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Abstract—As manufacturing processes continue to shrink and
supply voltages drop, timing margins due to increased process,
temperature, and voltage variability become a significant portion
of the clock period. An asynchronous bundled data resilient
template called Blade has recently been proposed to curb these
margins and thereby outperform synchronous alternatives. This
paper proposes a model to analyze the performance of Blade
designs and an approach to optimize it. We validate the model
against gate-level simulations of a resilient 3-stage MIPS CPU
implemented with Blade and use it to compare the optimal
performance of Blade designs with synchronous alternatives. The
results show that Blade offers up to 44% higher performance
than traditional designs and 23% higher performance than
Bubble Razor, the synchronous resiliency strategy with the
highest reported performance.

I. INTRODUCTION

Traditional synchronous design must incorporate timing
margin to ensure the correct operation under worst-case de-
lay conditions. However, the ongoing increase in process
variations compounded with aging effects is causing pro-
gressively larger delay variations, requiring increased timing
margins which consequently reduce performance and energy
efficiencies. Various forms of asynchronous circuits have been
identified as promising solutions to this problem, particularly
in the near-threshold regime [1], [2]. Quasi-delay-insensitive
(QDI) logic tracks variations by embedding a completion
signal into the data representation at the cost of higher area [3]
and switching activity [4]. Bundled-data (e.g., micropipelines
[5]), on the other hand, uses matched delay lines to track the
delay of combinational single-rail logic.

Bundled-data (BD) designs have similar switching activity
as their synchronous counterparts because the combinational
logic is unchanged and the total area is also similar because the
area of the control circuits and delay lines is comparable to that
of a clock tree [6]. However, one challenge in BD designs is
that the delay line must be conservatively designed to be longer
than the worst case delay of its corresponding logic under all
possible process, voltage, and temperature (PVT) corners, and
this can take away much of its advantages. Researchers have
proposed to mitigate this problem by duplicating the BD delay
lines [1], constraining the design to regular structures such as
PLAs [7], and using soft latches [8].
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Meanwhile, several synchronous resilient design techniques
have been proposed that mitigate the impact of delay variations
(e.g., [9], [10]). These techniques relax timing constraints
by allowing timing violations to occur using error detecting
flip-flops and latches that trigger recovery mechanisms to
correcting errors caused by such violations. More recently, an
approach that combines the benefits of synchronous resiliency
and BD design called Blade has been proposed, which uses
single-rail logic, reconfigurable delay lines, and error detecting
latches with asynchronous sampling circuitry that reliably han-
dles timing violations even under the presence of metastability
(MS) [11].

The performance of Blade designs depends on stochastic
characteristics of the data and environmental delay variations,
the time for MS in the control circuits to resolve, and the size
of the timing resiliency window supported. In this paper, we
show that while the time to resolve MS may instantaneously
slow down the circuit, the long term impact on average
performance is likely quite low and can thus be ignored
when optimizing Blade designs. We then provide an analytical
model of Blade designs that enables us to optimally set the
timing resiliency window for an expected degree of data and
environmental variations using various types of distributions.
An interesting side-result of our analysis is that while the
optimal timing resiliency window is a function of the degree
of variability, the optimal probability of error for normally
distributed delays is proven to be constant. We then compare
the optimal performance of Blade designs with synchronous
alternatives, including using traditional flip-flop-based design
as well as using Bubble Razor, the synchronous resiliency
strategy with the lowest reported error penalty. The results
show that Blade offers up to 44% higher performance than
traditional designs and 23% performance over Bubble Razor.
Finally, to apply our performance model to a real design, we
compare the predicted performance with gate-level simulations
on an OpenCore MIPS CPU, Plasma, and show that our model
is typically accurate to within 5.4%.

The remainder of this paper is organized as follows. Section
II provides relevant background on the Blade template, defines
some commonly used delay distributions, and defines a notion
of systematic error rate for unbounded distributions. Section
III introduces the proposed Blade performance model and
looks at its application to normal and log-normal distributions.
Section IV documents non-ideal effects that may impact our
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Fig. 1: Blade template

performance analysis. Section V quantifies Blade’s benefits
over both traditional and resilient, Bubble Razor, synchronous
design approaches on abstract N-stage ring structures using
both analytical models and a simulation framework that imple-
ments the Blade handshaking protocols, proving the accuracy
of the proposed model. Section VI details how the proposed
model can be applied to a real example, a MIPS OpenCore
CPU, which has been implemented using Blade. We compare
the analytical model to gate-level simulation results and show
how the timing resiliency window can be optimized to achieve
optimal performance. Finally, Section VII summarizes our
results and outlines future work.

II. BACKGROUND

A. Blade
1) Template overview: As shown in Figure 1, pipeline

stages in Blade use single-rail logic followed by Transition
Detecting Time Borrowing (TDTB) latches [12], Q-Flops [13],
and two reconfigurable delay lines. The stage to stage delay
line is of duration δ and controls when the TDTB first samples
the data at the output of the combinational logic, assuming
no timing violation had occurred in the previous stage. The
second delay line is of duration ∆ and defines a time window
during which timing errors are allowed, referred to as the
timing resiliency window (TRW). For the purposes of this
paper, ∆ = TRW and either may be used interchangeably.

If the outputs of the combinational logic change during the
TRW, the TDTB flags a timing violation by raising its E signal.
The TDTB prevents the introduction of metastable signals to
the datapath, moving them to the control path, where they are
filtered out by the Q-Flop, as will be described in detail in
Section II-A3.

2) Speculative Handshaking: Each stage has four asyn-
chronous channels that operate using a two-phase protocol.
The first channel, L, is a typical bundled-data push channel,
comprised of req, ack, and data. The second channel, LE, is
a pull channel used to check if the previous stage suffered an
error. It, too, has a req and ack, but no data value is required,
because it is solely for control purposes. Two additional
channels, R and RE, are tied to L and LE of the next stage.

Upon the opening of the latch, the Blade controller asserts
its R.Req signal to its right neighbor speculatively, i.e. it sends
the request signal before it can be determined if a timing
violation occurred. Once the request is received by the right
neighbor’s controller (δ time units later), that controller will

Fig. 2: Areas where metastability may occur in Blade

then send a signal back to the current stage on RE.Req to check
if a violation has occurred. Because δ ≥ ∆ in all stages, the
error signal will have been properly sampled in the current
stage’s controller by this time. The next stage will then either
be allowed to accept new data or be forced to wait a period
of ∆ to ensure the timing violation is resolved.

3) Metastability: Because the input data may stabilize
sometime after the opening of the main latch, MS can exist
and must be considered in Blade. Figure 2 shows the two
main regions where the template is susceptible to MS. Timing
violations in W2 indicate the datapath is so slow that it exceeds
the timing resiliency window and such circuits should be
filtered out during post-fabrication testing. Therefore, it is only
necessary to consider W1. In this region, a data transition
occurring near the rising edge of CLK can put the TDTB
latch of the error detection logic in MS. For this reason the
output of this latch is sampled by a Q-Flop, which is used
to generate the Err signal. Similar to an arbiter, the Q-Flop
uses a MS filter to resolve MS in an indeterminable amount of
time. Its output is dual-rail, so the Blade controller will stall
the stage until a strong ’1’ or ’0’ is present, preventing the
MS state from propagating through the control logic. During
the W1 region, the value at which the Q-Flop resolves is only
important from a performance perspective; it will not affect
correctness. If the datapath transition that caused MS passes
through a non-critical path in the next stage, there is no error
and correction is not required for the next latch to correctly
sample the value. Even if it passes through a critical path,
the transition will appear at the next stage’s TDTB while it is
transparent, be flagged as a timing violation, and subsequently
be corrected at the next stage. Lastly, small glitches at the
output of the datapath during the TRW may also cause MS
in the TDTB’s E output, but not its data output [14]. The
impact of these glitches can be further minimized by careful
full-custom design of the TDTB [11]. Consequently, this MS
scenario only effects performance, not correctness, and its
performance impact is likely overshadowed by the impact of
MS in W1. Thus, for simplicity, it is not considered here.

B. Delay distributions

Delay variations in the datapath can be attributed to three
main sources: global variation, local variations, and data
dependency. It is common to model random local and global
variations in circuits using normal distributions. However, it
has been shown that heavy tail distributions, such as log-
normal, are more suitable in near-threshold domains [15], [16].
Therefore, we analyze both normal and log-normal distribu-



tions with the proposed performance model. Data dependency,
on the other hand, cannot be as well defined; it is determined
by many factors, including architectural description, logic
synthesis, and input data.

To simplify the analysis and abstract the various sources of
variation, it is desirable to consider a single delay distribution.
According to [16], [17], it is reasonable to represent the sum of
two normal or log-normal random variables as another normal
or log-normal random variable, respectively. In this way,
the analyses presented in this paper are based on combined
distributions with a σ/µ that can be considered to encompass
all sources of variation.

C. Systematic error rate
In both the normal and log-normal distributions, there is a

non-zero probability of experiencing an infinitely large delay
value, i.e. it is impossible to set a traditional clock cycle time
that would catch all variations with 100% probablility. There-
fore, a notion of Systematic Error Rate (ξ) must be introduced
to define an upper bound on the worst case performance of
the circuit. ξ sets an acceptable amount of errors that may be
allowed during operation of the circuit, which is typically a
very small value, e.g. in [18] the authors assume ξ ≤ 0.1%.
For traditional circuits, ξ is calculated as:

ξ = 1− [PR{D ≤ C}]N (1)

where D is a random variable representing the delay of the
worst case path between two sequential elements, C is the
clock period, PR(x) is defined to be the probability of event
x occuring, and N is the number of stages in the circuit.

III. OPTIMAL BLADE PERFORMANCE

A. Performance model
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Fig. 3: Logic delay distribution model

There are two main timing parameters of Blade: the δ and ∆
delay lines, where ∆ sets the length of the TRW. Compared to
a traditional synchronous circuit with clock period C, we can
set C = δ + ∆. Therefore, a trade off in setting these values
emerges as decreasing δ allows the system to operate faster if
no timing violations (errors) occur; however, the shorter stage-
to-stage delay means that more transitions will occur while
the latch is transparent, thereby increasing the frequency of
errors that force subsequent pipeline stages to be delayed by
the now larger ∆ value, as C remains constant. To quantify

this optimization problem, consider a delay distribution of a
combinational logic block between two latches as shown in
Figure 3. The area of the blue vertically-lined region represents
the probability that an error occurs at a previous output latch,
defined as p, such that the effective delay of this pipeline stage
is δ + ∆. The area of the green horizontally-lined region is
thus 1−p. We propose to model the performance of a pipeline
stage as a discrete two-valued distribution, which yields the
following equation for average delay of a Blade stage:

d̄ = δ + p ·∆ (2)

The optimal performance of simple structures, such as N-
stage rings, occurs when each stage’s average-case delay is
minimized, i.e. when d̄ = d̄min. Furthermore, in practice this
equals the effective cycle time (EC) of the design, as intro-
duced in [18]. In this way, the asynchronous and synchronous
implementations can be compared directly by their ECs, where
EC = C for traditional synchronous designs.

B. Normal and log-normal distributions
We explore normal and log-normal distributions to analyze

the impact on performance due to differences in distributions.
Both are defined by two parameters: µ, the mean; and σ, the
standard deviation. To generalize our analysis for any possible
delay values, we define a distribution by its σ/µ ratio instead
of these individual components. The probability of an error
occurring depends on the chosen TRW and the expected ξ.
Setting ξ according to Section II-C, we can then sweep the
TRW from 0 to δ to plot the EC using (2). The results for
both normal and log-normal distributions at three different σ/µ
values are shown in Figure 4. In Blade, the TRW is limited
to δ

2 ; however, the proposed model can obtain the expected
performance at all TRWs. This difference is denoted by the
colored lines turning gray at the maximum TRW. The optimal
EC is obtained by finding the minimum of these curves; from
that, the optimal error rate, popt, can be trivially derived. By
varying the σ/µ ratio and recomputing the minimum EC and
popt, the relationship between variation and optimal error rate
can be plotted, as shown in Figure 5. Interestingly, for normal
distribution popt appears to be constant as variation increases.
In fact, popt of normal distribution is independent of both σ
and µ, and a proof is provided in the appendix.

0 50 100
60

80

100

Normal

TRW (%)

E
C

 (
%

)

0 50 100
0

50

100

Log−Normal

TRW (%)

E
C

 (
%

)

 

 

σ/µ = 0.10 σ/µ = 0.20 σ/µ = 0.30

Fig. 4: Normalized expected cycle time versus size of timing
resiliency window for Normal and Log-Normal Distributions



0 0.2 0.4 0.6

20

30

40

σ/µ

p
o

p
t (

%
)

0 0.005 0.01

20

30

40

ξ

p
o

p
t (

%
)

 

 

normal log−normal

Fig. 5: popt versus variation and systematic error rate

This means that, given solely an expected ξ and knowledge
that the distribution of delays resembles a normal curve, the
optimal performance can be obtained by tuning the circuit to
always achieve a pre-defined error rate.

IV. PERFORMANCE IMPACT OF NON-IDEAL EFFECTS

A. Robustness to delay line accuracy
In Blade, the δ and ∆ delays are typically implemented

using simple delay lines comprised of inverters or buffers,
which imposes a limit to the accuracy of the delay line. In
other words, the total delay of the delay line may be up to
one gate delay off from the ideal δ value. Even if the delay
lines are tunable, there will still be a quantization of the delay
line such that the ideal delay is unobtainable. To quantify the
impact, the variation in δ versus the resulting variation in EC
is plotted in Figure 6. For a 10% variation in δ, we only see
a 6.3% to 4.7% change in performance for normally and log-
normally distributed delays, respectively. At 30% variation, the
impact drops to 2.3% and 1.3%, respectively.
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Fig. 6: Effect of delay line quantization on the Expected Cycle
time for normal and log-normal distributions with σ/µ = 0.1,
0.2, and 0.3

B. Metastability
To analyze the impact of metastability on performance we

analyze all possible scenarios, as illustrated in Figure 7, and
create a weighted sum of expected stage delays based on
the probability that each scenario will occur. We define an
event, met, in which MS has occurred in the error detection
logic, and thus the probability of this event as PR(met).
Accordingly, the probability that MS does not occur is then
1− PR(met).
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Fig. 7: Expected stage delays including metastability

1) Metastability scenarios: We define an expected delay
associated with each of the nine scenarios. The expected
delays of the two MS-free scenarios, highlighted in checkered
blue, are easily obtained based on the analysis in Section III.
The remaining scenarios are divided into two categories: MS
occurs in the TDTB’s E only and MS occurs in both the
TDTB and Q-Flop. When MS occurs in the TDTB but resolves
before the Q-Flop samples its output at time ∆, it should
be noted that it is impossible to know whether MS resolved
randomly or due to another datapath transition arriving at the
TDTB’s D input that set the E output to ’1’. Therefore, three
separate conditions, shown in the red horizontally lined region
of Figure 7, should be evaluated: i) a new timing violation
occurred with probability p; ii) no violation occurred but
MS randomly resolved to ’1’ with 0.5 probability; or iii) no
violation occurred and MS resolved to ’0’ with 0.5 probability.
In the first and second conditions, the total stage delay will
be δ + ∆, while the last condition has expected delay of δ.

If MS in the TDTB lasts longer than ∆, then the Q-Flop
will sample the unknown value and become metastable itself.
However, a stable output from the Q-Flop is not required until
the R.Req signal propagates through the δ delay line and the
next stage issues a request on its LE channel, as explained
in Section II-A2. This allows up to δ −∆ for MS in the Q-
Flop to resolve before impacting the performance, shown in
the green vertically lined region. Only when MS propagates
from the TDTB to the Q-Flop and persists longer than δ−∆
does the time to resolve, tMSQ, appear in the expected delay
value, shown in the purple region.

2) Analytical model: As demonstrated in Section II-A3,
a transition in the datapath must occur during the W1 time
window to induce MS in the error detection logic. Therefore,
we can define the probability of event met based on a normal
distribution as:

PR(met) =

∫ δ+
W1
2

δ−W1
2

N(x, µ, σ2)dx (3)

To analyze the individual components of this probability, we
must define the probability that MS does not resolve in a
certain amount of time. As shown in [19], this can be defined



using two parameters: tr, the time to resolve MS; and λ, a
time constant that is derived from simulation of the circuit
experiencing MS. Accordingly, we use tMST and tMSQ as
the time to resolve MS in the TDTB and Q-Flop, respectively,
and λT and λQ as the time constants, respectively. As an
example, the probability that MS lasts longer than a time T
in the TDTB conditioned on event met occurring is given by:

PR(tMST ≥ T |met) = e−λCT (4)

Using the same form as (4), the probabilities of each of the
branches shown in Figure 7 can be derived in a similar fashion.
To simplify our results we set the time constants for the C-
element and Q-Flop to be equal, i.e. λT = λQ = λ.

Taking all conditions into consideration and assuming de-
lays are normally distributed, the expected delay per stage can
then be calculated as:

E[delay] = (ab+ 1) · δ+ a
[1− p(c− 2

a )

2
− b
]
·∆ +

ab

λ
(5)

where

a = Q
(δ − W1

2 − µ
σ

)
−Q

(δ + W1

2 − µ
σ

)
(6)

b = e−λδ (7)

c = e−λ∆ (8)

The Q function in (6) is a well-known equation that computes
the area under the tail of a normal distribution for a given value
in the distribution. The difference between two Q functions is
therefore the probability landing in the interval of the two
parameters, in our case between δ ± W1

2 . To quantify the
impact of MS, we look at the throughput ratio, defined as
the expected delay with MS (5) divided by the nominal delay
(2) versus variation. Here we set µ = 1 and δ, p, and ∆
according to the analysis presented in Section III. The time
constant λ and MS window W1 can be derived from either
SPICE simulation or more accurately using a physical circuit,
as shown in [20], where the authors obtained λ = 3 and W1

= 0.07 using an older process. As an example, using these
values we can compute that the expected impact on throughput
for normally distributed data delays with σ/µ of 0.1, 0.2,
and 0.3 is 1.5%, 1.1%, and 0.9%, respectively. In addition,
modern processes will tend to feature a larger λ, smaller W1,
and greater variation due to PVT and unbalanced propagation
delays, further reducing the performance impact of MS [21].
In other words, we conclude that it is reasonable to use (2)
directly to model performance because the impact on stage
delay due to MS is exceedingly small.

V. PERFORMANCE COMPARISON OF N-STAGE RINGS

In this section, the performance improvements of Blade are
compared to those of a synchronous resilient architecture, Bub-
ble Razor (BR) [18], using generic N-stage rings. Both results
are compared to the worst-case clock period of the traditional
synchronous design to obtain a precise comparison between
the two resiliency styles. The accuracy of the proposed model
is also compared to performance results using a behavioral
Verilog implementation of the Blade controller.

A. Performance model for Bubble Razor

Performance models for most synchronous resilient archi-
tectures are not readily available; fortunately, one exists for
Bubble Razor [18]. BR is another architecturally independent
resiliency scheme, in which a traditional N-stage synchronous
design is converted into a 2N-stage retimed, latch-based de-
sign and augmented with error detection/correction control
circuitry. While BR has been shown to be susceptible to MS
[22], it can be considered as an upper bound on performance
of synchronous resilient architectures due to its low, one-cycle
penalty for recovering from errors. BR’s EC for ring structures
is derived through Markov Chain analysis by [18] as:

EC = C[2− (1− p)2N ] (9)

Implicit in this equation is that as the synchronous clock cycle
C decreases, the probability of an error p increases, presenting
a tradeoff whose optimal setting yields an optimal effective
clock cycle time ECopt.

B. Model accuracy

To verify the correctness of our performance model for
Blade, a basic Blade controller was implemented based on
[11] and a generic simulation environment was created using
behavioral Verilog blocks to create N stage rings. Note that
as in the BR design, an N-stage ring is implemented with
2N latch stages. By abstracting away the combinational logic,
complex circuits can be modeled using simple structures with
no loss of exactness as all delays are modeled probabilistically.
In addition, the simulation framework accurately models the
handshaking overhead and interaction between tokens in the
control path, enabling the framework to capture the impact of
overheads should they become sufficiently large as to affect
performance.

Figure 8 shows performance results obtained using the
analytical model presented in Section III and the simulation
framework on a ring structure with a clock period (CP) of 2.5.
Note that we plot EC versus C, where the clock period C for
Blade is really CP − TRW , to match the notation used in
[18]. In the region of operation where δ ≥ ∆, i.e. the TRW
is less than 50% of the original clock cycle, or 1.25, there
is no appreciable difference between the two models. Outside
of this region, when δ ≤ ∆, the proposed model is showing

Fig. 8: Simulation Framework vs Performance Model for Ring
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Fig. 9: Blade comparisons of (a) effective clock period with normally distributed delays, (b) effective clock period with
log-normally distributed delays, and (c) performance improvements versus variability

the EC assuming the size of TRW can be further increased
whereas the simulation framework is correctly modeling the
Blade template slowing down the ring to ensure no errors occur
outside of its normal region of operation.

C. Comparison results

We compare the performance improvements of both Bubble
Razor and Blade over the traditional synchronous design on
N-stage rings. To match the results presented in [18], ξ is
fixed at 0.1%, CP = 2.5, and we sweep C, which is CP
minus TRW, for all designs. Figure 9a and Figure 9b compare
the EC obtained from each design when the underlying delays
are normally and log-normally distributed, respectively, with
a moderate amount of variance given both environmental [23]
and data variability (σ/µ = 0.2) for rings of one to four
traditional stages, i.e. N = 1 to 4. Curves corresponding to the
same number of stages are drawn with the same color. The
horizontal lines represent the performance of the traditional
synchronous design and are at different heights because of the
relationship between the clock period and the number of stages
N in (1) when the SER is fixed. The solid curves represent the
performance of BR, and the dotted curves shown results from
Blade. The curve is colored gray when the maximum size of
TRW for the Blade and BR designs is exceeded. In some cases,
the size restriction on TRW occurs before the optimal EC is
reached, therefore the optimal setting for TRW is ∆ = CP

2 .
For a 4-stage ring, Blade’s performance improvement is 23%
over BR and 35% over traditional synchronous designs assum-
ing normally distributed delays. For log-normally distributed
delays with the same variance, the improvement is 13.1% over
BR and 44.7% over traditional synchronous design.

VI. APPLICATION TO A MIPS CPU

To show an example of how the Blade performance model
can be used, we present an application of the model on a 3-
stage MIPS OpenCore CPU called Plasma [24]. We show that
the optimal performance of the Blade design can be accurately
predicted using only simulation data from the synchronous
design. This allows designers to estimate the potential benefits
of Blade without converting their existing designs and also

provides insight in setting the timing resiliency window to
achieve the optimal performance.

A. Delay distribution
As discussed in Section II-B, normal and log-normal delays

may not always be realistic when data dependency plays a
large role in delay variability. To gain more insight into actual
delay distributions and to apply our model directly to a real
design, we analyze Plasma implemented using a standard
synchronous flow in a 28nm process executing a benchmark
program that computes π [24]. Delay values were recorded by
altering the sequential Verilog modules in the library to record
the difference in delay between the last transition at its input
and the rising edge of clock, as shown in Figure 10a.

B. Impact of retiming and reducing error detection logic
The conversion of a traditional synchronous FF-based de-

sign to Blade, which is latch-based, involves a retiming
step where every flop in the original design is converted
to two latches, only one of which is retimed to be placed
near the middle of the original combinational logic. In this
way, a critical path of length X will now ideally be split
into two paths of length X/2 and X/2, enabling the hiding
of Blade handshaking overheads. However, the path delays
of the synchronous FF-based design cannot always be split
equally; therefore, we collect data from the retimed latch-based
synchronous design to obtain accurate distributions.

To minimize the area and power overheads of placing
error detection logic on every retimed stage, it may also
be desirable to apply Blade only to every other stage, i.e.
at the original flop locations and not at the retimed latch
locations. Non-error detecting stages do not monitor for timing
violations; instead, they allow for time borrowing between the
two neighboring stages. Fortunately, the proposed model also
applies to such a design, with one caveat: the maximum TRW
of the error detecting stage is now restricted by the degree of
time borrowing allowed in the subsequent stage.

Determining the amount of time borrowing is therefore an-
other avenue for optimization. To explore this avenue further,
three distributions are shown in Figure 10a, each come from
measuring the path delays of the synchronous latch-based
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Fig. 10: Experimental results of 3-stage MIPS CPU

design retimed to allow a different amount of time borrowing.
In particular, Distribution A features the largest amount of time
borrowing, while Distribution C allows the smallest amount
of time borrowing. The datapath between these runs is only
minimally changing (enough to accommodate the retiming
algorithm); thus the differences are solely based on the final
placement of the latches. Fortunately, our model easily handles
differences in variation and thus we can obtain the EC vs
TRW for each run, as shown in Figure 10b.

C. Optimizing TRW

Table I summarizes the optimal TRW , TRWopt, and cor-
responding optimal EC, ECopt, derived using the analytical
model and actual Blade gate-level simulation normalized to
the original synchronous clock period. The proposed model is
within 5.4% of the simulated TRWopt and more than 99%
accurate at estimating ECopt. Note that the potential per-
formance benefit for these particular distributions are always
limited by TRWmax, as set by the Blade template and chosen
time borrowing allocation. The proposed model allows us to
compute the truly optimal TRW, assuming no TRWmax limit
exists. This region is shown by the extended gray curves in
Figure 10b. For distributions A, B, and C, the optimal TRW
sizes are then 0.48, 0.53, and 0.46, respectively, which achieve
an EC of 0.632, 0.678, and, 0.745, respectively.

TABLE I: Normalized optimal TRW and EC of three data
dependent distributions

Distribution A Distribution B Distribution C
Model Sim Model Sim Model Sim

TRWmax 0.27 0.35 0.43
TRWopt 0.26 0.27 0.34 0.35 0.39 0.37

ECopt 0.748 0.751 0.713 0.719 0.751 0.748

VII. CONCLUSIONS

In this paper, we proposed an analytical model to accurately
predict the performance of Blade designs based on generic
delay distributions, such as normal and log-normal, given
a particular degree of variation. This model can be used
to optimally tune the size of the timing resiliency window
used in Blade designs to achieve maximum performance.
We also showed how the model can be adapted to work on
more realistic delay distributions measured through simulation,
where the final distribution of path delays is an amalgamation
of variations from multiple sources. The optimal probability of
error when delays are normally distributed, which tends to be
true when considering PVT variations, was analytically proven
to be 21% for a systematic error rate set to 0.1%, irrespective
of σ or µ. This observation may lead to optimized methods
of tuning stage delays in Blade circuits, as an online tuning
circuit could simply adjust to maintain a pre-defined error rate
to ensure near-optimal performance instead of computing more
complicated statistics and timing analysis on-the-fly.

Non-ideal effects on the performance of Blade were also
studied, including the quantization of delay lines and metasta-
bility. Our results show that the step size of a tunable delay
line can be reasonably large without experiencing a significant
impact in performance, allowing the designer to reduce the
complexity, power consumption, and area of these circuits.
The impact of MS on the performance was also derived
and analyzed, showing that, while MS may lead to long
instantaneous stage delays, the occurrence of these events is
too rare to make an appreciable impact over the long term.

We then verified our performance model through a simu-
lation framework using behavioral Blade controllers. Using
this framework, we also compared Blade to Bubble Razor
and traditional synchronous design with normally and log-
normally distributed delays. Our results show Blade on N-
stage rings to be up to 23% better than Bubble Razor and



35% better than traditional synchronous design for normal
distributions with a reasonable amount of variation. Finally,
the proposed model was applied to an actual gate-level imple-
mentation of Blade in a MIPS CPU to analyze irregular delay
distributions, determine the optimal timing resiliency window,
and gain insights into the impact of retiming on performance.

APPENDIX

It is possible to analytically find the optimal error rate for
the normal distribution. Assume the worst case delay per stage
is always constant, K = δ + ∆, where K is set based on the
chosen ξ using the following equation:

K = µ+m · σ (10)

For ξ = 0.1%, m can be calculated to be ~3.2905. Rearranging
and plugging back into equation (2) yields:

d̄ = (1− p)δ + p ·K (11)

In a normal distribtion, (1− p) is defined as 1
2 [1 + erf( δ−µ√

2σ
)]

or erf
(
(δ−µ)/(

√
2σ)
)

= 1−2p, where erf(x) is the normal
error function. Taking the inverse error function of each side
would therefore give:

δ =
√

2σerf−1(1− 2p) + µ (12)

Replacing (12) in (11) yields

d̄ = (1− p)[
√

2σerf−1(1− 2p) + µ] + p ·K (13)

To minimize d̄, we can take the derivative of (13) and set it
to zero:

∂d̄

∂p
= K−[

√
2σerf−1(1− 2p) + µ]

+ (1− p)
√

2σ
∂erf−1(1− 2p)

∂p
= 0

(14)

Letting y = 1− 2p can simplify (14):

(1 + y)
√

2σ
∂erf−1y

∂y
−
√

2σerf−1y +K − µ = 0 (15)

A simple rearrangement of (10) and (15) yields:

(1 + y)
√

2
∂erf−1y

∂y
−
√

2erf−1y +m = 0 (16)

Inspection of equation (16) and the definition of inverse error
function from [25], shows that neither y nor p have any
dependence on σ or µ. Therefore, d̄ is independent of σ/µ
but not ξ (note the m).
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