figure 8. Test scenario 2, local test with "ecc_connection" not encrypting.

Test scenario 3, Figure 9, is the same as test scenario 2 but now “ecc_connection”

encrypts the communication. With these three test scenarios, it is possible to analyze the

results and know how much the performance degrades in a local communication encrypted

by this “ecc_connection”.

Computer A

 Port 6665 Port 6660 Port 6666
Iperf (server)

ECC_CONNECTION

(server mode)

Encrypting

Iperf (client)

ECC_CONNECTION

(client mode)

Encrypting

Figure 9. Test scenario 3, local test with "ecc_connection" encrypting.

The next three test scenarios are respectively similar to the previous three, but are

performed between two computers and with different networks between them. Test scenario

4, in Figure 10, measures the maximum speed supported by the link between computers A

and B. With the next test, it is possible to know how much performance is lost while running

the system with the “ecc_connection” software interposed.

Computer B

 Port 6660Internet / Local Network

Computer A

 Port 6660
Iperf (server) Iperf (client)

Figure 10. Test scenario 4, testing network communication.

Figure 11 depicts the test scenario 5 that performs the same previous test but with

the “ecc_connection” forwarding packets. With it, it is possible to compute the overhead

caused by this application.

Computer B

 Port 6660 Port 6665

Computer A

 Port 6665 Port 6660
Iperf (server)

ECC_CONNECTION

(server mode)

Not encrypting

Iperf (client)

ECC_CONNECTION

(client mode)

Not encrypting

Internet / Local

Network

Figure 11. Test scenario 5, testing network communication with "ecc_connection" not encrypting.

The last test scenario, displayed in Figure 12, is the most complete, because it is

more like a real application scenario. With this scenario, it is possible to analyze how much

losses occur when the communication between two computers is all encrypted by software,

compared to the previous scenario results.

29

Computer B

 Port 6660 Port 6665

Computer A

 Port 6665 Port 6660
Iperf (server)

ECC_CONNECTION

(server mode)

Encrypting

Iperf (client)

ECC_CONNECTION

(client mode)

Encrypting

Internet / Local

Network

Figure 12. Test scenario 6, testing network communication with "ecc_connection" encrypting.

All test scenarios described above were run with different parameters, to assist in

deciding what it is the major performance-limiting resource. The different parameters are

related to which computers were used, the kind of network and key sizes employed to en-

crypt data. Table 2 shows the used computer configurations that helped analyze the ob-

tained results. “VAIOs” are two identical laptops, “Computer Host” is another laptop on which

the virtual machines are hosted, and GAPHL are two identical high performance desktop

workstations from the GAPH laboratory.

Table 2. Configuration of the used machines.

Computer Name VAIOs
Computer Host of Vir-

tual Machines
Virtual Machines GAPHL

Processor Pentium (1 core) i7 (4 cores) 1 or 2 cores
Xeon (12

cores)

Main Memory 1 GB 6 GB 1 GB 12 GB

Network Card 100 Mbits Full Duplex 1 Gbit Full Duplex 1 Gbit Full Duplex
100 Mbits Full

Duplex

Operating System Ubuntu 10.10 (32 bits) Windows 7 (64 bits) Ubuntu 10.10 (32 bits) Red Hat

Table 3 shows the results for these tests, classified by: employed computers, test

scenarios and kind of network. The kind of network is in some cases common to more than

one experiment. All tests were performed using these computers and the network infrastruc-

ture of the GAPH group laboratory.

Table 3. Performance test results.

Performance Tests - Average Speeds for 180 seconds of execution (Results in Mbits/s)

Computers Used
Virtual Ma-
chines (sin-

gle core)

Virtual Ma-
chines

(dual core)
GAPHL VAIOs

 Network
Network Card of the

Host Computer
Wired LAN

Wireless
LAN

Wireless
Ad-Hoc Test

Scenario

1 14020,00 22852,00 39555,00 3778,00

2 2211,00 2862,00 11753,00 719,00

3 (160-bit key) 4,18 7,58 7,87 1,48

3 (256-bit key) 2,04 3,47 4,00 0,72

4 1713,00 2213,00 94,30 94,40 2,87 13,50

5 1078,00 1147,00 94,30 94,70 3,35 14,10

6 (160-bit key) 6,82 6,77 7,71 3,12 1,88 3,10

6 (256-bit key) 3,43 3,40 3,92 1,62 1,62 1,64

30

After analyzing the results obtained in test scenarios 1 and 4, it is possible to notice

the maximum speed that each network infrastructure supports with each one of the em-

ployed computers. Note that in test scenario 1, the maximum speed is limited by the pro-

cessing power of the computer, while in test scenario 4 it is limited by the type of network.

Test scenarios 2 and 5 allow calculating the overhead when using the “ecc_connection”

software without cryptography. Results show that there are two limiting resources, compu-

tational power and network type, as the tests demonstrate. However, there is an exception.

In the case of virtual machines in both tests, the only limitation is the computational power.

Finally, tests scenarios 3 and 6 enable to measure the maximum speed when the

“ecc_connection” software with key sizes of 160 or 256 bits encrypts all data. As expected,

the maximum speed is lower with bigger key size. Consider that test scenario 6 is the most

similar one to a real scenario and let us compare the overall results. Then, it is possible to

see that the main resource limiting the maximum speed is computational power. This is

clear, since when data are encrypted, the speed is always lower than the maximum speed

for all types of network.

1.3. Project Context, Objectives and Motivation

This work started in the scope of the INCT-SEC project cooperation, which was de-

veloping resources for indoor tactical robots and autonomous vehicles, where a communi-

cation system that guarantees maximum security and performance between mobile devices

or between mobile devices and some base station was envisaged. During the first year of

the MSc course, studies and experiments were conducted, as demonstrated in Section 1.2,

about secure communication and cryptographic algorithms. As an experiment, software was

developed to encrypt a communication between any two computing devices through any

network. The tests scenarios demonstrated that the software performance is limited by the

processing power of the device that executes it and considering that even when high pro-

cessing power computers are used the performance was still very low compared to insecure

communication. Thus, the main proposal of this work has been to investigate and propose

dedicated hardware modules to accelerate the execution of cryptographic functions.

Therefore, this work proposes to develop a module in hardware that does the same

as the previously developed software, with the advantage of being a dedicated hardware

and so it was expected to achieve a much higher performance than pure software imple-

mentations. These hardware modules were developed in VHDL and prototyped on FPGAs.

They work as black boxes, where there is an input Ethernet port connected to the mobile

device or computer. The output will be another Ethernet port or a wireless transmitter, as

illustrated in Figure 13. Thus, all data sent to a specified IP address and TCP port is en-

crypted creating a secure communication link. Next, applications running in both computers

are unaware that the communication is encrypted and no application change is necessary.

31

Internet / Local

Network

Figure 13. Overall architecture of the context for the proposed work.

1.4. Document Structure

In the next Chapter is presented the state-of-the-art, as the related work of ECC

crypto processors, and a discussion relating all works. Chapter 3 presents an overview of

the proposed project, showing the overview of the hardware architecture developed and the

target hardware used to prototype. Following, Chapter 4 presents the development of the

generic soft IP core for ECC, showing its hardware architecture, the development of its hard-

ware modules, as well its results of simulations, validations and synthesis. Chapter 5 details

the secure communication system that was developed using the soft core for ECC and in

the end is shown all its results, mainly those results of prototyping in the development board.

Finally, the last Chapter presents the conclusions, a discussion about applications that could

use the soft core and its viability; finally, it points out some future works.

33

2. RELATED WORK

This Chapter presents the state-of-the-art about crypto processors or coprocessors

for ECC. These related works present the main difficulties and challenges to develop an

efficient architecture for ECC. Each work has some advantages and disadvantages that vary

accordingly to their respective objectives. Thus, the next sections present a brief analysis of

each work to show the main points that helped in the decisions and choices to the design

project in this work. The last Section (2.8) presents a discussion relating all presented works.

2.1. Bednara et al. [BED02]

Bednara et al. present a coprocessor FPGA based for ECC aiming to explore the

tradeoffs between area and performance using several algorithms and constraints. So, their

crypto processor was implemented in a generic way to enable the analysis of different rep-

resentations of elliptic curves over finite fields of characteristic two. The authors present

different algorithms for some basic ECC operations, and justify which one is most indicated,

according to the required constraints. Authors show some results obtained for an elliptic

curve represented over GF(2191), using different algorithms with distinct configurations and

with mixed coordinates, such as affine/Jacobian and affine/López-Dahab.

Considering the date of this work, they achieved good results with their generic ar-

chitecture of crypto processor, which was able to fulfill several constraints of area and per-

formance for different elliptic curves. This work also shows that coprocessors for ECC have

already been developed and studied for more than ten years.

2.2. Li et al. [LI08]

Li et al. present an FPGA implementation of a point multiplier for ECC in GF(2283).

The main objective was to demonstrate how fast their implementation in hardware could

execute and how much speed-up it would represent when compared to software implemen-

tations. So, they used projective coordinates and the faster known algorithms at that time

for the operations in finite field GF(2283). Consequently, their implementation was not ge-

neric. In the end, they present results achieved by their point multiplier implemented in hard-

ware and conclude that their implementation was 31 times faster when compared with soft-

ware implementations. Figure 14, Figure 15 and Figure 16 show some results the paper

obtained when their implementation was synthesized for a Virtex 4 and the comparison with

related works and software implementation.

Figure 14. Li et al. [LI08] results achieved in device utilization.

34

Figure 15. Li et al. [LI08] speedup achieved in HW vs. SW implementations.

Figure 16. Li et al. [LI08] comparison with related works.

2.3. Keller et al. [KEL09]

Keller et al. present a coprocessor to perform ECC point multiplication in GF(2m) and

GF(p). Their main objective was to evaluate and explore several algorithms, design archi-

tectures and elliptic curves to determine the tradeoffs between power and performance.

They used a development kit board composed by the Spartan 3E FPGA, an external pro-

cessor, memories RAM and ROM and pins connected to the FPGA that enables the meas-

urement of power consumption. Authors conducted several tests with diverse configura-

tions, considering different coordinates and algorithms for GF(2163) and GF(p). In the end,

according to their results, they conclude that the implementations using GF(2m) are more

energy efficient than the GF(p), due the bit length of each representation, which impacts in

the circuit sizes for the operations of addition and multiplication, and if the circuits are bigger

it also consumes more energy. As another important point, usually the algorithms for GF(2m)

are easier to implement in hardware than those for GF(p), which means that they execute

in fewer clock cycles and require less energy. Finally, this paper can be used as terminology

guide to ECC definitions, such as the best representation in finite field and algorithms for

the operations, according to the desired constraints of power and performance for a future

application.

2.4. Järvinen [JÄR11]

Järvinen presents a high-speed coprocessor for ECC, optimized for the Koblitz curve

K-163 defined in [NIST99]. The main objective was to implement and demonstrate a pro-

cessor for ECC with high throughput. Its design architecture comprises a pipeline with three

stages that enables the computation of up to three point multiplications at the same time.

Operations are performed using projective coordinates. The three stages consist of a pre-

processor, a main processor and a post processor. In a simple form, the preprocessor com-

putes some points that are required by the main processor to calculate the point multiplica-

tion, so this design also uses some memory blocks to store the points needed in the next

stage. The main processor computes the point multiplication, considering the points are

represented in projective coordinates, executing a right-to-left algorithm with pre-computed

35

points. Finally, the last stage performs the point conversion to affine coordinates. After syn-

thesizing the design for a Stratix II FPGA as target, the authors discuss the results. They

find an interesting point: when comparing the time to compute a single point multiplication

with the related literature, although their computation time is not the smallest one, it does

achieve the highest throughput of point multiplications per second (see Figure 17). This is

justified by the use of pipelining.

Figure 17. Results obtained by Järvinen [JÄR11].

2.5. Masoumi et al. [MAS12]

Masoumi et al. present another crypto processor optimized for ECC over GF(2163),

which is very similar to that of Järvinen [JÄR11]. However, in the former authors focus on

reducing the critical path. They also to reorganize the basic operations of point multiplication

algorithm to increase their parallelism. Furthermore, they use Lopez-Dahab projective coor-

dinates for the scalar multiplication and a specialized algorithm optimized for elliptic curves

over GF(2163). They synthesized their implementation for Virtex 4 FPGAs and compared the

results obtained with other works. Their implementation achieved a good efficiency, which

they defined according to the throughput per slice occupied in the FPGA, but their imple-

mentation achieved lower throughput if compared with the previous paper [JÄR11]. Thus, it

is possible to conclude that it would be nice to combine both techniques presented in these

two works, trying to obtain all the optimizations and maybe the design would achieve at the

same time higher performance and throughput.

2.6. Dias et al. [DIA13]

Dias et al. present the implementation of a crypto processor for ECC over GF(2m)

using only affine coordinates in polynomial basis. As the authors explain in the paper, they

chose to implement this crypto processor using affine coordinates because recent papers

demonstrated that affine coordinates provide more security against side channel attacks

and simple power attacks, as explained by Fournaris et al. [FOU09]. Also, they used an

efficient algorithm to calculate the modular inversion that makes its design to be comparable

to others that employ projective coordinates. They synthesized and prototyped their design

in a platform composed by two Altera FPGAs running at 250 MHz, where their design per-

formed in average the point multiplication in 0.10 ms, which indicates a good improvement

when compared to related work that used projective coordinates. However, their design has

a disadvantage on the occupied area (it resulted in a very large circuit, with more than 200K

slices of their FPGAs), making unviable its use for mobile applications.

36

2.7. Loi et al. [LOI13]

Loi et al. present a new design for a crypto processor that supports all the five Koblitz

curves defined by the NIST [NIST99] but without the need to reconfiguring the FPGA. This

means that the same hardware can be used for achieving different security levels according

to the selected elliptic curve. Their design uses projective coordinates and comprises block

RAMs that store temporary values, and generic modules that are able to calculate the elliptic

curve operations for all the defined Koblitz curves. The design was synthesized for Xilinx

Spartan 3 Virtex 4 and Virtex E FPGAs. According to their results, the design synthesized

for Virtex 4 presented the best results, performing a single point multiplication in a range of

0.273 ms to 4.335 ms, depending of the selected curve. Another interesting point is the

occupied area, about 2431 slices in Virtex 4. So, their design seems to be suitable for mobile

applications due to its small size and, at same time, it supports all five NIST Koblitz curves.

2.8. Discussion of Related Work

The comparison of all related works reveals that there are many ways to develop a

crypto processor or a coprocessor for ECC, depending on the requirements and constraints

to fulfill. Examples of addressed metrics are performance, area and power, which lead to

specific hardware. Bednara et al. [BED02] and Keller et al. [KEL09] implemented several

different algorithms and hardware architectures to find out the advantages of each one. They

showed that for hardware implementations of ECC, it is better to use finite fields of charac-

teristic two, such as GF(2m), represented in polynomial basis due to the better implementa-

tions enabled by their algorithms in hardware. These authors obtained smaller circuits, con-

suming less energy and achieving higher performance. However, there is a contrasting point

between other works, related to the representations of point coordinates. Some papers pro-

pose the use of projective coordinates as the best way to achieve higher performance. How-

ever, other papers showed that the results achieved when using affine coordinates are cur-

rently comparable to the hardware architectures that employ projective coordinates, as pre-

sented by Dias et al. [DIA13]. In the end, it seems that some algorithms are optimized for

certain representations, thus resulting in better performance. Another important point is that

almost all revised hardware designs are implementations for a specific elliptic curve, which

make them unviable or very hard to port their designs to other curves, except in the work of

Loi et al. [LOI13] that supports the five Koblitz curves defined by NIST.

37

3. PROPOSED DESIGN

Considering the main objective of this work and analyzing related works, a commu-

nication system and a hardware architecture were defined, the expected prototype to de-

velop. As studied and demonstrated in previous Chapters, the main requirements for this

communication system are to support elliptic curves cryptography in hardware, and be able

to create a secure communication link through any TCP network, such as a local network or

the Internet through a wireless or wired connection. The next sections explore and illustrate

the expected operation of the system and its main hardware components.

3.1. Hardware Architecture

The hardware architecture comprises two network interfaces and a module respon-

sible for performing elliptic curve operations such as key generation, data encryption and

decryption. Figure 18 illustrates this architecture. The main controller creates the secure

communication link defined by a configuration that specifies the source and destination ad-

dress, such as a MAC or IP address, and the TCP port, as implemented in the software

experiment detailed in Section 1.2. Only specific data packets must be encrypted and any

other packet will be forwarded without any modification. This was the main idea for the pro-

posed hardware architecture that is more detailed in Chapters 4 and 5 that explain how this

system was developed.

Proposed Hardware Architecture

Network Interface Network Interface

Main Controller

ECC Core

Figure 18. Overall architecture of the proposed communication system.

3.2. Target Hardware

This work aims to demonstrate the viability of creating a secure communication link

using ECC implemented in hardware. The hardware chosen as target for prototyping was

the HiTech Global development platform HTG-V5-PCIE-330. Figure 19 shows a picture of

this platform, which fulfills the main expected hardware requirements: this board has two

Ethernet interfaces and the FPGA Virtex 5 LX330T, which is an FPGA capable to prototype

large circuits, if necessary.

The development of the project was divided in two parts. In the first one, a soft IP

core that implements the ECC operations was developed, as explained in Chapter 4. In the

second part, the communication system that uses the previously developed ECC core was

built, as detailed in Chapter 5. The expectation is to use two identical development boards

to prototype and validate the proposed communication system, providing a secure commu-

nication link between two computers.

38

Figure 19. Development platform HTG-V5-PCIE-330 of HiTech Global.

39

4. SOFT IP CORE FOR ECC

This Chapter discusses the implementation of ECC in hardware, which involved solv-

ing several hard problems, due to the complexity of operations over finite fields, and the lack

of ready to use solutions to this. The Author used the work of Hankerson et al. [HAN04] as

a reference to define the basic hardware architecture, as Section 4.1 describes. The book

of Deschamps et al. [DES09] served as a reference to implement the main hardware mod-

ules, all of which are explained in Sections 4.2 and 4.3. After this, Sections 4.4 to 4.6 show

simulations results, discuss the hardware validation for the basic operations, and some syn-

thesis results considering the target hardware, which will be used to prototype the ECC IP

Core from VHDL descriptions.

4.1. Hardware Architecture

The goal of this works is to accelerate the main ECC operations, by developing a

generic ECC co-processor. This was developed as a soft IP core to be very flexible, by

supporting many different parameter settings and curve choices. The result is a hardware

description that can be used in several applications with widely different constraints of area,

timing and power. Each finite field operation was developed as a hardware module, includ-

ing: a finite field squarer, a divider, a multiplier, a point adder and a point multiplier.

ECC can be implemented over different representations of finite fields, such as GF(p)

or GF(2m), which are the most used according to the literature, where each one has its own

advantages. However, ECC over GF(2m) is the most indicated to be implemented in hard-

ware, based in studies presented in the state of the art and in book [HAN04], because these

operations are naturally adapted to hardware structures. In this way, the choice was to im-

plement ECC over GF(2m), using elliptic curves and parameters recommended in the stand-

ard SEC2 [BRO09]. This standard contains several different curves but this work uses only

curves sect163k1, sect233k1, sect283k1, sect409k1 and sect571k1, which are Koblitz

curves, with the respective key sizes of 163, 233, 283, 409 and 571 bits, and these curves

are the same used in the software implementation.

The finite field and elliptic curve operators rely on the algorithms presented by Des-

champs et al. [DES09], which discuss each operation in detail, providing alternative imple-

mentations for every operator and assessing the implementations relative efficiencies. The

design proposed here is a generic description able to be used with any of the 5 mentioned

Koblitz curves. The basic operations all come from finite field arithmetic, which defines op-

erators for addition, subtraction, squaring, multiplication and division. All these are modular

operations, and are in accordance to the specific elliptic curve in use. Also, all operands are

numbers with size defined by the curve choice. Point addition is defined as the operation to

add two points of an elliptic curve using finite field operations. Point multiplication is the main

operation used in ECC and its algorithm depends on the point addition because in its sim-

plest form this is computed by successive point additions.

In arithmetic operations over finite fields, the simplest operation is the addition (which

is identical to subtraction) because it is just built using an exclusive-or gate for each bit and

it is thus trivially implemented in hardware. The squaring operation is also easy to implement

40

because its computation can be carried with combinational hardware with minimal cost, and

can be easily be computed in a single clock cycle.

Multiplication and inversion are the most complicated operations, because their im-

plementation in hardware is computed by many squaring and multiplications, which can take

a large number of clock cycles if little hardware is used, or huge amounts of hardware if they

are to take just a few or even a single clock cycle to execute. Much effort is reported on the

development of fast multiplication/inversion operators, and this often includes a tradeoff be-

tween area/power taken by the hardware and speed (in clock cycles). These operations are

the major responsible for defining the performance of ECC, since all other operations are

much simpler.

The hardware architecture comprises mainly modules which implement all operations

from finite field arithmetic up to point multiplication and at the top level these modules are

instantiated to implement the elliptic curve operations, encrypting, decrypting and key gen-

eration, which are as explained in Section 1.1.2. Figure 20 illustrates the module datapath

hierarchy for the proposed architecture.

Elliptic Curve Cryptography (ECC) – Main Modules

Key Generation

Point Multiplier
Q(x,y) = k.P(x,y)

Decrypter

Point Multiplier
Q(x,y) = k.P(x,y)

Point Adder
C(x,y) = A(x,y) + B(x,y)

Encrypter

Point Multiplier
Q(x,y) = k.P(x,y)

Point Multiplier
Q(x,y) = k.P(x,y)

Point Adder
C(x,y) = A(x,y) + B(x,y)

Figure 20. Overall component hierarchy in the hardware datapath of the proposed ECC soft IP.

4.2. Hardware Modules for Operations over Finite Fields

The implementation of each hardware module capitalized on the book of Deschamps

et al. [DES09], because it provides VHDL implementations for several operations in finite

fields, including GF(2m), and also compares and explains each one of these operations,

indicating the most efficient in each case. Their original VHDL descriptions were adapted to

compose the required modules by the defined hardware architecture.

The finite field arithmetic layer comprises three modules: the squarer, the multiplier

and the divider. The operations of addition and/or subtraction were not defined as a module,

because they are just an exclusive-or operation that is very simply described in VHDL, typ-

ically a single line of code. Instead of creating a module for the inversion operation, only the

divider was created, because the inversion of a number is only required when it will be mul-

tiplied by another, which corresponds to a division.

41

4.2.1. The Squarer

The squarer module is very simple and its algorithm allows a purely combinational

implementation. Figure 21 shows the squarer interface, which has one input and one output.

The input “a” is a number of M bits, where M can be 163, 233, 283, 409 or 571 bits depending

on which curve will be used. The output “c” is also a number of M bits, because squaring

over finite fields is a modular operation. Squaring a number of M bits in polynomial bases

consists in inserting ‘0s’ before every bit of input “a” that will result in a 2M-bit number, as

illustrated in Figure 22, and then reduce it using an algorithm with the irreducible polynomial

of the elliptic curve in use, which is detailed in [DES09]. Squaring is efficiently computable

in one clock cycle. Nonetheless, this operation usually takes 2 cycles to compute: one cycle

to load the input and one cycle to compute the square and its modular reduction to produce

the valid output.

Squarer – 1 cycle

a (M bits) c (M bits)

Figure 21. Squarer module interface.

a(m-1) a(m-2) a(m-3)‘0’ ‘0’ ... a(2) ‘0’ ‘0’a(1) a(0)‘0’

a(m-1) a(m-2) a(m-3) ... a(2) a(1) a(0)

c(m-1) c(m-2) c(m-3) ... c(2) c(1) c(0)

Reduction Step

a (m bits)

2*m bits

c (m bits)

Figure 22. Steps to square a number over binary finite fields.

4.2.2. The Multiplier

Figure 23 shows the external interface of the proposed multiplier module. The module

implements an interleaved multiplication algorithm that is a shift-and-add method with an

interleaved reduction step, to save area and yet achieve the same efficiency of other algo-

rithms, as presented in [DES09]. This algorithm was improved to perform a multiplication in

fewer clock cycles if more area is available, as detailed in [GUA06]. This is one of the original

contributions of this design compared to the literature: a configurable multiplier. When

choosing the elliptic curve, it is also possible to choose a relative performance for the multi-

plier. Then, the hardware can be set to compute from one bit per clock cycle to up to ‘d’ bits

per clock cycle, where ‘d’ is the result of rounding half the key size. Considering a binary

field GF(2m), the multiplier can perform one operation in ‘m’ clock cycles down to ‘2’ clock

42

cycles. As an example, using the elliptic curve K-163, which uses GF(2163), if the multiplier

is configured to calculate one bit per clock cycle, then one finite field multiplication will takes

163 clock cycles. However, if it is configured to compute 82 bits per clock cycle, then one

finite field multiplication will take only 2 clock cycles. Meanwhile, area overhead increases

only 4 times, as will later be demonstrated. Thus, this implementation enables to select ad-

equate timing-area tradeoffs for each application.

Multiplier – M/d cycles

clk

reset

start

A (M bits)

B (M bits)

Z (M bits)

done

Figure 23. Multiplier module interface.

Figure 24 shows the datapath of the multiplier. It comprises three main blocks that

implement the algorithm to multiply two numbers over finite fields.

A (m bits)

B (m bits)

a(m-1) a(m-2) ... a(1) a(0)

b(0)

b(1)

...

b(d-1)

b(0+d)

b(1+d)

...

b(d+d-1)

...

...

...

...

...

...

...

b(m-1)

(A mod F(x)) and b(0)

(A mod F(x)) and b(1)

(A mod F(x)) and b(...)

(A mod F(x)) and b(d-1)

xor

xor

xor

A mod F(x)

C (m+d bits)

C (m+d bits)

xor

mod F(x)

Z (m bits) = A*B mod F(x)

Figure 24.Datapath of the generic binary finite field multiplier.

Numbers A and B are the inputs that will be multiplied and number Z is the result of

this modular multiplication, with “Z = A*B mod F(x)”. F(x) is the irreducible polynomial of the

elliptic curve. In Figure 24, ‘d’ is the number of bits that will be calculated at each clock cycle.

The first block receives number A of length ‘m’ bits and, at each clock cycle, it rotates A by

‘d’ bits to the left and performs a modulus with F(x), outputting “A mod F(x)”. The second

block receives number B and, at each clock cycle, outputs the first ‘d’ bits of B and shift its

‘d’ bits to the right. The third block is the multiplier-accumulator. Firstly, it receives the “A

mod F(x)” and the first ‘d’ bits of B. Then, it performs an “and” operation between all bits of

43

“A mod F(x)” with each ‘d’ bits of B. Next , it performs an “xor” operation between the previ-

ous results of the “and” operation that are also shifted from 0 to ‘d-1’ bits to the left, resulting

in a number with “m+d-1” bits that is stored in accumulator C. Finally, after all bits from A

and B were processed, a reduction step is performed. This brings the value stored in C with

“m+d-1” bits to a value with “m” bits by calculating the modulus “C mod F(x)” that is the result

of “A*B mod F(x)”, which represents result Z. The three main blocks operate in parallel and

all the operations take “m/d” clock cycles to execute.

The main novelty in this module was the development of the generic description in

VHDL that can be configured at design time and used for any elliptic curve; it is easily pa-

rameterized to fulfill requirements of performance or area for each application.

4.2.3. The Divider

Figure 25 shows the interface of the divider module or the inversion module. This

module has the worst performance of all modules due to the lack of algorithms to perform it

efficiently, as explained in [DES09]. One of the best implementations is the binary algorithm,

which is implemented through bit vector shifts and exclusive-or steps. This is a sequential

algorithm that can take up to 2*m clock cycles, which in this work means 326, or 466, or

566, or 818 or 1142 cycles to compute only one division or inversion.

Divider – up to 2*M cycles

clk

reset

start

g (M bits)

h (M bits)

z (M bits)

done

Figure 25. The finite field divider module interface.

Therefore, aiming to improve this operation, some works claim the quality of the al-

ternative method of Itoh-Tsujii to compute the inverse of a number. Itoh and Tsujii [ITO88]

proposed a method to calculate the inverse of a number in normal bases that can be per-

formed with (m-1) squaring operations and (m-2) multiplications. This takes much more time

than the binary algorithm, due to the required multiplications, which take at least 2 clock

cycles each. However, authors such as Guajardo et al. [GUA02] and Bednara et al. [BED02],

present the Itoh-Tsujii method adapted to standard bases or polynomial bases. By adapting

their methods, it is possible to calculate the inverse of a number in much fewer clock cycles,

based on a theorem that the inverse of a number A in a finite field is 𝐴−1 = 𝐴2𝑚−1−1 according

to their demonstration and experiments that attest its validity. The Author suggests to de-

compose the exponent for each elliptic curve used here as detailed in the next set of tables.

Table 4 shows the decomposition of exponent 162 for the elliptic curve performed over

GF(2163), because according to the previously mentioned theorem the inversion of a number

in this case is 𝐴−1 = 𝐴2163−1−1 = 𝐴2162−1. The first column indicates the amount of steps

needed to perform all the operations to find the inverse of a number. The second column

shows the number of squaring operations performed in each step and this is the decompo-

sition of the exponent. The third column details the operations of squaring and multiplications

44

performed to find the inverse of a number “a”. Each step performs only one finite field mul-

tiplication and some squaring operations, resulting in this case in 162 squaring and 9 multi-

plications. Table 5 to Table 8 detail the decomposition of exponents for the other finite fields

used by the other elliptic curves considered in this work.

Table 4. Decomposition of exponents for GF(2163).

Step
Exponent Decom-

position
Detailed Decomposition

0 1 𝐵0 = 𝑎(21−1) = 𝑎1 = 𝑎

1 1 𝐵1 = 𝑎(22−1) = 𝑎(21−1) ∗ (𝑎(21−1))21
= 𝐵0 ∗ 𝐵0

21
= 𝑎3

2 2 𝐵2 = 𝑎(24−1) = 𝑎(22−1) ∗ (𝑎(22−1))22
= 𝐵1 ∗ 𝐵1

22
= 𝑎15

3 4 𝐵3 = 𝑎(28−1) = 𝑎(24−1) ∗ (𝑎(24−1))24
= 𝐵2 ∗ 𝐵2

24
= 𝑎255

4 8 𝐵4 = 𝑎(216−1) = 𝑎(28−1) ∗ (𝑎(28−1))28
= 𝐵3 ∗ 𝐵3

28
= 𝑎65.535

5 16 𝐵5 = 𝑎(232−1) = 𝑎(216−1) ∗ (𝑎(216−1))216
= 𝐵4 ∗ 𝐵4

216
= 𝑎(232−1)

6 32 𝐵6 = 𝑎(264−1) = 𝑎(232−1) ∗ (𝑎(232−1))232
= 𝐵5 ∗ 𝐵5

232
= 𝑎(264−1)

7 64 𝐵7 = 𝑎(2128−1) = 𝑎(264−1) ∗ (𝑎(264−1))264
= 𝐵6 ∗ 𝐵6

264
= 𝑎(2128−1)

8 32 𝐵8 = 𝑎(2160−1) = 𝑎(232−1) ∗ (𝑎(2128−1))232
= 𝐵5 ∗ 𝐵7

232
= 𝑎(2160−1)

9 2 𝐵9 = 𝑎(2162−1) = 𝑎(22−1) ∗ (𝑎(2160−1))22
= 𝐵1 ∗ 𝐵8

22
= 𝑎(2162−1)

Table 5. Decomposition of exponents for GF(2233).

Step
Exponent

Decomposition
Detailed Decomposition

0 1 𝐵0 = 𝑎(21−1) = 𝑎1 = 𝑎

1 1 𝐵1 = 𝑎(22−1) = 𝑎(21−1) ∗ (𝑎(21−1))21
= 𝐵0 ∗ 𝐵0

21
= 𝑎3

2 2 𝐵2 = 𝑎(24−1) = 𝑎(22−1) ∗ (𝑎(22−1))22
= 𝐵1 ∗ 𝐵1

22
= 𝑎15

3 4 𝐵3 = 𝑎(28−1) = 𝑎(24−1) ∗ (𝑎(24−1))24
= 𝐵2 ∗ 𝐵2

24
= 𝑎255

4 8 𝐵4 = 𝑎(216−1) = 𝑎(28−1) ∗ (𝑎(28−1))28
= 𝐵3 ∗ 𝐵3

28
= 𝑎65.535

5 16 𝐵5 = 𝑎(232−1) = 𝑎(216−1) ∗ (𝑎(216−1))216
= 𝐵4 ∗ 𝐵4

216
= 𝑎(232−1)

6 32 𝐵6 = 𝑎(264−1) = 𝑎(232−1) ∗ (𝑎(232−1))232
= 𝐵5 ∗ 𝐵5

232
= 𝑎(264−1)

7 64 𝐵7 = 𝑎(2128−1) = 𝑎(264−1) ∗ (𝑎(264−1))264
= 𝐵6 ∗ 𝐵6

264
= 𝑎(2128−1)

8 64 𝐵8 = 𝑎(2192−1) = 𝑎(264−1) ∗ (𝑎(2128−1))264
= 𝐵6 ∗ 𝐵7

264
= 𝑎(2192−1)

9 32 𝐵9 = 𝑎(2224−1) = 𝑎(232−1) ∗ (𝑎(2192−1))232
= 𝐵5 ∗ 𝐵8

232
= 𝑎(2224−1)

10 8 𝐵10 = 𝑎(2232−1) = 𝑎(28−1) ∗ (𝑎(2224−1))28
= 𝐵3 ∗ 𝐵9

28
= 𝑎(2232−1)

45

Table 6. Decomposition of exponents for GF(2283).

Step
Exponent Decom-

position
Detailed Decomposition

0 1 𝐵0 = 𝑎(21−1) = 𝑎1 = 𝑎

1 1 𝐵1 = 𝑎(22−1) = 𝑎(21−1) ∗ (𝑎(21−1))21
= 𝐵0 ∗ 𝐵0

21
= 𝑎3

2 2 𝐵2 = 𝑎(24−1) = 𝑎(22−1) ∗ (𝑎(22−1))22
= 𝐵1 ∗ 𝐵1

22
= 𝑎15

3 4 𝐵3 = 𝑎(28−1) = 𝑎(24−1) ∗ (𝑎(24−1))24
= 𝐵2 ∗ 𝐵2

24
= 𝑎255

4 8 𝐵4 = 𝑎(216−1) = 𝑎(28−1) ∗ (𝑎(28−1))28
= 𝐵3 ∗ 𝐵3

28
= 𝑎65.535

5 16 𝐵5 = 𝑎(232−1) = 𝑎(216−1) ∗ (𝑎(216−1))216
= 𝐵4 ∗ 𝐵4

216
= 𝑎(232−1)

6 32 𝐵6 = 𝑎(264−1) = 𝑎(232−1) ∗ (𝑎(232−1))232
= 𝐵5 ∗ 𝐵5

232
= 𝑎(264−1)

7 64 𝐵7 = 𝑎(2128−1) = 𝑎(264−1) ∗ (𝑎(264−1))264
= 𝐵6 ∗ 𝐵6

264
= 𝑎(2128−1)

8 128 𝐵8 = 𝑎(2256−1) = 𝑎(2128−1) ∗ (𝑎(2128−1))2128
= 𝐵7 ∗ 𝐵7

2128
= 𝑎(2256−1)

9 16 𝐵9 = 𝑎(2272−1) = 𝑎(216−1) ∗ (𝑎(2256−1))216
= 𝐵4 ∗ 𝐵8

216
= 𝑎(2272−1)

10 8 𝐵10 = 𝑎(2280−1) = 𝑎(28−1) ∗ (𝑎(2272−1))28
= 𝐵3 ∗ 𝐵9

28
= 𝑎(2280−1)

11 2 𝐵11 = 𝑎(2282−1) = 𝑎(22−1) ∗ (𝑎(2280−1))22
= 𝐵1 ∗ 𝐵10

22
= 𝑎(2282−1)

Table 7. Decomposition of exponents for GF(2409).

Step
Exponent Decom-

position
Detailed Decomposition

0 1 𝐵0 = 𝑎(21−1) = 𝑎1 = 𝑎

1 1 𝐵1 = 𝑎(22−1) = 𝑎(21−1) ∗ (𝑎(21−1))21
= 𝐵0 ∗ 𝐵0

21
= 𝑎3

2 1 𝐵2 = 𝑎(23−1) = 𝑎(21−1) ∗ (𝑎(22−1))21
= 𝐵0 ∗ 𝐵1

21
= 𝑎7

3 3 𝐵3 = 𝑎(26−1) = 𝑎(23−1) ∗ (𝑎(23−1))23
= 𝐵2 ∗ 𝐵2

23
= 𝑎63

4 6 𝐵4 = 𝑎(212−1) = 𝑎(26−1) ∗ (𝑎(26−1))26
= 𝐵3 ∗ 𝐵3

26
= 𝑎4095

5 12 𝐵5 = 𝑎(224−1) = 𝑎(212−1) ∗ (𝑎(212−1))212
= 𝐵4 ∗ 𝐵4

212
= 𝑎(224−1)

6 24 𝐵6 = 𝑎(248−1) = 𝑎(224−1) ∗ (𝑎(224−1))224
= 𝐵5 ∗ 𝐵5

224
= 𝑎(248−1)

7 3 𝐵7 = 𝑎(251−1) = 𝑎(23−1) ∗ (𝑎(248−1))23
= 𝐵2 ∗ 𝐵6

23
= 𝑎(251−1)

8 51 𝐵8 = 𝑎(2102−1) = 𝑎(251−1) ∗ (𝑎(251−1))251
= 𝐵7 ∗ 𝐵7

251
= 𝑎(2102−1)

9 102 𝐵9 = 𝑎(2204−1) = 𝑎(2102−1) ∗ (𝑎(2102−1))2102
= 𝐵8 ∗ 𝐵8

2102
= 𝑎(2204−1)

10 204 𝐵10 = 𝑎(2408−1) = 𝑎(2204−1) ∗ (𝑎(2204−1))2204
= 𝐵9 ∗ 𝐵9

2204
= 𝑎(2408−1)

46

Table 8. Decomposition of exponents for GF(2571).

Step
Exponent Decom-

position
Detailed Decomposition

0 1 𝐵0 = 𝑎(21−1) = 𝑎1 = 𝑎

1 1 𝐵1 = 𝑎(22−1) = 𝑎(21−1) ∗ (𝑎(21−1))21
= 𝐵0 ∗ 𝐵0

21
= 𝑎3

2 1 𝐵2 = 𝑎(23−1) = 𝑎(21−1) ∗ (𝑎(22−1))21
= 𝐵0 ∗ 𝐵1

21
= 𝑎7

3 2 𝐵3 = 𝑎(25−1) = 𝑎(22−1) ∗ (𝑎(23−1))22
= 𝐵1 ∗ 𝐵2

22
= 𝑎31

4 5 𝐵4 = 𝑎(210−1) = 𝑎(25−1) ∗ (𝑎(25−1))25
= 𝐵3 ∗ 𝐵3

25
= 𝑎1023

5 10 𝐵5 = 𝑎(220−1) = 𝑎(210−1) ∗ (𝑎(210−1))210
= 𝐵4 ∗ 𝐵4

210
= 𝑎(220−1)

6 20 𝐵6 = 𝑎(240−1) = 𝑎(220−1) ∗ (𝑎(220−1))220
= 𝐵5 ∗ 𝐵5

220
= 𝑎(240−1)

7 40 𝐵7 = 𝑎(280−1) = 𝑎(240−1) ∗ (𝑎(240−1))240
= 𝐵6 ∗ 𝐵6

240
= 𝑎(280−1)

8 80 𝐵8 = 𝑎(2160−1) = 𝑎(280−1) ∗ (𝑎(280−1))280
= 𝐵7 ∗ 𝐵7

280
= 𝑎(2160−1)

9 160 𝐵9 = 𝑎(2320−1) = 𝑎(2160−1) ∗ (𝑎(2160−1))2160
= 𝐵8 ∗ 𝐵8

2160
= 𝑎(2320−1)

10 160 𝐵10 = 𝑎(2480−1) = 𝑎(2160−1) ∗ (𝑎(2320−1))2160
= 𝐵8 ∗ 𝐵9

2160
= 𝑎(2480−1)

11 80 𝐵11 = 𝑎(2560−1) = 𝑎(280−1) ∗ (𝑎(2480−1))280
= 𝐵7 ∗ 𝐵10

280
= 𝑎(2560−1)

12 10 𝐵12 = 𝑎(2570−1) = 𝑎(210−1) ∗ (𝑎(2560−1))210
= 𝐵4 ∗ 𝐵11

210
= 𝑎(2570−1)

By decomposing the exponents, it is possible to compute the inverse of a number

using only ‘m-1’ squaring operations and 9 to 12 multiplications when using the Koblitz

curves K-163 to K-571, respectively. Therefore, if a finite field multiplication can be per-

formed efficiently and considering that a squaring operation takes just one clock cycle, it is

possible to computer the inverse in fewer clock cycles than with the binary algorithm, which

takes up to 2*m clock cycles. For example, using again K-163 and a finite field multiplier

configured to multiply in 2 clock cycles, computing the inverse would take 162 squaring

operations and 9 multiplications, which amounts to 162*1+9*2 clock cycles or 180 clock

cycles, much less than the 326 clock cycles required by the binary algorithm.

Thus, this work suggests two alternative architectures to perform division. One imple-

ments the binary algorithm detailed in [DES09] that performs a division in ‘2*m’ clock cycles,

which is good when area constraints are strict, and the other implements the adapted Itoh-

Tsujii method. Considering that the finite field multiplier performance affects the finite field

divider module, the latter uses the architecture that is more efficient, depending on the mul-

tiplier configuration. If the number of cycles to perform m-1 squaring operations and 9 to 12

multiplications is more than 2*m cycles, the divider uses the first architecture (the binary

algorithm), otherwise it uses the second architecture (the adapted Itoh-Tsujii algorithm). Be-

cause of this, there are signals “start” and “done” to indicate when the module can start its

computation (because inputs are ready) and when it has finished (because the output is

valid).

4.3. Hardware Modules for ECC Operations

After designing the three basic modules (squarer, multiplier, and divider), the point

adder and point multiplication modules detailed in [DES09] were adapted to perform opera-

47

tions over any of the Koblitz curves. Next, the basic architecture to implement ECC in hard-

ware was developed including: key generation, encryption and decryption, as Figure 20

shows. To enable parallelizing operations, the key generation comprises a point multiplier;

the encrypter contains two point multipliers and one point adder; and the decrypter com-

prises one point multiplier and one point adder.

4.3.1. Point Adder

Figure 26 shows the module interface of the point adder, which receives “x” and “y”

coordinates of two points and outputs “x” and “y” of the resulting point. Point addition in

elliptic curves over GF(2m) follows 5 rules, which in simplified form are stated as:

1. Adding two equal points with (x, y) equal to (0, 0), results in the point (0, 0);

2. Adding any point different of (0, 0) to another point equal to (0, 0), results in a

point equal to the first one.

3. Adding two points, with the same x-coordinates and different y-coordinates, re-

sults in the point (0, 0).

4. Adding any two generic points results in a new point computed by the equations

below, considering (x1, y1) + (x2, y2) = (x3, y3):

𝜆 =
𝑦1 + 𝑦2

𝑥1 + 𝑥2

𝑥3 = 𝜆2 + 𝜆 + 𝑥1 + 𝑥2 + 𝑎

𝑦3 = 𝜆(𝑥1 + 𝑥3) + 𝑥3 + 𝑦1

5. Adding a point to itself, when its coordinates are not (0, 0), produces the point

given by the equations below, considering (x1, y1) + (x1, y1) = (x3, y3):

𝜆 = 𝑥1 +
𝑦1

𝑥1

𝑥3 = 𝜆2 + 𝜆 + 𝑎

𝑦3 = 𝑥1
2 + 𝜆. 𝑥3 + 𝑥3

Point Adder – Divider + Multiplier cycles

clk

reset

start

x1 (M bits)

y1 (M bits)

x3 (M bits)

done

x2 (M bits)

y3 (M bits)

y2 (M bits)

Figure 26. Point adder module interface.

This module follows the template suggested by Deschamps et al. [DES09]. However,

in the reference the point addition implements only the fourth and fifth rules. To increase

performance, the structure of the module was modified to support the full definition of point

48

addition, expressed by the 5 rules above, guaranteeing correct results for all possible cases.

Considering the most common cases, which are covered by rules 4 and 5, this module can

take up to 2*m+m clock cycles, because it uses one division and one multiplication. So, the

module performance depends mainly on that of the divider and multiplier modules. Figure

27 illustrates the modules that compose the point adder.

Point Adder
C(x,y) = A(x,y) + B(x,y)

Divider
c(x) = a(x)/b(x) mod f(x)

Squarer
c(x) = a(x)^2 mod f(x)

Squarer
c(x) = a(x)^2 mod f(x)

Multiplier
c(x) = a(x).b(x) mod f(x)

Figure 27. Modules that compose the point adder.

4.3.2. Negating a Point

The negate module, showed in the Figure 28, calculates the negative of a given point

and is necessary only when a point subtraction is needed. Point negation is very simple to

compute, because given a point (x, y) then –(x, y) = (x, x+y). Thus, this point is used with

the point adder module, which will result in the subtraction of two points. In the case of ECC,

point subtraction is used only in the decryption process.

Negate – 1 cycle

x1 (M bits)

y1 (M bits)

x3 (M bits)

y3 (M bits)

Figure 28. Module interface of negate point.

4.3.3. Point Multiplier

Point multiplication is considered the main operation of ECC because it takes more

time to compute. Figure 29 shows the interface of the point multiplier module, which receives

the point coordinates and the number to be multiplied; the start and done signals indicate

when the module can start to compute and when the operation is done.

Point Multiplier – M*Point Adder cycles

clk

reset

start

xP (M bits)

yP (M bits)

xQ (M bits)

done

k (M bits)

yQ (M bits)

Figure 29. Module interface of the point multiplier.

49

This occurs because a point multiplication over finite fields is a scalar multiplication,

which is basically computed through successive additions. However, using the point multi-

plication algorithm based on 𝜏-ary representation of k, presented in [DES09], that is an op-

timized algorithm and it can require up to m point additions and each point addition can

takes up to 3*m2 clock cycles. Thus, it is extremely important to improve this module by

using techniques like pipeline or other parallelization techniques, when the main target of

the design is to achieve high throughput. Figure 30 shows an example of a module compo-

sition for the point multiplier module. As already mentioned, all modules are configurable to

support different sizes, according to the elliptic curve in use. Depending on the size m in

bits, the best architecture can be chosen for some modules. For example, the finite field

inversion operator offers two different architectures, each based on an algorithm that gives

better values depending on the configuration defined for the finite field multiplier.

Point Multiplier
Q(x,y) = k.P(x,y)

Point Adder
C(x,y) = A(x,y) + B(x,y)

Divider
c(x) = a(x)/b(x) mod f(x)

Squarer
c(x) = a(x)^2 mod f(x)

Squarer
c(x) = a(x)^2 mod f(x)

Multiplier
c(x) = a(x).b(x) mod f(x)

Squarer
c(x) = a(x)^2 mod f(x)

Squarer
c(x) = a(x)^2 mod f(x)

Figure 30. Example of module composition to create the point multiplier.

4.3.4. Key Generator

The key generator module comprises a point multiplier that, as Figure 32 shows, im-

plements public key generation, based on the private key and point generator of the elliptic

curve in use. The module interface receives the user-chosen private key and outputs the

public key represented by point Q of the elliptic curve. This module requires up to 3*m2 clock

cycles because it performs only one point multiplication.

Key Generator – 1*Point Multiplier cycles

clk

reset

start

xQ (M bits)

done

d (M bits)

yQ (M bits)

Figure 31. Module interface of the key generator.

Key Generation

Point Multiplier
Q(x,y) = k.P(x,y)

Figure 32. Composition of modules to implement the (public) key generation.

50

4.3.5. Data Encrypter

The encrypter module consists in two point multipliers and one point adder. Figure

34 illustrates its block diagram. The encryption is performed in up to 3*m2+3*m clock cycles,

because it depends of one point addition and two point multiplications but the point multipli-

cations can execute in parallel. Figure 33 shows the module interface, which receives the

xQ and yQ (the public key) and "data in”, the data to encrypt. Points C1 and C2 compose

the encrypted data, C1 is the point generator of the elliptic curve multiplied by a generated

random number and C2 is "data in" added to the public key and multiplied by the same

random number, as explained the encryption process (see Figure 2). The random number

used to encrypt each datum is extremely important to guarantee the security level of ECC,

but the implementation of a real random number generator in hardware is also very difficult.

Here an alternative simple method was used to generate this pseudo random number. The

first random number is pre-defined, randomly chosen during the hardware implementation,

and the next numbers used are the “x” coordinates of the previous point multiplication be-

tween the public key with the previous random number. Then, at each encryption process a

different number is used that is deterministic but changing the public key, it will result in a

different number in each execution. The process for generating the random number is a

temporary solution because it is not secure to use it in real applications.

Encrypter – 2*Point Multiplier + Point Adder cycles

clk

reset

start

xQ (M bits)

yQ (M bits)

xC1 (M bits)

done

data_in
(2*M bits)

yC1 (M bits)

xC2 (M bits)

yC2 (M bits)

Figure 33. Module interface of the ECC encrypter.

Encrypter

Point Multiplier
Q(x,y) = k.P(x,y)

Point Multiplier
Q(x,y) = k.P(x,y)

Point Adder
C(x,y) = A(x,y) + B(x,y)

Figure 34. Composition of modules to implement the ECC encrypter.

4.3.6. Data Decrypter

The decrypter module is very similar to the encrypter but requires only a point sub-

traction and a point multiplication for the decryption operation, (see Figure 36). Thus, this

module occupies a smaller area. However, it can also take up to 3*m2+3*m clock cycles to

execute. Figure 35 shows the module interface. It receives the number d that is the private

key and the encrypted data to be decrypted that is composed by points C1 and C2.

51

4.4. Simulation, Validation and Synthesis

After all modules presented in the Sections 4.2 and 4.3 were described and imple-

mented in VHDL, they were functionally simulated in Modelsim to verify their correct opera-

tion. First, each module of the finite field arithmetic level was simulated alone with several

different data in their inputs (typical and cornered cases) and the results were compared

with previous results obtained in software when the same operations were performed. Af-

terwards, point addition and point multiplier modules were simulated and validated with sim-

ilar steps. Several operations with different data were performed and their results were com-

pared with those of the same operations performed in software. All these comparisons to

validate the hardware implementation were possible because software and hardware imple-

mentations were developed to be compatible. Thus, in future applications, it will also be

possible to use devices with the software implementation and/or the hardware implementa-

tion interchangeably.

Decrypter – Point Multiplier + Point Adder cycles

clk

reset

start

done

xC1 (M bits)

yC1 (M bits)

xC2 (M bits)

yC2 (M bits)

data_out
(2*M bits)

d (M bits)

Figure 35. Module interface of the ECC decrypter.

Decrypter

Point Multiplier
Q(x,y) = k.P(x,y)

Point Adder
C(x,y) = A(x,y) + B(x,y)

Figure 36. Composition of modules to implement the ECC decrypter.

This Section exemplifies the validation process by depicting a simulation of an en-

cryption and a decryption operation, to demonstrate how the main modules work. First, a

testbench was developed that instantiates one encrypter and one decrypter. To simplify the

demonstration, the key generation process is not shown, but the private key is pre-defined

in the testbench, while the public key is generated in the start of the simulation. The simula-

tion initially encrypts “data in” defined by the test bench and afterwards it decrypts the output

of the encrypter, testing the input data of encrypter and the output data of the decrypter for

equality. This simulation uses 163-bit keys. The elliptic curve employed was sect163k1 and

the “data in” block size was 326 bits. The finite field multiplier was configured to compute 8

bits per clock cycle. Thus, each finite field multiplication takes 21 cycles, each division takes

326 cycles, and each point addition takes up to 347 cycles. Overall, each multiplication takes

up to 56561 cycles. The clock frequency was arbitrarily defined at 100 MHz, to facilitate

comparisons with works in the literature.

52

Figure 37 and Figure 38 show the simulation waveforms. It is possible to see the main

signals of the encrypter and decrypter modules. Figure 37 shows the elapsed time between

the start and end of the encrypter operation, 429010 ns which means 42901 clock cycles at

100 MHz.

Figure 37. Simulation of the encrypter module.

Figure 38. Simulation of the decrypter module.

Figure 38 shows the decryption simulation that was performed after the encryption

with the output data of the encrypter module. It is also possible to see here the elapsed time

between the start and end of the decryption process, 389900 ns or 38990 clock cycles.

Unfortunately, it is not possible to see the “data in” and “data out” in these waveforms to

compare their values and see that they are equal. However, when using the Modelsim, it

was possible to see and confirm that “data in”, which was encrypted by the encrypter mod-

ule, was equal to “data out”, which the decrypter module decrypted. Repeating this process

both modules were validated with several different values.

The decryption process is usually a little faster than the encryption, as it was possible

to notice in this demonstration and is explained in the literature, because the time to perform

a point adder operation depends on the input values, varying for different values. The de-

cryption algorithm usually computes the values used to decrypt faster.

Table 9 shows some preliminary results obtained from the synthesis of the developed

hardware, the same hardware that was simulated

Table 9. Initial synthesis results for the ECC encrypter and decrypter, targeting a Xilinx XC5VLX330T FPGA.

Logic Utilization Used Available Utilization

Slice Registers 13993 207360 6%

Slice LUTs 25860 207360 12%

Fully Used LUT-FF pairs 12211 27642 44%

53

The maximum frequency achieved in this first synthesis was 115 MHz. Considering

the FPGA utilization, it is clear that this FPGA support bigger circuits and, because this, it

was possible to optimize and parallelize more the algorithms to achieve higher performance.

By using the timing results obtained in the simulation, it is possible to compare this hardware

to the software implementation discussed in Section 1.2. The RELIC library provides a

benchmark software, which measures the time of the main library operations. Thus, it is

possible to run and compare these times with those obtained in the previous simulation just

to analyze how much speedup is achievable. Table 10 shows the benchmark results ob-

tained for all elliptic curves operations available in the library and the operations highlighted

with the color red are those used to encrypt and decrypt any data. This benchmark was

performed in a notebook with an Intel i7 processor and considering the elliptic curve

sect163k1, which was the same used in the previous simulation.

Table 10. RELIC benchmark and modules execution time.

Curve NIST-K163:

Utilities: Time (ns)

BENCH: ec_null 16

BENCH: ec_new 20

BENCH: ec_free 5

BENCH: ec_is_infty 9

BENCH: ec_set_infty 71

BENCH: ec_copy 72

BENCH: ec_cmp 32

BENCH: ec_rand 997487

BENCH: ec_is_valid 6441

** Arithmetic:

BENCH: ec_add 17849

BENCH: ec_sub 18133

BENCH: ec_dbl 17911

BENCH: ec_neg 74

BENCH: ec_mul 805186

BENCH: ec_mul_gen 1037673

BENCH: ec_mul_pre 8345607

BENCH: ec_mul_fix 970056

BENCH: ec_mul_sim 4624314

BENCH: ec_mul_sim_gen 4623384

BENCH: ec_map 63830

BENCH: ec_pck 14670

BENCH: ec_upk 23172

Considering that the encrypt operation is composed by two multiplications and one

addition, it is possible to sum the time of these operations and estimate how much would be

the time for one encrypt operation. The same can be done for the decrypt operation, which

is composed by one multiplication and one subtraction. Table 11 shows the sum of times for

the software operations to encrypt and decrypt data, the time achieved in the previous sim-

ulation, and the estimated speed up of the hardware to the software. By analyzing these

results, it is clear that a simple implementation in hardware of ECC is already faster than a

simple, sequential software implementation. However, this architecture can be improved to

increase data throughput much more by parallelizing more operations or creating a pipeline.

54

Table 11. Hardware and software comparison.

Hardware vs. Software

Operation
Time (ns) Speed

Up Software Hardware

Encrypt 1.628.221 429.010 3,80

Decrypt 823.319 389.900 2,11

4.5. Exploring the Flexibility of the Soft IP Core for ECC

As explained in the previous sections, the soft IP core developed is highly parame-

terizable. To explore its configurability, post-synthesis timing simulations of the point multi-

plier were conducted in Modelsim, varying several parameters and measuring the average

number of clock cycles taken to compute a single point multiplication for the 5 Koblitz curves

recommended by NIST. All configurations simulated were also synthesized to obtain de-

tailed area, operating frequency and power consumption statistics. Synthesis results are

based on the Xilinx ISE 14.1 XST tool, targeting a Virtex-7 XC7V2000T FPGA with speed

grade -2, which is one of the most advanced FPGAs currently available. All configurations

were also synthesized to the STMicroelectronics 65nm CMOS technology using Cadence

Encounter and the foundry standard cell library in its Low Power, High Threshold version

(LPHVt). Table 12 collects this encompassing set of results.

Table 12. Modelsim simulation results: synthesis results for ISE 14.1 XST and Cadence Encounter for 65nm
CMOS.

Parame-

ters

Average Timing

(clock cycles)
FPGA - XC7V2000T-2FLG1925 CMOS - 65 nm

M in

bits

W in

bits

Multipli-

cations

Point

Multipli-

cations

(k*P)

Max.

Clock

Freq.

(MHz)

Clock

Period

(ns)

Slice

(LUTs)

Point Mul-

tiplication

k*P (ns)

Max.

Clock

Freq.

in

MHz

Clock

Period

(ns)

Gates

Leak-

age

Power

(mW)

Dy-

namic

Power

(mW)

Point

Multipli-

cation –

k*P (ns)

163

1 163 48,863 223.326 4.478 5,768 218,797 1,338 0.747 16,652 1,241 29,979 36,520

21 8 29,463 223.328 4.478 9,976 131,928 1,329 0.752 34,418 2,239 58,896 22,170

82 2 23,061 222.027 4.504 18,852 103,866 1,342 0.745 72,895 4,174 90,605 17,185

233

1 233 103,449 225.405 4.436 6,737 458,948 1,355 0.738 23,744 1,741 42,086 76,347

30 8 55,889 225.405 4.436 14,721 247,95 1,342 0.745 58,333 3,642 91,942 41,647

117 2 45,449 225.405 4.436 32,271 201,633 1,351 0.740 136,846 7,985 140,210 33,642

283

1 283 164,823 192.945 5.183 8,245 854,249 1,283 0.779 29,458 2,215 51,795 128,467

36 8 85,367 184.733 5.413 19,866 462,111 1,283 0.779 77,858 4,784 116,741 66,538

142 2 70,469 184.114 5.431 45,510 382,747 1,297 0.771 195,382 11,188 190,865 54,333

409

1 409 314,085 147.358 6.786 11,229 2,131,442 1,126 0.888 36,272 2,567 62,047 278,939

52 8 142,045 147.358 6.786 33,863 963,945 1,058 0.945 127,355 6,641 152,607 134,259

205 2 123,829 147.358 6.786 85,447 840,328 1,003 0.997 360,755 18,096 281,859 123,459

571

1 571 654,543 111.506 8.968 16,337 5,870,025 889 1.125 48,691 3,187 71,508 736,269

72 8 267,205 111.506 8.968 58,164 2,396,329 896 1.116 221,393 11,116 230,604 298,220

286 2 251,287 111.506 8.968 162,251 2,253,574 844 1.185 673,526 29,623 414,768 297,734

Table 12 shows the average timing to compute one single point multiplication (k*P)

for simulations in Modelsim with different parameters. The first column specifies the key size

(M) in bits, according to the employed Koblitz curve. The second column defines the finite

field multiplier kind, based on how many bits (W) are computed at each clock cycle. The

third column is “M/W”, that is the time to compute a finite field multiplication in clock cycles.

55

The fourth column shows the average time obtained for a point multiplication in each con-

figuration. As expected, the bigger the finite field multiplier, the less clock cycles are neces-

sary to perform each multiplication and inversion. Consequently, point multiplication is also

performed in less clock cycles. The Table also shows the FPGA synthesis results, for all

multiplier architectural choices, and the synthesis results for the same architectures in the

mentioned ASIC technology. The fifth and ninth columns show the maximum predicted op-

erating frequency and the sixth and tenth the associated clock period, in nanoseconds. Con-

sidering the measured number of cycles in the fourth column, the eighth and fourteenth

columns show the average time in ns for executing a point multiplication. The seventh col-

umn shows the amount of used LUTs in the FPGA, from 5.768 to 162.251 LUTs, which

correspond to less than 1% and to up to 13% respectively of the target FPGA utilization.

The eleventh column contains the needed number of gates for the point multiplier for the

ASIC implementation. Finally, the twelfth and thirteenth columns show the estimated leak-

age and dynamic power, while Figure 39 shows the estimated total power for the ASIC im-

plementations. Table 12 demonstrates that it is possible to configure the parameters ac-

cording to the application constraints of area, power and performance. Again, it is possible

to achieve higher performance using the same design and just setting parameters according

to the desired security level, while considering constraints of area and performance. As a

conclusion, the ECC soft IP core developed in this work demonstrates to be very flexible,

due to the possibility of being configured with different sets of elliptic curves and parameters

for the basic operations over finite fields.

Figure 39. Total power consumption for ECC ASIC implementations.

4.6. Comparing the Results with Related Work

After exercising the soft IP core using several different parameters and elliptic curves,

it is possible to compare the obtained results with some related works in the state of the art.

Not all related works could be compared, because some of these implemented very specific

optimizations and it would not be fair to compare them with the flexible soft IP core proposed

here. Thus, only similar works were considered. Table 13 compares the main results ob-

tained here with some related works. Only the higher performances of each related work

56

and each architecture of this work are compared. This Table also specifies the coordinate

representation, the target platform and the maximum achieved frequency, to allow a fair

comparison among all works.

First, there is a comparison with the Li et al. [LI08] work that implemented a point

multiplier over GF(2283) for the Koblitz curve K-283, using polynomial bases and projective

coordinates. Their point multiplier achieved a performance a little better than ours, 0.304

ms, while ours gives 0.382 ms. However, their implementation has almost the same area

even using projective coordinates, which usually occupies less area, noting that LUTs for

Virtex-7 have 6 inputs while for Virtex-4 have 4 inputs. Second, we compared our results to

the work of Dias et al. [DIA13] that implemented a point multiplier for the Koblitz curve K-

163, using polynomial bases and affine coordinates. Their work is the most similar to that

implemented here. Comparing the results, their implementation achieved practically the

same performance than ours, but their point multiplier occupied much more area, even not-

ing that LUTs for Virtex-7 have 6 inputs while for EP2S have 4 inputs, demonstrating that

the work implemented here is more optimized and compact. Furthermore, we compared

results obtained by Loi and Ko [LOI13] that implemented a crypto processor to support all

the five Koblitz curves in the same design without need to resynthesize, using polynomial

bases and projective coordinates. It is possible to note their implementation is very compact

because it occupies a smaller area, even considering the difference of inputs of the FPGAs.

This can be explained by their use of projective coordinates. However, the performance

achieved by their crypto processor is worse than the one achieved in our work, which is

between two and three times faster than theirs is.

Table 13. Comparisons of performance with related works.

Work Coordinate System
Koblitz
Curves
GF(2m)

Platform
Max. Freq.

(MHz)

Area
(LUTs or
Gates)

Q=k*P
(ms)

Li et al. [LI08] Projective Coordinates K-283
Virtex-4

XC4VFX140-11
171 51,094 0.304

Dias et al.
[DIA13]

Affine Coordinates K-163

2 Altera FPGAs
(EP2S180F1020

C4 and
EP2S180F1020C

3)

250 216,288 0.100

Loi and Ko
[LOI13]

Projective Coordinates

K-163

Virtex-4
XC4VFX12

155 3,815

0.273

K-233 0.604

K-283 0.735

K-409 1.926

K-571 4.335

This Work Affine Coordinates

K-163
Virtex-7 222 18,852 0.103

65nm CMOS 1,342 72,895 0.017

K-233
Virtex-7 225 32,271 0.201

65nm CMOS 1,351 136,846 0.033

K-283
Virtex-7 184 45,510 0.382

65nm CMOS 1,297 195,382 0.054

K-409
Virtex-7 147 85,447 0.840

65nm CMOS 1,003 360,755 0.123

K-571
Virtex-7 111 162,251 2.253

65nm CMOS 844 673,526 0.297

According to the achieved results, Table 13 demonstrates that the soft IP core for

ECC developed in this work can achieve higher performance, even when compared to other

57

works, which are not so flexible and/or use projective coordinates. This occurs mostly be-

cause the FPGA and ASIC technologies employed here are clearly more advanced (at least

two generations ahead for FPGAs), but the improved architecture design are also expected

to contribute to achieve a comparable performance as the simulations results present the

average timing in clock cycles. Finally, Table 14 shows some synthesis results for the com-

plete ECC architecture depicted in Figure 20 (including the datapath and associated con-

troller), which is a complete core for ECC in hardware. These results are useful to give an

idea of how much area may be necessary to implement a complete system that will use the

ECC soft IP core.

Table 14. Synthesis results for a complete ECC soft IP core.

Parameters
(bits)

FPGA
XC7V2000T-2

CMOS 65 nm

M W Clock Frequency LUTs Clock Frequency Gates

163
1 168 MHz 27,297 909 MHz 77,243

82 158 MHz 103,468 899 MHz 402,587

233
1 199 MHz 39,559 909 MHz 106,141

117 199 MHz 192,637 906 MHz 756,057

283
1 171 MHz 48,307 858 MHz 137,820

142 156 MHz 268,095 895 MHz 1,093,746

409
1 147 MHz 64,393 893 MHz 192,421

205 147 MHz 506,902 869 MHz 2,147,644

571
1 106 MHz 92,459 855 MHz 280,220

286 95 MHz 964,039 883 MHz 4,062,631

59

5. SECURE COMMUNICATION SYSTEM

This Chapter presents the hardware prototype developed to implement a secure com-

munication system that uses ECC to encrypt the communication. It details the hardware

architecture, and its main modules. Besides, it shows how to use the ECC IP Core presented

in the previous Chapter in this system. Simulations and FPGA prototyping served to validate

and demonstrate system operation. However, this secure communication system presented

here has many points that are not secure because some parts were implemented in an

easier way due to the lack of time for its implementations. So, the secure communication

system is used as a demonstration of application to use the soft IP core for ECC.

5.1. Hardware Architecture

The hardware architecture was defined based on the requirements that should be

met to enable and support the secure communication system. First, this system need to be

transparent to the connected devices and to the network, so that the computer connects in

the same way if it is connected directly to the network, and the network identifies the com-

puter as normally connected. Next, the communication system should be able to encrypt

one link of TCP/IP communication, so that all frames from a specific connection between

two computers through a specific TCP port should be encrypted. All other Ethernet frames

are just forwarded without any modification. The defined hardware architecture appears in

Figure 40.

Ethernet
Interface 1

Ethernet
Interface 2

PHY MAC
MAC

Wrapper

Main Controller

Encrypter Interface

Decrypter Interface

PHY MAC
MAC

Wrapper

RX

RX

TX

TX

Network

Components used of the
development board

Modules implemented in FPGA

Frame
Filter

Soft IP ECC Core
(only decrypter)

Frame
Filter

Soft IP ECC Core
(only encrypter)

Figure 40.Hardware architecture of the secure communication system.

There are two Ethernet interfaces, one exclusive to a local computer and the other

for the network, because there are only one encrypter core and one decrypter core. In this

way, the frames of a specific connection coming from the computer interface are encrypted

and sent out to the network; the frames of a specific connection coming from the network

interface are decrypted and sent out to the computer. In the hardware architecture, some

modules that were ready to use in the development board (see Chapter 3). These include

the Ethernet interfaces, as well as the PHY and MAC modules. The other modules were

developed and implemented in the FPGA, including the MAC wrapper and the main control-

60

ler with the ECC cores. The MAC wrapper is responsible to establish the connection be-

tween the main controller and the external components. It receives and sends all signals

that compose an Ethernet interface, and verifies if all the received and sent Ethernet frames

are correct. The main controller creates the cross connection between the two interfaces.

Frames coming from one interface are sent out to the other interface. Meanwhile, the en-

crypter and decrypter cores filter the specific frames from a connection to encrypt or decrypt

them and all other frames are just forwarded. These are the main modules of the hardware

architecture. The next Section details the modules implemented in FPGA, explaining their

operation.

5.2. Hardware Modules

The hardware modules detailed here were described in VHDL and some modules

contain IP cores provided by Xilinx, such as block RAMs and FIFOs, to simplify the imple-

mentation and to optimize the utilization and performance of the FPGA. These modules

were specifically designed for the Virtex 5 LXT330 device, as specified in the proposed pro-

ject detailed in Chapter 3. Using only simple modifications it is possible to use the same

design for other FPGAs and different applications.

5.2.1. Xilinx MAC Ethernet Wrapper

To use the Ethernet interfaces and the embedded components of the development

board such as PHY and MAC Ethernet modules, Xilinx provides an IP core that acts as a

MAC wrapper. Using this wrapper it is possible to configure the Ethernet interfaces, select

the operation mode and speed, and receive and transmit the Ethernet frames to/from each

interface. In this implementation, interfaces were configured to operate in the mode Media

Independent Interface (MII) and at a speed of 100 Mbits/s full duplex, which is the simpler

operation mode that can be used for Ethernet interfaces. Then, in conformance to the MII

standard, the MAC wrapper operates at 25 MHz, the frequency to provide a communication

link of 100 Mbits/s. Therefore, communication between the MAC wrapper and the main con-

troller occurs through a memory block operating in FIFO mode. Thus between each pair of

receiver-transmitter interfaces there is a FIFO, which enables the main controller to operate

at higher frequencies and not only at 25 MHz as the MAC wrapper. Another advantage of

using this wrapper is that it implements all operations needed to send, receive and check

frames. Sent and received frames through the FIFOs are composed just by MAC addresses,

Ethernet type and payload. The MAC wrapper removes the preamble, start of a frame de-

limiter and the frame check sequence upon receiving the frame, and these are computed

and inserted when the frame is transmitted. Thus, the main controller can create or modify

the Ethernet frames as needed.

5.2.2. Main Controller

The main controller just instantiates the encrypter and decrypter interfaces. It also

controls the direction of the Ethernet frames, to create the cross connection between the

two interfaces. All frames received at the Ethernet Interface 1 are sent to the encrypter in-

terface, and all frames received at the Ethernet Interface 2 are sent to the decrypter inter-

face, and so on. Therefore, a cross connection exist between the Ethernet interfaces.

61

The development board in use provides a clock frequency of 50 MHz, although the

main controller module can operate at higher frequencies. So, the main controller also in-

stantiates a digital clock manager (DCM) provided by Xilinx to create higher clock frequen-

cies. With the goal to support a clock frequency for the main controller signals and another

one to the soft IP core for ECC, two independent DCMs are used, and it is possible to con-

figure a specific clock signal to the soft IP core for ECC and another for all other control

modules. The next sections detail these implementations.

5.2.3. Frame Filter

The frame filter module is responsible for analyzing all incoming frames and for filter-

ing those frames which are from a specific TCP/IP connection to be encrypted or decrypted.

Any other frames are just forwarded to the transmitter with no modifications. There are two

instances of this module, one in the encrypter interface and another in the decrypter inter-

face. To explain how this module was implemented, it is important to know what information

is present in each Ethernet frame. Ethernet frames are composed by the MAC addresses of

destination and source; the Ether type indicates which type of protocol is in use by this

frame, such as IPv4, ARP, IPv6 or any other; and the payload can use up to 1500 bytes. In

this work, as the secure connection link will be done through a TCP/IP connection, only IPv4

Ethernet frames are considered. Figure 41 illustrates the composition of these Ethernet

frames to encrypt. In this case, payload contains the IPv4 header, TCP header and the data

frame.

MAC Destination
(6 bytes)

MAC Source
(6 bytes)

Ether Type
(2 bytes)

IPv4 Header
(20 bytes)

Data
(1 to 1460 bytes)

TCP Header
(20 bytes)

Ethernet Frame

Figure 41. IPv4 Ethernet frame using the TCP protocol.

To help the explanation about the frame filter operation, Figure 42 illustrates the IPv4

header, and Figure 43 details the TCP header. Considering the information provided in this

kind of Ethernet frame, the frame filter is configured to filter frames that have a specific MAC

address of destination and source, and that also have a specific source or destination port

in the TCP header. The only difference between the frame filter used in the encrypter inter-

face from that used in the decrypter interface is that in the first one the frame filter verifies

the destination port of the TCP header, while in the other the frame filter verifies the source

port of the TCP header. As an example, if a frame coming from the Ethernet interface 1 is

an IPv4 Ethernet frame using the TCP protocol and has the MAC addresses and the desti-

nation TCP port corresponding to its configured information, the frame filter sends this frame

to the encrypter interface. Otherwise, the frame is just forwarded to the transmitter.

62

Version and IHL
(1 byte)

DSCP and ESN
(1 byte)

Total Length
(2 bytes)

Identification
(2 bytes)

Flags and Fragment Offset
(2 bytes)

Time to Live
(1 byte)

Protocol
(1 byte)

Header Checksum
(2 bytes)

Source IP Address
(4 bytes)

Destination IP Address
(4 bytes)

IPv4 Header

Figure 42. Detailed information of the IPv4 header.

Source Port
(2 bytes)

Destination Port
(2 bytes)

Sequence Number
(4 bytes)

Ack Number
(4 bytes)

TCP Flags
(2 bytes)

Window Size
(2 bytes)

Checksum
(2 bytes)

Urgent Pointer
(2 bytes)

TCP Header

Figure 43. Detailed information of the TCP header.

As already mentioned, the frame filter can be configured during its operation. That is,

when the frame filter is initialized, it does not have any MAC addresses or TCP port config-

ured to consider in the filtering process. While the frame filter is not configured, all frames

are just forwarded between Ethernet interfaces. The frame filter is configured through an

Ethernet frame that must be sent from a computer directly connected to the development

board. Therefore, if the frame filter receives an Ethernet frame in the format illustrated in the

Figure 44 then it is configured to filter the next frames that have the MAC addresses and

TCP port highlighted by the red color in the Figure. This same Ethernet frame must be sent

to both interfaces of the board to configure both frame filters.

MAC Destination

DA:02:03:04:05:06

MAC Source

5A:02:03:04:05:06

Ether Type

0x1234

Conf. MAC Destination

XX:XX:XX:XX:XX:XX

Conf. MAC Source

XX:XX:XX:XX:XX:XX

Conf. TCP Port

0xXXXX

Figure 44. Ethernet frame to configure the frame filter.

Accordingly, if the frames are being filtered to be encrypted or decrypted, the frame

filter writes these frames to FIFOs that will be read by the encrypter interface or respectively

by the decrypter interface. These FIFOs have 32 kilobytes of block memories each. Next,

data will be encrypted or respectively decrypted. After frames are encrypted or decrypted,

the encrypter interface or respectively decrypter interface will write these to other FIFOs so

that the frame filter sends them out to the expected transmitter, as Figure 45 illustrates.

63

Encrypter Interface

Frame
Filter

RX

TX
Soft IP ECC Core
(only encrypter)

Decrypter Interface

Frame
Filter

RX

TX
Soft IP ECC Core
(only decrypter)

Figure 45. Detailed datapath of encrypter and decrypter interfaces.

5.2.4. Encrypter Interface

The module Encrypter Interface, illustrated in Figure 46, is responsible for receiving

all frames coming from the computer and filtering them, to select frames to encrypt. Next, it

encrypts these and sends the encrypted frames to the network. It comprises a frame filter

and an instance of the soft IP core for ECC containing only the module necessary to encrypt

data. The frame filter is the module that receives all frames and selects among these those

that must be encrypted before sending. This module was detailed in Section 5.2.3. The soft

IP ECC core is the module responsible for encrypting data of all frames and is the same

presented in Chapter 4, but some modifications were done to enable it to encrypt Ethernet

frames more efficiently, as explained next.

Encrypter Interface

Frame
Filter

RX

TX
Soft IP ECC Core
(only encrypter)

Figure 46. Module of the encrypter interface.

The communication between the frame filter and the soft IP core is through FIFOs

which are controlled by the Encrypter Interface. Considering that the soft IP core for ECC

can encrypt up to 2*m bits of data each time, remembering that m is the key size in use for

ECC, and that the data of the frames can be from 1 to 1460 bytes, these data must be split

in blocks of 2*m bits. However, there is another problem. Consider an elliptic curve repre-

sented over GF(2163). It will have a private key of 163 bits and a public key with 326 bits.

Thus, the soft IP core for ECC will encrypt 326 bits of data each time, and these will result

in 652 bits of encrypted data, because it is composed by points C1 and C2 of the elliptic

curve. The solution created to encrypt all these data bytes is to break the frame data in

64

blocks of 2*m/8 bytes, rounding down. Then, in case data blocks would be 326 bits, actually

320 bits are used that result in blocks of 40 bytes, as Figure 47 illustrates.

Frame Data
(1 to 1460 bytes)

Data Block 1
(320 bits = 40 bytes)

Data Block 2
(320 bits = 40 bytes)

Data Block 34
(320 bits = 40 bytes)

Data Block 35
(320 bits = 40 bytes)

...

Figure 47. Splitting the frame data to encrypt.

Now, considering that the frame data vary from 1 to 1460 bytes, it could also result in

blocks with less than 40 bytes. So, the 6 bits that were discarded in the division of the frame

data are used to specify each block size. As the maximum block size of data, in this case,

is 40 bytes then it is possible to represent it with 6 bits, as Figure 48 illustrates.

Block Size
(6 bits)

Data Block
(up to 320 bits)

Block to be Encrypted

Figure 48.Format of the data block to encrypt.

When all information on the data block is encrypted, it generates 652 bits of encrypted

data. This is another problem, because if all frame data is doubled after encrypting, then it

would not fit in only one frame. So, revising the ECC algorithms, it is possible to note that

points C1 and C2 are needed to decrypt the data, but point C1 is just the multiplication of a

random number with the point generator of the elliptic curve. So, if the same random number

could be used for all data blocks of the same frame, then it would only be necessary to use

2*m bits to send C1, which would then be the same for all other blocks, and other blocks

even when encrypted will use only 2*m bits for each. Thus, the encryption process for Ether-

net frames can be depicted in the following steps: (i) First, the Ethernet frame is received

and its frame data is divided in blocks of 40 bytes. (ii) Second, when the first block is en-

crypted, points C1 and C2 are generated. Point C1 is stored and this point will be the same

for all other blocks. (iii) Next, point C2 is also stored in the encrypted data frame. (iv) After-

wards, all other data blocks are encrypted, one at a time, but then only points C2 are gen-

erated. This corresponds to their encryption, which used the same point C1 generated in

the encryption of the first block. (v) Finally, two Ethernet frames are created, the first one to

send the information of point C1 and the second one used to send all the encrypted blocks,

which are all the C2 points generated for the data blocks of the original frame.

The next three figures illustrate the structure of the expected frame to encrypt, in

Figure 49, and how the generated encrypted frames are composed, in Figure 50 and Figure

51. In this case, it is important to note that the maximum data size of the received frames is

limited to 1400 bytes, because splitting 1460 bytes in blocks of 326 bits, or 41 bytes (by

rounding up), would result in 36 blocks of 41 bytes, where 1 byte indicates the block size

and the other 40 bytes contain encrypted data. Now, 36 blocks of 41 bytes would be bigger

than 1460 bytes, the maximum size reserved to frame data. Accordingly, it was limited to 35

blocks of 41 bytes, which results in 1400 bytes of data encrypted to 1435 bytes.

65

MAC Destination
(6 bytes)

MAC Source
(6 bytes)

Ether Type
(2 bytes)

IPv4 Header
(20 bytes)

Data
(up to 1400 bytes)

TCP Header
(20 bytes)

Figure 49. Ethernet frame received to be encrypted.

MAC Destination
(6 bytes)

MAC Source
(6 bytes)

Ether Type
(2 bytes)

IPv4 Header
(20 bytes)

Point C1
(326 bits)

TCP Header
(20 bytes)

Figure 50. Encrypted Ethernet frame 1.

MAC Destination
(6 bytes)

MAC Source
(6 bytes)

Ether Type
(2 bytes)

IPv4 Header
(20 bytes)

Encrypted Data
(up to 1435 bytes)

TCP Header
(20 bytes)

Figure 51. Encrypted Ethernet frame 2.

Finally, at the end of the encryption process of all blocks, the Encrypter Interface

mounts both Ethernet frames as illustrated in Figure 50 and Figure 51. These represent the

encryption of the received frame, which is sent to the frame filter that transmits them to the

network.

5.2.5. Decrypter Interface

The Decrypter Interface is very similar to the Encrypter Interface, as Figure 52 illus-

trates. It is responsible to do the reverse process, receiving the encrypted frames from the

network, decrypting them and sending them to the computer. The decrypter interface is

composed by another instance of the Frame Filter and the soft IP core for ECC with only the

hardware necessary to decrypt data. In this case, the Frame Filter is a little different from

the previous module, since it is configured to filter the frames coming from the network that

must be decrypted. Accordingly, it verifies if the MAC address and the source TCP port are

the expected by its configuration. As explained in Section 5.2.4 the soft IP core for ECC was

modified to enable and optimize the encryption of Ethernet frames. It was also modified to

enable the efficient frame decryption process.

Decrypter Interface

Frame
Filter

RX

TX
Soft IP ECC Core
(only decrypter)

Figure 52. Module of the decrypter interface.

The decryption process is simpler than the encryption one because it does not need

to worry about the Ethernet frame limits. Considering that it will receive the two frames that

represent one decrypted frame, it cannot pass any limit. The decryption process is basically

defined by the following steps: (i) First, the two frames with the structure depicted in Figure

50 and Figure 51 are received and stored (point C1 and the first point C2). (ii) Second, all

C2 points are decrypted using the private key and the same point C1. Considering the same

example of the previous Section that used an elliptic curve represented over GF(2163), it

generates blocks of 326 bits and according to the first 6 bits, that define the amount of data

bytes that the block contains, up to 320 bits of decrypted data are stored. (iii) After decrypting

all blocks, the Ethernet frame is generated, which is the same frame sent by the sender

66

device. (iv) Finally, the Decrypter Interface sends this frame to the frame filter that will send

it out to the computer.

5.3. Simulation, Validation and Synthesis

After all these modules were described and implemented in VHDL, they were simu-

lated and validated through Modelsim simulations. They were synthesized to the target

FPGA, as described in Chapter 3. Figure 53 illustrates the produced design.

Ethernet
Interface 1

Ethernet
Interface 2

PHY MAC
MAC

Wrapper

Main
Controller

PHY MAC
MAC

Wrapper
Network

Proc.

Figure 53. Basic design with only Ethernet modules and control.

It contains only the basic modules that enable receiving and sending all Ethernet

frames without any modification. This environment was validated through simulations and

prototyped in the development board.

After validating the Ethernet modules and confirming that it does not aggregate any

significant overhead to receive and send frames, the design the modules Frame Filter, En-

crypter Interface and Decrypter Interface were included in the environment, to enable the

creation of a secure communication link, as defined in Section 5.1. To validate all modules,

a testbench that injects some Ethernet frames in both interfaces was created. It simulates a

communication between a computer and a network. At the Interface 1 random frames were

injected that should not be encrypted. In addition, the testbench injects the frame to config-

ure the Frame Filter of the Encrypter Interface and the frames that should be encrypted.

Next, we verified that the Frame Filter was working as expected, filtering just the correct

frames to encrypt and forwarding all other frames.

The Encrypter Interface was also verified, as it encrypted the expected frames and

sent them to the Frame Filter, which sends them out to the transmitter of the network inter-

face. Furthermore, in Interface 2, some random frames were also injected that should not

be decrypted, as well as the frame to configure the Frame Filter of the Decrypter Interface

and the frames encrypted by the Encrypter Interface. It was verified that the whole design

was working properly, since the injected frames, which represent the frames of a secure

communication link, were correctly encrypted, transmitted to the network, received in the

Decrypter Interface and then decrypted, resulting in the same frames that were injected in

Interface 1. During these simulations, the average timing of the encryption and decryption

process was measured, indicating the added overhead to create a secure communication

link, and this was also tested with several different parameters of the soft IP core for ECC

that influence on its performance.

67

Table 15. Average timing for conducted simulations.

Parameters Average Timing (clock cycles)

M (bits) W (bits)
Field Multipli-
cation (clock

cycles)

Encrypting Decrypting

1st
Block

Other
Blocks

Largest
Frame

1st Block
Other

Blocks
Largest
Frame

163

1 163 52.844 501 72.802 57.808 501 77.766

33 5 28.379 268 40.415 31.013 268 43.049

82 2 24.914 235 35.828 27.218 235 38.132

233

1 233 111.231 711 130.367 102.731 711 121.867

30 8 60.063 383 71.655 55.499 383 67.091

117 2 48.831 311 58.767 45.131 311 55.067

283

1 283 165.685 861 184.799 166.532 861 185.646

32 9 88.309 458 99.766 88.753 458 100.210

142 2 70.837 367 80.565 71.190 367 80.918

409

1 409 330.155 1.239 348.979 338.790 1.239 357.614

32 13 165.235 619 175.999 169.530 619 180.294

205 2 130.123 487 139.171 133.494 487 142.542

571

1 571 620.124 1.725 638.250 659.659 1.725 677.785

32 18 318.564 885 329.130 338.779 885 349.345

286 2 238.148 661 246.698 253.211 661 261.761

In this Table, the first three columns specify the used parameters, such as “M” that

indicates the key size according to the used elliptic curve and “W” that indicates the number

of bits that the finite field multiplier computes at each clock cycle. The Field Multiplication

indicates how many cycles are needed to compute one finite field multiplication. The other

columns indicate the average time, in clock cycles, measured during simulations for several

events. The fourth and seventh columns show the average time to encrypt or decrypt the

first block respectively. In both cases, the first block takes more time to encrypt or decrypt,

because it is only in this part that a point multiplication is performed, as point C1 is generated

or used only in this part, and for the other blocks just a point addition is executed or a point

subtraction, which takes fewer cycles to perform. The sixth and ninth columns show the total

timing to encrypt or decrypt the largest frame possible that has 1400 bytes of data.

Table 16 shows the synthesis results obtained for the same simulated designs. They

were synthesized using the Xilinx PlanAhead 14.1 tool, targeting the Xilinx Virtex 5 LX330T

FPGA device, the FPGA of the development board detailed in Chapter 3. The fourth column

indicates the clock frequency used only in the soft IP core for ECC; all other modules use

the 100 MHz clock frequency, as explained in Section 5.2.2, and since this is the same clock

for all designs, it is ignored in the Table that compares the performance of designs with

different parameters. The sixth column shows the number of slice LUTs used in the FPGA.

It is possible to note that the bigger the finite field multiplier, the bigger will the whole design

be. However, the average timing to perform an encryption or decryption also decreases, as

the seventh and eighth columns show.

68

Table 16. Synthesis results for the complete design.

Parameters FPGA - XC5VLX330T FF1738-2

M
(bits)

W
(bits)

Field Multipli-
cation (clock

cycles)

Clock Fre-
quency
(MHz)

Clock Pe-
riod (ns)

Slice
LUTs

Encryption
of Largest
Frame (ns)

Decryption
of Largest
Frame (ns)

163

1 163 100,000 10,000 37.628 728.020 777.660

33 5 100,000 10,000 70.366 404.150 430.490

82 2 100,000 10,000 105.124 358.280 381.320

233
1 233 75,000 13,333 58.655 1.738.227 1.624.893

30 8 75,000 13,333 105.264 955.400 894.547

To estimate the overhead added by the encryption and decryption processes for a

secure communication system, the average throughput was estimated according to the av-

erage timing measured in the simulations and the expected clock frequency at which the

soft IP core operates. Table 17 shows in the fifth and sixth columns the estimated throughput

results for different parameterizations of the soft IP core. Considering the values in nano-

seconds of encryption and decryption for the largest frame and the clock frequencies pre-

sented in the previous table, the total overhead is the sum of the timing results of encryption

and decryption of the largest frame (1400 bytes). This is the additional time necessary to

create a secure communication link. The estimated throughput was calculated based on the

amount of bytes that are encrypted and decrypted per second, which in these cases is the

value “1400 bytes / total overhead” converted to megabits per second, as presented in Table

17.

Table 17.Estimating throughput of the secure communication link, in Mbits/s.

Parameters Throughput Estimation Prototyping

M
(bits)

W
(bits)

Field Multipli-
cation (clock

cycles)

Total Over-
head (ns)

Estimated
Throughput

(Mbits/s)

Measured
Throughput

(Mbits/s)

163

1 163 1.505.680 7,44 12,00

33 5 834.640 13,42 19,10

82 2 739.600 15,14 21,30

233
1 233 3.363.120 3,25 5,15

30 8 1.849.947 5,92 4,71

After the simulations, these designs were synthesized and prototyped for the devel-

opment board that is detailed in the next Section, but its results are presented in the last

column of the Table 17. The next step is the hardware prototyping to validate the whole

system.

5.4. Hardware Prototyping

After validating the designs through simulation, as described in the previous Sections,

the same designs were prototyped in hardware, using the development board presented in

Chapter 3. A method similar to that employed in the software version (see Section 1.2)

helped validate these designs. The Iperf software is used to generate the Ethernet frames

and to measure the throughput of the communication between two computers. The whole

69

communication system interconnects using Ethernet cables, two identical development

boards and the laboratory network, as illustrated in Figure 54. The results of this validation

process and the measurement of its performance appear in the last column of the Table 17.

Almost all results obtained in the prototyping were better than those estimated values prob-

ably due to the greater variety of data being encrypted and decrypted. However, in the last

result presented in the last row, the measured throughput was lower than the estimated

maybe due to some network overload in the instant of the test or some problem in the secure

communication system developed that it was not identified.

Figure 54. Hardware prototyping environment for the secure communication system.

Unfortunately, it was not possible to synthesize and prototype the other designs be-

cause the FPGA Virtex-5 used does not support all the communication system and the soft

IP for ECC developed in this work. So, it is necessary to use bigger FPGAs to enable the

prototyping of these bigger designs.

5.5. Comparing the Results with the Software Experiment

By comparing the results of the measured throughput with the results obtained in the

software experiment, it is possible to note that the communication system implemented in

hardware achieved a greater performance. According to the results of the software experi-

ments, presented in Table 3 that shows the results of tests performed in software. Consid-

ering the test scenario 6 using a key of 160 bits and the wired LAN network achieved the

throughputs up to 7.71 Mbits/s using two computers. Thus, considering the measured results

of the Table 17, the communication system implemented in hardware achieved a speed-up

among 1.55 to 2.76 times.

71

6. CONCLUSIONS

Considering the work developed here and the achieved results, it was demonstrated

that using ECC implemented in hardware provides many advantages of performance and

robustness when compared to software implementations. Furthermore, the soft IP core for

ECC developed here and its results demonstrated that it is possible to create a design that

can fulfill different constraints of area, power, performance and security level, depending on

the requirements of specific applications. Thus, it is possible to integrate the soft IP core to

many embedded devices with different purposes, such as entertainment devices or critical

embedded devices, giving support to constraints of area and power for the smaller devices

or to constraints of performance and security level for devices used in critical systems. The

secure communication system described in Chapter 5 demonstrates the use of this soft IP

core for ECC.

6.1. Applications and Viability

According to the results presented in Section 4.5, it is possible to conclude that the

soft IP core for ECC can fulfill different sets of constraints due to its flexibility. Thus, almost

any kind of applications can use it to provide ECC-based security by just setting the soft IP

core configurations according to requirements. Therefore, very small devices, such as

smartphones, tablets, smart watches, smart glasses or small robots, which require low area

and low power, could use the soft IP core for ECC to provide a secure communication sys-

tem, if they do not require very high performance. Other devices that require higher perfor-

mance and high security level, such as critical embedded devices, security devices, com-

puter servers, military computers, tactical robots or autonomous vehicles for example, can

also use the same design of soft IP core for ECC by just setting the configurations to fulfill

the higher performance and higher security level constraints. Finally, the secure communi-

cation system developed in Chapter 5 demonstrated that the soft IP core for ECC works and

its use is viable for several applications.

6.2. Future Works

The work presented here was the first one conducted by the Author about cryptog-

raphy and ECC implemented in hardware. Though it achieved good results, there are many

parts that can be optimized and several other hardware architectures could be explored to

achieve higher performance or lower area and power. Considering the soft IP core for ECC,

there are other algorithms that implement the basic operations over finite fields that could

be explored, such as those used for projective coordinates, analyzing their advantages and

disadvantages according to specific requirements for different applications. Considering the

communication system, many features and configurations can be implemented to enable

the configuration of the encryption keys and the key exchange, which are not done in this

version, because the keys are just defined in hardware, and it is not currently possible to

change them after prototyping, which makes it extremely insecure. So, the soft IP core for

ECC can be optimized and different algorithms could be added to increase its flexibility for

72

more constrained requirements of area, power and performance. In the communication sys-

tem, a standard protocol could be implemented to increase its security level and some soft-

ware tool to facilitate its configuration. In this way, there are many points that can be opti-

mized to increase the encryption performance and the security and usability of the commu-

nication system.

73

REFERENCES

[ALM13] Almenares, F.; Arias, P.; Marín, A.; Díaz-Sánchez, D.; Sánchez, R. “Over-

head of Using Secure Wireless Communications in Mobile Computing”. IEEE

Transactions on Consumer Electronics, 59(2), 2013, pp.335-342.

[ARA12] Aranha, D. F.; Gouvêa, C. P. L. “RELIC is an Efficient LIbrary for Cryptog-

raphy”. 2012. Captured in: http://code.google.com/p/relic-toolkit/, Jul 2012.

[BED02] Bednara, M.; Daldrup, M.; Gathen, J.; Shokrollahi, J.; Teich, J. “Reconfigura-

ble Implementation of Elliptic Curve Crypto Algorithms”. In: International Par-

allel and Distributed Processing Symposium (IPDPS´02), 2002. pp. 284-292.

[BRO09] Brown, D. “Standard for Efficient Cryptography 1”. Certicom Research, May

2009, 144 p.

[DES09] Deschamps, J.; Imanã, J.; Sutter, G. “Hardware Implementation of Finite-

Field Arithmetic”. McGraw-Hill, 2009, 347 p.

[DIA13] Dias, M.; Gouveia, M.; Oliveira, J.; Muñoz, I. “Bit-Parallel Coprocessor for

Standard ECC-GF(2m) on FPGA”. International Journal of Applied Mathemat-

ics, 26(2), 2013, pp. 241-262.

[DUG12] Dugan, J. “Iperf”. Captured in: http://sourceforge.net/projects/iperf/, Oct 2012.

[FOU09] Fournaris, A. P.; Koufopavlou, O. “Low Area Elliptic Curve Arithmetic Unit”.

In: IEEE International Symposium on Circuits and Systems (ISCAS´09), May

2009, pp. 1397-1400.

[GUA02] Guajardo, J.; Paar, C. “Itoh-Tsujii Inversion in Standard Basis and Its Appli-

cation in Cryptography and Codes”. Designs, Codes and Cryptography,

25(2), Feb 2002, pp. 207-216.

[GUA06] Guajardo, J.; Güneysu, T.; Kumar, S.; Paar, C.; Pelzl, J. “Efficient Hardware

Implementation of Finite Field with Applications to Cryptography”. Acta Ap-

plic. Mathematica, 93(1-3), Sep 2006, pp. 75-118.

[HAN04] Hankerson, D.; Menezes, A.; Vanstone, S. “Guide to Elliptic Curve Cryptog-

raphy”. Springer, 2004, 318 p.

[ITO88] Itoh, T.; Tsujii, S. “A Fast Algorithm for Computing Multiplicative Inverses in

GF(2m) Using Normal Bases”. Information and Computation, 78(3), Sep

1988, pp. 171-177.

[JÄR11] Järvinen, K. “Optimized FPGA-Based Elliptic Curve Cryptography Processor

for High-Speed Applications”. Integration the VLSI Journal, 44(4), 2011, pp.

270-279.

[KEL09] Keller, M.; Byrne, A.; Marnane, W. P. “Elliptic Curve Cryptography on FPGA

for Low-Power Applications”. ACM Transactions on Reconfigurable Technol-

ogy and Systems, 2(1), Mar 2009, 20 p.

[KOB87] Koblitz, N. “Elliptic Curve Cryptosystems”. Mathematics of Computation,

48(177), Jan 1987, pp. 203-209.

http://code.google.com/p/relic-toolkit/

74

[LAU04] Lauter, K. “The Advantages of Elliptic Curve Cryptography for Wireless Secu-

rity”. IEEE Wireless Communications, 11(1), Feb 2004, pp. 62-67.

[LI08] Li, H.; Huang, J.; Sweany, P.; Huang, D. “FPGA Implementations of Elliptic

Curve Cryptography and Tate Paring Over Binary Field”. Journal of Systems

and Architecture, 54(12), Dec 2008, pp. 1077-1088.

[LOI13] Loi, K. C. C.; Ko, S. B. “High Performance Scalable Elliptic Curve Cryptosys-

tem Processor for Koblitz Curves”. Microprocessors and Microsystems, 37(4-

5), Jun-Jul 2013, pp. 394-406.

[MAR10] Martínez, V. G.; Encinas, L. H.; Ávila, C. S. “A Survey of the Elliptic Curve In-

tegrated Encryption Scheme”. Journal of Computer Science and Engineer-

ing, 2(2), Aug 2010, pp. 7-13.

[MAS12] Masoumi, M.; Mahdizadeh, H. “Efficient Hardware Implementation of an Ellip-

tic Curve Cryptography Processor over GF(2163)”. World Academy of Sci-

ence, Engineering and Technology, 65, May 2012, pp. 1223-1230.

[MIL86] Miller, V. “Use of Elliptic Curve in Cryptography”. In: A Conference on the

Theory and Application of Cryptographic Techniques (CRYPTO´85), LNCS

218, Aug 1986, pp. 417-426.

[NIST99] National Institute for Standards and Technology, “Recommended Elliptic

Curves for Federal Government Use”, Jul 1999, 43p.

[PAA10] Paar, C.; Pelzl, J. “Understanding Cryptography: A Textbook for Students

and Practitioners”. Springer, 2010, 372 p.

[PIG12] Pigatto, D. F. “Segurança em sistemas embarcados críticos - utilização de

criptografia para comunicação segura”. Dissertação de Mestrado, Instituto de

Ciências Matemáticas e de Computação, ICMC-USP, São Carlos, 2012, 84

p.

