
Automatic Layout Synthesis with ASTRAN
Applied to Asynchronous Cells

Adriel Ziesemer Jr.∗, Ricardo Reis∗, Matheus T. Moreira†, Michel E. Arendt†, Ney L. V. Calazans†
∗Universidade Federal do Rio Grande do Sul (UFRGS), PGMicro

†Pontifı́cia Universidade Católica do Rio Grande do Sul (PUCRS), PPGCC
Email: {amziesemerj, reis}@inf.ufrgs.br, {matheus.moreira, ney.calazans}@pucrs.br, michel.arendt@acad.pucrs.br

Abstract—This work presents ASTRAN, a tool for automatic
layout generation of cell libraries, and the use of this tool in the
production of a cell library for asynchronous logic components
called ASCEnD. In this context, ASTRAN is able to achieve
orders of magnitude savings in cell generation time if compared
to manual design. ASTRAN supports technologies down to 65nm
and simultaneous two-dimensional cell layout compaction. It can
deal with non-complementary logic cells, and allows producing
any type of transistor network. The comparison of the generated
layouts to those of the hand designed ASCEnD library revealed
that ASTRAN achieves an average of 26% less area, about 50%
less total parasitic capacitance and worst case input capacitance,
and 23% lower delay.

I. INTRODUCTION

Standard cell-based automatic synthesis of application spe-
cific integrated circuits (ASICs) has been used in industry and
academia for a long time. This design method is very reliable
and predictable since a same library of standard cells can be
used in several different designs and mature tool flows are
available to support. However, the quality of the designed
circuits can be limited by the number and type of cells
available in the library. A large and varied cell set is needed
to enable efficient designs. Moreover, there are many studies
on ways to optimize them for specific problems: asynchronous
circuits, leakage, low-power, NBTI, etc. Standard cell libraries
usually count with handmade layouts, which also limit the
fast adoption of new technologies. Furthermore, each new
fabrication process requires the redesign of all cells practically
from scratch, if no effective CAD tools are available.

II. OVERVIEW

The academic netlist-to-layout tool ASTRAN [1] was de-
veloped to synthesize cell layouts in technologies down to
65nm. The tool generates the cells’ layout under a linear (1-
D) layout style and supports: unrestricted circuit structures,
continuous transistor sizing, folding, poly and over-the-cell
metal 1 routing, and tightening the spacing rules for DFM.
ASTRAN features a transistor placement algorithm for width
reduction and an intra-cell router. Mixed-Integer Linear Pro-
gramming (MILP) is used for compaction; it produces the final
layout according to the results provided by the placement and
routing steps taking into account the technology design rules.

The input of ASTRAN is a transistor level description of
a circuit in SPICE format. Each circuit, called “.subckt”, can
be synthesized into a standard cell-level layout. Technology

Template
Configuration

Design Rules

Netlist SPICE

Cell Area
Estimation

Folding

Transistor
Placement

Intra-cell Routing

Layout
Compaction

CIF / GDSII

Astran - CELLGEN

Fig. 1. ASTRAN cell synthesis flow.

PMOS

VDD

GND

I/O pins
aligned to
the routing

grid

Floating
transistors

External
poly to
metal

contacts
Poly routing

in the
external

area

NMOS

Fig. 2. ASTRAN cell example, showing typical elements of its layout style.

rules are set according to the values defined by the foundry.
ASTRAN supports the rules defined by most CMOS pro-
cesses down to 65nm. The cell topology (height, routing grid,
wells/power rails position, and other library specific aspects)
are defined according to the target library.

Figure 1 illustrates the flow employed by ASTRAN. The
flow steps description is the subject of next sections. Given
a network, the design flow objective is to place and route its
transistors using the proposed layout style, to minimize cell
width and interconnection length. ASTRAN then compacts the
circuit abstract representation to produce an error-free layout
in CIF or GDS2 formats.

III. LAYOUT STYLE

The 1-D layout style consists of two rows of P and N
transistors with vertical gates [2].

TABLE I
OUR LAYOUT STYLE

1. Support to unrestricted transistor structure and individually sized
transistors. No re-ordering occurs;

2. Transistors placed separately in horizontal rows for PMOS and
NMOS;

3. Intra-cell routing with polysilicon, metal 1 and diffusion (stretching);
4. Contacts between polysilicon and metal 1 everywhere, except over

transistors;
5. Transistors can be placed anywhere inside P and N regions for

routing. They can move freely (“floating”) during compaction;
6. Tracks over the P and N diffusions for metal routing;
7. Supply rows are in the top and bottom of the cell, resp.;
8. TAPs can be placed under the supply rows in the cell boundary,

according to the cell template;
9. Input and output ports are aligned to the routing grid. They are also

allowed over transistors;
10. Jogs (dog legs) may occur in metal and poly routing (this can be

disabled);
11. Fixed cell height and n-well positions. Cell width is multiple of the

routing grid horizontal pitch.

Table I lists ASTRAN layout style assumptions and Figure
2 illustrates these. To enhance routing flexibility, several
techniques are available, including: diffusion stretching, poly
routing and vertically moving transistors.

IV. CELL GENERATION FLOW

We refer here to the cell flow generation steps represented
inside the round corner rectangle in the center of Figure 1.

A. Cell Area Estimation

Area of PMOS and NMOS transistors depend on the cell
template, height, N-well position and design rules. The mini-
mum pitch between metal lines define how to compute tracks
position. Intra-cell routing requires reserving a minimum of
one horizontal track between PMOS and NMOS transistors.

B. Folding

Transistor sizing is essential to produce high performance
circuits. Layouts produced in the 1-D layout style with differ-
ent sized transistors tend to waste area, since the height of each
diffusion row is adjusted according to its tallest transistor. To
solve this problem, one of the most used methods is transistor
folding, which consists in building bigger transistors as a set of
parallel interconnected rectangles. This keeps the cell height
small, at the expense of an increase in cell width.

This works addresses the dynamic placement with the
static folding problem. Given the diffusion rows height limits,
transistor folding occurs by directly modifying the cell netlist,
creating new transistors in parallel before executing the place-
ment. This gives more freedom to the placement algorithm,
and it can then achieve better results than folding transistors
after placement.

C. Transistor Placement

The purpose of the placement step is to find out a transistor
ordering that leads to a better design. Cellerity [3] was one of
the first tools to successfully solve this problem considering
not only diffusion gaps and gate mismatches, but also channel

(a) (b)

Fig. 3. Local routing density enhancement example for an inverter within a
full adder. In (a) the local channel density is 0-1-2 (I/O pins are not evaluated)
while in (b) the density is 1-1-1.

1 2 3 4 5 6 7 8Column No.

PMOS

NMOS 2 8 8 6 25

5

5

3

7

2 1 4 6

Net 1,8 : Supply
Net 2:
Net 3:
Net 4:
Net 5:
Net 6:
Net 7:
Density: 1 + 3 + 1 + 2 + 2 + 3 + 2 + 1 = 15
Density2: 1 + 9 + 1 + 4 + 4 + 9 + 4 + 1 = 33
Costs:
- Gates Mismatches : 1 - Max. Channel Density : 3
- Gaps : 1 - Local Channel Density : 33
- Width : 8 - Wirelength : 15

Fig. 4. Placement cost evaluation.

density, using simulated annealing. Other methods find the op-
timal transistor placement [4] but without considering channel
occupation or wire length.

This paper’s approach first implemented transistor place-
ment with the threshold accepting heuristic from Hentschke
[5] in the graphical CAD framework for physical synthesis
ICPD [6]. It was possible to find optimal or near optimal
results in most test cases.

ASTRAN improved the previous results by including the
maximum channel density and local channel density in the
cost function. The maximum channel density cost is important
to reduce the number of horizontal connections in the most
congested column, allowing for routing more complex cells.
The local channel density cost helps flipping transistors, which
reduces the number of connections that cross in each column,
as Figure 3 shows. Therefore, its cost is evaluated using the
square of column density values, as it is better to spread
connection points than to have local congestion spots. Figure
4 presents all metrics evaluated during this step.

D. Intra-cell Routing

The transistor ordering resulting from placement translates
to a routing graph that expresses the number and position
of the tracks calculated in the area estimation step and the
transistors width. This graph is illustrated in Figure 5. Nodes
represent intersections of connections and edges are a con-

Metal 1 and Diffusion

Net Sinks NodesEdges Metal-Poly contacts
Polysilicon

Metal-Diff contacts

Fig. 5. Intra-cell routing graph.

Smallest diffusion
enclosure inside

to reduce
resistance

Smallest diffusion
enclosure

outside, to reduce
diffusion area

Horizontal/Vertical
metal enclosure is

choosen
automatically to
improve global

result

Redundant
contact insertion
without penalize

area

Increased Diff
to gate

distance in L
shape

diffusions if W
is small

Minimum metal 1 area

Conditional gate extension in
L-shaped transistors if diff is

close

Conditional metal/poly
 line-end spacing

Aligned
contacts to

reduce delay

Extra
spacing for

DFM

Fig. 6. Design rules supported by ASTRAN.

nection between such nodes (which translates to: metal/poly
tracks, contacts or vias). Next, an optimisation step is executed
to insert Steiner Nodes and improve the routing result.

E. Layout Compaction

This is the process of translating the abstract cell repre-
sentation produced by previous steps into a cell layout. A
previous tool [6] was able to generate layouts for processes up
to 350nm and compaction was performed almost exclusively
horizontally. ASTRAN manages not only to support 65nm
(which has to deal with conditional rules), but also simul-
taneously compact the layout in two dimensions. This was
possible by using mixed integer linear programming (MILP).
Binary variables represent whether a rule should be applied or
not. Using linear equations over these variables it is possible
to model mutually exclusive and co-occurring rules. With the
Gurobi tool [7] used as solver it was possible to find the
optimal solution for most models in reasonable time.

Figure 6 shows the rules supported by ASTRAN and some
of the constraints we try to optimize.

V. CASE STUDY AND EXPERIMENTAL RESULTS

To evaluate the quality of layouts generated by ASTRAN,
a subset of cells available in the ASCEnD library [8], [9]

Fig. 7. Examples of asynchronous cells in ASCEnD: (a) MAC2, (b) SUC2,
(c) VBC2, (d) NCL23 and (e) NCL35.

served as case study. This is a library that contains special
gates used in the design of asynchronous circuits, like C-
elements and NCL gates, which complements traditional logic
gate libraries. ASCEnD targets the STMicroelectronics 65nm
CMOS technology. It contains over 600 handmade cell layouts.
This allows a fair comparison, of ASTRAN with handmade
layouts.

The case study set includes 3 different 2-input C-element
topologies, with two driving strengths available for each of
these. Topologies are: Martin (MAC2), Sutherland (SUC2)
and van Berkel (VBC2), and strengths are X4 and X18.
The different degrees of complexity among the topologies
motivated their choice as Figure 7 illustrates. Martin is the
simplest, with only 8 transistors. Sutherland and van Berkel
topologies require 12 transistors each, and the latter has a more
intricate routing (see Figure 7(b)-(c)). Two Null Convention
Logic (NCL) gates, NCL23 and NCL35 complete the case
study set. These employ more transistors and have more
complex topologies, which enables evaluating the quality of
ASTRANs transistors placement and nodes routing. As Figure
7(d)-(e) shows, NCL23 has 20 transistors and NCL35, 44.
Further details can be found in [8] and [10].

ASTRAN automatically generated layouts for all case study
cells. Six characteristics allowed comparing handmade and
ASTRAN-generated ASCEnD cells: total area, total parasitic
capacitance, worst case input capacitance, average delay, aver-
age energy per transition (EPT) and average leakage. Total area
was extracted from layouts. Layout extraction assuming worst
case RC allowed measuring total parasitic capacitance and
worst case input capacitance. The former corresponds to the
sum of all parasitic capacitances and the latter is the worst case
input capacitance from all cell inputs. SPICE simulation of the
extracted netlists using “.measure” commands produced the
remaining measurements. Simulations included all transition
arcs for each input and output pair and exercising all static
states for each cell. Simulation scenarios employed typical
fabrication and operating condition models and all cells had

TABLE II
COMPARISON BETWEEN LAYOUTS GENERATED USING ASTRAN AND EQUIVALENT MANUALLY DESIGNED LAYOUTS FROM ASCEND.

T. Run-time
ASTRAN (s)

Area (µm2) Tot. Parasitics (fF) Worst In. Cap. (fF) Avg. Delay (ps) Avg. EPT (fJ) Avg. Leakage (nW)
ASTRAN ASCEnD ASTRAN ASCEnD ASTRAN ASCEnD ASTRAN ASCEnD ASTRAN ASCEnD ASTRAN ASCEnD

MAC2X4 8 4 3.64 4.68 1.0644 1.7913 0.1725 0.2756 36.16 38.81 4.67 5.07 39.00 39.00
MAC2X18 8 14 7.28 9.36 2.2195 3.3034 0.3064 0.5387 50.69 52.92 19.36 19.97 127.194 127.17
SUC2X4 12 12 6.76 6.24 1.6208 3.6566 0.3971 0.8298 64.09 71.82 5.47 5.95 32.79 32.90

SUC2X18 12 32 7.28 8.32 2.4449 3.9845 0.6842 0.8567 51.97 57.01 16.82 17.90 117 117.11
VBC2X4 12 40 6.76 7.28 2.9553 3.3623 0.4437 0.6034 47.32 48.85 5.56 5.70 35.84 35.78
VBC2X18 12 52 7.8 9.36 3.0028 4.0721 0.4677 0.6481 49.53 52.05 16.54 17.07 116.68 116.63
NCL23X4 20 50 8.84 11.96 3.5175 7.2529 0.6562 1.1929 72.38 88.22 3.76 4.47 32.13 32.70
NCL35X4 44 * 43200 17.16 31.2 9.4512 23.824 1.2526 2.8690 133.32 246.45 5.26 9.71 32.63 33.20

FO4 equivalent loads in their outputs. The average delay
was measured as the average between the propagation delays
measured for all arcs. Average EPT is the average between the
energy consumed for switching the output, for each transition
arc. Finally, average leakage is the average power measured
during static states, as caused by leakage currents.

Table II summarizes the obtained results. It also presents
transistor count and ASTRAN run-time for layout generation.
The latter is the clock wall time using an Intel Xeon W3540
2.93GHz workstation. All cells were generated in less than
60s except NCL35X4, which was interrupted after 12 hours,
resulting in sub-optimal layout compaction. This is due to the
elevated transistor count of this cell (see Figure 8). In the
authors experience low complexity gates (up to 20 transistors)
requires a whole work day of a designer to produce up to two
cell layouts. ASTRAN can generate such a layout in less than
one minute. A more complex design, such as the example
NCL gates, can take several days from a designer. As for
the layout area, ASTRAN managed to generate more compact
layouts than handmade layouts except for the SUC2X4 cell.
For this cell the tool produced a layout with an area overhead
of roughly 8%. However, in the other cases it provided area
reductions ranging from 7% to 45%.

As Table II shows, layouts generated by ASTRAN presented
lower parasitics and lower worst case input capacitances for
all cells. For the former, reductions ranged from 12% to up
to 60%. For the worst case input capacitance the range is
from 20% to 56%. Reductions in parasitics of the cell are
quite relevant, as they lead to improvements in performance.
In fact, results point to slightly reduced average delays for all
C-Elements and to substantial reductions for the NCL gates,
roughly 46% for NCL35X4. This indicates the suitability of
ASTRAN for coping with high complexity cells. EPT was
also reduced in all cases, a consequence of the reduction of
parasitics. In fact, in best and worst cases EPT reductions were
of 46% and 2%. Finally, the average leakage was roughly the
same for layouts generated with either ASTRAN or handmade
ASCEnD. This is due to the fact that leakage currents are
directly related to the transistor dimensions, which is the same
for both cases, and it is minimally affected by layout struc-
ture. Finally, besides the reported gate-level optimizations,
improvements are also expected at the circuit level, as the
input capacitance is considerably smaller in the automatically
generated cells.

Fig. 8. Layout of the NCL35X4 cell generated by ASTRAN.

VI. CONCLUSIONS

We developed a transistor netlist to cell layout synthesis
tool called ASTRAN. We compared it to manually designed
cells from the original ASCEnD library. ASTRAN was able
to produce cell layouts with less area, capacitance, delay
and dynamic energy consumption in most cases. The authors
believe that ASTRAN can significantly reduce the time-to-
market of cell libraries and can also be useful for applications
such as on-demand cell synthesis.

REFERENCES

[1] Astran - automatic synthesis of transistor networks. [Online]. Available:
https://code.google.com/p/gme-ufrgs/

[2] T. Uehara and W. M. vanCleemput, “Optimal layout of cmos functional
arrays,” IEEE Transactions on Computers, vol. 30, no. 5, pp. 305–312,
1981.

[3] M. Guruswamy et al., “CELLERITY: A fully automatic layout synthesis
system for standard cell libraries,” in Proceedings of the 34th Design
Automation Conference, DAC. Anaheim, California, United States: New
York: ACM, 1997, pp. 327–332.

[4] T. Iizuka, “Optimal layout synthesis of standard cells in large scale
integration,” Ph.D. dissertation, Department of Electronic Engineering,
Graduate School of Engineering, The University of Tokyo, Tokyo, Japo,
2007.

[5] R. Hentschke, “Algorithms for wire length improvement of vlsi circuits
with concern to critical paths,” Ph.D. dissertation, PPGC, UFRGS, Porto
Alegre, 2007.

[6] A. Ziesemer, C. Lazzari, and R. Reis, “Transistor level automatic layout
generator for non-complementary cmos cells,” in Very Large Scale
Integration, 2007. VLSI - SoC 2007. IFIP International Conference on.
USA: IEEE, oct. 2007, pp. 116 –121.

[7] Gurobi optimizer. [Online]. Available: http://www.gurobi.com/
[8] M. T. Moreira, B. Oliveira, J. Pontes, and N. Calazans, “A 65nm standard

cell set and flow dedicated to automated asynchronous circuits design,”
in IEEE International SOC Conference. USA: IEEE, 2011, pp. 99–103.

[9] M. T. Moreira, C. Oliveira, R. Porto, and N. Calazans, “Design of ncl
gates with the ascend flow,” in Latin American Symposium on Circuits
and Systems. USA: IEEE, 2013.

[10] M. T. Moreira, B. Oliveira, F. Moraes, and N. Calazans, “Impact of
c-elements in asynchronous circuits,” in International Symposium on
Quality Electronic Design. USA: IEEE, 2012, pp. 437–441.

